Reflexions on Knowledge Modelling

Christian Heller<christian.heller@tuxtax.de
Periklis Sochoscperiklis.sochos@tu-ilmenau.de
llka Philippow <ilka.philippow@tu-ilmenau.de

Technical University of lImenau
Faculty for Computer Science and Automation
Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 limenau, Germany

Abstract: This article reports about The initially observed discrepancies belong
an ongoing research investigating to software engineering processes (abstrac-
the possibilities for applying inter- tion gaps), to the physical architecture (mis-

disciplinary concepts to software sys- ; . . .
tem design. The new resulting pro- leading tiers) as well as the logical architec-

gramming philosophy is based on ture (modelling mistakes) of systems. They
firstly, a distinction of statics and are explained following.

dynamics, secondly a knowledge

schema structuring models and their

meta information hierarchically, and

thirdly the separation of state- and 1.1 Abstraction Gaps

logic knowledge. It solves many of

the problems existing in classical

programming paradigms and lan- Software has to be developed in a creative
guages and may have the potential process calle&oftware Engineering Process
to replace these in the long run. (SEP) or-Methodology(figure 1).

Keywords: Knowledge Abstraction,
Cybernetics Oriented Programming,
CYBOP, Software Design

1 Introduction

architecture
diagrams

Sometimes, describing the easy things is the

most difficult. And most of the time, it seems lasy b 2
easier to copy existing concepts than to in-
vestigate new, but possibly more intuitive
solutions. The work described in this doc-
ument tried to question traditional concepts
of software design and to correct or simplify

these by applying new ideas stemming frOBjttarent forms of SEP existaterfall

other scientific disciplines. It thus wants tqa ative Extreme ProgrammingXP) and
contribute to a better knowledge modellingAg“e ProgrammingBut every project, con-

feature
model

requirements

document code

source ‘

Figure 1: Abstraction Gaps

sciously or not, follows a SEP that sooner- - Human«< Human
or-later, in one form or the other, goes through
three common phase&nalysis Designand
ImplementationEach phase creates itsown _ Computer— Computer
model of what is to be abstracted in soft-

ware and itis the differences in exactly thesg, -1, of these relies on different techniques,
models that often cause complications. .o ns00rt mechanisms, languages (protocols)
A previous article [Hel04] mentioned the and so on. But the general principle after
Requirements Documerieature Model which communication works, is always the
Architecture Diagram@&ndSource Codas same — no matter whether techni€ampu-
forms of knowledge abstraction. It also deger systems or their biological prototype, the
cribed the following abstraction gaps (sekluman Beingare considered: Information
figure 1) that have to be crossed: is received stored processea@ndsent De-
spite these common characteristics, today’s
la Requirements Document— Feature Mhformation TechnologyIT) environments
[HKBPO3] treat communication between a
computer system and a human being differ-

2 Architecture Diagrams — Source Cod@ntly than thasmongcomputer systems.

- Human«< Computer

1b Feature Model — Architecture Diagr.

By improving theTraceability between re-

quirements and the architecture, feature mod- @ ’%‘”W"‘e @
. . client

els (known from system family/ product line

engineering) contribute to minimising gap g

configure read / write

application
server

1. Together with architecture diagrams, they

ease communication between stakeholders

in the SEP, because of their human-readable

form and implementation-independence. But g
sooner-or-later, also these have to be trans-

ferred into source code, by crossing gap 2.

Bridging or closing these abstraction gaps Figure 2: Universal Communication
(sometimes calle8emantic- or Conceptual

Gap9 is also known as:achieving higher

intentionalityand remains an unsolved taskigure 2 shows a three-tier environment: tier
for software engineering. One aim of thd represents thBresentation Layertier 2
work described in this article was to constands for theApplication Layer tier 3 is
tribute to a possible solution, with focus ortheDatabase (DB) LayerTypical synonyms
reducinggap 2, existing between a designedre, in this orderFrontend Business Logic
architecture and the implemented code. andBackend The tiers (layers) serve two
needs: connect different locations and share
work load Scaling. However, the split into
tiers of that kind raises two illusions:

administer database read / write 4
server

1.2 Misleading Tiers

L _ 1. Users only interact with clients
When distinguishing human- and technical

systems, the kinds @@ommunicatiorare: 2. Persistent data are stored in DB only

Many IT architectures, or at least their il-
lustrations, neglect the fact that in reality
all systems need dser Interface(Ul), for

at least being administered by humans, and
almostall systems, eveDatabase Manage-
ment System(®BMS) themselves, store some
of their persistent data outside a database,
for example locally available configuration = fed hay.dung
information. This is not necessarily a prob- ' " sadde. reins, stable
lem for the IT environment as such, but it is

for the internal architecture of software sys-

tems. Special solutions have to deal with Figure 3: Concept of a Horse
frontend (Ul framework), business logic (do-

main patterns) and backend (data mapping),

and often additional mechanisms for local ,umber of terms commonly used to des-
and remote communication. The serious digtipe a horse. Most importantly, there are
ferences in these design solutions are 0B ctural observations describing the horse
root of well-known problems like multi- di- 55 concept consisting of parts likead Legs
rectional inter-dependencies between systgpigofs Secondly, there are properties like
parts, that make software difficult to develog,e horse’Colour, Shapeor Size Thirdly,
and hard to maintain. there are terms describing a horse’s actions
One aim of the work described in this artilike its Movemenbr Eating that change a
cle was to investigate possibilities fouai- horse’s position and/ or state. Finally, there
fication of communication paradigms, thagre a number of terms likelay or Saddle

is high-level design paradigms rather tha@ssociating concepts related to the horse.

Iow—leyel protocols, in order to architect sofiy e might suggest to model properties like
ware in a way that allows the computer syspe position, size or colour of a horse’s leg
tem it runs on to communicateniversally aspart of that leg. In fact, this is how clas-
sical programming approaches its solutions.
In OOP, one would probably use a class re-
1.3 Modelling Mistakes presenting the leg and an attribute standing
for the leg’s colour. However, when follow-

Most modern software is not written directl;r'{; gg;[rgeme(;a?alll&g]])p?h?gg ifcogr?ggan thin-

in a machine language but designed in for
of higher-level models instead. These allo is true that in everyday language, one tends
to speed up application development and higlgsay A horse leghas acolour. Unfortu-
avoiding errors.Object Oriented Program- nately, this leads to the wrong assumption
ming (OOP), for example, uses design corthat a leg were made of a colour. But this
cepts like theClassowning Attributesand is not the case. A leg does nobnsistof
Methods Yet does this kind of modelling a colour in the hierarchical meaning of a
create abstractions that reflect concepts whole consisting of parts. The colour is rather
the real world completely and correctly? property informatioraboutthe leg. It seems
there is no correct expression in natural (Eng-

The model of aHorseshall serve as exam-l. Y tating th tv of
ple to investigate this further. Figure 3 show®) language stating the property of some-

happy, sad, aggressive head, eyes, ears, mane

black, brown, white

shape, size

smell tail, legs, hoofs

canter, gallop, tantivy

thing. ThelS-Averbalisation is used to ex-lack of a general, container-like type leads

press that the leg belongs to a special cat® many strong dependencies, which could
gory of items, for exampleA leg is a body be avoided when holding type attributes as
element. The HAS-Aformulation is used neutral elements. The language and inter-
to express that a leg as whole consists pfeter of this work use just one structure for

smaller parts, for examplek leg has a knee knowledge representation, that covers many
and it has a hoof.But which formulation of the traditional forms of containers.

expresses a property? Well, perhaps itWO'“I'L‘?thher, the bundling of attributes and me-
be best to sayA leg IS-OF a colour. thods in an OOP class forces classes to not
The CYBOP knowledge schema describeahly relate to other classes for accessing their
later in this article distinguishes structuralattributes, but also for using the methods of-
from meta information. Actions (like thefered by them. This often leads to unfavou-
gallop of a horse) causing change in the madéle bidirectional dependencies [HSPO5],
or its environment are calledogic in this that many software patterns even use on pur-
work, since they follow certain rules. pose (which is a mistake, however [HSPO05]).
A related problem is that, despite multiple
relations in a huge class framework, it is
often difficult or impossible to reach some
instances along normal object associations,
which necessitates the introduction of sta-
The conceptual mistakes mentioned in segeally (globally) accessible parts, with all
tion 1 are partly the reason for, and partlgisadvantages [HSP05]. The knowledge
they are caused by incomplete programminghema introduced later on allows to build
paradigms. Of the three abstraction princinodels with unidirectional relations only, that
ples of human thinking described in [HelO4kre easy to navigate, without global access.
OOP implement®iscriminationandCate- Other software design solutions likgon-

gonsatmnqnly. Composmo_nas th'.rd kind cerninterfaces used i@omponent Oriented
of abstraction leading to hierarchical (treel-3 ina(COP) [BMF02 theJoi
like) models, is not considered. r(_)grammmg()] or on

' Point Model(JPM) known fromAspect Ori-
Hierarchies are not new, they are present énted Programmin¢AOP) [Pro02] have their
many ways in today’s programming. Thergwn drawbacks. Concerns spread functio-
are object hierarchies, process hierarchiasality and cause redundant code through over-
design patterns modelling a hierarchy andpping interfaces [Hel02], which would be
more. But: the hierarchy as concept is neivoidable using an ontological architecture
inherentin the type system of current pro{HKBP03]. The JPM contains some unsolved
gramming languages. If it were, thenery issues, pointed out by [HT04]. Models as
type would be &Containerby default. Sec- proposed in this article are ontologies.
tion 4 will introduce such a universal type.

2 Architectural Troubles

System Family Engineerirgpplies a so-called
Yet what are the results of that incompletgix-Packapproach [CMU03, EP01], based
type system? First and foremost, it is then the separation dbomain Engineering
reason for the existence of multiple kind$DE) andApplication EngineeringAE). The
of container types, and therewith the reasamork described in this article proposes a se-

for falsified contents when using containgparation of knowledge and system control.
inheritance, as demonstrated in [Nor]. The

3 Approach

On its way to solving the issues mentioned mind' — ‘
in sections 1 and 2, the work followed the oo &
Cybernetics Oriented Programmii§YBOP)

approach [Hel04]. The idea behind is as | [system contol sate | logic
. .. . hierarchical knowledge
simple as it is helpful; it suggests to:

dynamics statics
cyboi cybol
. . . . b cybop
Inspect solutions of various disciplines
of science, phenomenons of nature,
and apply them to software engineering. Figyre 5: Overall CYBOP Approach

Figure 4 shows some sciences whose prin-

ciples were considered in this work. Th
name of a field of science is shown on top Il abstract knowledge that humans make

each box. Made observations are mention&& ?]efggf ctgrtrh:rlroTll?r?o TIZZ béalglfnT:rTely
below, in the middle. The resulting desig pnysl : wiedg imiarty,
t&ere are actually two kinds of software: one

recommendations for software can be foune resentinmassiveknowledae and the other
at the bottom of each box. The recommen- P 9 9

dations are grouped into those that justify & actlvelycontrolllng a system’s hardware.
distinction betweerStatics and Dynamigs Secondly, attention is payed to the concepts
a new kind ofknowledge Schemand a se- of Human ThinkingHel04], as investigated
paration ofState- and Logienodels. by psychology. Through their application,
knowledge becomedserarchical Moreover,
this work tries to embed knowledge models

phuosophy [avfomaton |

] ./oda‘a&cm s in an environment oDimensionsas known
system & knowiedge state & Ioglc .
from physics. Every model keeps a number
\nlormatlcs neurolo . . .
st o | s g] of Meta Informationabout its parts.Posi-

so.-mcs [_statics & dynamics _| translamr [_fransiatoriogic | . . .
tionsin space or time are one such example.

i ology
ceH [cell separation & dna_| [communication |

Sals knowueage pannerauanguage Thirdly, State-gets distinguished fromogic
knowledge. It is known from neurological
research that the human brain has special
communication regions that, simply spoken,
do nothing else than translating data, i.e. an
input- into an outpu$tate according to rules
of Logic. Systems theory uses similar abs-
tractions. When talking about states, this

A first observation, when looking at humarYVOrk means a composektof states.

beings from a philosophical perspective, im CYBOP (figure 5), all knowledge (states
the separation oMind and Brain (Body). and logic), belongs to a systen8satics and
Accordingly, CYBOP treats computers ass described by CYBOL language templates
Systemswning and processingnowledge (section 5). The processing of knowledge at
This is not unlike the idea dkgentsystems runtime, to control a system, Bynamics
owning aKnowledge Bas@Par97, Kue01]. and happens in the CYBOI interpreter.

soc a\

I psychology \ I physics I inguistics
\ recognition & thinking \ \ dimensions \ \ quality & quantity
] schema | [position fon | [term & number

Figure 4: Mindmap of Influential Sciences

4 Inter-Disciplinary Ideas

application domain
Many scientific fields (section 3) have been « MVC View + MVC Model
touched and delivered ideas for this work, |knowledge = o merface = Domain Model
not all of whom can be mentioned or elabo-
rated in this article. A few examples shall . MVC Controller + Data Mapper
be given, though; one for each proposal. g ey WIEEd o BPAEEES

* EJB Persistence

4.1 Statics and Dynamics
Figure 6: Different Knowledge Separations

Over the years, it has turned out to be help-
ful in software design, to separai®main

Knowledgefrom Application Functionality domain objects, imitate Biddlewarepro-
In one-or-another form, the architectural - viding persistence- or communication mech-
software patterns [HSPO&Ryers Domain anisms, which originally have nothing to do

Model and Model View Controller(MVC) th the business knowledge they contain.

all suggest to apply this principle. It is precisely thisMixup of responsibilities

TheTools & Materialsapproach [Zea04] petween an application system and its do-
talks ofactiveapplications (tools) working main knowledge, that leads to multiple inter-
onpassivedomain data (material). And alsogependencies and hence unflexibility within
System Family Engineerir{gection 2) basesy system. Instead, a separation should be
on a separate treatment of domain and agrade between acti®ystem Contrand pas-
plication, in form of Domain Engineering sjve Knowledge A Ul's appearance would
(DE) andApplication EngineerindAE). then be treated as domain knowledge, just

An often neglected fact of these approach&s the logic of the functions called through
is that not only the domain, but also the apt- A data mapper would be transformed
plication contains important business knownto a simpleTranslator— similar to aData

ledge (figure 6). ThdJser Interface(Ul), Transfer Objec{DTO) [HSPO5] - that knows
for example, is tailored for a specific busihow to convert data from one domain model
ness domain. And the logic behind, if notnto another; its DBMS access functiona-
contained in the Ul itself, is often put in ality, however, would be extracted and put

Controllerwhich belongs to the applicatien into the application system. Monstrosities
not the domain layer. like EJBs would likewise be opened up and
Similarly, the domain often contains func-'oart(_)d into their actual domain knowledge,
’ and all other mechanisms around —the latter
application procesdatabase(DB) access _ '
is handled by help of patterns like tlmta T0 sum up this thought: The essential re-
Mapper[HSPO5], in which the mapper alisation here is that hardware-close mecha-
objects contairBtructured Query Languagenisms like the ones necessary for data input/
(SQL) code to connect toRatabase Man- output (i/0), enabling inter-system commu-
agement SystefDBMS); Enterprise Java hication, should be handled in an active ap-
Beans(EJB), which should better be pureplication system layer which was started as

process on a computer, andt be merged 4.2 Knowledge Schema
with pure, passive domain knowledge. User

interfaces and other data models which {8, man beings have a brain which they use
traditionally hold in the application layer,, think, in other words to build up a mind.

should rather belong to the domain layer, ©Qqpjje the former exists in th&eal World
gether with all other business knowledge. the latter is constructed as a subjectife

Now, if a distinction of high-level know- tual World All people do think, all the time,
ledge from low-level system control soft-even not knowing that they do. One would
ware is considered to be useful, the next quiberefore guess that the act™finkingis a
tion must be:How, that is in which form, most common one, familiar to anybody. But
best to store knowledge in a system? judging from the enormous research effort

One possible structure call@ata Garden N Sciences dealing with it, therinciples
[HMO3] was proposed by Wau Holland ofPehind thinking are not that easy to grasp.
theChaos Computer ClugCCC). Although

being a non-academic organisation, hisidea® 1 Schema

on knowledge modelling are interesting to

this work. He dreamt of wholBorests Parks A theoreticaModelis an abstract clip of the
or — as the name saysGardensof Know- real world, and exists in the human mind.
ledge TreesindData Bushegfigure 7). Another common word foModel is Con-
cept It is the subsumption oftem Cat-
egoryand Compound resulting from three
activities of abstractiorDiscrimination Cat-
egorisationandCompositior[Hel04]. Each
modelknowsabout the parts it consists of.

item
+ category
abstraction + compound

name

schema

model

details

1.1 1.1]0.%] 0.*
Figure 7: Data Garden 4

The interpreter created in the work described
in this article stores all its knowledge ame
single tree, whose root node it references.
The single concepts (data bushes) are repre-
sented by branches of that knowledge tree.

Further arguments in favour of a distinctioryet what does this knowledge of a compound
of statics and dynamics are: mind & bodynodel (whole) about its parts imply? Soft-
(philosophy), cerebral cortex & communiWare developers call knowledgeoutsome-
cation regions (neurology), genetic informathing Meta Information Figure 8 illustrates
tion & cell body (biology), long- & short- aSchemdstructure) with four kinds of meta
term memory (psychology), and more. information in a whole-part relation.

Figure 8: Knowledge Schema

An obvious way is to give each part a unique

Namefor identification. Secondly, a com- LSS
' panel button

pound needs to know about tivodel of

each part since a part may itself be seenas o.r | property

compound that needs to know aboult its parts. i properties:

position, size, colour,

The distinction of the several kinds of mod- order, weight

els, in other words the kind oAbstraction 0. | constraint constraints:
minimum, maximum,

(compound, term, number etc.) of a model minimum choice

is the third kind of information a compound

needs to know about its parts. It is compa-

rable to alypein classical system program-

ming languages. All further kinds of metaFigure 9: Double Hierarchy (PartdMeta Info)
information are summed up by a fourth re-

lation which is calledetails

Meta Hierarchy To the latter do also be-
4.2.2 Double Hierarchy long constraints like the minimum size of
a button or a possible choice of colours for

Finally, what makes up the character of i Propertiesare (meta) information about
model (in the understanding of the humag Part; Constraintsabout aProperty

mind) is a combination of two hierarchies:

the Partsit consists of, together witMeta

Informationabout it. 4.3 State and Logic

Most properties of a molecule Dhemistry

for example, are determined by the numbeccording to the observations made in the
and arrangement of its atomsHydrogen work described in this article, there are two
(H2) becomeswater (H.O) (with a totally kinds of knowledgeState-andLogic. While
different character) when just or@xygen the former may be placed in a spatial dimen-
(O) atom is added per hydrogen molecule sjon, the latter is processed as sequence over

The kinds of meta information discussed ifime. Often, logic is labelledlynamicbe-
[Hel04] were also calleBimension®r Con- haviour — but only thexecutiorof a rule of
ceptual Interactiorbetween aVholeand its l0gic is dynamicpotthe rule itself §tatic).
Parts They may represent very differenRules of logic translate input- into output
properties and be constrained to certain states. What characterises a system is how
values- or areas of validity. it applies logic knowledge to translate state

Figure 9 illustrates th®ouble Hierarchy ~ knowledge [Hel02]. Yet how to imagine a
here spoken of. A graphical panel was chdgnowledge model consisting of state- as well
sen as example model. It consists of small@s logic parts? Following an example.

parts, among them being a number of butrhe famousviodel View ControllefMVC)
tons. Altogether they form thieart Hierar- pattern was extended by thdierarchical
chy. On the other hand, there are propertiggdyvC (HMVC) pattern towards a hierarchy
like the size, position or colour of the butof MVC Triads[CKP00]. The omnipres-

tons, which are neither part of the panel, n@ince of hierarchies in the MVC was demon-
of the buttons themselves; they are infokstrated in [HBKPO3].
mationaboutthe buttons and form an own

5 Practical Proof

‘ view ‘ partview ‘

The proof of operatability for the new con-

cepts is given by th€ybernetics Oriented

[togic [partiogic] Language(CYBOL), defined according to
the principles of abstraction worked out be-

e e fore, and by theCybernetics Oriented In-
- _ terpreter(CYBOI), a knowledge processing

system. In addition, a prototype applica-
tion calledRes Medicina¢Pro04] was im-
plemented in CYBOL, but will — due to the

Figure 10: Runtime Logic manipulating States. . .
g g P g limited space — not be explained further here.

Figure 10 shows the three partBlomain
(Model), ViewandLogic (Controller) of an
(adapted) MVC pattern as independent bran-

ches of one common knowledge tree, as egince CYBOL is based on thExtensible
istent at system runtime in memory. Each dylarkup Languagg¢XML), a Document Type
them represents a concept on its own. THeefinition(DTD) can be given (figure 11).
logic model, however, is allowed to access

and change the view- and domain model; it _ .t cyent model (party>

is able to link different knowledge models. <ELEMENT part (property*)>

But view- and domain model, representing SIErEMENT Property (constaint)>

states, are not allowed to manipulate logic.

In other words: The dependencies between

5.1 Document Type Definition

<IATTLIST part
name CDATA #REQUIRED

logic- and state models aumidirectional channel CDATA #REQUIRED
. i i i abstraction CDATA #REQUIRED
An innovation is that logic knowledge gets model CDATA #REQUIRED>

manipulatable. A logic model (algorithm) —_ 1/t property

cannot only access and change state-, but name CDATA #REQUIRED
also logic models, even itself! Because mod- gg";‘g';i'ﬁof?é‘;%figggngD
els modified in that manner can be made model CDATA #REQUIRED>
persistentin form of CYBOL knowledge tem- _, 11/ isT constraint

plates (section 5), and be reloaded the next name CDATA #REQUIRED
time an application starts, this may be seen g, <O R

as a kind oMeta ProgrammingCon04]. model CDATA #REQUIRED>

The clear separation of states and logic into

discrete models avoids unwanted dependen-

cies as caused by the bundling of attributes Figure 11: CYBOL DTD
and methods in OOP. All that would be needed

to make a CYBOP system work with newPne can recognise the purely hierarchical
state models, is the corresponding translgtructure as described by the CYBOP know-

tion logic. Translators [HKBP03] simplify ledge schema (section 4.2.1). The three ele-

architectures and unify communication, Mentspart propertyandconstrainthave the
same list of required attributes.

5.2 Hello World Container | Knowledge Template

Tree Hierarchical wholepart
. structure
The well-knownHello, World! program prin- . i
prog b Table Like a Tree, as hierarchy

ting just two words shall be given as mini-
mal example application. It consists of only,
two operations:sendand exit The string

message to be displayed on screen is hand o dMap
over aspropertyto the sendoperation, be-

consisting of rows which
consist of columns
Parts have amame(key)
and amodel(value)

fore theexit shuts down the system: List Farts mayt have @osi-
ion property
<model> Vector A model attribute may
<part namez"sgn_d_modeI_to_output" hold comma-separated
channel="inline" .
abstraction="operation" values; a template holds
model="send"> a number of parts (dy
<property name="language" .
channel="inline" namically changeable)
abstraction="string" Arra Like a Vector; characters
model="tui"/> y
<property name="receiver" are interpreted astring
channel_="in|ine'i
abstraction=string Table 1: Mapping Containers to CYBOL

model="user"/>
<property name="message"

channel="inline"
abstraction="string"
model="Hello, World!"/>

5.4 Knowledge-handling System

</part>
<part name="exit_application"
channel="inline"
abstraction="operation" The pure existence of proper knowledge does
model="exit"/> . . R
</model> not suffice to create an improved kind of
software system, within a slimmer software
development process. The system needs to
know how tohandleknowledge, at runtime.

5.3 Container Mapping The criticism is twofold, since traditionally:

f. 1. Operating systems don't have suffi-

State-of-the-art programming languages o . X 2
cient knowledge handling capabilities

fer a number of different container types,
partly based on each other through inheri- o Applications contain too much low-
tance. Section 2 of this work identifi€zbn- level system control functionality
tainer Inheritanceas one reason for falsified

program results. This is changed when using CYBOI. As ac-

Section 4.2 introducedinowledge Schemative interpreter encapsulating system-level
which represents each itemld&rarchyby functionality, it handles knowledge provided
default, the result being that different typef form of passive CYBOL templates. In

of containers are not needed any longer. B@tYBOP systems, all compound knowledge
how are the different kinds of container bemodels have the same type structure (schema).
haviour implemented in CYBOL? Table 1Since they do not differ, they can be manip-
gives an answer. ulated in the same manner.

%
‘ memoriser ‘ ‘ applicator ‘ i} /‘

template schema model
controller statics structure dynamics
cybol language cybop concepts cyboi interpreter
‘ cyboi ‘ ‘ manager ‘ ‘ checker ‘ design time research time Tuntime
domain expert / system developer user
ication developer
Figure 12: CYBOI Architecture Figure 13: Knowledge Triumvirate

Figure 12 shows three main parts of CYBOApplication systems become much more flex-
TheControllermanages system startup, shilile than complex class networks as known
down and the handling of signals during itfrom OOP. Tree structures are easy to edit.
runtime; the system uses just one centrdhey allow to better estimate changes caused
signal checking loop. Thi&emoriserpro- by new requirements, because dependencies
vides memory structures (to store knowledgeg obvious. Software maintenance gets imp-
and procedures to access these. Logic knowved, because application developers can
ledge is processed in thgplicator. Paral- focus on pure domain knowledge. Low-level
lels to thevon Neumanarchitecture [Tea05]system functionality is provided by CYBOI,
are intended. CYBOL applications are therefore portable.

Although this work does not address ®Beft-
ware Engineering ProcegSEP) directly, its

6 Summary and Future results have great effect on it. Section 1.1
pointed out abstraction gaps and multiple

This article tried to sum up a much Iargegevelopment paradigm switches, happening

o : . : during a software project’s lifetime. It set
scientific work entitledCybernetics Orien-)
ted Programming{CYBOP). In particular, out to find aCommon Knowledge Abstrac

it reflected on knowledge modelling and itt|on for all phases. The results of this work

implications on software design. Traditione\l elp overcom@ap 2(figure 1). Since know-

concepts were revised with new ideas steme—Olge gets interpreted directly, the formerly

ming from various other scientific disciplineg.eeOIeOI implementation phase disappears.

The results can be reduced to one iIIustrzgYBOP applications are capable of com-

tion: theKnowledge Triumviratéigure 13). municating universally. CYBOI contains all

) ! n ry mechanism hat it suffi
Its centrepiece is the new CYBOP know: ecessary mechanisms, so that it suffices to

- issue asend receiveoperation with the cor-
ledgeSchemaroviding a structure to both,responding language, in a CYBOL template
knowledge templates and -models. CYBOI ' '
Modelsare the dynamic runtime instanceyatura"y, there are limits to CYBOP. It does
of static design-time CYBOMemplates ~ not claim to betheapproach for all kinds of
I;%rogramming problems, although it thinks

Because all knowledge is stored in tree-forto, contribute suitable concepts for business

application development. However, its usiHel04]
ability for hardware-close systems with Real
Time (RT) requirements is questionnable, as
it cannot guarantee signal execution in time.

[HKBPO3]

References

[BMFO02]

[CKPOO]

[CMUO3]

[Con04]

[EPO1]

[HBKPO3]

[Hel02]

Federico Barbieri, Stefano Maz-
zocchi, and Pierpaolo Fumagalli.[HM03]
Apache Jakarta Avalon Framework
Apache Project, 2002.

Jason Cai, Ranjit Kapila, and Gau-

rav Pal. HMVC: %’he I:fyered pattern[HSPOS]
for developing strong client tiers.

Java World Online Magazine, July

2000.

Software Engineering Institute[HT04]

Carnegie Mellon University. Do-
main Engineering: A Model-based
Approach. Website containing

technical Reports, 2003. [Kue01]

Collaborating Contributors.
Wikipedia — The Free Encyclo-
pedia. Web Encyclopedia, October

2004. [Nor]
ITEA Project 99005 Eureka!
2023 Programme. Engineering

Software Architectures, ProcessefPar97]
and Platforms for System Families
(ESAPS), September 2001.

Christian Heller, Jens Bohl, TorstenPro02]
Kunze, and llka Philippow. A
flexible Software Architecture for
Presentation Layers demonstrate

on Medical Documentation with [Pr004]
Episodes and Inclusion of Topolog-

ical Report. Journal of Free and

Open Source Medical Computing
(JOSMC) 1(26.06.2003):Article 1, [Tea05]
June 2003. http://www.josmc.net.

Christian Heller. Cybernetics Orien-

ted Programming (CYBOP) in Res[zea04]
Medicinae. In OSHCA Confer-

ence Online Proceedingdos An-

geles, November 2002. Open Source
Health Care Alliance (OSHCA).

Christian Heller. Cybernetics Orien-
ted Language (CYBOL).IIIS Pro-
ceedings: 8th World Multiconfer-
ence on Systemics, Cybernetics and
Informatics (SCI 2004)V:178-185,
July 2004.

Christian Heller, Torsten Kunze,
Jens Bohl, and llka Philippow. A

new Concept for System Communi-
cation.Ontology Workshop at OOP-

SLA ConferenceOctober 2003.

Herwart (Wau) Holland-
Moritz. Der Datengarten.
Internet Website, 2003.

www.wauland.de/datagarden.html.

Christian Heller, Detlef Streitferdt,
and llka Philippow. A new Pattern
Systematics. http://www.cybop.net,
March 2005.

Stephan Huttenhuis and Nick Tin-
nemeier. The Join Point Model
(JPM) in Aspect Oriented Program-
ming (AOP). March 2004.

Ralf Kuehnel Agentenbasierte Soft-
wareentwicklung: Methode und An-
wendungen Agenten Technologie.
Addison-Wesley, Muenchen, 2001.

Peter Norvig. The Java 1AQ:
Infrequently Answered Questions.
www.horvig.com/java-iag.html.

David Parks. Agent Oriented Pro-
gramming: A Practical Evaluation.
Web Article, May 1997.

AspectJ Project.
Oriented Java Extension,
http://aspectj.org.

AspectJ: Aspect-
2002.

Res Medicinae Project. Res
Medicinae — Medical Infor-
mation System, 1999-2004.
http://www.resmedicinae.org.

SelfLinux TeamSelfLinux — Linux-
Hypertext-Tutorial PingoS e.V.,,
Hamburg, 0.11.3 edition, June 2005.

Heinz Zuellighoven and et al. Tools
& Materials Approach to Software-

Development. JWAM Open Source
Project, 2004.

