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Abstract

This is the proof document of the IsarMathLib project version 1.8.0.
IsarMathLib is a library of formalized mathematics for Isabelle 2013
(ZF logic).
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1 Introduction.thy

theory Introduction imports equalities
begin

This theory does not contain any formalized mathematics used in other
theories, but is an introduction to IsarMathLib project.

1.1 How to read IsarMathLib proofs - a tutorial

Isar (the Isabelle’s formal proof language) was designed to be similar to
the standard language of mathematics. Any person able to read proofs in
a typical mathematical paper should be able to read and understand Isar
proofs without having to learn a special proof language. However, Isar is
a formal proof language and as such it does contain a couple of constructs
whose meaning is hard to guess. In this tutorial we will define a notion
and prove an example theorem about that notion, explaining Isar syntax
along the way. This tutorial may also serve as a style guide for IsarMathLib
contributors. Note that this tutorial aims to help in reading the presentation
of the Isar language that is used in IsarMathLib proof document and HTML
rendering on the FormalMath.org site, but does not teach how to write proofs
that can be verified by Isabelle. This presentation is different than the
source processed by Isabelle (the concept that the source and presentation
look different should be familiar to any LaTeX user). To learn how to write
Isar proofs one needs to study the source of this tutorial as well.

The first thing that mathematicians typically do is to define notions. In Isar
this is done with the definition keyword. In our case we define a notion of
two sets being disjoint. We will use the infix notation, i.e. the string {is
disjoint with} put between two sets to denote our notion of disjointness.
The left side of the = symbol is the notion being defined, the right side
says how we define it. In Isabelle 0 is used to denote both zero (of natural
numbers) and the empty set, which is not surprising as those two things are
the same in set theory.

definition
AreDisjoint (infix {is disjoint with} 90) where
A {is disjoint with} B= A NB =0

We are ready to prove a theorem. Here we show that the relation of be-
ing disjoint is symmetric. We start with one of the keywords ”theorem”,
”lemma” or "corollary”. In Isar they are synonymous. Then we provide a
name for the theorem. In standard mathematics theorems are numbered. In
Isar we can do that too, but it is considered better to give theorems mean-
ingful names. After the "shows” keyword we give the statement to show.



The «+— symbol denotes the equivalence in Isabelle/ZF. Here we want to
show that ” A is disjoint with B iff and only if B is disjoint with A”. To prove
this fact we show two implications - the first one that A {is disjoint with}
B implies B {is disjoint with} A and then the converse one. Each of these
implications is formulated as a statement to be proved and then proved in a
subproof like a mini-theorem. Each subproof uses a proof block to show the
implication. Proof blocks are delimited with curly brackets in Isar. Proof
block is one of the constructs that does not exist in informal mathematics,
so it may be confusing. When reading a proof containing a proof block I sug-
gest to focus first on what is that we are proving in it. This can be done by
looking at the first line or two of the block and then at the last statement. In
our case the block starts with "assume A {is disjoint with} B and the last
statement is "then have B {is disjoint with} A”. It is a typical pattern
when someone needs to prove an implication: one assumes the antecedent
and then shows that the consequent follows from this assumption. Impli-
cations are denoted with the — symbol in Isabelle. After we prove both
implications we collect them using the ”moreover” construct. The keyword
”ultimately” indicates that what follows is the conclusion of the statements
collected with ”moreover”. The ”show” keyword is like "have”, except that
it indicates that we have arrived at the claim of the theorem (or a subproof).

theorem disjointness_symmetric:
shows A {is disjoint with} B ¢<— B {is disjoint with} A
proof -
have A {is disjoint with} B — B {is disjoint with} A
proof -
{ assume A {is disjoint with} B
then have A N B = 0 using AreDisjoint_def by simp
hence B N A = 0 by auto
then have B {is disjoint with} A
using AreDisjoint_def by simp
} thus thesis by simp
qged
moreover have B {is disjoint with} A — A {is disjoint with} B
proof -
{ assume B {is disjoint with} A
then have B N A = 0 using AreDisjoint_def by simp
hence A N B = 0 by auto
then have A {is disjoint with} B
using AreDisjoint_def by simp
} thus thesis by simp
qed
ultimately show thesis by blast
qed



1.2 Overview of the project

The Fol1, ZF1 and Nat_ZF_IML theory files contain some background material
that is needed for the remaining theories.

Order_ZF and Order_ZF_la reformulate material from standard Isabelle’s
Order theory in terms of non-strict (less-or-equal) order relations. Order_zF_1
on the other hand directly continues the Order theory file using strict order
relations (less and not equal). This is useful for translating theorems from
Metamath.

In NatOrder_ZF we prove that the usual order on natural numbers is linear.

The func1 theory provides basic facts about functions. func_ZF continues
this development with more advanced topics that relate to algebraic proper-
ties of binary operations, like lifting a binary operation to a function space,
associative, commutative and distributive operations and properties of func-
tions related to order relations. func_ZF_1 is about properties of functions
related to order relations.

The standard Isabelle’s Finite theory defines the finite powerset of a set
as a certain "datatype” (?7) with some recursive properties. IsarMathLib’s
Finitel and Finite_ZF_1 theories develop more facts about this notion.
These two theories are obsolete now. They will be gradually replaced by
an approach based on set theory rather than tools specific to Isabelle. This
approach is presented in Finite_ZF theory file.

In FinOrd_ZF we talk about ordered finite sets.

The EquivClass1 theory file is a reformulation of the material in the standard
Isabelle’s EquivClass theory in the spirit of ZF set theory.

FiniteSeq_ZF discusses the notion of finite sequences (a.k.a. lists).
InductiveSeq_ZF provides the definition and properties of (what is known in
basic calculus as) sequences defined by induction, i. e. by a formula of the
form ag = x, ap+1 = f(an)-

Fold_zF shows how the familiar from functional programming notion of fold
can be interpreted in set theory.

Partitions_ZF is about splitting a set into non-overlapping subsets. This is
a common trick in proofs.

Semigroup_ZF treats the expressions of the form ag-aj - .. - ay, (i.e. products
of finite sequences), where ”-” is an associative binary operation.

CommutativeSemigroup_ZF is another take on a similar subject. This time
we consider the case when the operation is commutative and the result of
depends only on the set of elements we are summing (additively speaking),
but not the order.

The Topology_ZF series covers basics of general topology: interior, closure,
boundary, compact sets, separation axioms and continuous functions.

10



Group_ZF, Group_ZF_1, Group_ZF_1b and Group_ZF_2 provide basic facts of the
group theory. Group_zF_3 considers the notion of almost homomorphisms
that is nedeed for the real numbers construction in Real ZF.

The TopologicalGroup connects the Topology_ZF and Group_ZF series and
starts the subject of topological groups with some basic definitions and facts.

In DirectProduct_ZF we define direct product of groups and show some its
basic properties.

The OrderedGroup_ZF theory treats ordered groups. This is a suprisingly
large theory for such relatively obscure topic.

Ring_ZF defines rings. Ring_ZF_1 covers the properties of rings that are
specific to the real numbers construction in Real_ZF.

The OrderedRing_ZF theory looks at the consequences of adding a linear
order to the ring algebraic structure.

Field_ZF and OrderedField_ZF contain basic facts about (you guessed it)
fields and ordered fields.

Int_ZF_IML theory considers the integers as a monoid (multiplication) and an
abelian ordered group (addition). In Int_ZF_1 we show that integers form
a commutative ring. Int_ZF_2 contains some facts about slopes (almost
homomorphisms on integers) needed for real numbers construction, used in
Real _ZF_1.

In the IntDiv_ZF_IML theory translates some properties of the integer quo-
tient and reminder functions studied in the standard Isabelle’s IntDiv_ZF
theory to the notation used in IsarMathLib.

The Real_ZF and Real_zF_1 theories contain the construction of real numbers
based on the paper [2] by R. D. Arthan (not Cauchy sequences, not Dedekind
sections). The heavy lifting is done mostly in Group_ZF_3, Ring_ZF_1 and
Int_ZF_2. Real_ZF contains the part of the construction that can be done
starting from generic abelian groups (rather than additive group of integers).
This allows to show that real numbers form a ring. Real_ZF_1 continues the
construction using properties specific to the integers and showing that real
numbers constructed this way form a complete ordered field.

In Complex_ZF we construct complex numbers starting from a complete or-
dered field (a model of real numbers). We also define the notation for writing
about complex numbers and prove that the structure of complex numbers
constructed there satisfies the axioms of complex numbers used in Meta-
math.

MMI_prelude defines the mmisar0O context in which most theorems translated
from Metamath are proven. It also contains a chapter explaining how the
translation works.

In the Metamath_interface theory we prove a theorem that the mmisar0
context is valid (can be used) in the complex0 context. All theories us-

11



ing the translated results will import the Metamath_interface theory. The
Metamath_sampler theory provides some examples of using the translated
theorems in the complex0 context.

The theories MMI_logic_and_sets, MMI_Complex, MMI_Complex_1 and MMI_Complex_2
contain the theorems imported from the Metamath’s set.mm database. As

the translated proofs are rather verbose these theories are not printed in

this proof document. The full list of translated facts can be found in the
Metamath_theorems.txt file included in the IsarMathLib distribution. The
MMI_examples provides some theorems imported from Metamath that are
printed in this proof document as examples of how translated proofs look
like.

end

12



2 Order_ZF.thy

theory Order_ZF imports Foll
begin

This theory file considers various notion related to order. We redefine the
notions of a total order, linear order and partial order to have the same
terminology as Wikipedia (I found it very consistent across different areas
of math). We also define and study the notions of intervals and bounded sets.
We show the inclusion relations between the intervals with endpoints being
in certain order. We also show that union of bounded sets are bounded.
This allows to show in Finite_ZF.thy that finite sets are bounded.

2.1 Definitions

In this section we formulate the definitions related to order relations.

A relation r is "total” on a set X if for all elements a,b of X we have a is
in relation with b or b is in relation with a. An example is the < relation on
numbers.

definition
IsTotal (infixl {is total on} 65) where
r {is total on} X = (VaeX.VbeX. ( a,b) € r V ( b,a) € r)

A relation r is a partial order on X if it is reflexive on X (i.e. (z,x) for
every x € X), antisymmetric (if (z,y) € r and (y,x) € r, then z = y) and
transitive (x,y) € r and (y, z) € r implies (z, z) € r).
definition

IsPartOrder(X,r) = (refl(X,r) A antisym(r) A trans(r))

We define a linear order as a binary relation that is antisymmetric, transitive
and total. Note that this terminology is different than the one used the
standard Order.thy file.

definition

IsLinOrder(X,r) = ( antisym(r) A trans(r) A (r {is total on} X))

A set is bounded above if there is that is an upper bound for it, i.e. there
are some u such that (r,u) € r for all z € A. In addition, the empty set is
defined as bounded.

definition
IsBoundedAbove(A,r) = ( A=0 V (Ju. Vx€A. { x,u) € 1))

We define sets bounded below analogously.

definition
IsBoundedBelow(A,r) = (A=0 V (31. VxeA. ( 1,x) € 1))

13



A set is bounded if it is bounded below and above.

definition
IsBounded(A,r) = (IsBoundedAbove(A,r) A IsBoundedBelow(A,r))

The notation for the definition of an interval may be mysterious for some
readers, see lemma Order_zF_2_L1 for more intuitive notation.
definition
Interval(r,a,b) = r{a} N r-{b}
We also define the maximum (the greater of) two elemnts in the obvious
way.
definition
GreaterOf(r,a,b) = (if ( a,b) € r then b else a)
The definition a a minimum (the smaller of) two elements.
definition

Smaller0f(r,a,b) = (if ( a,b) € r then a else b)

We say that a set has a maximum if it has an element that is not smaller
that any other one. We show that under some conditions this element of
the set is unique (if exists).

definition
HasAmaximum(r,A) = IMeA.Vx€A. ( x,M) € r

A similar definition what it means that a set has a minimum.

definition
HasAminimum(r,A) = IJm€A.Vx€A. (m,x) € r

Definition of the maximum of a set.
definition

Maximum(r,A) = THE M. MeA A (Vxe€A. ( x,M) € 1)
Definition of a minimum of a set.

definition
Minimum(r,A) = THE m. meA A (Vx€A. ( m,x) € 1)

The supremum of a set A is defined as the minimum of the set of upper
bounds, i.e. the set {u.Voea(a,u) € 7} = [\,car{a}. Recall that in Is-
abelle/ZF r-(A) denotes the inverse image of the set A by relation r (i.e.
r-(A)={z: (z,y) € r for some y € A}).

definition
Supremum(r,A) = Minimum(r,[)acA. r{a})

Infimum is defined analogously.

definition

14



Infimum(r,A) = Maximum(r,(|a€A. r-{a})

We define a relation to be complete if every nonempty bounded above set
has a supremum.

definition
IsComplete (_ {is completel}) where
r {is complete} =
VA. IsBoundedAbove(A,r) A A#0 — HasAminimum(r,()acA. r{a})

The essential condition to show that a total relation is reflexive.

lemma Order_ZF_1_L1: assumes r {is total on} X and acX
shows (a,a) € r using assms IsTotal_def by auto

A total relation is reflexive.

lemma total_is_refl:
assumes r {is total on} X
shows refl(X,r) using assms Order_ZF_1_L1 refl_def by simp

A linear order is partial order.

lemma Order_ZF_1_L2: assumes IsLinOrder(X,r)
shows IsPartOrder(X,r)
using assms IsLinOrder_def IsPartOrder_def refl_def Order_ZF_1_L1
by auto

Partial order that is total is linear.

lemma Order_ZF_1_L3:
assumes IsPartOrder(X,r) and r {is total on} X
shows IsLinOrder(X,r)
using assms IsPartOrder_def IsLinOrder_def
by simp

Relation that is total on a set is total on any subset.

lemma Order_ZF_1_L4: assumes r {is total on} X and ACX
shows r {is total on} A
using assms IsTotal_def by auto

A linear relation is linear on any subset.

lemma ord_linear_subset: assumes IsLinOrder(X,r) and ACX
shows IsLinOrder(A,r)
using assms IsLinOrder_def Order_ZF_1_L4 by blast

If the relation is total, then every set is a union of those elements that are
nongreater than a given one and nonsmaller than a given one.
lemma Order_ZF_1_L5:

assumes r {is total on} X and ACX and acX

shows A = {x€A. (x,a) € r} U {x€A. (a,x) € r}

using assms IsTotal_def by auto
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A technical fact about reflexive relations.

lemma refl_add_point:
assumes refl(X,r) and A
x € X and VyeB. (y,x) €
shows VacA. (a,x) € r
using assms refl_def by auto

C B U {x} and B C X and
r

2.2 Intervals

In this section we discuss intervals.

The next lemma explains the notation of the definition of an interval.

lemma Order_ZF_2_L1:
shows x € Interval(r,a,b) «— ( a,x) €r A { x,b) €
using Interval_def by auto

Since there are some problems with applying the above lemma (seems that
simp and auto don’t handle equivalence very well), we split Order_zF_2_L1
into two lemmas.

lemma Order_ZF_2_L1A: assumes x € Interval(r,a,b)
shows ( a,x) € r (x,b) €r
using assms Order_ZF_2_L1 by auto

Order_ZF_2_L1, implication from right to left.

lemma Order_ZF_2_L1B: assumes ( a,x) € r ( x,b) € r
shows x € Interval(r,a,b)
using assms Order_ZF_2_L1 by simp

If the relation is reflexive, the endpoints belong to the interval.

lemma Order_ZF_2_L2: assumes refl(X,r)
and acX beX and ( a,b) € r
shows
a € Interval(r,a,b)
b € Interval(r,a,b)
using assms refl_def Order_ZF_2_L1 by auto

Under the assumptions of Order_zF_2_L2, the interval is nonempty.

lemma Order_ZF_2_L2A: assumes refl(X,r)
and a€X beX and ( a,b) € r
shows Interval(r,a,b) # 0
proof -
from assms have a € Interval(r,a,b)
using Order_ZF_2_L2 by simp
then show Interval(r,a,b) # 0 by auto
qed

If a,b,c,d are in this order, then [b,c] C [a,d]. We only need trasitivity for
this to be true.
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lemma Order_ZF_2_L3:
assumes Al: trans(r) and A2:( a,b)er ( b,c)eér ( c,d)er
shows Interval(r,b,c) C Interval(r,a,d)
proof
fix x assume A3: x € Interval(r, b, c)
note Al
moreover from A2 A3 have ( a,b) € r A ( b,x) € r using Order_ZF_2_L1A
by simp
ultimately have T1: ( a,x) € r by (rule Foll_L3)
note Al
moreover from A2 A3 have ( x,c) € r A ( ¢,d) € r using Order_ZF_2_L1A
by simp
ultimately have ( x,d) € r by (rule Foll_L3)
with T1 show x € Interval(r,a,d) using Order_ZF_2_L1B
by simp
qed

For reflexive and antisymmetric relations the interval with equal endpoints
consists only of that endpoint.

lemma Order_ZF_2_L4:
assumes Al: refl(X,r) and A2: antisym(r) and A3: a€eX
shows Interval(r,a,a) = {a}
proof
from A1 A3 have ( a,a) € r using refl_def by simp
with Al A3 show {a} C Interval(r,a,a) using Order_ZF_2_L2 by simp
from A2 show Interval(r,a,a) C {a} using Order_ZF_2_LiA Foll_L4
by fast
qed

For transitive relations the endpoints have to be in the relation for the
interval to be nonempty.

lemma Order_ZF_2_L5: assumes Al: trans(r) and A2: ( a,b) ¢ r
shows Interval(r,a,b) =0
proof -
{ assume Interval(r,a,b)#0 then obtain x where x € Interval(r,a,b)
by auto
with Al A2 have False using Order_ZF_2_L1A Foll_L3 by fast
} thus thesis by auto
qed

If a relation is defined on a set, then intervals are subsets of that set.

lemma Order_ZF_2_L6: assumes Al: r C XxX
shows Interval(r,a,b) C X
using assms Interval_def by auto

2.3 Bounded sets

In this section we consider properties of bounded sets.
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For reflexive relations singletons are bounded.

lemma Order_ZF_3_L1: assumes refl(X,r) and acX
shows IsBounded({a},r)
using assms refl_def IsBoundedAbove_def IsBoundedBelow_def
IsBounded_def by auto

Sets that are bounded above are contained in the domain of the relation.

lemma Order_ZF_3_L1A: assumes r C XxX
and IsBoundedAbove(A,r)
shows ACX using assms IsBoundedAbove_def by auto

Sets that are bounded below are contained in the domain of the relation.

lemma Order_ZF_3_L1B: assumes r C XxX
and IsBoundedBelow(A,r)
shows ACX using assms IsBoundedBelow_def by auto

For a total relation, the greater of two elements, as defined above, is indeed
greater of any of the two.

lemma Order_ZF_3_L2: assumes r {is total on} X
and xeX yeX
shows
(x,Greater0f (r,x,y)) €
(y,Greater0f (r,x,y)) €
(SmallerOf(r,x,y) ,x) €
(SmallerOf (r,x,y),y) €
using assms IsTotal_def Order_ZF_1_L1 GreaterOf_def SmallerQf_def
by auto

H R R K

If A is bounded above by u, B is bounded above by w, then AUB is bounded

above by the greater of u, w.

lemma Order_ZF_3_L2B:
assumes Al: r {is total on} X and A2: trans(r)
and A3: ueX weX
and A4: Vx€A. ( x,u) € r Vx€B. ( x,w) € r
shows Vx€AUB. (x,Greater0f(r,u,w)) € r
proof
let v = GreaterOf(r,u,w)
from A1 A3 have T1: (u,v) € r and T2: (w,v) € r
using Order_ZF_3_L2 by auto
fix x assume A5: x€AUB show (x,v) € r
proof -
{ assume x€A
with A4 T1 have ( x,u) € r A ( u,v) € r by simp
with A2 have (x,v) € r by (rule Foll_L3) }
moreover
{ assume x¢A
with A5 A4 T2 have ( x,w) € r A ( w,v) € r by simp
with A2 have (x,v) € r by (rule Fol1_L3) }
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ultimately show thesis by auto
qed
qed

For total and transitive relation the union of two sets bounded above is
bounded above.

lemma Order_ZF_3_L3:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedAbove(A,r) IsBoundedAbove(B,r)
and A4: r C XxX
shows IsBoundedAbove(AUB,r)
proof -
{ assume A=0 V B=0
with A3 have IsBoundedAbove(AUB,r) by auto }
moreover
{ assume - (A =0V B = 0)
then have T1: A#0 B#0 by auto
with A3 obtain u w where D1: VxeA. ( x,u) € r Vx€B. ( x,w) € r
using IsBoundedAbove_def by auto
let U = GreaterOf (r,u,w)
from T1 A4 D1 have ueX weX by auto
with A1 A2 D1 have Vx€AUB.( x,U) € r
using Order_ZF_3_L2B by blast
then have IsBoundedAbove (AUB,r)
using IsBoundedAbove_def by auto }
ultimately show thesis by auto
qed

For total and transitive relations if a set A is bounded above then AU {a}
is bounded above.

lemma Order_ZF_3_L4:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedAbove(A,r) and A4: acX and A5: r C XxX
shows IsBoundedAbove(AU{a},r)
proof -
from Al have refl(X,r)
using total_is_refl by simp
with assms show thesis using
Order_ZF_3_L1 IsBounded_def Order_ZF_3_L3 by simp
qed

If A is bounded below by I, B is bounded below by m, then AU B is bounded
below by the smaller of u, w.

lemma Order_ZF_3_L5B:
assumes Al: r {is total on} X and A2: trans(r)
and A3: 1€X meX
and A4: VxeA. ( 1,x) € r Vx€B. (m,x) € r
shows Vx€AUB. (Smaller0f(r,1,m),x) € r
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proof
let k¥ = SmallerOf(r,1,m)
from A1 A3 have Ti: ( k,1) € r and T2: ( k,m) € r
using Order_ZF_3_L2 by auto
fix x assume A5: x€AUB show (k,x) € r
proof -
{ assume x€A
with A4 T1 have ( k,1) € r A ( 1,x) € r by simp
with A2 have (k,x) € r by (rule Foll_L3) }
moreover
{ assume x¢A
with A5 A4 T2 have ( k,m) € r A ( m,x) € r by simp
with A2 have (k,x) € r by (rule Foll_L3) }
ultimately show thesis by auto
qed
qed

For total and transitive relation the union of two sets bounded below is
bounded below.

lemma Order_ZF_3_L6:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedBelow(A,r) IsBoundedBelow(B,r)
and A4: r C XxX
shows IsBoundedBelow(AUB,r)
proof -
{ assume A=0 V B=0
with A3 have thesis by auto }
moreover
{ assume - (A =0V B =0)
then have T1: A#0 B#0 by auto
with A3 obtain 1 m where D1: VxeA. ( 1,x) € r Vx€B. (m,x) € r
using IsBoundedBelow_def by auto
let L = Smaller0Of(r,1,m)
from T1 A4 D1 have T1: 1€X meX by auto
with A1 A2 D1 have Vx€AUB.( L,x) € r
using Order_ZF_3_L5B by blast
then have IsBoundedBelow(AUB,r)
using IsBoundedBelow_def by auto }
ultimately show thesis by auto
qed

For total and transitive relations if a set A is bounded below then AU {a}
is bounded below.

lemma Order_ZF_3_L7:
assumes Al: r {is total on} X and A2: trans(r)
and A3: IsBoundedBelow(A,r) and A4: acX and A5: r C XxX
shows IsBoundedBelow(AU{a},r)
proof -
from Al have refl(X,r)
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using total_is_refl by simp
with assms show thesis using
Order_ZF_3_L1 IsBounded_def Order_ZF_3_L6 by simp
qed

For total and transitive relations unions of two bounded sets are bounded.

theorem Order_ZF_3_T1:
assumes r {is total on} X and trans(r)
and IsBounded(A,r) IsBounded(B,r)
and r C XxX
shows IsBounded(AUB,r)
using assms Order_ZF_3_L3 Order_ZF_3_L6 Order_ZF_3_L7 IsBounded_def
by simp

For total and transitive relations if a set A is bounded then A U {a} is
bounded.

lemma Order_ZF_3_L8:
assumes r {is total on} X and trans(r)
and IsBounded(A,r) and acX and r C XxX
shows IsBounded(AU{a},r)
using assms total_is_refl Order_ZF_3_L1 Order_ZF_3_T1 by blast

A sufficient condition for a set to be bounded below.

lemma Order_ZF_3_L9: assumes Al: VacA. (l,a) € r
shows IsBoundedBelow(A,r)
proof -
from A1 have J1. Vxe€A. (1,x) € r
by auto
then show IsBoundedBelow(A,r)
using IsBoundedBelow_def by simp
qed

A sufficient condition for a set to be bounded above.

lemma Order_ZF_3_L10: assumes Al: VachA. (a,u) € r
shows IsBoundedAbove(A,r)
proof -
from A1 have Ju. Vxe€A. (x,u) € r
by auto
then show IsBoundedAbove(A,r)
using IsBoundedAbove_def by simp
qed

Intervals are bounded.

lemma Order_ZF_3_L11: shows
IsBoundedAbove (Interval(r,a,b),r)
IsBoundedBelow(Interval(r,a,b),r)
IsBounded(Interval(r,a,b),r)
proof -
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{ fix x assume x € Interval(r,a,b)
then have ( x,b) € r ( a,x) € r
using Order_ZF_2_L1A by auto
} then have
Ju. Vx€lnterval(r,a,b). ( x,u)
31. Vx€Interval(r,a,b). ( 1,x)
by auto
then show
IsBoundedAbove(Interval(r,a,b),r)
IsBoundedBelow(Interval(r,a,b),r)
IsBounded(Interval(r,a,b),r)
using IsBoundedAbove_def IsBoundedBelow_def IsBounded_def
by auto
qed

er
cr

A subset of a set that is bounded below is bounded below.

lemma Order_ZF_3_L12: assumes Al: IsBoundedBelow(A,r) and A2: BCA
shows IsBoundedBelow(B,r)
proof -
{ assume A = 0
with assms have IsBoundedBelow(B,r)
using IsBoundedBelow_def by auto }
moreover
{ assume A # 0
with A1 have J1. VxeA. (1,x) € r
using IsBoundedBelow_def by simp
with A2 have 31.Vxe€B. (1,x) € r by auto
then have IsBoundedBelow(B,r) using IsBoundedBelow_def
by auto }
ultimately show IsBoundedBelow(B,r) by auto
qed

A subset of a set that is bounded above is bounded above.

lemma Order_ZF_3_L13: assumes Al: IsBoundedAbove(A,r) and A2: BCA
shows IsBoundedAbove(B,r)
proof -
{ assume A = 0
with assms have IsBoundedAbove(B,r)
using IsBoundedAbove_def by auto }
moreover
{ assume A # 0
with A1 have Ju. Vxe€A. (x,u) € r
using IsBoundedAbove_def by simp
with A2 have Ju.Vx€B. (x,u) € r by auto
then have IsBoundedAbove(B,r) using IsBoundedAbove_def
by auto }
ultimately show IsBoundedAbove(B,r) by auto
qed

If for every element of X we can find one in A that is greater, then the A
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can not be bounded above. Works for relations that are total, transitive and
antisymmetric, (i.e. for linear order relations).

lemma Order_ZF_3_L14:
assumes Al: r {is total on} X
and A2: trans(r) and A3: antisym(r)
and Ad: r C XxX and A5: X#0
and A6: VxeX. JachA. x#a A (x,a) € r
shows —IsBoundedAbove(A,r)
proof -
{ from A5 A6 have I: A#0 by auto
moreover assume IsBoundedAbove(A,r)
ultimately obtain u where II: Vx€A. ( x,u) € r
using IsBounded_def IsBoundedAbove_def by auto
with A4 I have ueX by auto
with A6 obtain b where bcA and III: u#b and (u,b) € r
by auto
with II have (b,u) € r (u,b) € r by auto
with A3 have b=u by (rule Foll_L4)
with IIT have False by simp
} thus —IsBoundedAbove(A,r) by auto
qed

The set of elements in a set A that are nongreater than a given element is
bounded above.

lemma Order_ZF_3_L15: shows IsBoundedAbove({x€A. (x,a) € r},r)
using IsBoundedAbove_def by auto

If A is bounded below, then the set of elements in a set A that are nongreater
than a given element is bounded.

lemma Order_ZF_3_L16: assumes Al: IsBoundedBelow(A,r)
shows IsBounded({x€A. (x,a) € r},r)
proof -
{ assume A=0
then have IsBounded({x€A. (x,a) € r},r)
using IsBoundedBelow_def IsBoundedAbove_def IsBounded_def
by auto }
moreover
{ assume A#0
with Al obtain 1 where I: VxeA. (1,x) € r
using IsBoundedBelow_def by auto
then have Vye{xe€A. (x,a) € r}. (1,y) € r by simp
then have IsBoundedBelow({x€A. (x,a) € r},r)
by (rule Order_ZF_3_L9)
then have IsBounded({x€A. (x,a) € r},r)
using Order_ZF_3_L15 IsBounded_def by simp }
ultimately show thesis by blast
qed
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end
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3 Order_ZF _la.thy

theory Order_ZF_la imports Order_ZF
begin

This theory is a continuation of Order_ZF and talks about maximuma and
minimum of a set, supremum and infimum and strict (not reflexive) versions
of order relations.

3.1 Maximum and minimum of a set

In this section we show that maximum and minimum are unique if they
exist. We also show that union of sets that have maxima (minima) has a
maximum (minimum). We also show that singletons have maximum and
minimum. All this allows to show (in Finite_ZF) that every finite set has
well-defined maximum and minimum.

For antisymmetric relations maximum of a set is unique if it exists.

lemma Order_ZF_4_L1: assumes Al: antisym(r) and A2: HasAmaximum(r,A)
shows J!M. MeA A (Vx€A. ( x,M) € r)
proof
from A2 show IM. M € A A (Vx€A. (x, M) € r)
using HasAmaximum_def by auto
fix M1 M2 assume
A2: M1 € A A (Vx€A. (x, M1) € ¥) M2 € A A (Vx€A. (x, M2) € 1)
then have (M1,M2) € r (M2,M1) € r by auto
with A1 show M1=M2 by (rule Folil_L4)
qed

For antisymmetric relations minimum of a set is unique if it exists.

lemma Order_ZF_4_L2: assumes Al: antisym(r) and A2: HasAminimum(r,A)
shows 3 !m. meA A (Vx€A. ( m,x) € r)
proof
from A2 show dm. m € A A (Vx€A. (m, x) € 1)
using HasAminimum_def by auto
fix m1 m2 assume
A2: m1 € A A (Vx€A. (ml, x) € r) m2 € A A (Vx€A. (m2, x) € 1)
then have (m1,m2) € r (m2,m1) € r by auto
with Al show m1=m2 by (rule Foll_L4)
qed

Maximum of a set has desired properties.

lemma Order_ZF_4_L3: assumes Al: antisym(r) and A2: HasAmaximum(r,A)
shows Maximum(r,A) € A Vx€A. (x,Maximum(r,A)) € r

proof -
let Max = THE M. MeA A (Vx€A. ( x,M) € r)
from A1 A2 have 3 !M. MeA A (Vx€A. { x,M) € 1)
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by (rule Order_ZF_4_L1)
then have Max € A A (VxeA. ( x,Max) € r)
by (rule thel)
then show Maximum(r,A) € A Vx€A. (x,Maximum(r,A)) € r
using Maximum_def by auto
qed

Minimum of a set has desired properties.

lemma Order_ZF_4_L4: assumes Al: antisym(r) and A2: HasAminimum(r,A)
shows Minimum(r,A) € A Vx€A. (Minimum(r,A),x) € r
proof -
let Min = THE m. m€A A (Vx€A. ( m,x) € 1)
from A1 A2 have 3 !m. meA A (Vx€A. ( m,x) € 1)
by (rule Order_ZF_4_L2)
then have Min € A A (Vx€A. ( Min,x) € 1)
by (rule thel)
then show Minimum(r,A) € A Vx€A. (Minimum(r,A),x) € r
using Minimum_def by auto
qed

For total and transitive relations a union a of two sets that have maxima
has a maximum.

lemma Order_ZF_4_L5:
assumes Al: r {is total on} (AUB) and A2: trans(r)
and A3: HasAmaximum(r,A) HasAmaximum(r,B)
shows HasAmaximum(r,AUB)
proof -
from A3 obtain M X where
D1: MeA A (Vx€A. ( x,M) € r) KEB A (VxeB. ( x,K) € 1)
using HasAmaximum_def by auto
let L = GreaterOf(r,M,K)
from D1 have Ti: M € AUB K € AUB
VxeA. ( x,M) € r VxeB. ( x,K) € r
by auto
with A1 A2 have Vx€AUB.( x,L) € r by (rule Order_ZF_3_L2B)
moreover from T1 have L € AUB using GreaterOf_def IsTotal_def
by simp
ultimately show HasAmaximum(r,AUB) using HasAmaximum_def by auto
qed

For total and transitive relations A union a of two sets that have minima
has a minimum.

lemma Order_ZF_4_L6:
assumes Al: r {is total on} (AUB) and A2: trans(r)
and A3: HasAminimum(r,A) HasAminimum(r,B)
shows HasAminimum(r,AUB)
proof -
from A3 obtain m k where
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D1: meA A (Vx€A. { m,x) € ) kéB A (Vx€B. ( k,x) € r)
using HasAminimum_def by auto
let 1 = SmallerOf(r,m,k)
from D1 have Ti: m € AUB k € AUB
Vx€eA. (m,x) € r Vx€B. ( k,x) € r
by auto
with A1 A2 have Vx€AUB.( 1,x) € r by (rule Order_ZF_3_L5B)
moreover from T1 have 1 € AUB using SmallerOf_def IsTotal_def
by simp
ultimately show HasAminimum(r,AUB) using HasAminimum_def by auto
qed

Set that has a maximum is bounded above.

lemma Order_ZF_4_L7:
assumes HasAmaximum(r,A)
shows IsBoundedAbove(A,r)
using assms HasAmaximum_def IsBoundedAbove_def by auto

Set that has a minimum is bounded below.

lemma Order_ZF_4_L8A:
assumes HasAminimum(r,A)
shows IsBoundedBelow(A,r)
using assms HasAminimum_def IsBoundedBelow_def by auto

For reflexive relations singletons have a minimum and maximum.

lemma Order_ZF_4_18: assumes refl(X,r) and acX
shows HasAmaximum(r,{a}) HasAminimum(r,{a})
using assms refl_def HasAmaximum_def HasAminimum_def by auto

For total and transitive relations if we add an element to a set that has a
maximum, the set still has a maximum.

lemma Order_ZF_4_L9:
assumes Al: r {is total on} X and A2: trans(r)
and A3: ACX and A4: acX and A5: HasAmaximum(r,A)
shows HasAmaximum(r,AU{a})
proof -
from A3 A4 have AU{a} C X by auto
with A1 have r {is total on} (AU{a})
using Order_ZF_1_L4 by blast
moreover from A1 A2 A4 A5 have
trans(r) HasAmaximum(r,A) by auto
moreover from Al A4 have HasAmaximum(r,{a})
using total_is_refl Order_ZF_4_L8 by blast
ultimately show HasAmaximum(r,AU{a}) by (rule Order_ZF_4_L5)
qed

For total and transitive relations if we add an element to a set that has a
minimum, the set still has a minimum.
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lemma Order_ZF_4_L10:
assumes Al: r {is total on} X and A2: trans(r)
and A3: ACX and A4: acX and A5: HasAminimum(r,A)
shows HasAminimum(r,AU{a})
proof -
from A3 A4 have AU{a} C X by auto
with A1 have r {is total on} (AU{a})
using Order_ZF_1_L4 by blast
moreover from A1 A2 A4 A5 have
trans(r) HasAminimum(r,A) by auto
moreover from Al A4 have HasAminimum(r,{a})
using total_is_refl Order_ZF_4_L8 by blast
ultimately show HasAminimum(r,AU{a}) by (rule Order_ZF_4_L6)
qed

If the order relation has a property that every nonempty bounded set attains
a minimum (for example integers are like that), then every nonempty set
bounded below attains a minimum.

lemma Order_ZF_4_L11:
assumes Al: r {is total on} X and
A2: trans(r) and
A3: r C XxX and
A4: VA. IsBounded(A,r) A A#0 — HasAminimum(r,A) and
A5: B#0 and A6: IsBoundedBelow(B,r)
shows HasAminimum(r,B)
proof -
from A5 obtain b where T: beB by auto
let L = {x€B. (x,b) € r}
from A3 A6 T have T1: beX using Order_ZF_3_L1B by blast
with A1 T have T2: b € L
using total_is_refl refl_def by simp
then have L # 0 by auto
moreover have IsBounded(L,r)
proof -
have L C B by auto
with A6 have IsBoundedBelow(L,r)
using Order_ZF_3_L12 by simp
moreover have IsBoundedAbove(L,r)
by (rule Order_ZF_3_L15)
ultimately have IsBoundedAbove(L,r) A IsBoundedBelow(L,r)
by blast
then show IsBounded(L,r) using IsBounded_def
by simp
qed
ultimately have IsBounded(L,r) A L # 0 by blast
with A4 have HasAminimum(r,L) by simp
then obtain m where I: m€l and II: Vx€L. ( m,x) € r
using HasAminimum_def by auto
then have III: (m,b) € r by simp
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from I have meB by simp
moreover have Vxe€B. (m,x) € r
proof
fix x assume A7: x€B
from A3 A6 have BCX using Order_ZF_3_L1B by blast
with A1 A7 T1 have x € L U {x€B. (b,x) € r}
using Order_ZF_1_L5 by simp
then have x€L V (b,x) € r by auto
moreover
{ assume x€L
with IT have (m,x) € r by simp }
moreover
{ assume (b,x) € r
with A2 III have trans(r) and (m,b) € r A (b,x) € r
by auto
then have (m,x) € r by (rule Foll_L3) }
ultimately show (m,x) € r by auto
qed
ultimately show HasAminimum(r,B) using HasAminimum_def
by auto
qed

A dual to Order_zZF_4_L11: If the order relation has a property that every
nonempty bounded set attains a maximum (for example integers are like
that), then every nonempty set bounded above attains a maximum.

lemma Order_ZF_4_L11A:
assumes Al: r {is total on} X and
A2: trans(r) and
A3: r C XxX and
A4: VA. IsBounded(A,r) A A#0 — HasAmaximum(r,A) and
A5: B#0 and A6: IsBoundedAbove(B,r)
shows HasAmaximum(r,B)
proof -
from A5 obtain b where T: beB by auto
let U = {x€B. (b,x) € r}
from A3 A6 T have T1: beX using Order_ZF_3_L1A by blast
with A1 T have T2: b € U
using total_is_refl refl_def by simp
then have U # 0 by auto
moreover have IsBounded(U,r)
proof -
have U C B by auto
with A6 have IsBoundedAbove(U,r)
using Order_ZF_3_L13 by blast
moreover have IsBoundedBelow(U,r)
using IsBoundedBelow_def by auto
ultimately have IsBoundedAbove(U,r) A IsBoundedBelow(U,r)
by blast
then show IsBounded(U,r) using IsBounded_def
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by simp
qed
ultimately have IsBounded(U,r) A U # 0 by blast
with A4 have HasAmaximum(r,U) by simp
then obtain m where I: m€U and II: Vx€U. (x,m) € r
using HasAmaximum_def by auto
then have III: (b,m) € r by simp
from I have meB by simp
moreover have Vxe€B. (x,m) € r
proof
fix x assume A7: x€B
from A3 A6 have BCX using Order_ZF_3_L1A by blast
with A1 A7 T1 have x € {x€B. (x,b) € r} U U
using Order_ZF_1_L5 by simp
then have x€U V (x,b) € r by auto
moreover
{ assume x€U
with II have (x,m) € r by simp }
moreover
{ assume (x,b) € r
with A2 III have trans(r) and (x,b) € r A (b,m) € r
by auto
then have (x,m) € r by (rule Fol1l_L3) }
ultimately show (x,m) € r by auto
qed
ultimately show HasAmaximum(r,B) using HasAmaximum_def
by auto
qed

If a set has a minimum and L is less or equal than all elements of the set,
then L is less or equal than the minimum.

lemma Order_ZF_4_L12:
assumes antisym(r) and HasAminimum(r,A) and VacA. (L,a) € r
shows (L,Minimum(r,A)) € r
using assms Order_ZF_4_L4 by simp

If a set has a maximum and all its elements are less or equal than M, then
the maximum of the set is less or equal than M.

lemma Order_ZF_4_L13:
assumes antisym(r) and HasAmaximum(r,A) and VacA. (a,M) € r
shows (Maximum(r,A),M) € r
using assms Order_ZF_4_L3 by simp

If an element belongs to a set and is greater or equal than all elements of
that set, then it is the maximum of that set.

lemma Order_ZF_4_L14:
assumes Al: antisym(r) and A2: M € A and
A3: VaeA. (a,M) € r
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shows Maximum(r,A) = M
proof -
from A2 A3 have I: HasAmaximum(r,A) using HasAmaximum_def
by auto
with A1 have 3!M. MeA A (Vx€A. (x,M) € r)
using Order_ZF_4_L1 by simp
moreover from A2 A3 have MeA A (Vxe€A. (x,M) € r) by simp
moreover from Al I have
Maximum(r,A) € A A (Vx€A. (x,Maximum(r,A)) € r)
using Order_ZF_4_L3 by simp
ultimately show Maximum(r,A) = M by auto
qed

If an element belongs to a set and is less or equal than all elements of that
set, then it is the minimum of that set.

lemma Order_ZF_4_L15:
assumes Al: antisym(r) and A2: m € A and
A3: VacA. (m,a) € r
shows Minimum(r,A) = m
proof -
from A2 A3 have I: HasAminimum(r,A) using HasAminimum_def
by auto
with A1 have J!m. meA A (Vx€A. (m,x) € 1)
using Order_ZF_4_L2 by simp
moreover from A2 A3 have meA A (Vx€A. (m,x) € r) by simp
moreover from A1 I have
Minimum(r,A) € A A (Vx€A. (Minimum(r,A),x) € 1)
using Order_ZF_4_L4 by simp
ultimately show Minimum(r,A) = m by auto
qed

If a set does not have a maximum, then for any its element we can find one
that is (strictly) greater.

lemma Order_ZF_4_L16:
assumes Al: antisym(r) and A2: r {is total on} X and
A3: ACX and
A4: —HasAmaximum(r,A) and
A5: x€A
shows JyeA. (x,y) € r A y#x
proof -
{ assume A6: VyeA. (x,y) ¢ r V y=x
have VyeA. (y,x) € r
proof
fix y assume A7: y€A
with A6 have (x,y) ¢ r V y=x by simp
with A2 A3 A5 A7 show (y,x) € r
using IsTotal_def Order_ZF_1_L1 by auto
qed
with A5 have Jxe€A.VyehA. (y,x) € r
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by auto
with A4 have False using HasAmaximum_def by simp
} then show JyeA. (x,y) € r A y#x by auto
qed

3.2 Supremum and Infimum
In this section we consider the notions of supremum and infimum a set.

Elements of the set of upper bounds are indeed upper bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L1: assumes u € ([)a€A. r{a}) and a€A
shows (a,u) € r
using assms by auto

Elements of the set of lower bounds are indeed lower bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L2: assumes 1 € ((|acA. r-{a}) and acA
shows (l,a) € r
using assms by auto

If the set of upper bounds has a minimum, then the supremum is less or equal
than any upper bound. We can probably do away with the assumption that
A is not empty, (ab)using the fact that intersection over an empty family is
defined in Isabelle to be empty.

lemma Order_ZF_5_L3: assumes Al: antisym(r) and A2: A#0 and
A3: HasAminimum(r,()a€cA. r{a}) and
A4: YVaeA. (a,u) € r
shows (Supremum(r,A),u) € r
proof -
let U = (acA. r{a}
from A4 have VacA. u € r{a} using image_singleton_iff
by simp
with A2 have u€U by auto
with A1 A3 show (Supremum(r,A),u) € r
using Order_ZF_4_L4 Supremum_def by simp
qed

Infimum is greater or equal than any lower bound.

lemma Order_ZF_5_L4: assumes Al: antisym(r) and A2: A#0 and
A3: HasAmaximum(r,()acA. r-{a}) and
A4: YachA. (1,a) € r
shows (1,Infimum(r,A)) € r
proof -
let L = ()acA. r-{a}
from A4 have VacA. 1 € r-{a} using vimage_singleton_iff
by simp
with A2 have 1€L by auto
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with A1 A3 show (1,Infimum(r,A)) € r
using Order_ZF_4_L3 Infimum_def by simp
qed

If z is an upper bound for A and is greater or equal than any other upper
bound, then z is the supremum of A.

lemma Order_ZF_5_L5: assumes Al: antisym(r) and A2: A#0 and
A3: VxeA. (x,z) € r and
A4: Vy. (VxeA. (x,y) € r) — (z,y) €r
shows
HasAminimum(r,()acA. r{al})
z = Supremum(r,A)
proof -
let B = ()acA. r{a}
from A2 A3 A4 have I: z € B VyeB. (z,y) € r
by auto
then show HasAminimum(r,()acA. r{a})
using HasAminimum_def by auto
from A1 I show z = Supremum(r,A)
using Order_ZF_4_L15 Supremum_def by simp
qed

If a set has a maximum, then the maximum is the supremum.

lemma Order_ZF_5_L6:
assumes Al: antisym(r) and A2: A#0 and
A3: HasAmaximum(r,A)
shows
HasAminimum(r,(\acA. r{a})
Maximum(r,A) = Supremum(r,A)
proof -
let M = Maximum(r,A)
from A1 A3 have I: M € A and II: VxeA. (x,M) € r
using Order_ZF_4_L3 by auto
from I have III: Vy. (Vx€A. (x,y) € r) — (M,y) € r
by simp
with A1 A2 II show HasAminimum(r,()a€A. r{al})
by (rule Order_ZF_5_L5)
from A1 A2 II III show M = Supremum(r,A)
by (rule Order_ZF_5_L5)
qed

Properties of supremum of a set for complete relations.

lemma Order_ZF_5_L7:
assumes Al: r C XxX and A2: antisym(r) and
A3: r {is complete} and
A4: ACX A#0 and A5: JIxeX. VyeA. (y,x) € r
shows
Supremum(r,A) € X
Vx€A. (x,Supremum(r,A)) € r

33



proof -
from A5 have IsBoundedAbove(A,r) using IsBoundedAbove_def
by auto
with A3 A4 have HasAminimum(r,()a€A. r{a})
using IsComplete_def by simp
with A2 have Minimum(r,()acA. r{a}) € ( (\acA. r{a} )
using Order_ZF_4_L4 by simp
moreover have Minimum(r,(|a€A. r{a}) = Supremum(r,A)
using Supremum_def by simp
ultimately have I: Supremum(r,A) € ( ()a€A. r{a} )
by simp
moreover from A4 obtain a where a€A by auto
ultimately have (a,Supremum(r,A)) € r using Order_ZF_5_L1
by simp
with Al show Supremum(r,A) € X by auto
from I show Vx€A. (x,Supremum(r,A)) € r using Order_ZF_5_L1
by simp
qed

If the relation is a linear order then for any element y smaller than the
supremum of a set we can find one element of the set that is greater than .

lemma Order_ZF_5_L8:
assumes Al: r C XxX and A2: IsLinOrder(X,r) and
A3: r {is complete} and
A4: ACX A#0 and A5: Jx€X. VyeA. (y,x) € r and
A6: (y,Supremum(r,A)) € r y # Supremum(r,A)
shows JzeA. (y,z) € r Ay # z
proof -
from A2 have
I: antisym(r) and
II: trans(r) and
III: r {is total on} X
using IsLinOrder_def by auto
from A1 A6 have T1: yeX by auto
{ assume A7: Vz € A. (y,z) ¢ r V y=z
from A4 I have antisym(r) and A#0 by auto
moreover have Vx€A. (x,y) € r
proof
fix x assume A8: x€A
with A4 have T2: x€X by auto
from A7 A8 have (y,x) ¢ r V y=x by simp
with III T1 T2 show (x,y) € r
using IsTotal_def total_is_refl refl_def by auto
qed
moreover have Vu. (Vx€A. (x,u) € r) — (y,u) € r
proof-
{ fix u assume A9: Vx€A. (x,u) € r
from A4 A5 have IsBoundedAbove(A,r) and A0
using IsBoundedAbove_def by auto
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with A3 A4 A6 I A9 have
(y,Supremum(r,A)) € r A (Supremum(r,A),u) € r
using IsComplete_def Order_ZF_5_L3 by simp
with IT have (y,u) € r by (rule Foll_L3)
} then show Vu. (Vxe€A. (x,u) € r) — (y,u) € r
by simp
qed
ultimately have y = Supremum(r,A)
by (rule Order_ZF_5_L5)
with A6 have False by simp
} then show Jze€A. (y,z) € r A y # z by auto
qed

3.3 Strict versions of order relations

One of the problems with translating formalized mathematics from Meta-
math to IsarMathLib is that Metamath uses strict orders (of the < type)
while in IsarMathLib we mostly use nonstrict orders (of the < type). This
doesn’t really make any difference, but is annoying as we have to prove
many theorems twice. In this section we prove some theorems to make it
easier to translate the statements about strict orders to statements about
the corresponding non-strict order and vice versa.

We define a strict version of a relation by removing the y = x line from the
relation.

definition
StrictVersion(r) = r - {(x,x). x € domain(r)}

A reformulation of the definition of a strict version of an order.

lemma def_of_strict_ver: shows
(x,y) € StrictVersion(r) +— (x,y) € ¥ A x#y
using StrictVersion_def domain_def by auto

The next lemma is about the strict version of an antisymmetric relation.

lemma strict_of_antisym:
assumes Al: antisym(r) and A2: (a,b) € StrictVersion(r)
shows (b,a) ¢ StrictVersion(r)
proof -
{ assume A3: (b,a) € StrictVersion(r)
with A2 have (a,b) € r and (b,a) € r
using def_of_strict_ver by auto
with Al have a=b by (rule Foll_L4)
with A2 have False using def_of_strict_ver
by simp
} then show (b,a) ¢ StrictVersion(r) by auto
qed

The strict version of totality.
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lemma strict_of_tot:
assumes r {is total on} X and a€X beX a#b
shows (a,b) € StrictVersion(r) V (b,a) € StrictVersion(r)
using assms IsTotal_def def_of_strict_ver by auto

A trichotomy law for the strict version of a total and antisymmetric relation.
It is kind of interesting that one does not need the full linear order for this.

lemma strict_ans_tot_trich:
assumes Al: antisym(r) and A2: r {is total on} X
and A3: acX DbeX
and A4: s = StrictVersion(r)
shows Exactly_1_of_3_holds({a,b) € s, a=b,(b,a) € s)

proof -
let p = (a,b) € s
let q = a=b

let r = (b,a) € s
from A2 A3 A4 have p V q V r
using strict_of_tot by auto
moreover from Al A4 have p — —q A —r
using def_of_strict_ver strict_of_antisym by simp
moreover from A4 have q — —-p A —r
using def_of_strict_ver by simp
moreover from A1 A4 have r — —p A —q
using def_of_strict_ver strict_of_antisym by auto
ultimately show Exactly_1_of_3_holds(p, q, r)
by (rule Foll_L5)
qed

A trichotomy law for linear order. This is a special case of strict_ans_tot_trich.

corollary strict_lin_trich: assumes Al: IsLinOrder(X,r) and
A2: aeX DbeX and
A3: s = StrictVersion(r)
shows Exactly_1_of_3_holds({a,b) € s, a=b,(b,a) € s)
using assms IsLinOrder_def strict_ans_tot_trich by auto

For an antisymmetric relation if a pair is in relation then the reversed pair
is not in the strict version of the relation.

lemma geq_impl_not_less:
assumes Al: antisym(r) and A2: (a,b) € r
shows (b,a) ¢ StrictVersion(r)
proof -
{ assume A3: (b,a) € StrictVersion(r)
with A2 have (a,b) € StrictVersion(r)
using def_of_strict_ver by auto
with A1 A3 have False using strict_of_antisym
by blast
} then show (b,a) ¢ StrictVersion(r) by auto
qed
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If an antisymmetric relation is transitive, then the strict version is also
transitive, an explicit version strict_of_transB below.

lemma strict_of_transA:
assumes Al: trans(r) and A2: antisym(r) and
A3: s= StrictVersion(r) and A4: (a,b) € s (b,c) € s
shows (a,c) € s
proof -
from A3 A4 have I: (a,b) € r A (b,c) € 1
using def_of_strict_ver by simp
with A1 have (a,c) € r by (rule Foll_L3)
moreover
{ assume a=c
with I have (a,b) € r and (b,a) € r by auto
with A2 have a=b by (rule Foll_L4)
with A3 A4 have False using def_of_strict_ver by simp
} then have a#c by auto
ultimately have (a,c) € StrictVersion(r)
using def_of_strict_ver by simp
with A3 show thesis by simp
qed

If an antisymmetric relation is transitive, then the strict version is also
transitive.

lemma strict_of_transB:
assumes Al: trans(r) and A2: antisym(r)
shows trans(StrictVersion(r))
proof -
let s = StrictVersion(r)
from A1 A2 have
Vxyz (x,7) €EsA(y, z) €Es — (x, 2) €s
using strict_of_transA by blast
then show trans(StrictVersion(r)) by (rule Foll_L2)
qed

The next lemma provides a condition that is satisfied by the strict version
of a relation if the original relation is a complete linear order.

lemma strict_of_compl:
assumes Al: r C XxX and A2: IsLinOrder(X,r) and
A3: r {is complete} and
Ad: ACX A#0 and A5: s = StrictVersion(r) and
A6: JueX. VyehA. (y,u) € s
shows
JxeX. (Vyeh. (x,y) ¢ s ) AN (VyeX. (y,x) € s — (Jz€A. (y,z) € 8))
proof -
let x = Supremum(r,A)
from A2 have I: antisym(r) using IsLinOrder_def
by simp
moreover from A5 A6 have JueX. VyeA. (y,u) € r
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using def_of_strict_ver by auto
moreover note Al A3 A4
ultimately have II: x € X Vy€A. (y,x) € r
using Order_ZF_5_L7 by auto
then have III: 3xeX. Vy€A. (y,x) € r by auto
from A5 I II have x € X VyeA. (x,y) ¢ s
using geq_impl_not_less by auto
moreover from Al A2 A3 A4 A5 III have
VyeX. (y,x) € s — (Jz€A. (y,z) € s)
using def_of_strict_ver Order_ZF_5_L8 by simp
ultimately show

dxeX. (VyeA. (x,y) ¢ s ) A (VyeX. (y,x) € s — (Jz€A.

s))
by auto
qed

Strict version of a relation on a set is a relation on that set.

lemma strict_ver_rel: assumes Al: r C AxA
shows StrictVersion(r) C AxA
using assms StrictVersion_def by auto

end
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4 NatOrder_ZF.thy

theory NatOrder_ZF imports Nat_ZF_IML Order_ZF
begin

This theory proves that < is a linear order on N. < is defined in Isabelle’s
Nat theory, and linear order is defined in Order_ZF theory. Contributed by
Seo Sanghyeon.

4.1 Order on natural numbers
This is the only section in this theory.

To prove that < is a total order, we use a result on ordinals.

lemma NatOrder_ZF_1_L1:
assumes ac€nat and bEnat
shows a < b V b < a
proof -
from assms have I: Ord(a) A 0rd(b)
using nat_into_0Ord by auto
then have a € b Va=bVbe€ea
using Ord_linear by simp
with I have a < bV a=b V b < a
using 1tI by auto
with I show a < bV b < a
using le_iff by auto
qed

< is antisymmetric, transitive, total, and linear. Proofs by rewrite using
definitions.

lemma NatOrder_ZF_1_L2:
shows
antisym(Le)
trans(Le)
Le {is total on} nat
IsLinOrder (nat,Le)
proof -
show antisym(Le)
using antisym_def Le_def le_anti_sym by auto
moreover show trans(Le)
using trans_def Le_def le_trans by blast
moreover show Le {is total on} nat
using IsTotal_def Le_def NatOrder_ZF_1_L1 by simp
ultimately show IsLinOrder(nat,Le)
using IsLinOrder_def by simp
qed
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The order on natural numbers is linear on every natural number. Recall
that each natural number is a subset of the set of all natural numbers (as

well as a member).

lemma natord_lin_on_each_nat:
assumes Al: n € nat shows IsLinOrder(n,Le)

proof -
from A1 have n C nat using nat_subset_nat
by simp
then show thesis using NatOrder_ZF_1_L2 ord_linear_subset
by blast
qed
end
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5 func ZF.thy

theory func_ZF imports funcil
begin

In this theory we consider properties of functions that are binary operations,
that is they map X x X into X.

5.1 Lifting operations to a function space

It happens quite often that we have a binary operation on some set and
we need a similar operation that is defined for functions on that set. For
example once we know how to add real numbers we also know how to add
real-valued functions: for f,g: X — R we define (f + g)(z) = f(x) + g(z).
Note that formally the + means something different on the left hand side of
this equality than on the right hand side. This section aims at formalizing
this process. We will call it "lifting to a function space”, if you have a
suggestion for a better name, please let me know.

Since we are writing in generic set notation, the definition below is a bit
complicated. Here it what it says: Given a set X and another set f (that
represents a binary function on X) we are defining f lifted to function space
over X as the binary function (a set of pairs) on the space F' = X — range(f)
such that the value of this function on pair (a, b) of functions on X is another
function ¢ on X with values defined by ¢(x) = f(a(z), b(x)).

definition
Lift2FcnSpce (infix {lifted to function space over} 65) where
f {lifted to function space over} X =

{({ p,{(x,f{fst(p) (x),snd(p) (¥))). x € X}).

p € (X—range(f))x (X—range(£f))}

The result of the lift belongs to the function space.

lemma func_ZF_1_L1:
assumes Al: f : YXY—Y
and A2: p €(X—range(f))x (X—range(f))

shows
{(x,f(fst(p) (x),snd(p) (x))). x € X} : X—range(f)
proof -
have VxeX. f{fst(p) (x),snd(p) (x)) € range(f)
proof

fix x assume x€X

let p = (fst(p) (x),snd(p) (x))

from A2 ‘xeX‘ have
fst(p) (x) € range(f) snd(p)(x) € range(f)
using apply_type by auto

with A1 have p € YxY
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using funcl_1_L5B by blast
with A1 have (p, f(p)) € £
using apply_Pair by simp
with Al show
f(p) € range(f)
using rangel by simp
qed
then show thesis using ZF_fun_from_total by simp
qed

The values of the lift are defined by the value of the liftee in a natural way.

lemma func_ZF_1_L2:
assumes Al: f : YXY—=Y
and A2: p € (X—range(f))x(X—range(f)) and A3: xe&X
and A4: P = {(x,f{fst(p) (x),snd(p) (x))). x € X}
shows P(x) = f(fst(p) (x),snd(p) (x))
proof -
from A1 A2 have
{{x,£(fst(p) (x),snd(p) (x))). x € X} : X — range(f)
using func_ZF_1_L1 by simp
with A4 have P : X — range(f) by simp
with A3 A4 show P(x) = f(fst(p) (x),snd(p) (x))
using ZF_fun_from_tot_val by simp
qed

Function lifted to a function space results in function space operator.

theorem func_ZF_1_L3:
assumes f : YXY—=Y
and F = £ {lifted to function space over} X
shows F : (X—range(f)) X (X—range(f))—(X—range(f))
using assms Lift2FcnSpce_def func_ZF_1_L1 ZF_fun_from_total
by simp

The values of the lift are defined by the values of the liftee in the natural
way.

theorem func_ZF_1_L4:
assumes Al: £ : YXY—=Y
and A2: F = f {lifted to function space over} X
and A3: s:X—range(f) r:X—range(f)
and A4: xeX
shows (F(s,r)) (x) = f(s(x),r(x))
proof -
let p = (s,r)
let P = {(x,f(fst(p) (x),snd(p) (x))). x € X}
from A1 A3 A4 have
f : YXY=Y p € (X—range(f)) x (X—range(£f))
x€X P = {(x,f(fst(p) (x),snd(p) (x))). x € X}
by auto
then have P(x) = f(fst(p) (x),snd(p) (x))
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by (rule func_ZF_1_L2)
hence P(x) = £f(s(x),r(x)) by auto
moreover have P = F(s,r)
proof -
from A1 A2 have F : (X—range(f)) x (X—range(f))— (X—range(f))
using func_ZF_1_L3 by simp
moreover from A3 have p € (X—range(f)) x (X—range(f))
by auto
moreover from A2 have
F = {(p,{(x,£(fst(p) (x),snd(p) (x))). x € X}).
p € (X—range(f))x (X—range(£))}
using Lift2FcnSpce_def by simp
ultimately show thesis using ZF_fun_from_tot_val
by simp
qed
ultimately show (F(s,r))(x) = f(s(x),r(x)) by auto
qed

5.2 Associative and commutative operations

In this section we define associative and commutative operations and prove
that they remain such when we lift them to a function space.

””

Typically we say that a binary operation on a set G is "associative” if
(x-y)-z=ua-(y-2) for all z,y,z € G. Our actual definition below does
not use the multiplicative notation so that we can apply it equally to the
additive notation + or whatever infix symbol we may want to use. Instead,
we use the generic set theory notation and write P(x,y) to denote the value
of the operation P on a pair (x,y) € G x G.

definition
IsAssociative (infix {is associative on} 65) where
P {is associative on} G = P : GXG—G A
(Vv x €G.VyeG. V z€G.
( PUAP((x,y)),2z)) = PC (x,PUy,z)) )))

A binary function f: X x X — Y is commutative if f(z,y) = f(y,x). Note
that in the definition of associativity above we talk about binary ”operation”
and here we say use the term binary ”function”. This is not set in stone,
but usually the word ”operation” is used when the range is a factor of
the domain, while the word ”function” allows the range to be a completely
unrelated set.

definition
IsCommutative (infix {is commutative on} 65) where
f {is commutative on} G = Vx€G. VyeG. f(x,y) = £(y,x)

The lift of a commutative function is commutative.

lemma func_ZF_2_L1:
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assumes Al: £ : GXG—G
and A2: F = f {lifted to function space over} X
and A3: s : X—range(f) r : X—range(f)
and A4: f {is commutative on} G
shows F(s,r) = F(r,s)
proof -
from A1 A2 have
F : (X—range(f)) X (X—range(f))— (X—range(f))
using func_ZF_1_L3 by simp
with A3 have
F(s,r) : X—range(f) and F(r,s) : X—range(f)
using apply_type by auto
moreover have
VxeX. (F(s,r)) (x) = (F(r,s)) (x)
proof
fix x assume x€X
from A1 have range(f)CG
using funcl_1_L5B by simp
with A3 ‘xeX¢ have s(x) € G and r(x) € G
using apply_type by auto
with A1 A2 A3 A4 ‘xeX‘ show
(F(s,r)) (x) = (F(r,s)) (x)
using func_ZF_1_L4 IsCommutative_def by simp
qed
ultimately show thesis using fun_extension_iff
by simp
qed

The lift of a commutative function is commutative on the function space.

lemma func_ZF_2_L2:
assumes f : GXG—=G
and f {is commutative on} G
and F = £ {lifted to function space overl} X
shows F {is commutative on} (X—range(f))
using assms IsCommutative_def func_ZF_2_L1 by simp

The lift of an associative function is associative.

lemma func_ZF_2_L3:
assumes A2: F = f {lifted to function space over} X
and A3: s : X—range(f) r : X—range(f) q : X—range(f)
and A4: f {is associative on} G
shows F(F(s,r),q) = F(s,F(r,q))
proof -
from A4 A2 have
F : (X—range(f)) x (X—range(f)) — (X—range(f))
using IsAssociative_def func_ZF_1_L3 by auto
with A3 have I:
F(s,r) : X—range(f)
F(r,q) : X—range(f)
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F(F(s,r),q) : X—range(f)
F(s,F(r,q)): X—range(f)
using apply_type by auto
moreover have
VzeX. (F(F(s,r),q)) (x) = (F(s,F(r,q))) x)
proof
fix x assume xe€X
from A4 have f:GXG—G
using IsAssociative_def by simp
then have range(f)CG
using funcl_1_L5B by simp
with A3 ‘xeX‘ have
s(x) € Gr(x) € Gqx) € G
using apply_type by auto
with A2 T A3 A4 ‘xeX¢ ‘f:GXG—G‘ show
(F(F(s,x),9) (0 = (Fls,F(r,q))) (o)
using func_ZF_1_L4 IsAssociative_def by simp
qed
ultimately show thesis using fun_extension_iff
by simp
qed

The lift of an associative function is associative on the function space.

lemma func_ZF_2_L4:
assumes Al: f {is associative on} G
and A2: F = f {lifted to function space over} X
shows F {is associative on} (X—range(f))
proof -
from A1 A2 have
F : (X—range(f)) x (X—range(f))— (X—range(£f))
using IsAssociative_def func_ZF_1_L3 by auto
moreover from Al A2 have
Vs € X—range(f). V r € X—range(f). Vq € X—range(f).
F(F(s,t),q) = F(s,F(r,q))
using func_ZF_2_L3 by simp
ultimately show thesis using IsAssociative_def
by simp
qed

5.3 Restricting operations

In this section we consider conditions under which restriction of the opera-
tion to a set inherits properties like commutativity and associativity.

The commutativity is inherited when restricting a function to a set.

lemma func_ZF_4_L1:
assumes Al: f:XxX—Y and A2: ACX
and A3: f {is commutative on} X
shows restrict(f,AxA) {is commutative on} A

45



proof -
{ fix x y assume x€A and y€A
with A2 have x€X and yeX by auto
with A3 ‘xe€A¢ ‘yeA‘ have
restrict (f,AxA)(x,y) = restrict(f,AxA)(y,x)
using IsCommutative_def restrict_if by simp }
then show thesis using IsCommutative_def by simp
qed

Next we define what it means that a set is closed with respect to an opera-
tion.

definition
IsOpClosed (infix {is closed under} 65) where
A {is closed under} f = Vxe€A. VyecA. f(x,y) € A

Associative operation restricted to a set that is closed with resp. to this
operation is associative.

lemma func_ZF_4_L2:assumes Al: f {is associative on} X
and A2: ACX and A3: A {is closed under} f
and A4: xc€A ycA zeA
and A5: g = restrict(f,AxA)
shows g(g(x,y),z) = g(x,g(y,2z))

proof -
from A4 A2 have I: x€X yeX z€X

by auto
from A3 A4 A5 have

glg(x,y),z) = £(f(x,y),2)

g(x,g(y,z)) = £(x,£(y,z))

using IsOpClosed_def restrict_if by auto
moreover from Al I have

£(f(x,y),2) = £(x,1(y,2))

using IsAssociative_def by simp
ultimately show thesis by simp

qed

An associative operation restricted to a set that is closed with resp. to this
operation is associative on the set.

lemma func_ZF_4_13: assumes Al: f {is associative on} X
and A2: ACX and A3: A {is closed under} f
shows restrict(f,AxA) {is associative on} A

proof -
let g = restrict(f,AxA)
from A1 have f:XxX—X

using IsAssociative_def by simp
moreover from A2 have AxA C XxX by auto
moreover from A3 have Vp € AxA. g(p) € A

using IsOpClosed_def restrict_if by auto
ultimately have g : AXA—A
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using funcl_2_L4 by simp
moreover from A1 A2 A3 have

VxelA VyeA V zeA.

g(glx.y),2) = g( x,8(y,2))

using func_ZF_4_L2 by simp
ultimately show thesis

using IsAssociative_def by simp

qed

The essential condition to show that if a set A is closed with respect to an

operation, then it is closed under this operation restricted to any superset
of A.

lemma func_ZF_4_L4: assumes A {is closed under} f
and ACB and x€A y€A and g = restrict(f,BxB)
shows g(x,y) € A
using assms IsOpClosed_def restrict by auto

If a set A is closed under an operation, then it is closed under this operation
restricted to any superset of A.

lemma func_ZF_4_L5:
assumes Al: A {is closed under} f

and A2: ACB
shows A {is closed under} restrict(f,BxB)
proof -

let g = restrict(f,BxB)
from A1 A2 have VxeA. VyeA. g(x,y) € A
using func_ZF_4_14 by simp
then show thesis using IsOpClosed_def by simp
qed

The essential condition to show that intersection of sets that are closed with
respect to an operation is closed with respect to the operation.

lemma func_ZF_4_16:
assumes A {is closed under} f
and B {is closed under} f
and x € ANB y€ ANB
shows f(x,y) € ANB using assms IsOpClosed_def by auto

Intersection of sets that are closed with respect to an operation is closed
under the operation.

lemma func_ZF_4_L7:
assumes A {is closed under} f
B {is closed under} f
shows ANB {is closed under} f
using assms IsOpClosed_def by simp
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5.4 Compositions

For any set X we can consider a binary operation on the set of functions f :
X — X defined by C(f,g) = f o g. Composition of functions (or relations)
is defined in the standard Isabelle distribution as a higher order function
and denoted with the letter 0. In this section we consider the corresponding
two-argument ZF-function (binary operation), that is a subset of (X —
X)X (X = X)) x (X — X).

We define the notion of composition on the set X as the binary operation
on the function space X — X that takes two functions and creates the their
composition.

definition
Composition(X) =
{(p,fst(p) 0 snd(p)). p € (X—=X)x (X=X}

Composition operation is a function that maps (X — X) x (X — X) into
X = X.

lemma func_ZF_5_L1: shows Composition(X) : (X—X)x(X—X)—((X—X)
using comp_fun Composition_def ZF_fun_from_total by simp

The value of the composition operation is the composition of arguments.

lemma func_ZF_5_L2: assumes f:X—X and g:X—X
shows Composition(X)(f,g) = £ 0 g
proof -
from assms have
Composition(X) : (X—=X)x (X—X)—(X—X)
(f,g) € X=X xE—=X)
Composition(X) = {(p,fst(p) 0 snd(p)). p € X=X X X=X}
using func_ZF_5_L1 Composition_def by auto
then show Composition(X)(f,g) = £ 0 g
using ZF_fun_from_tot_val by auto
qed

What is the value of a composition on an argument?

lemma func_ZF_5_L3: assumes f:X—X and g:X—X and xeX
shows (Composition(X)(f,g)) (x) = f(g(x))
using assms func_ZF_5_L2 comp_fun_apply by simp

The essential condition to show that composition is associative.

lemma func_ZF_5_L4: assumes Al: f:X—X g:X—X h:X—=X
and A2: C = Composition(X)
shows C(C(f,g),h) = C( £,C(g,h))
proof -
from A2 have C : ((X—=X)x (X—=X))—=(X—=X)
using func_ZF_5_L1 by simp
with A1 have I:
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C(f
Clg,
C(C(f,g),h) : X—X
C( £,C(g,h)) : X—=X
using apply_funtype by auto
moreover have
V x € X. C(C(f,g),h)(x) = C(f,C(g,h))(x)
proof
fix x assume x€X
with A1 A2 T have
c(C{f,g),h) (x) = £(gh(x)))
C( £,C(g,h))(x) = £(g(x)))
using func_ZF_5_L3 apply_funtype by auto
then show C(C(f,g),h)(x) = C({ £,C(g,h))(x)
by simp
qed
ultimately show thesis using fun_extension_iff by simp
qed

,g) X=X
h) : X—X

Composition is an associative operation on X — X (the space of functions
that map X into itself).

lemma func_ZF_5_L5: shows Composition(X) {is associative on} (X—X)
proof -
let C = Composition(X)
have VfcX—X. VgeX—X. VheX—X.
c(c(t,g),h) = C(£,C(g,h))
using func_ZF_5_L4 by simp
then show thesis using func_ZF_5_L1 IsAssociative_def
by simp
qed

5.5 Identity function

In this section we show some additional facts about the identity function
defined in the standard Isabelle’s Perm theory.

A function that maps every point to itself is the identity on its domain.

lemma indentity_fun: assumes Al: f:X—Y and A2:VxeX. f(x)=x
shows f = id(X)
proof -
from assms have f:X—Y and id(X):X—X and VxeX. f(x) = id(X) (x)
using id_type id_conv by auto
then show thesis by (rule func_eq)
qed

Composing a function with identity does not change the function.

lemma func_ZF_6_L1A: assumes Al: f : X—X
shows Composition(X)(f,id(X)) = £
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Composition(X)(id(X),f) = £
proof -
have Composition(X) : (X—X)x (X—X)—(X—X)
using func_ZF_5_L1 by simp
with A1 have Composition(X){(id(X),f) : X—X
Composition(X)(f,id(X)) : X—X
using id_type apply_funtype by auto
moreover note Al
moreover from Al have
Vx€X. (Composition(X)(id(X),f)) (x) = f(x)
VxeX. (Composition(X)(f,id(X))) (x) = f(x)
using id_type func_ZF_5_L3 apply_funtype id_conv
by auto
ultimately show Composition(X)(id(X),f) = £
Composition(X)(f,id(X)) = £
using fun_extension_iff by auto
qed

A trivial fact:identity is the only function from a singleton to itself.

lemma singleton_fun_id: shows ({x} — {x}) = {id({x})}
proof
show {id({x})} C ({x} — {x}
using id_def by simp
{ let g = id({x})
fix £ assume f : {x} — {x}
then have f : {x} — {x} and g : {x} — {x}
using id_def by auto
moreover from ‘f : {x} — {x}‘ have Vx € {x}. f(x) = g(x)
using apply_funtype id_def by auto
ultimately have f = g by (rule func_eq)
} then show ({x} — {x}) C {id({x})} by auto
qed

Another trivial fact: identity is the only bijection of a singleton with itself.

lemma single_bij_id: shows bij({x},{x}) = {id({x})}
proof
show {id({x})} C bij({x},{x}) using id_bij
by simp
{ fix £ assume f € bij({x},{x})
then have f : {x} — {x} using bij_is_fun

by simp
then have f € {id({x})} using singleton_fun_id
by simp
} then show bij({x},{x}) C {id({x})} by auto

qed

A kind of induction for the identity: if a function f is the identity on a set
with a fixpoint of f removed, then it is the indentity on the whole set.

lemma id_fixpoint_rem: assumes Al: f:X—X and

50



A2: peX and A3: f(p) = p and
Ad: restrict(f, X-{p}) = id&X-{p})
shows f = id(X)
proof -
from A1 have f: X—X and id(X) : X—X
using id_def by auto
moreover
{ fix x assume x€X
{ assume x € X-{p}
then have f(x) = restrict(f, X-{p}) (x)
using restrict by simp
with 44 ‘x € X-{p}‘ have f(x) = x
using id_def by simp }
with A2 A3 ‘xeX‘ have f(x) = x by auto
} then have VxeX. f(x) = id(X) (x)
using id_def by simp
ultimately show f = id(X) by (rule func_eq)
qed

5.6 Lifting to subsets

Suppose we have a binary operation f : X x X — X written additively as
f{z,y) = x + y. Such operation naturally defines another binary operation
on the subsets of X that satisfies A+ B={z+y:x € A,y € B}. This new
operation which we will call ” f lifted to subsets” inherits many properties of
f, such as associativity, commutativity and existence of the neutral element.
This notion is useful for considering interval arithmetics.

The next definition describes the notion of a binary operation lifted to sub-
sets. It is written in a way that might be a bit unexpected, but really it is the
same as the intuitive definition, but shorter. In the definition we take a pair
p € Pow(X) x Pow(X), say p = (A, B), where A, B C X. Then we assign
this pair of sets the set {f(z,y) :x € A,y € B} ={f(2) : 2/ € Ax B} The
set on the right hand side is the same as the image of A x B under f. In the
definition we don’t use A and B symbols, but write fst(p) and snd(p), resp.
Recall that in Isabelle/ZF fst(p) and snd(p) denote the first and second
components of an ordered pair p. See the lemma 1lift_subsets_explained
for a more intuitive notation.

definition
Lift2Subsets (infix {lifted to subsets of} 65) where
f {lifted to subsets of} X =
{{p, £(fst(p)xsnd(p))). p € Pow(X) xPow(X)}

The lift to subsets defines a binary operation on the subsets.

lemma 1ift_subsets_binop: assumes Al: f : X X X — Y
shows (f {lifted to subsets of} X) : Pow(X) X Pow(X) — Pow(Y)
proof -
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let F = {{p, £(fst(p)xsnd(p))). p € Pow(X) xPow(X)}
from Al have Vp € Pow(X) X Pow(X). f(fst(p)xsnd(p)) € Pow(Y)
using funcl_1_L6 by simp
then have F : Pow(X) X Pow(X) — Pow(Y)
by (rule ZF_fun_from_total)
then show thesis unfolding Lift2Subsets_def by simp
qed

The definition of the lift to subsets rewritten in a more intuitive notation.
We would like to write the last assertion as F(A,B) = {f(x,y). x € A, y €
B}, but Isabelle/ZF does not allow such syntax.

lemma 1lift_subsets_explained: assumes Al: f : XxX — Y
and A2: A C X B C X and A3: F = f {lifted to subsets of} X
shows
F(A,B) C Y and

F(A,B) = f(AxB)

F(A,B) = {f(p). p € AxB}

F(A,B) = {f(x,y) . (x,y) € AxB}
proof -

let p = (A,B)

from assms have
I: F : Pow(X) X Pow(X) — Pow(Y) and p € Pow(X) x Pow(X)
using lift_subsets_binop by auto

moreover from A3 have F = {(p, £f(fst(p)xsnd(p))). p € Pow(X) xPow(X)}
unfolding Lift2Subsets_def by simp

ultimately show F(A,B) = f(AxB)
using ZF_fun_from_tot_val by auto

also

from A1 A2 have AxXB C XxX by auto

with A1 have f(AxB) = {f(p). p € AxB}
by (rule func_imagedef)

finally show F(A,B) = {f(p) . p € AxB} by simp

also

have VxeA. Vy € B. f(x,y) = f£(x,y) by simp

then have {f(p). p € AxB} = {f(x,y). (x,y) € AxB}
by (rule ZF1i_1_L4A)

finally show F(A,B) = {f(x,y) . (x,y) € AxB}
by simp

from A2 I show F(A,B) C Y using apply_funtype by blast

qed

A sufficient condition for a point to belong to a result of lifting to subsets.

lemma 1ift_subset_suff: assumes Al: f : X X X — Y and
A2: A C X B C X and A3: x€A yeB and
Ad: F = f {lifted to subsets of} X
shows f(x,y) € F(A,B)

proof -
from A3 have f(x,y) € {f(p) . p € AxB} by auto
moreover from Al A2 A4 have {f(p). p € AxB} = F(A,B)
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using lift_subsets_explained by simp
ultimately show f(x,y) € F(A,B) by simp
qed

A kind of converse of 1ift_subset_apply, providing a necessary condition
for a point to be in the result of lifting to subsets.

lemma 1ift_subset_nec: assumes Al: f : X x X — Y and
A2: A C X B C X and
A3: F = f {lifted to subsets of} X and
A4: z € F(A,B)
shows Jx y. x€A A y€B A z = £(x,y)
proof -
from A1 A2 A3 have F(A,B) = {f(p). p € AxB}
using lift_subsets_explained by simp
with A4 show thesis by auto
qed

Lifting to subsets inherits commutativity.

lemma 1ift_subset_comm: assumes Al: f : X x X — Y and
A2: f {is commutative on} X and
A3: F = f {lifted to subsets of} X
shows F {is commutative on} Pow(X)
proof -
have VA € Pow(X). VB € Pow(X). F(A,B) = F(B,A)
proof -
{ fix A assume A € Pow(X)
fix B assume B € Pow(X)
have F(A,B) = F(B,A)
proof -
have Vz € F(A,B). z € F(B,A)
proof
fix z assume I: z € F(A,B)
with A1 A3 ‘A € Pow(X)‘ ‘B € Pow(X)‘ have
Jx y. x€EA A yEB A z = £(x,y)
using lift_subset_nec by simp
then obtain x y where x€A and yeB and z = f(x,y)
by auto
with A2 ‘A € Pow(X)‘ ‘B € Pow(X)‘ have z = £(y,x)
using IsCommutative_def by auto
with A1 A3 I ‘A € Pow(X)¢ ‘B € Pow(X)‘¢ ‘x€A¢ ‘yeBf
show z € F(B,A) using lift_subset_suff by simp
qged
moreover have Vz € F(B,A). z € F(A,B)
proof
fix z assume I: z € F(B,A)
with A1 A3 ‘A € Pow(X)¢ ‘B € Pow(X) ‘¢ have
Jx y. x€B A yEA A z = £(x,y)
using lift_subset_nec by simp
then obtain x y where x€B and y€A and z = £(x,y)
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by auto
with A2 ‘A € Pow(X)‘ ‘B € Pow(X)‘ have z = £(y,x)
using IsCommutative_def by auto
with A1 A3 I ‘A € Pow(X)¢ ‘B € Pow(X)‘¢ ‘x€B¢ ‘ye€Af
show z € F(A,B) using lift_subset_suff by simp
qed
ultimately show F(A,B) = F(B,A) by auto
qed
} thus thesis by auto
ged
then show F {is commutative on} Pow(X)
unfolding IsCommutative_def by auto
qed

Lifting to subsets inherits associativity. To show that F'((A, B)C) = F(A, F(B,C))
we prove two inclusions and the proof of the second inclusion is very similar
to the proof of the first one.

lemma 1ift_subset_assoc: assumes Al: f : X X X — X and
A2: f {is associative on} X and
A3: F = f {lifted to subsets of} X
shows F {is associative on} Pow(X)
proof -
from A1 A3 have F : Pow(X) xPow(X) — Pow(X)
using lift_subsets_binop by simp
moreover have VA € Pow(X).VB € Pow(X). VC € Pow(X).
F(F(A,B),C) = F(A,F(B,C))
proof -
{fix ABC
assume A € Pow(X) B € Pow(X) C € Pow(X)
have F(F(A,B),C) C F(A,F(B,C))
proof
fix z assume I: z € F(F(4,B),C)
from A1 A3 ‘A € Pow(X)¢ ‘B € Pow(X)°
have F(A,B) € Pow(X)
using 1lift_subsets_binop apply_funtype by blast
with A1 A3 ‘C € Pow(X) ¢ I have
Jdx y. x € FA,B) Ay € CA z = f(x,y)
using 1lift_subset_nec by simp
then obtain x y where
II: x € F(A,B) and y € C and III: z = f(x,y)
by auto
from A1 A3 ‘A € Pow(X)¢ ‘B € Pow(X)‘ II have
dst.s€AAtEBAZX-=I1(s,t)
using lift_subset_nec by auto
then obtain s t where s€A and teB and x = f(s,t)
by auto
with A2 ‘A € Pow(X)¢ ‘B € Pow(X)¢ ‘C € Pow(X) ‘¢ III
‘s€A‘ ‘te€B¢ ‘yeC‘ have IV: z = f(s, f(t,y))
using IsAssociative_def by blast
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from A1 A3 ‘B € Pow(X)¢ ‘C € Pow(X)‘ ‘teB¢ ‘yeC’
have f(t,y) € F(B,C) using lift_subset_suff by simp
moreover from Al A3 ‘B € Pow(X)¢ ‘C € Pow(X)°
have F(B,C) C X using lift_subsets_binop apply_funtype
by blast
moreover note Al A3 ‘A € Pow(X)‘¢ ‘s€A¢ IV
ultimately show z € F(A,F(B,C))
using lift_subset_suff by simp
qed
moreover have F(A,F(B,C)) C F(F(A,B),C)
proof
fix z assume I: z € F(A,F(B,C))
from A1 A3 ‘B € Pow(X)¢ ‘C € Pow(X)*
have F(B,C) € Pow(X)
using 1lift_subsets_binop apply_funtype by blast
with A1 A3 ‘A € Pow(X) ¢ I have
dx y. x € A ANy € FB,C) Az ==£(x,y)
using 1lift_subset_nec by simp
then obtain x y where
x € A and II: y € F(B,C) and III: z = f(x,y)
by auto
from A1 A3 ‘B € Pow(X)¢ ‘C € Pow(X)‘ II have
dst.se€BAteCAyY-=I1f(s,t)
using lift_subset_nec by auto
then obtain s t where s€B and teC and y = f(s,t)
by auto
with IIT have z = f(x,f(s,t)) by simp
moreover from A2 ‘A € Pow(X)¢ ‘B € Pow(X)¢ ‘C € Pow(X)*
‘x€A¢ ‘seB¢ ‘teC‘ have f(f(x,s),t) = £(x,f(s,t))
using IsAssociative_def by blast
ultimately have IV: z = f(f(x,s),t) by simp
from A1 A3 ‘A € Pow(X)¢ ‘B € Pow(X)‘ ‘x€A¢ ‘seB¢
have f(x,s) € F(A,B) using lift_subset_suff by simp
moreover from Al A3 ‘A € Pow(X)¢ ‘B € Pow(X)°
have F(A,B) C X using lift_subsets_binop apply_funtype
by blast
moreover note Al A3 ‘C € Pow(X)‘ ‘teC IV
ultimately show z € F(F(A,B),C)
using lift_subset_suff by simp
qed
ultimately have F(F(A,B),C) = F(A,F(B,C)) by auto
} thus thesis by auto
qed
ultimately show thesis unfolding IsAssociative_def
by auto
qed
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5.7 Distributive operations

In this section we deal with pairs of operations such that one is distributive
with respect to the other, that is a-(b+c¢) = a-b+a-c and (b+c)-a = b-a+c-a.
We show that this property is preserved under restriction to a set closed
with respect to both operations. In EquivClassl theory we show that this
property is preserved by projections to the quotient space if both operations
are congruent with respect to the equivalence relation.

We define distributivity as a statement about three sets. The first set is the
set on which the operations act. The second set is the additive operation (a
ZF function) and the third is the multiplicative operation.

definition
IsDistributive(X,A (VaeX.VbeX.VceX.

M) =
M(a,A(b,c)) = A(M(a,b),M(a,c)) A
M(A(b,c),a) = A(M(b,a),M(c,a) ))

The essential condition to show that distributivity is preserved by restric-
tions to sets that are closed with respect to both operations.

)

lemma func_ZF_7_L1:
assumes Al: IsDistributive(X,A,M)
and A2: YCX
and A3: Y {is closed under} A Y {is closed under} M
and A4: A, = restrict(A,YxY) M, = restrict(M,YxY)
and A5: acY beY ceY

shows M,.( a,A.(b,c) ) A-{ My(a,b),M.(a,c) ) A
MT(fAT<b,c>,a ) = A Mr<b,a>, M.{c,a) )
proof -

from A3 A5 have A{b,c) € Y M(a,b) € Y M(a,c) € Y
M(b,a) € Y M(c,a) € Y using IsOpClosed_def by auto
with A5 A4 have
A(b,c) € Y M(a,b) € Y M(a,c) € Y
M-(b,a) € Y M (c,a) € Y
using restrict by auto
with A1 A2 A4 A5 show thesis
using restrict IsDistributive_def by auto
qed

Distributivity is preserved by restrictions to sets that are closed with respect
to both operations.

lemma func_ZF_7_L2:
assumes IsDistributive(X,A,M)
and YCX
and Y {is closed under} A
Y {is closed under} M
and A, = restrict(A,YxY) M, = restrict(M,YxY)
shows IsDistributive(Y,A,,M,)
proof -
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from assms have Va€cY.VbeY.VceY.
M-( a,A.(b,c) ) = A.( My(a,b),M-(a,c) ) A
M.( A.(b,c),a ) = A.( M.(b,a),M.(c,a))
using func_ZF_7_L1 by simp
then show thesis using IsDistributive_def by simp
qed

end
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6 func ZF _1.thy

theory func_ZF_1 imports Order Order_ZF_la func_ZF

begin

In this theory we consider some properties of functions related to order
relations

6.1 Functions and order

This section deals with functions between ordered sets.

If every value of a function on a set is bounded below by a constant, then
the image of the set is bounded below.

lemma func_ZF_8_L1:
assumes f:X—Y and ACX and VxeA. (L,f(x)) € r
shows IsBoundedBelow(f(A),r)
proof -
from assms have Vy € £(4). (L,y) € r
using func_imagedef by simp
then show IsBoundedBelow(f(A),r)
by (rule Order_ZF_3_L9)
qed

If every value of a function on a set is bounded above by a constant, then
the image of the set is bounded above.

lemma func_ZF_8_L2:
assumes f:X—Y and ACX and Vx€A. (f(x),U) € r
shows IsBoundedAbove(f(A),r)
proof -
from assms have Vy € £(4). (y,U) € r
using func_imagedef by simp
then show IsBoundedAbove(f(A),r)
by (rule Order_ZF_3_L10)
qged

Identity is an order isomorphism.

lemma id_ord_iso: shows id(X) € ord_iso(X,r,X,r)
using id_bij id_def ord_iso_def by simp

Identity is the only order automorphism of a singleton.

lemma id_ord_auto_singleton:
shows ord_iso({x},r,{x},r) = {id({zx})}
using id_ord_iso ord_iso_def single_bij_id
by auto

The image of a maximum by an order isomorphism is a maximum. Note
that from the fact the r is antisymmetric and f is an order isomorphism
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between (A, r) and (B, R) we can not conclude that R is antisymmetric (we
can only show that RN (B x B) is).

lemma max_image_ord_iso:
assumes Al: antisym(r) and A2: antisym(R) and
A3: f € ord_iso(A,r,B,R) and
A4: HasAmaximum(r,A)
shows HasAmaximum(R,B) and Maximum(R,B) = f(Maximum(r,A))
proof -
let M = Maximum(r,A)
from Al A4 have M € A using Order_ZF_4_L3 by simp
from A3 have f:A—B using ord_iso_def bij_is_fun
by simp
with ‘M € A‘ have I: f(M) € B
using apply_funtype by simp
{ fix y assume y € B
let x = converse(£f) (y)
from A3 have converse(f) € ord_iso(B,R,A,r)
using ord_iso_sym by simp
then have converse(f): B — A
using ord_iso_def bij_is_fun by simp
with ‘y € B have x € A
by simp
with A1 A3 A4 ‘x € A ‘M € A¢ have (f(x), £(M)) € R
using Order_ZF_4_L3 ord_iso_apply by simp
with A3 ‘y € B‘ have (y, £(M)) € R
using right_inverse_bij ord_iso_def by auto
} then have II: Vy € B. (y, £(M)) € R by simp
with A2 I show Maximum(R,B) = f(M)
by (rule Order_ZF_4_L14)
from I II show HasAmaximum(R,B)
using HasAmaximum_def by auto
qed

Maximum is a fixpoint of order automorphism.

lemma max_auto_fixpoint:
assumes antisym(r) and f € ord_iso(A,r,A,r)
and HasAmaximum(r,A)
shows Maximum(r,A) = f(Maximum(r,A))
using assms max_image_ord_iso by blast

If two sets are order isomorphic and we remove z and f(z), respectively,
from the sets, then they are still order isomorphic.

lemma ord_iso_rem_point:
assumes Al: f € ord_iso(A,r,B,R) and A2: a € A
shows restrict(f,A-{a}) € ord_iso(A-{a},r,B-{f(a)},R)
proof -
let f; = restrict(f,A-{a})
have A-{a} C A by auto
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with A1 have fy € ord_iso(A-{a},r,f(A-{a}),R)
using ord_iso_restrict_image by simp
moreover
from A1 have f € inj(A,B)
using ord_iso_def bij_def by simp
with A2 have f(A-{a}) = £(4) - f{a}
using inj_image_dif by simp
moreover from Al have f(A) =B
using ord_iso_def bij_def surj_range_image_domain
by auto
moreover
from A1 have f: A—B
using ord_iso_def bij_is_fun by simp
with A2 have f{a} = {f(a)}
using singleton_image by simp
ultimately show thesis by simp
qed

If two sets are order isomorphic and we remove maxima from the sets, then
they are still order isomorphic.

corollary ord_iso_rem_max:
assumes Al: antisym(r) and f € ord_iso(A,r,B,R) and
A4: HasAmaximum(r,A) and A5: M = Maximum(r,A)
shows restrict(f,A-{M}) € ord_iso(A-{M}, r, B-{f(M)},R)
using assms Order_ZF_4_L3 ord_iso_rem_point by simp

Lemma about extending order isomorphisms by adding one point to the
domain.

lemma ord_iso_extend: assumes Al: f € ord_iso(A,r,B,R) and
A2: MA¢AMB¢Band
A3: VaeA. (a, My) € r VbeB. (b, M) € R and
A4: antisym(r) antisym(R) and
AB: (M4,My) € T +— (Mp,Mp) € R
shows f U {( Ms,Mp)} € ord_iso(AU{Ms} ,r,BU{Mp} ,R)
proof -
let g = £ U {( Ma,Mp)}
from A1 A2 have
g : AU{M4} — BU{Mp} and
I: VxeA. g(x) = £(x) and II: g(My) = Mp
using ord_iso_def bij_def inj_def funcl_1_L11D
by auto
from A1 A2 have g € bij(AU{M4},BU{Mp})
using ord_iso_def bij_extend_point by simp
moreover have Vx € AU{Ma}. V y € AU{M4}.
(x,y) € r +— (g(x), g(y)) €R
proof -
{ fix xy
assume x € AU{My} and y € AU{M4}
then have x€cA Ay € AV x€A Ay =My V
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x=Mga Ay€AVx=Mg ANy=My
by auto
moreover
{ assume x€A Ay € A
with A1 I have (x,y) € r +— (g(x), g(y)) € R
using ord_iso_def by simp }
moreover
{ assume x€A Ay = My
with A1 A3 I II have (x,y) € r +— (g(x), g(y)) € R
using ord_iso_def bij_def inj_def apply_funtype
by auto }
moreover
{ assume x = My Ay € A
with A2 A3 A4 have (x,y) ¢ r
using antisym_def by auto
moreover
{ assume 46: (g(x), g(y)) € R
from A1 I IT ‘x = Mg Ay € A have
III: g(y) € B gx) = Mp
using ord_iso_def bij_def inj_def apply_funtype
by auto
with A3 have (g(y), g(x)) € R by simp
with A4 A6 have g(y) = g(x) using antisym_def
by auto
with A2 IIT have False by simp
} hence (g(x), g(y)) ¢ R by auto
ultimately have (x,y) € r +— (g(x), g(y)) € R
by simp }
moreover
{ assume x = My Ay = My
with A5 II have (x,y) € r +— (g(x), g(y)) € R
by simp }
ultimately have (x,y) € r +— (g(x), g(y)) € R
by auto
} thus thesis by auto
qed
ultimately show thesis using ord_iso_def
by simp
qed

A kind of converse to ord_iso_rem_max: if two linearly ordered sets sets are
order isomorphic after removing the maxima, then they are order isomor-
phic.
lemma rem_max_ord_iso:

assumes Al: IsLinOrder(X,r) IsLinOrder(Y,R) and

A2: HasAmaximum(r,X) HasAmaximum(R,Y)

ord_iso(X - {Maximum(r,X)},r,Y - {Maximum(R,Y)},R) # O

shows ord_iso(X,r,Y,R) # O
proof -
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let My = Maximum(r,X)
let A = X - {My?}
let Mp = Maximum(R,Y)
let B =Y - {Mp}
from A2 obtain f where f € ord_iso(A,r,B,R)
by auto
moreover have My ¢ A and M ¢ B
by auto
moreover from A1l A2 have
Va€cA. (a,M4) € r and VbeB. (b,Mp) € R
using IsLinOrder_def Order_ZF_4_L3 by auto
moreover from Al have antisym(r) and antisym(R)
using IsLinOrder_def by auto
moreover from Al A2 have (M4,Mq) € r <— (Mp,Mp) € R
using IsLinOrder_def Order_ZF_4_L3 IsLinOrder_def
total_is_refl refl_def by auto
ultimately have
£ U {( Mg,Mp)} € ord_iso(AU{M,} ,r,BU{Mp} ,R)
by (rule ord_iso_extend)
moreover from Al A2 have
AU{M4 Y = X and BU{Mg} =Y
using IsLinOrder_def Order_ZF_4_L3 by auto
ultimately show ord_iso(X,r,Y,R) # O
using ord_iso_extend by auto
qed

6.2 Projections in cartesian products
In this section we consider maps arising naturally in cartesian products.

There is a natural bijection etween X =Y x {y} (a "slice”) and Y. We will
call this the SliceProjection(Yx{y}). This is really the ZF equivalent of
the meta-function fst(x).

definition
SliceProjection(X) = {(p,fst(p)). p € X }

A slice projection is a bijection between X x {y} and X.

lemma slice_proj_bij: shows
SliceProjection(Xx{y}): Xx{y} — X
domain(SliceProjection(Xx{y})) = Xx{y}
VpeXx{y}. SliceProjection(Xx{y}) (p) = fst(p)
SliceProjection(Xx{y}) € bij(Xx{y},X)
proof -
let P = SliceProjection(Xx{y})
have Vp € Xx{y}. fst(p) € X by simp
moreover from this have
{(p,fst(p)). p € Xx{y} } : Xx{y} — X
by (rule ZF_fun_from_total)
ultimately show
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I: P: Xx{y} — X and II: VpeXx{y}. P(p) = fst(p)
using ZF_fun_from_tot_val SliceProjection_def by auto
hence
Va € Xx{y}. V b € Xx{y}. P(a) = P(b) — a=b
by auto
with I have P € inj(Xx{y},X) using inj_def
by simp
moreover from II have VxeX. JpeXx{y}. P(p) = x
by simp
with I have P € surj(Xx{y},X) using surj_def
by simp
ultimately show P € bij(Xx{y},X)
using bij_def by simp
from I show domain(SliceProjection(Xx{y})) = Xx{y}
using funci_1_L1 by simp

qed

6.3 Induced relations and order isomorphisms

When we have two sets X,Y, function f : X — Y and a relation R on

Y we can define a relation » on X by saying that = r y if and only if

f(z) R f(y).

This is especially interesting when f is a bijection as all
reasonable properties of R are inherited by r. This section treats mostly
the case when R is an order relation and f is a bijection. The standard

Isabelle’s Order theory defines the notion of a space of order isomorphisms

between two sets relative to a relation. We expand that material proving

that order isomrphisms preserve interesting properties of the relation.

We call the relation created by a relation on Y and a mapping f: X = Y
the InducedRelation(f,R).

definition

InducedRelation(f,R) =
{p € domain(f)xdomain(f). (f(fst(p)),f(snd(p))) € R}

A reformulation of the definition of the relation induced by a function.

lemma def_of_ind_relA:

assumes (x,y) € InducedRelation(f,R)
shows (f(x),f(y)) € R
using assms InducedRelation_def by simp

A reformulation of the definition of the relation induced by a function, kind
of converse of def_of_ind_relA.

lemma def_of_ind_relB: assumes f:A—B and

x€A yeA and (f(x),f(y)) € R
shows (x,y) € InducedRelation(f,R)
using assms funcl_1_L1 InducedRelation_def by simp
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A property of order isomorphisms that is missing from standard Isabelle’s
Order.thy.

lemma ord_iso_apply_conv:
assumes f € ord_iso(A,r,B,R) and
(f(x),£(y)) € R and x€A yeA
shows (x,y) € r
using assms ord_iso_def by simp

The next lemma tells us where the induced relation is defined

lemma ind_rel_domain:
assumes R C BxB and f:A—B
shows InducedRelation(f,R) C AxA
using assms funcl_1_L1 InducedRelation_def
by auto

A bijection is an order homomorphisms between a relation and the induced
one.

lemma bij_is_ord_iso: assumes Al: f € bij(A,B)
shows f € ord_iso(A,InducedRelation(f,R),B,R)
proof -
let r = InducedRelation(f,R)
{ fix x y assume A2: x€A y€A
have (x,y) € r +— (f(x),f(y)) € R
proof
assume (x,y) € r then show (f(x),f(y)) € R
using def_of_ind_relA by simp
next assume (f(x),f(y)) € R
with A1 A2 show (x,y) € r
using bij_is_fun def_of_ind_relB by blast
qed }
with A1 show f € ord_iso(A,InducedRelation(f,R),B,R)
using ord_isoI by simp
qed

An order isomoprhism preserves antisymmetry.

lemma ord_iso_pres_antsym: assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxA and A3: antisym(R)
shows antisym(r)
proof -
{ fix xy
assume A4: (x,y) € r (y,x) € r
from A1 have f € inj(A,B)
using ord_iso_is_bij bij_is_inj by simp
moreover
from A1 A2 A4 have
(f(x), £(y)) € R and (f(y), f(x)) € R
using ord_iso_apply by auto
with A3 have f(x) = f(y) by (rule Foll_L4)
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moreover from A2 A4 have x€A y€A by auto
ultimately have x=y by (rule inj_apply_equality)
} then have Vx y. (x,y) € ¢ A (y,x) € r — x=y by auto
then show antisym(r) using imp_conj antisym_def
by simp
qed

Order isomoprhisms preserve transitivity.

lemma ord_iso_pres_trans: assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxXA and A3: trans(R)
shows trans(r)
proof -
{fixxyz
assume Ad: (x, y) €r (y, z) €r
note Al
moreover
from A1 A2 A4 have
(fx), £(y)) € R A (f(y), £(2)) € R
using ord_iso_apply by auto
with A3 have (f(x),f(z)) € R by (rule Foll_L3)
moreover from A2 A4 have x€A z€A by auto
ultimately have (x, z) € r using ord_iso_apply_conv

by simp
} then have V xyz. (x, y) €exr A(y, z) € — (x, 2) €T
by blast
then show trans(r) by (rule Foll_L2)

qed

Order isomorphisms preserve totality.

lemma ord_iso_pres_tot: assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxA and A3: R {is total on} B
shows r {is total on} A
proof -
{fix xy
assume x€A yeA (x,y) ¢ r
with A1 have (f(x),f(y)) ¢ R using ord_iso_apply_conv
by auto
moreover
from A1 have f:A—B using ord_iso_is_bij bij_is_fun
by simp
with A3 ‘xe€A¢ ‘ye€A‘ have
(), f(y)) € RV (f(y),f(x)) € R
using apply_funtype IsTotal_def by simp
ultimately have (f(y),f(x)) € R by simp
with A1 ‘xeA¢ ‘yeA‘ have (y,x) € r
using ord_iso_apply_conv by simp
} then have VxeA. VyeA. (x,y) € r V (y,x) € r
by blast
then show r {is total on} A using IsTotal_def
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by simp
qed

Order isomorphisms preserve linearity.

lemma ord_iso_pres_lin: assumes f € ord_iso(A,r,B,R) and
r C AxA and IsLinOrder(B,R)
shows IsLinOrder(A,r)
using assms ord_iso_pres_antsym ord_iso_pres_trans ord_iso_pres_tot
IsLinOrder_def by simp

If a relation is a linear order, then the relation induced on another set by a
bijection is also a linear order.

lemma ind_rel_pres_lin:
assumes Al: f € bij(A,B) and A2: IsLinOrder(B,R)
shows IsLinOrder(A,InducedRelation(f,R))
proof -
let r = InducedRelation(f,R)
from A1 have f € ord_iso(A,r,B,R) and r C AxA
using bij_is_ord_iso domain_of_bij InducedRelation_def
by auto
with A2 show IsLinOrder(A,r) using ord_iso_pres_lin
by simp
qed

The image by an order isomorphism of a bounded above and nonempty set
is bounded above.

lemma ord_iso_pres_bound_above:
assumes Al: f € ord_iso(A,r,B,R) and A2: r C AxA and
A3: IsBoundedAbove(C,r)  C#0
shows IsBoundedAbove(f(C),R) £f(C) # 0
proof -
from A3 obtain u where I: VxeC. (x,u) € r
using IsBoundedAbove_def by auto
from A1 have f:A—B using ord_iso_is_bij bij_is_fun
by simp
from A2 A3 have CCA using Order_ZF_3_L1A by blast
from A3 obtain x where x€C by auto
with A2 I have u€A by auto
{ fix y assume y € £(C)
with ‘f:A—B¢ ‘CCA¢ obtain x where x€C and y = f(x)
using func_imagedef by auto
with A1 I ‘CCA¢ ‘ucA‘ have (y,f(w) € R
using ord_iso_apply by auto
} then have Vy € £(C). (y,f(w)) € R by simp
then show IsBoundedAbove(f(C),R) by (rule Order_ZF_3_L10)
from A3 ‘f:A—B‘ ‘CCA‘ show f(C) # O using funcl_1_L15A
by simp
qed
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Order isomorphisms preserve the property of having a minimum.

lemma ord_iso_pres_has_min:
assumes Al: f € ord_iso(A,r,B,R) and A2: r C AxA and
A3: CCA and A4: HasAminimum(R,f(C))
shows HasAminimum(r,C)
proof -
from A4 obtain m where
I:me€ £(C) and II: Vy € £(C). (m,y) € R
using HasAminimum_def by auto
let k¥ = converse(f) (m)
from Al have f:A—B using ord_iso_is_bij bij_is_fun
by simp
from A1 have f € inj(A,B) using ord_iso_is_bij bij_is_inj
by simp
with A3 I have k € C and III: f(k) = m
using inj_inv_back_in_set by auto
moreover
{ fix x assume A5: x€C
with A3 II ‘f:A—B‘ ‘k € C‘ III have
ke A xeA (f),f(x)) € R
using func_imagedef by auto
with A1 have (k,x) € r using ord_iso_apply_conv
by simp
} then have VxeC. (k,x) € r by simp
ultimately show HasAminimum(r,C) using HasAminimum_def by auto
qed

Order isomorhisms preserve the images of relations. In other words taking
the image of a point by a relation commutes with the function.
lemma ord_iso_pres_rel_image:

assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxA R C BxB and

A3: acA
shows f(r{a}) = R{f(a)}
proof
from A1 have f:A—B using ord_iso_is_bij bij_is_fun
by simp

moreover from A2 A3 have I: r{a} C A by auto
ultimately have I: f(r{a}) = {f(x). x € r{a} }
using func_imagedef by simp
{ fix y assume A4: y € f(r{a})
with I obtain x where
x € r{a} and II: y = £(x)
by auto
with A1 A2 have (f(a),f(x)) € R using ord_iso_apply
by auto
with IT have y € R{f(a)} by auto
} then show f(r{a}) C R{f(a)} by auto
{ fix y assume A5: y € R{f(a)}
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let x = converse(£) (y)
from A2 A5 have
(f(@,y) € R f(a) € B and IV: ycB
by auto
with A1 have III: (converse(f)(f(a)),x) € r
using ord_iso_converse by simp
moreover from A1l A3 have converse(f)(f(a)) = a
using ord_iso_is_bij left_inverse_bij by blast
ultimately have f(x) € {f(x). x € r{a} }
by auto
moreover from A1l IV have f(x) =y
using ord_iso_is_bij right_inverse_bij by blast
moreover from Al I have f(r{a}) = {f(x). x € rf{a} }
using ord_iso_is_bij bij_is_fun func_imagedef by blast
ultimately have y € f(r{a}) by simp
} then show R{f(a)} C f(r{a}) by auto
qed

Order isomorphisms preserve collections of upper bounds.

lemma ord_iso_pres_up_bounds:
assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AXA R C BxB and
A3: CCA
shows {f(r{a}). aeC} = {R{b}. b € £(C)}
proof
from Al have f:A—B
using ord_iso_is_bij bij_is_fun by simp
{ fix Y assume Y € {f(r{a}). acC}
then obtain a where acC and I: Y = f(r{a})
by auto
from A3 ‘acC‘ have acA by auto
with A1 A2 have f(r{a}) = R{f(a)}
using ord_iso_pres_rel_image by simp
moreover from A3 ‘f:A—B¢ ‘acC‘ have f(a) € £(C)
using func_imagedef by auto
ultimately have f(r{a}) € { R{b}. b € £(C) }
by auto
with I have Y € { R{b}. b € £(C) } by simp
} then show {f(r{a}). acC} C {R{b}. b € £(C)}
by blast
{ fix Y assume Y € {R{b}. b € £(C)}
then obtain b where b € £(C) and II: Y = R{b}
by auto
with A3 ‘f:A—B°‘ obtain a where acC and b = f(a)
using func_imagedef by auto
with A3 IT have acA and Y = R{f(a)} by auto
with A1 A2 have Y = f(r{a})
using ord_iso_pres_rel_image by simp
with ‘acC‘ have Y ¢ {f(r{a}). acC} by auto
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} then show {R{b}. b € £(C)} C {f(r{a}). acC}
by auto
qed

The image of the set of upper bounds is the set of upper bounds of the
image.

lemma ord_iso_pres_min_up_bounds:
assumes Al: f € ord_iso(A,r,B,R) and A2: r C AxA R C BxB and
A3: CCA and A4: C#0
shows f(((acC. r{a}) = ([\bef(C). R{b})
proof -
from A1 have f € inj(A,B)
using ord_iso_is_bij bij_is_inj by simp
moreover note A4
moreover from A2 A3 have VaeC. r{a} C A by auto
ultimately have
f(NaeC. r{a}) = ( NaeC. f(xr{a}) )
using inj_image_of_Inter by simp
also from A1 A2 A3 have
( NaecC. f(r{a}) ) = ( (bef(C). R{b} )
using ord_iso_pres_up_bounds by simp
finally show f((acC. r{a}) = (\bef(C). R{b})
by simp
qed

Order isomorphisms preserve completeness.

lemma ord_iso_pres_compl:
assumes Al: f € ord_iso(A,r,B,R) and
A2: r C AxA R C BxB and A3: R {is complete}
shows r {is complete}
proof -
{ fix C
assume A4: IsBoundedAbove(C,r) C#0
with A1 A2 A3 have
HasAminimum(R,(\b € £(C). R{b})
using ord_iso_pres_bound_above IsComplete_def
by simp
moreover
from A2 ‘IsBoundedAbove(C,r)‘ have I: C C A using Order_ZF_3_L1A
by blast
with A1 A2 ‘C#£0°¢ have f([)acC. r{a}) = ([bef(C). R{b})
using ord_iso_pres_min_up_bounds by simp
ultimately have HasAminimum(R,f(()a€C. r{al}))
by simp
moreover
from A2 have VaeC. r{a} C A
by auto
with ‘C#0‘ have ( (|aeC. r{a} ) C A using ZF1_1_L7
by simp
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moreover note Al A2
ultimately have HasAminimum(r, ()acC. r{al} )
using ord_iso_pres_has_min by simp
} then show r {is complete} using IsComplete_def
by simp
qed

If the original relation is complete, then the induced one is complete.

lemma ind_rel_pres_compl: assumes Al: f € bij(A,B)
and A2: R C BxB and A3: R {is complete}
shows InducedRelation(f,R) {is complete}
proof -
let r = InducedRelation(f,R)
from A1 have f € ord_iso(A,r,B,R)
using bij_is_ord_iso by simp
moreover from Al A2 have r C AxA
using bij_is_fun ind_rel_domain by simp
moreover note A2 A3
ultimately show r {is complete}
using ord_iso_pres_compl by simp
qed

end
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7 Generalization_ZF.thy

theory Generalization_ZF imports funcl
begin

This theory formalizes the intuitive notion of generalization.
See http://www.mathematics21.org/generalization.html for more details.
Contributed by Victor Porton.

7.1 Generalization situation

In mathematics it is often encountered that a small set S naturally bijectively
corresponds to a subset R of a larger set B. (In other words, there is specified
an injection E from S to B.) It is a widespread practice to equate S with R.
But strictly speaking this equating may contradict to the axioms of ZF /ZFC
because we are not insured against S N B # () incidents. To work around
of this (and formulate things exactly what could benefit computer proof
assistants) we will replace the set B with a new set B having a bijection
M : B — B such that M o E = idg. (I call this bijection M from the first
letter of the word "move” which signifies the move from the old set B to a
new set B. This section contains some basic lemmas holding in this setup.

The next locale defines our assumptions.

locale generalization =
fixes small and big
fixes embed
assumes embed_inj: embed € inj(small, big)

We define the small2 set as the range of embed.

definition (in generalization) small2 = range (embed)

We define spec as the converse of embed.

definition (in generalization) spec = converse(embed)

Spec is an injection from range of embed to small.

lemma (in generalization) spec_inj: shows spec € inj(small2, small)
using embed_inj inj_converse_inj small2_def spec_def by simp

Spec maps range of embed to small.

lemma (in generalization) spec_fun: shows spec: small2—small
using embed_inj inj_converse_fun small2_def spec_def by simp

Embed maps smallsmall to big.

lemma (in generalization) embed_fun: shows embed: small—big
using embed_inj inj_is_fun by simp
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FEmbed is a surjection from small to small2.

lemma (in generalization) embed_surj: shows embed € surj(small, small2)
using fun_is_surj embed_fun small2_def by simp

Embed is a bijection between small and small2.

theorem (in generalization) embed_bij: shows embed € bij(small, small2)
using embed_inj inj_bij_range small2_def by simp

small2 (i.e. range of embed) is a subset of big.

theorem (in generalization) small2_sub_big: shows small2 C big
using embed_fun funcl_1_L5B small2_def by simp

spec is a bijection beween small2 and small.

theorem (in generalization) spec_bij: shows spec € bij(small2, small)
using bij_converse_bij embed_bij spec_def by simp

7.2 Arbitrary generalizations
This section considers a more general situation.
The next locale extends generalization adding another big set and the move

operation.

locale generalizationl = generalization +
fixes newbig
fixes move
assumes move_bij: move € bij(big, newbig)
assumes move_embed: move 0 embed = id(small)

in generalizationl context we define ret as the converse of move.

definition (in generalizationl) ret = converse(move)

move is a map from big to newbig.

lemma (in generalizationl) move_fun: shows move: big—mnewbig
using move_bij bij_is_fun by simp

move is an injection from big to newbig.

lemma (in generalizationl) move_inj: shows movecinj(big, newbig)
using move_bij bij_is_inj by simp

Move is a surjection big to newbig.

lemma (in generalizationl) move_surj: shows movecsurj(big, newbig)
using move_bij bij_is_surj by simp

big is the domain of move.

lemma (in generalizationl) move_domain: shows domain(move) = big
using domain_of_fun move_fun by simp
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Composing move with embed takes elements of small to themselves.

theorem (in generalizationl) move_embed_plain: assumes xEsmall
shows move (embed(x)) = x
proof -
from assms have move(embed(x)) = (move 0 embed) (x)
using embed_fun comp_fun_apply by simp
with assms show thesis using move_embed by simp
qed

ret is a bijection from newbignewbig to big.

lemma (in generalizationl) ret_bij: shows retcbij(newbig, big)
using move_bij ret_def by simp

ret is a injection from newbig onto big.

lemma (in generalizationl) ret_inj: shows ret € inj(newbig,big)
using ret_bij bij_is_inj by simp

ret is a surjection from newbig onto big.

lemma (in generalizationl) ret_surj: shows ret € surj(newbig,big)
using ret_bij bij_is_surj by simp

embed is a restriciton of ret to small.

lemma (in generalizationl) ret_restrict: shows embed = restrict(ret,
small)
proof -
have embedCsmallxbig
using fun_is_rel embed_fun by auto
moreover
have (converse(move) 0 move) 0 embed = converse(move) 0 id(small)
using move_embed comp_assoc by auto
then have a: id(big) 0 embed = converse(move) 0 id(small)
using left_comp_inverse move_inj by simp
ultimately show thesis using left_comp_id right_comp_id_any ret_def
by auto
qed

7.3 ZF generalization
We continue material from the previous section.

We will need this lemma to assert that ZF generalization is an arbitrary
generalization:

lemma mem_not_refl_2: shows {t} ¢ t
using foundation by auto

Definition of token.

definition (in generalization) token = Pow(|J (|J (small)))
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Definition of function moving the small set into big.

definition (in generalization)
zf_move_fun(x) = if x€small2 then spec(x) else (token,x)

Definition of zf_move - the ZF version of zf_move_fun.

definition (in generalization)
zf_move = {(x,zf_move_fun(x)). x€big}

Definition of zf_newbig as the range of zf_move.

definition (in generalization) zf_newbig = range(zf_move)

zf_move is a function that maps big to newbig.

lemma (in generalization) zf_move_fun: shows zf_move: big—zf_newbig
using lam_is_fun_range zf_move_def zf_newbig_def by simp

token 1S not in small.

lemma (in generalization) token_not_small: shows (token,x)¢small
proof

assume (token,x)Esmall

then have {token}ctoken using token_def Pair_def by auto

then show False using mem_not_refl_2 by blast
qed

Domain of zf_move is big.

lemma (in generalization) zf_move_domain: shows domain(zf_move) = big
using zf_move_fun funci_1_L1 by simp

small is a subset of big.

theorem (in generalization) small_less_zf_newbig:
shows small C zf_newbig
proof
fix x
assume s: x € small
then have s1: embed(x) € small2
using embed_fun apply_rangel small2_def
by simp
then have s2: embed(x)€big using small2_sub_big by auto
with s1 s have x_val: zf_move(embed(x)) = x
using ZF_fun_from_tot_val zf_move_fun embed_inj
left_inverse spec_def zf_move_def zf_move_fun_def
by simp
from s2 have zf_move(embed(x))Erange (z£f_move)
using zf_move_fun apply_rangel by simp
with x_val show x € zf_newbig using zf_newbig_def by auto
qed

zf_move is an injection from big to zf_newbig.
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theorem (in generalization) zf_move_inj: shows zf_movecinj(big, zf_newbig)

proof -
have Vacbig. Vbebig.
zf_move(a) = zf_move(b) — a=b
proof -
{
fix a b
assume acbig and bebig
then have specl_a: a€small2 — zf_move(a) = spec(a) and
spec2_a: a¢small2 — zf_movea = (token,a) and
specl_b: besmall2 — zf_move(b) = spec(b) and
spec2_b: b¢small2 — zf_move(b) = (token,b)
using ZF_fun_from_tot_vall zf_move_fun_def zf_move_def
by auto
assume move_eq: zf_move(a) = zf_move(b)
have a=b
proof -
{ assume a€small2 and bEsmall2
with ‘acsmall2‘ specl_a ‘be&small2‘ specl_b move_eq
have I: spec(a) = spec(b) by simp
have spec € inj(small2,small)
using spec_inj by simp
then have spec €

{f:small2 — small. Vwe€small2. Vxe€small2. f(w)=f(x) — w=x}

unfolding inj_def by auto

hence Vwesmall2. Vxesmall2. spec(w)=spec(x) —> w=x by auto

with ‘acsmall2‘ ‘besmall2‘ I have a=b by auto
}
moreover
{ assume acsmall2 b¢small2
with specl_a spec_fun have ma_s: zf_moveacsmall
using apply_funtype by auto
from ‘b¢small2‘ spec2_b have zf_moveb¢small
using token_not_small by auto
with move_eq ma_s have False by auto
}
moreover
{ assume a¢small2 and bEsmall?2
with specl_b spec_fun have mb_s: zf_move(b)€Esmall
using apply_funtype by auto
from ‘a¢small2‘ spec2_a have zf_move(a)¢small
using token_not_small by auto
with move_eq mb_s have False by auto
}
moreover
{ assume a¢small2 and b¢small2
with spec2_a spec2_b have
zf_move(a) = (token,a) and
zf_move(b) = (token,b)
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by auto
with move_eq have a=b by auto
}
ultimately show a=b by auto
qed
}
thus thesis by auto
qed
with zf_move_fun show thesis using inj_def by simp
qed

zf_move is a surjection of big onto zf_newbig.

theorem (in generalization) zf_move_surj:
shows zf_move € surj(big,zf_newbig)
using zf_move_fun fun_is_surj zf_newbig_def by simp

zf_move is a bijection from big to zf_newbig.

theorem (in generalization) zf_move_bij: shows zf_move € bij(big, zf_newbig)
using zf_move_inj inj_bij_range zf_newbig_def by simp

The essential condition to prove that composition of zf_move and embed is
identity.

theorem (in generalization) zf_move_embed:
assumes x € small shows zf_move(embed(x)) = x
using assms embed_fun apply_rangel small2_sub_big ZF_fun_from_tot_vall
embed_inj small2_def spec_def zf_move_def zf_move_fun_def by auto

Composition of zf_move and embed is identity.

theorem (in generalization) zf_embed_move: shows zf_move 0 embed = id(small)
proof -
have Vyé&small. zf_move(embedy) = y and
embed: small—big and zf_move: big—zf_newbig
using zf_move_embed embed_fun zf_move_fun by auto
then show thesis using comp_eq_id_iffl by blast
qed

end
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8 NatGenIntEx ZF.thy

theory NatGenIntEx_ZF imports Int_ZF Generalization_ZF

begin

This theory shows an example application of of the setup for generalization
presented in Generalization_ZF.

In this example I show that integers can be considered as a generalization
of natural numbers. The next interpretion shows that we can use theo-
rems proven in the generalization locale to sets nat, int and the natural
embedding of natural numbers into integers.

interpretation int_interpr:
generalization nat int {(n,int_of(n)). n € nat}
proof -
let £ = {(n,int_of(n)). n € nat}
have f € inj(nat,int)
proof -
have I: f: nat — int using ZF_fun_from_total by simp
moreover from I have Vne€nat. f(n)= int_of(n)
using ZF_fun_from_tot_val by simp
moreover have Vnéenat.Vmé&nat. int_of(n)=int_of(m) — n=m
using int_of_inject by simp
ultimately show thesis using inj_def by simp
qed
then show generalization(nat,int,f) using generalization_def by simp
qed

Next we prove that ZF generalization is an arbitrary generalization. This al-
lows to access notions defined in generalizationi locale from within generalization
locale.

sublocale

generalization C generalizationl small big embed zf_newbig zf_move
proof

show zf_movecbij(big, zf_newbig) using zf_move_bij by auto

show zf_move 0 embed = id(small) using zf_embed_move by auto
qed

abbreviation int_obj = int_interpr.zf_newbig

Naturals are a subset of integers.

lemma nat C int_obj using int_interpr.small_less_zf_newbig by auto

An example of defining an operation on the generalization set.

definition add where
add(x,y) = int_interpr.zf_move(int_interpr.retx $+ int_interpr.rety)

end
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9 Finite ZF.thy

theory Finite_ZF imports ZF1 Nat_ZF_IML Cardinal
begin

Standard Isabelle Finite.thy contains a very useful notion of finite powerset:
the set of finite subsets of a given set. The definition, however, is specific
to Isabelle and based on the notion of ”datatype”, obviously not something
that belongs to ZF set theory. This theory file devolopes the notion of
finite powerset similarly as in Finite.thy, but based on standard library’s
Cardinal.thy. This theory file is intended to replace IsarMathLib’s Finitel
and Finite_ZF_1 theories that are currently derived from the ”datatype”
approach.

9.1 Definition and basic properties of finite powerset

The goal of this section is to prove an induction theorem about finite pow-
ersets: if the empty set has some property and this property is preserved
by adding a single element of a set, then this property is true for all finite
subsets of this set.

We defined the finite powerset FinPow(X) as those elements of the powerset
that are finite.

definition
FinPow(X) = {A € Pow(X). Finite(A)}

The cardinality of an element of finite powerset is a natural number.

lemma card_fin_is_nat: assumes A € FinPow(X)
shows |A| € nat and A =~ |A]
using assms FinPow_def Finite_def cardinal_cong nat_into_Card
Card_cardinal_eq by auto

A reformulation of card_fin_is_nat: for a finit set A there is a bijection

between |A| and A.

lemma fin_bij_card: assumes Al: A € FinPow(X)
shows 3b. b € bij(lAl, A)

proof -
from A1 have |A| ~ A using card_fin_is_nat eqpoll_sym
by blast
then show thesis using eqpoll_def by auto
qed

If a set has the same number of elements as n € N; then its cardinality is n.
Recall that in set theory a natural number n is a set that has n elements.

lemma card_card: assumes A ~ n and n € nat
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shows |A| = n
using assms cardinal_cong nat_into_Card Card_cardinal_eq
by auto

If we add a point to a finite set, the cardinality increases by one. To under-
stand the second assertion |[AU{a}| = |A|U{]A|} recall that the cardinality
|A| of A is anatural number and for natural numbers we have n+1 = nU{n}.

lemma card_fin_add_one: assumes Al: A € FinPow(X) and A2: a € X-A
shows

[A U {a}| = succ( Al )
[A U {a}| = [Al U {IAl}
proof -
from A1 A2 have cons(a,A) =~ cons( |Al, |Al )
using card_fin_is_nat mem_not_refl cons_eqpoll_cong
by auto

moreover have cons(a,A) = A U {a} by (rule consdef)
moreover have cons( [Al, [A]l ) = |Al U {|Al}

by (rule consdef)
ultimately have AU{a} =~ succ( |A|] ) using succ_explained

by simp
with Al show
[A U {a}] = succ( |A] ) and |A U {a}| = |Al U {|Al}
using card_fin_is_nat card_card by auto
qed

We can decompose the finite powerset into collection of sets of the same
natural cardinalities.

lemma finpow_decomp:
shows FinPow(X) = (Un € nat. {A € Pow(X). A ~ n})
using Finite_def FinPow_def by auto

Finite powerset is the union of sets of cardinality bounded by natural num-
bers.

lemma finpow_union_card_nat:
shows FinPow(X) = (|Jn € nat. {A € Pow(X). A < n})
proof -
have FinPow(X) C (|n € nat. {A € Pow(X). A < n})
using finpow_decomp FinPow_def eqpoll_imp_lepoll
by auto

moreover have
(Un € nat. {A € Pow(X). A < n}) C FinPow(X)
using lepoll_nat_imp_Finite FinPow_def by auto
ultimately show thesis by auto

qed

A different form of finpow_union_card_nat (see above) - a subset that has
not more elements than a given natural number is in the finite powerset.

lemma lepoll_nat_in_finpow:
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assumes n € nat A CX A <n
shows A € FinPow(X)
using assms finpow_union_card_nat by auto

Natural numbers are finite subsets of the set of natural numbers.

lemma nat_finpow_nat: assumes n € nat shows n € FinPow(nat)
using assms nat_into_Finite nat_subset_nat FinPow_def
by simp

A finite subset is a finite subset of itself.

lemma fin_finpow_self: assumes A € FinPow(X) shows A € FinPow(A)
using assms FinPow_def by auto

If we remove an element and put it back we get the set back.

lemma rem_add_eq: assumes a€A shows (A-{a}) U {a} = A
using assms by auto

Induction for finite powerset. This is smilar to the standard Isabelle’s

Fin_induct.

theorem FinPow_induct: assumes Al: P(0) and
A2: VA € FinPow(X). P(A) — (VaeX. P(A U {a})) and
A3: B € FinPow(X)
shows P(B)
proof -
{ fix n assume n € nat
moreover from Al have I: VB€Pow(X). B < 0 — P(B)
using lepoll_0_is_O by auto
moreover have V k € nat.
(VB € Pow(X). B <k — P(B))) —
(VB € Pow(X). (B < succ(k) — P(B)))
proof -
{ fix k assume A4: k € nat
assume A5: V B € Pow(X). (B < k — P(B))
fix B assume A6: B € Pow(X) B S succ(k)
have P(B)
proof -
have B = 0 — P(B)
proof -
{ assume B = 0
then have B < 0 using lepoll_O_iff
by simp
with I A6 have P(B) by simp
} thus B = 0 — P(B) by simp
qged
moreover have B#0 — P(B)
proof -
{ assume B # 0
then obtain a where II: acB by auto

S
S
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let A =B - {a}

from A6 II have A C X and A < k
using Diff_sing_lepoll by auto

with A4 A5 have A € FinPow(X) and P(A)
using lepoll_nat_in_finpow finpow_decomp

by auto

with A2 A6 II have P(A U {a})
by auto

moreover from II have A U {a} = B
by auto

ultimately have P(B) by simp
} thus B#0 — P(B) by simp
qed
ultimately show P(B) by auto
qed
} thus thesis by blast
qed
ultimately have VB € Pow(X). (B < n — P(B))
by (rule ind_on_nat)
} then have Vn € nat. VB € Pow(X). (B < n — P(B))
by auto
with A3 show P(B) using finpow_union_card_nat
by auto
qed

A subset of a finites subset is a finite subset.

lemma subset_finpow: assumes A € FinPow(X) and B C A
shows B € FinPow(X)
using assms FinPow_def subset_Finite by auto

If we subtract anything from a finite set, the resulting set is finite.

lemma diff_finpow:
assumes A € FinPow(X) shows A-B € FinPow(X)
using assms subset_finpow by blast

If we remove a point from a finites subset, we get a finite subset.

corollary fin_rem_point_fin: assumes A € FinPow(X)
shows A - {a} € FinPow(X)
using assms diff_finpow by simp

Cardinality of a nonempty finite set is a successsor of some natural number.

lemma card_non_empty_succ:
assumes Al: A € FinPow(X) and A2: A # 0
shows dn € nat. |A| = succ(n)

proof -
from A2 obtain a where a € A by auto
let B =A - {a}
from A1 ‘a € A‘ have
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B € FinPow(X) and a € X - B

using FinPow_def fin_rem_point_fin by auto
then have |B U {a}| = succ( |BI| )

using card_fin_add_one by auto
moreover from ‘a € A‘ ‘B € FinPow(X) ¢ have

A = B U {a} and [|B| € nat

using card_fin_is_nat by auto
ultimately show dn € nat. |A| = succ(n) by auto

qed

Nonempty set has non-zero cardinality. This is probably true without the
assumption that the set is finite, but I couldn’t derive it from standard
Isabelle theorems.

lemma card_non_empty_non_zero:
assumes A € FinPow(X) and A # O
shows |A] # 0O
proof -
from assms obtain n where |A| = succ(n)
using card_non_empty_succ by auto
then show |A| # 0 using succ_not_0
by simp
qed

Another variation on the induction theme: If we can show something holds
for the empty set and if it holds for all finite sets with at most k elements
then it holds for all finite sets with at most k 4+ 1 elements, the it holds for
all finite sets.

theorem FinPow_card_ind: assumes Al: P(0) and
A2: Vkenat.
(VA € FinPow(X). A < k — P(A)) —
(VA € FinPow(X). A < succ(k) — P(A))
and A3: A € FinPow(X) shows P(A)
proof -
from A3 have |A| € nat and A € FinPow(X) and A < [A]
using card_fin_is_nat eqpoll_imp_lepoll by auto
moreover have Vn € nat. (VA € FinPow(X).
A <n— P))
proof
fix n assume n € nat
moreover from Al have VA € FinPow(X). A < 0 — P(4)
using lepoll_0_is_O by auto
moreover note A2
ultimately show
VA € FinPow(X). A < n — P(Q)
by (rule ind_on_nat)
qed
ultimately show P(A) by simp
qed
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Another type of induction (or, maybe recursion). The induction step we try
to find a point in the set that if we remove it, the fact that the property
holds for the smaller set implies that the property holds for the whole set.

lemma FinPow_ind_rem_one: assumes Al: P(0) and
A2: V A € FinPow(X). A # 0 — (JacA. P(A-{a}) — P(A))
and A3: B € FinPow(X)
shows P(B)
proof -
note Al
moreover have Vkéenat.
(VB € FinPow(X). B < k — P(B)) —
(VC € FinPow(X). C < succ(k) — P(C))
proof -
{ fix k assume k € nat
assume A4: VB € FinPow(X). B < k — P(B)
have VC € FinPow(X). C < succ(k) — P(C)
proof -
{ fix C assume C € FinPow(X)
assume C < succ(k)
note Al
moreover
{ assume C # 0
with A2 ‘C € FinPow(X)‘ obtain a where
acC and P(C-{a}) — P(C)
by auto
with A4 ‘C € FinPow(X)‘ ‘C < succ(k)
have P(C) using Diff_sing lepoll fin_rem_point_fin
by simp }
ultimately have P(C) by auto
} thus thesis by simp
qed
} thus thesis by blast
qed
moreover note A3
ultimately show P(B) by (rule FinPow_card_ind)
qed

Yet another induction theorem. This is similar, but slightly more compli-
cated than FinPow_ind_rem_one. The difference is in the treatment of the
empty set to allow to show properties that are not true for empty set.

lemma FinPow_rem_ind: assumes Al: VA € FinPow(X).
A =0V (JdaeA. A = {a} VvV P(A-{a}) — P(A))
and A2: A € FinPow(X) and A3: A#0
shows P(A)
proof -
have 0 = 0 vV P(0) by simp
moreover have
VkEnat.
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(VB € FinPow(X). B < k — (B=0 V P(B))) —
(VA € FinPow(X). A < succ(k) — (A=0 V P(A)))
proof -
{ fix k assume k € nat
assume A4: VB € FinPow(X). B < k — (B=0 V P(B))
have VA € FinPow(X). A < succ(k) — (A=0 V P(A))
proof -
{ fix A assume A € FinPow(X)
assume A < succ(k) A#0
from A1 ‘A € FinPow(X) ‘¢ ‘A#0°¢ obtain a
where a€A and A = {a} vV P(A-{a}) — P(R)
by auto
let B = A-{a}
from A4 ‘A € FinPow(X) ¢ ‘A < succ(k)‘ ‘acA’
have B = 0 vV P(B)
using Diff_sing_lepoll fin_rem_point_fin
by simp
with ‘acA‘ ‘A = {a} V P(A-{a}) — P(A)¢
have P(A) by auto
} thus thesis by auto
ged
} thus thesis by blast
qed
moreover note A2
ultimately have A=0 V P(A) by (rule FinPow_card_ind)
with A3 show P(A) by simp
qed

If a family of sets is closed with respect to taking intersections of two sets
then it is closed with respect to taking intersections of any nonempty finite
collection.

lemma inter_two_inter_fin:
assumes Al: VVET. VWeT. VN W € T and
A2: N # 0 and A3: N € FinPow(T)
shows (N € T)
proof -
have 0 = 0 V ()0 € T) by simp
moreover have VM € FinPow(T). (M =0V (M € T) —
VW eT MUWIF=0V MU €T
proof -
{ fix M assume M € FinPow(T)
assume A4: M =0V (M eT
{ assume M = 0
hence VW € T. MU{W} =0V NM U {W}) €T
by auto }
moreover
{ assume M # 0
with A4 have (M € T by simp
{ fix W assume W € T
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from ‘M # 0¢ have (M U {W}) = (NM) N W

by auto
with A1 ‘M € T ‘W € T have (M U {W}) € T
by simp
} hence VW € T. MU{W} =0V NMU{W}H) €T
by simp }

ultimately have YW € T. MU{W} =0V (MM U {W}) €T
by blast
} thus thesis by simp
qged
moreover note ‘N € FinPow(T)
ultimately have N = 0 V (N € T)
by (rule FinPow_induct)
with A2 show (N € T) by simp
qed

If a family of sets contains the empty set and is closed with respect to taking
unions of two sets then it is closed with respect to taking unions of any finite
collection.

lemma union_two_union_fin:
assumes Al: 0 € C and A2: VAeC. VBeC. AUB € C and
A3: N € FinPow(C)
shows [JN € C
proof -
from ‘0 € C¢ have |JO € C by simp
moreover have VM € FinPow(C). [JM € C — (VAeC. J M U {A}) € ©)
proof -
{ fix M assume M € FinPow(C)
assume (JM € C
fix A assume AeC
have JM U {A}) = (UM U A by auto
with A2 ‘UM € ¢° ‘AeC® have M U {A}) € C
by simp
} thus thesis by simp
qed
moreover note ‘N € FinPow(C)‘
ultimately show [JN € C by (rule FinPow_induct)
qed

Empty set is in finite power set.

lemma empty_in_finpow: shows 0 € FinPow(X)
using FinPow_def by simp

Singleton is in the finite powerset.

lemma singleton_in_finpow: assumes x € X
shows {x} € FinPow(X) using assms FinPow_def by simp

Union of two finite subsets is a finite subset.
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lemma union_finpow: assumes A € FinPow(X) and B € FinPow(X)
shows A U B € FinPow(X)
using assms FinPow_def by auto

Union of finite number of finite sets is finite.

lemma fin_union_finpow: assumes M € FinPow(FinPow (X))
shows [JM € FinPow(X)
using assms empty_in_finpow union_finpow union_two_union_fin
by simp

If a set is finite after removing one element, then it is finite.

lemma rem_point_fin_fin:
assumes Al: x € X and A2: A - {x} € FinPow(X)
shows A € FinPow(X)
proof -
from assms have (A - {x}) U {x} € FinPow(X)
using singleton_in_finpow union_finpow by simp
moreover have A C (A - {x}) U {x} by auto
ultimately show A € FinPow(X)
using FinPow_def subset_Finite by auto
qed

An image of a finite set is finite.

lemma fin_image_fin: assumes VVEB. K(V)eC and N € FinPow(B)
shows {K(V). VeN} € FinPow(C)
proof -
have {K(V). Ve0} € FinPow(C) using FinPow_def
by auto
moreover have VA € FinPow(B).
{K(V). VeA} € FinPow(C) — (VaeB. {K(V). V € (A U {a})} € FinPow(C))
proof -
{ fix A assume A € FinPow(B)
assume {K(V). VeA} € FinPow(C)
fix a assume a€B
have {K(V). V € (A U {a})} € FinPow(C)
proof -
have {K(V). V € (A U {ab)} = {K(V). VeA} U {K(a)}
by auto
moreover note ‘{K(V). VeA} € FinPow(C)°
moreover from ‘VVeB. K(V) € C¢ ‘aeB‘ have {K(a)} € FinPow(C)
using singleton_in_finpow by simp
ultimately show thesis using union_finpow by simp
qed
} thus thesis by simp
qged
moreover note ‘N € FinPow(B) ¢
ultimately show {K(V). VEN} € FinPow(C)
by (rule FinPow_induct)
qed
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Union of a finite indexed family of finite sets is finite.

lemma union_fin_list_fin:
assumes Al: n € nat and A2: Vk € n. N(k) € FinPow(X)
shows
{N(k). k € n} € FinPow(FinPow(X)) and (Jk € n. N(k)) € FinPow(X)
proof -
from A1 have n € FinPow(n)
using nat_finpow_nat fin_finpow_self by auto
with A2 show {N(k). k € n} € FinPow(FinPow (X))
by (rule fin_image_fin)
then show (|Jk € n. N(k)) € FinPow(X)
using fin_union_finpow by simp
qed

end
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10 Finitel.thy

theory Finitel imports Finite funcl ZF1

begin

This theory extends Isabelle standard Finite theory. It is obsolete and
should not be used for new development. Use the Finite_ZF instead.

10.1 Finite powerset

In this section we consider various properties of Fin datatype (even though
there are no datatypes in ZF set theory).

In Topology_ZF theory we consider induced topology that is obtained by
taking a subset of a topological space. To show that a topology restricted
to a subset is also a topology on that subset we may need a fact that if T is
a collection of sets and A is a set then every finite collection {V;} is of the
form V; = U; N A, where {U;} is a finite subcollection of T". This is one of
those trivial facts that require suprisingly long formal proof. Actually, the
need for this fact is avoided by requiring intersection two open sets to be
open (rather than intersection of a finite number of open sets). Still, the fact
is left here as an example of a proof by induction. We will use Fin_induct
lemma from Finite.thy. First we define a property of finite sets that we want
to show.

definition
Prfin(T,A,M) = ( (M = 0) | (IN€ Fin(T). VVe M. 3 U N. (V = UNA)))

Now we show the main induction step in a separate lemma. This will make
the proof of the theorem FinRestr below look short and nice. The premises
of the ind_step lemma are those needed by the main induction step in lemma
Fin_induct (see standard Isabelle’s Finite.thy).

lemma ind_step: assumes A: V Ve TA. 3 U€T. V=UNA
and Al: WETA and A2: Me Fin(TA)
and A3: W¢M and A4: Prfin(T,A,M)
shows Prfin(T,A,cons(W,M))

proof -
{ assume A7: M=0 have Prfin(T, A, cons(W, M))
proof-
from Al A obtain U where A5: U€T and A6: W=UNA by fast
let N = {U}

from A5 have T1: N € Fin(T) by simp
from A7 A6 have T2: VVe cons(W,M). 3 UeN. V=UNA by simp
from A7 T1 T2 show Prfin(T, A, cons(W, M))
using Prfin_def by auto
qed }
moreover
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{ assume A8:M#0 have Prfin(T, A, cons(W, M))
proof-
from Al A obtain U where A5: U€T and A6:W=UNA by fast
from A8 A4 obtain NO
where A9: NO€ Fin(T) and A10: VVe M. 3 UO€ NO. (V = UONA)
using Prfin_def by auto
let N = cons(U,NO)
from A5 A9 have N € Fin(T) by simp
moreover from A10 A6 have VVe cons(W,M). 3 UeN. V=UNA by simp
ultimately have 3 N& Fin(T).VVéE€ cons(W,M). 3 UeN. V=UNA by auto
with A8 show Prfin(T, A, cons(W, M))
using Prfin_def by simp
qed }
ultimately show thesis by auto
qed

Now we are ready to prove the statement we need.

theorem FinRestrO: assumes A: V V € TA. 3 Ue T. V=UNA
shows V Me Fin(TA). Prfin(T,A,M)
proof -
{ fix M
assume M € Fin(TA)
moreover have Prfin(T,A,0) using Prfin_def by simp
moreover
{ fix W M assume WETA Me Fin(TA) W¢M Prfin(T,A,M)
with A have Prfin(T,A,cons(W,M)) by (rule ind_step) }
ultimately have Prfin(T,A,M) by (rule Fin_induct)
} thus thesis by simp
qed

This is a different form of the above theorem:

theorem ZF1FinRestr:
assumes Al:Me Fin(TA) and A2: M#0
and A3: V Ve TA. 3 Ue T. V=UNA
shows INe Fin(T). (VVe M. 3 Ue N. (V = UNA)) A N#£0
proof -
from A3 A1 have Prfin(T,A,M) using FinRestrO by blast
then have INe Fin(T). VVe M. 3 Ue N. (V = UNA)
using A2 Prfin_def by simp
then obtain N where
D1:Ne Fin(T) A (VYVe M. 3 Ue N. (V = UNA)) by auto
with A2 have N#0 by auto
with D1 show thesis by auto
qed

Purely technical lemma used in Topology_ZF_1 to show that if a topology is
T5, then it is Tj.

lemma Finitel L2:
assumes A:3U V. (UET A VET A x€U A yeV A UNV=0)
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shows JUET. (x€U A y¢U)

proof -
from A obtain U V where D1:UET A VET A x€U A yeV A UNV=0 by auto
with D1 show thesis by auto

qed

A collection closed with respect to taking a union of two sets is closed under
taking finite unions. Proof by induction with the induction step formulated
in a separate lemma.

lemma Finitel_L3_IndStep:
assumes A1:VA B. ((AeC A BeC) — AUBEC)
and A2: AeC and A3: N€Fin(C) and A4:A¢N and A5:(JN € C
shows |Jcons(4,N) € C
proof -
have |J cons(A,N) = AU [JN by blast
with A1 A2 A5 show thesis by simp
qed

The lemma: a collection closed with respect to taking a union of two sets is
closed under taking finite unions.

lemma Finitel_L3:
assumes Al: 0 € C and A2: VA B. ((AeC A BeC) —> AUBEC) and
A3: Ne Fin(C)
shows | JNeC
proof -
note A3
moreover from Al have |JO € C by simp
moreover
{ fix AN
assume A€C NeFin(C) A¢N N € C
with A2 have |Jcons(A,N) € C by (rule Finitel_L3_IndStep) }
ultimately show |JN€ C by (rule Fin_induct)
qed

A collection closed with respect to taking a intersection of two sets is closed
under taking finite intersections. Proof by induction with the induction
step formulated in a separate lemma. This is sligltly more involved than
the union case in Finitel_L3, because the intersection of empty collection
is undefined (or should be treated as such). To simplify notation we define
the property to be proven for finite sets as a separate notion.

definition
IntPr(T,N) = (W=0 | N € T)

The induction step.

lemma Finitel L4_IndStep:
assumes Al: VA B. ((A€T A BET) — ANBET)
and A2: A€T and A3:NeFin(T) and A4:A¢N and A5:IntPr(T,N)
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shows IntPr(T,cons(A,N))
proof -
{ assume A6: N=0
with A2 have IntPr(T,cons(A,N))
using IntPr_def by simp }
moreover
{ assume A7: N#0 have IntPr(T, cons(A, N))
proof -
from A7 A5 A2 A1 have [\N N A € T using IntPr_def by simp
moreover from A7 have [Jcons(A, N) = (N N A by auto
ultimately show IntPr(T, cons(A, N)) using IntPr_def by simp
qed }
ultimately show thesis by auto
qed

The lemma.

lemma Finitel_L4:
assumes Al: VA B. AT A BET — AMB € T
and A2: NeFin(T)
shows IntPr(T,N)
proof -
note A2
moreover have IntPr(T,0) using IntPr_def by simp
moreover
{ fix AN
assume A€T NeFin(T) A¢N IntPr(T,N)
with A1 have IntPr(T,cons(A,N)) by (rule Finitel L4_IndStep) }
ultimately show IntPr(T,N) by (rule Fin_induct)
qed

Next is a restatement of the above lemma that does not depend on the IntPr
meta-function.

lemma Finitel_L5:
assumes Al: VA B. ((A€T A BET) — ANBET)
and A2: N#0 and A3: Ne&Fin(T)
shows (N € T
proof -
from A1 A3 have IntPr(T,N) using Finitel_L4 by simp
with A2 show thesis using IntPr_def by simp
qed

The images of finite subsets by a meta-function are finite. For example in
topology if we have a finite collection of sets, then closing each of them
results in a finite collection of closed sets. This is a very useful lemma with
many unexpected applications. The proof is by induction. The next lemma
is the induction step.

lemma fin_image_fin_IndStep:
assumes VVEB. K(V)eC
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and UeB and NeFin(B) and U¢N and {K(V). VEN}EFin(C)
shows {K(V). Vecons(U,N)} € Fin(C)
using assms by simp

The lemma:

lemma fin_image_fin:
assumes Al: VVeB. K(V)eC and A2: NeFin(B)
shows {K(V). VeN} € Fin(C)
proof -
note A2
moreover have {K(V). Ve0} € Fin(C) by simp
moreover
{fixUN
assume UEB NeFin(B) U¢N {K(V). VEN}E€Fin(C)
with A1 have {K(V). Vecons(U,N)} € Fin(C)
by (rule fin_image_fin_IndStep) }
ultimately show thesis by (rule Fin_induct)
qed

The image of a finite set is finite.

lemma Finitel_L6A: assumes Al: f:X—Y and A2: N € Fin(X)
shows £(N) € Fin(Y)
proof -
from A1 have VxeX. f(x) € Y
using apply_type by simp
moreover note A2
ultimately have {f(x). x€N} € Fin(Y)
by (rule fin_image_fin)
with Al A2 show thesis
using FinD func_imagedef by simp
qed

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finitel L6B:
assumes Al: VxeX. a(x) € Y and A2: {b(y).y€Y} € Fin(Z)
shows {b(a(x)).x€X} € Fin(Z)
proof -
from A1 have {b(a(x)).x€X} C {b(y).y€Y} by auto
with A2 show thesis using Fin_subset_lemma by blast
qed

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finitel L6C:
assumes Al: VyeY. b(y) € Z and A2: {a(x). x€X} € Fin(Y)
shows {b(a(x)).x€X} € Fin(Z)

proof -
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let N = {a(x). x€X}
from A1 A2 have {b(y). y € N} € Fin(Z)
by (rule fin_image_fin)
moreover have {b(a(x)). x€X} = {b(y). y€ N}
by auto
ultimately show thesis by simp
qed

If an intersection of a collection is not empty, then the collection is not
empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty and prove by contradiction. Should be in ZF1.thy

lemma Finitel_L9: assumes Al:[)A # 0 shows A#0
proof -
{ assume A2: - A # O
with A1 have False by simp
} thus thesis by auto
qed

Cartesian product of finite sets is finite.

lemma Finitel_L12: assumes Al: A € Fin(A) and A2: B € Fin(B)
shows AXB € Fin(AXxB)
proof -
have T1:VachA. VbeB. {( a,b)} € Fin(AxB) by simp
have VacA. {{( a,b)}. b € B} € Fin(Fin(AXB))
proof
fix a assume A3: a € A
with T1 have VbeB. {( a,b)} € Fin(AXB)
by simp
moreover note A2
ultimately show {{( a,b)}. b € B} € Fin(Fin(AxB))
by (rule fin_image_fin)
qed
then have VacA. |J {{({ a,b)}. b € B} € Fin(AXB)
using Fin_UnionI by simp
moreover have
VacA. U {{( a,b)}. b € B} = {a}x B by blast
ultimately have VacA. {a}x B € Fin(AxB) by simp
moreover note Al
ultimately have {{a}x B. acA} € Fin(Fin(AXxB))
by (rule fin_image_fin)
then have (J{{a}x B. a€A} € Fin(AXxB)
using Fin_UnionI by simp
moreover have |J{{a}x B. a€A} = AxB by blast
ultimately show thesis by simp
qed

We define the characterisic meta-function that is the identity on a set and
assigns a default value everywhere else.

definition

93



Characteristic(A,default,x) = (if x€A then x else default)

A finite subset is a finite subset of itself.

lemma Finitel_L13:
assumes Al:A € Fin(X) shows A € Fin(A)

proof -
{ assume A=0 hence A € Fin(A) by simp }
moreover
{ assume A2: A#0 then obtain ¢ where Dl:c€A
by auto

then have VxeX. Characteristic(A,c,x) € A
using Characteristic_def by simp

moreover note Al

ultimately have
{Characteristic(A,c,x). x€A} € Fin(4A)
by (rule fin_image_fin)

moreover from D1 have
{Characteristic(A,c,x). x€A} = A
using Characteristic_def by simp

ultimately have A € Fin(A) by simp }

ultimately show thesis by blast
qed

Cartesian product of finite subsets is a finite subset of cartesian product.

lemma Finitel_L14: assumes Al: A € Fin(X) B € Fin(Y)
shows AXB € Fin(XxY)
proof -
from A1 have AxB C XxY using FinD by auto
then have Fin(AxB) C Fin(XxY) using Fin_mono by simp
moreover from Al have AxB € Fin(AXxB)
using Finitel L13 Finitel_L12 by simp
ultimately show thesis by auto
qged

The next lemma is needed in the Group_ZF_3 theory in a couple of places.

lemma Finitel_L15:
assumes Al: {b(x). x€A} € Fin(B) {c(x). x€A} € Fin(C)
and A2: f : BXC—E
shows {f( b(x),c(x)). x€A} € Fin(E)
proof -
from A1 have {b(x). x€A}x{c(x). x€A} € Fin(BxC)
using Finitel_L14 by simp
moreover have
{{ b(x),c(x)). xeA} C {b(x). xeA}x{c(x). xcA}
by blast
ultimately have TO: {( b(x),c(x)). x€A} € Fin(BxC)
by (rule Fin_subset_lemma)
with A2 have T1: £f{( b(x),c(x)). x€A} € Fin(E)
using Finitel_L6A by auto
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from TO have VxeA. ( b(x),c(x)) € BXC
using FinD by auto
with A2 have
f{{ b(x),c(x)). x€A} = {f( b(x),c(x)). x€A}
using funcl_1_L17 by simp
with T1 show thesis by simp
qed

Singletons are in the finite powerset.

lemma Finitel_L16: assumes x€X shows {x} € Fin(X)
using assms emptyl consI by simp

A special case of Finitel_L15 where the second set is a singleton. Group_ZF_3
theory this corresponds to the situation where we multiply by a constant.

lemma Finitel L16AA: assumes {b(x). x€A} € Fin(B)
and ceC and f : BXC—E
shows {f( b(x),c). x€A} € Fin(E)
proof -
from assms have
VyeB. f(y,c) € E
{b(x). x€A} € Fin(B)
using apply_funtype by auto
then show thesis by (rule Finitel_L6C)
qed

First order version of the induction for the finite powerset.

lemma Finitel L16B: assumes Al: P(0) and A2: BeFin(X)
and A3: VA€Fin(X).VxeX. x¢A A P(A)—PAU{x})
shows P(B)
proof -
note ‘BeFin(X)‘ and ‘P(0)°
moreover
{ fix A x
assume x € X A € Fin(X) x ¢ A P(4)
moreover have cons(x,A) = AU{x} by auto
moreover note A3
ultimately have P(cons(x,A)) by simp }
ultimately show P(B) by (rule Fin_induct)
qed

10.2 Finite range functions

In this section we define functions f : X — Y, with the property that
f(X) is a finite subset of Y. Such functions play a important role in the
construction of real numbers in the Real_ZF series.

Definition of finite range functions.

definition
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FinRangeFunctions(X,Y) = {f:X—Y. £(X) € Fin(Y)}

Constant functions have finite range.

lemma Finitel_L17: assumes c€Y and X#0
shows ConstantFunction(X,c) € FinRangeFunctions(X,Y)
using assms funcl_3_L1 func_imagedef funcl_3_L2 Finitel L16
FinRangeFunctions_def by simp

Finite range functions have finite range.

lemma Finitel_L18: assumes f € FinRangeFunctions(X,Y)
shows {f(x). x€X} € Fin(Y)
using assms FinRangeFunctions_def func_imagedef by simp

An alternative form of the definition of finite range functions.

lemma Finitel_L19: assumes f:X—Y
and {f(x). x€X} € Fin(Y)
shows f € FinRangeFunctions(X,Y)
using assms func_imagedef FinRangeFunctions_def by simp

A composition of a finite range function with another function is a finite
range function.

lemma Finitel L20: assumes Al:f € FinRangeFunctions(X,Y)
and A2: g : Y=Z
shows g 0 f € FinRangeFunctions(X,Z)
proof -
from A1 A2 have g{f(x). x€X} € Fin(Z)
using Finitel_L18 Finitel_L6A
by simp
with A1 A2 have {(g 0 £)(x). x€X} € Fin(Z)
using FinRangeFunctions_def apply_funtype
funcl_1_L17 comp_fun_apply by auto
with A1 A2 show thesis using
FinRangeFunctions_def comp_fun Finitel L19
by auto
qed

Image of any subset of the domain of a finite range function is finite.

lemma Finitel L21:
assumes f € FinRangeFunctions(X,Y) and ACX
shows f(A) € Fin(Y)
proof -
from assms have f(X) € Fin(Y) £(A) C £(X)
using FinRangeFunctions_def funcl_1_L8
by auto
then show f(A) € Fin(Y) using Fin_subset_lemma
by blast
qed

end
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11 Finite_ ZF_1.thy

theory Finite_ZF_1 imports Finitel Order_ZF_la
begin

This theory is based on Finitel theory and is obsolete. It contains properties
of finite sets related to order relations. See the FinOrd theory for a better
approach.

11.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

Finite set has a maximum - induction step.

lemma Finite_ZF_1_1_L1:
assumes Al: r {is total on} X and A2: trans(r)
and A3: AcFin(X) and A4: x€X and A5: A=0 V HasAmaximum(r,A)
shows AU{x} = 0 V HasAmaximum(r,AU{x})
proof -
{ assume A=0 then have T1: AU{x} = {x} by simp
from A1 have refl(X,r) using total_is_refl by simp
with T1 A4 have AU{x} = 0 V HasAmaximum(r,AU{x})
using Order_ZF_4_L8 by simp }
moreover
{ assume A#0
with A1 A2 A3 A4 A5 have AU{x} = 0 V HasAmaximum(r,AU{x})
using FinD Order_ZF_4_L9 by simp }
ultimately show thesis by blast
qed

For total and transitive relations finite set has a maximum.

theorem Finite_ZF_1_1_T1A:
assumes Al: r {is total on} X and A2: trans(r)
and A3: BeFin(X)
shows B=0 V HasAmaximum(r,B)
proof -
have 0=0 V HasAmaximum(r,0) by simp
moreover note A3
moreover from A1 A2 have VA€Fin(X). VxeX.
xgéA A (A=0 V HasAmaximum(r,A)) — (AU{x}=0 V HasAmaximum(r,AU{x}))
using Finite ZF_1_1_L1 by simp

ultimately show B=0 V HasAmaximum(r,B) by (rule Finitel L16B)
qed

Finite set has a minimum - induction step.

lemma Finite_ZF_1_1_L2:
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assumes Al: r {is total on} X and A2: trans(r)
and A3: AcFin(X) and A4: x€X and A5: A=0 V HasAminimum(r,A)
shows AU{x} = 0 V HasAminimum(r,AU{x})
proof -
{ assume A=0 then have T1: AU{x} = {x} by simp
from A1 have refl(X,r) using total_is_refl by simp
with T1 A4 have AU{x} = 0 V HasAminimum(r,AU{x})
using Order_ZF_4_L8 by simp }
moreover
{ assume A#0
with A1 A2 A3 A4 A5 have AU{x} = 0 V HasAminimum(r,AU{x})
using FinD Order_ZF_4_L10 by simp }
ultimately show thesis by blast
qed

For total and transitive relations finite set has a minimum.

theorem Finite_ZF_1_1_T1B:
assumes Al: r {is total on} X and A2: trans(r)
and A3: B € Fin(X)
shows B=0 V HasAminimum(r,B)
proof -
have 0=0 V HasAminimum(r,0) by simp
moreover note A3
moreover from A1 A2 have VAcFin(X). VxeX.
x¢A A (A=0 V HasAminimum(r,A)) — (AU{x}=0 V HasAminimum(r,AU{x}))
using Finite_ZF_1_1_L2 by simp

ultimately show B=0 V HasAminimum(r,B) by (rule Finitel_L16B)
qed

For transitive and total relations finite sets are bounded.

theorem Finite_ZF_1_T1:
assumes Al: r {is total on} X and A2: trans(r)
and A3: BEFin(X)
shows IsBounded(B,r)
proof -
from A1 A2 A3 have B=0 V HasAminimum(r,B) B=0 V HasAmaximum(r,B)
using Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B by auto
then have
B = 0 V IsBoundedBelow(B,r) B = 0 V IsBoundedAbove(B,r)
using Order_ZF_4_L7 Order_ZF_4_L8A by auto
then show IsBounded(B,r) using
IsBounded_def IsBoundedBelow_def IsBoundedAbove_def
by simp
qed

For linearly ordered finite sets maximum and minimum have desired prop-
erties. The reason we need linear order is that we need the order to be total
and transitive for the finite sets to have a maximum and minimum and then
we also need antisymmetry for the maximum and minimum to be unique.
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theorem Finite_ZF_1_T2:
assumes Al: IsLinOrder(X,r) and A2: A € Fin(X) and A3: A0
shows
Maximum(r,A) € A
Minimum(r,A) € A
VxeA. (x,Maximum(r,A)) €
VxeA. (Minimum(r,A),x) €
proof -
from A1 have T1: r {is total on} X trans(r) antisym(r)
using IsLinOrder_def by auto
moreover from T1 A2 A3 have HasAmaximum(r,A)
using Finite_ZF_1_1_T1A by auto
moreover from T1 A2 A3 have HasAminimum(r,A)
using Finite_ZF_1_1_T1B by auto
ultimately show
Maximum(r,A) € A
Minimum(r,A) € A
VxeA. (x,Maximum(r,A)) € r Vx€A. (Minimum(r,A),x) € r
using Order_ZF_4_L3 Order_ZF_4_L4 by auto
qed

r
r

A special case of Finite_ZF_1_T2 when the set has three elements.

corollary Finite_ZF_1_L2A:
assumes Al: IsLinOrder(X,r) and A2: acX beX ceX
shows
Maximum(r,{a,b,c}) € {a,b,c}
Minimum(r,{a,b,c}) € {a,b,c}
Maximum(r,{a,b,c}) € X
Minimum(r,{a,b,c}) € X
(a,Maximum(r,{a,b,c})) € r
(b,Maximum(r,{a,b,c})) € r

€

(c,Maximum(r,{a,b,c})) € r
proof -
from A2 have I: {a,b,c} € Fin(X) {a,b,c} # 0
by auto

with A1 show II: Maximum(r,{a,b,c}) € {a,b,c}
by (rule Finite_ZF_1_T2)
moreover from Al I show III: Minimum(r,{a,b,c}) € {a,b,c}
by (rule Finite_ZF_1_T2)
moreover from A2 have {a,b,c} C X
by auto
ultimately show
Maximum(r,{a,b,c}) € X
Minimum(r,{a,b,c}) € X
by auto
from A1 I have Vx€{a,b,c}. (x,Maximum(r,{a,b,c})) € r
by (rule Finite_ZF_1_T2)
then show
(a,Maximum(r,{a,b,c})) € r
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(b,Maximum(r,{a,b,c})) €
(c,Maximum(r,{a,b,c})) €
by auto

qed

r
r

If for every element of X we can find one in A that is greater, then the A
can not be finite. Works for relations that are total, transitive and antisym-
metric.

lemma Finite_ZF_1_1_L3:
assumes Al: r {is total on} X
and A2: trans(r) and A3: antisym(r)
and Ad: r C XxX and A5: X#0
and A6: VxeX. JachA. x#a A (x,a) € r
shows A ¢ Fin(X)
proof -
from assms have —IsBounded(A,r)
using Order_ZF_3_L14 IsBounded_def
by simp
with A1 A2 show A ¢ Fin(X)
using Finite_ZF_1_T1 by auto
qed

end
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12 FinOrd_ZF.thy

theory FinOrd_ZF imports Finite_ZF func_ZF_1
begin

This theory file contains properties of finite sets related to order relations.
Part of this is similar to what is done in Finite_ZF_1 except that the devel-
opment is based on the notion of finite powerset defined in Finite_ZF rather
the one defined in standard Isabelle Finite theory.

12.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

For total and transitive relations nonempty finite set has a maximum.

theorem fin_has_max:
assumes Al: r {is total on} X and A2: trans(r)
and A3: B € FinPow(X) and A4: B # 0
shows HasAmaximum(r,B)
proof -
have 0=0 V HasAmaximum(r,0) by simp
moreover have
VA € FinPow(X). A=0 V HasAmaximum(r,A) —
(VxeX. (A U {x}) = 0 V HasAmaximum(r,A U {x}))
proof -
{ fix A
assume A € FinPow(X) A = 0 V HasAmaximum(r,A)
have VxeX. (A U {x}) = 0 V HasAmaximum(r,A U {x})
proof -
{ fix x assume x€X
note ‘A = 0 V HasAmaximum(r,A) ‘¢
moreover
{ assume A = 0
then have AU{x} = {x} by simp
from A1 have refl(X,r) using total_is_refl
by simp
with ‘xeX‘ ‘AU{x} = {x}‘ have HasAmaximum(r,AU{x})
using Order_ZF_4_L8 by simp }
moreover
{ assume HasAmaximum(r,A)
with A1 A2 ‘A € FinPow(X)‘ ‘x€X¢
have HasAmaximum(r,AU{x})
using FinPow_def Order_ZF_4_19 by simp }
ultimately have A U {x} = 0 V HasAmaximum(r,A U {x})
by auto
} thus VzeX. (A U {x}) = 0 V HasAmaximum(r,A U {x})
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by simp
qed
} thus thesis by simp
qed
moreover note A3
ultimately have B = 0 V HasAmaximum(r,B)
by (rule FinPow_induct)
with A4 show HasAmaximum(r,B) by simp
qed

For linearly ordered nonempty finite sets the maximum is in the set and
indeed it is the greatest element of the set.

lemma linord_max_props: assumes Al: IsLinOrder(X,r) and
A2: A € FinPow(X) A # 0
shows
Maximum(r,A) € A
Maximum(r,A) € X
VachA. (a,Maximum(r,A)) € r
proof -
from A1 A2 show
Maximum(r,A) € A and VacA. (a,Maximum(r,A)) € r
using IsLinOrder_def fin_has_max Order_ZF_4_L3
by auto
with A2 show Maximum(r,A) € X using FinPow_def
by auto
qed

12.2 Order isomorphisms of finite sets

In this section we eastablish that if two linearly ordered finite sets have the
same number of elements, then they are order-isomorphic and the isomor-
phism is unique. This allows us to talk about ”enumeration” of a linearly
ordered finite set. We define the enumeration as the order isomorphism
between the number of elements of the set (which is a natural number
n={0,1,..,n —1}) and the set.

A really weird corner case - empty set is order isomorphic with itself.

lemma empty_ord_iso: shows ord_iso(0,r,0,R) # 0O
proof -
have 0 ~ 0 using eqpoll_refl by simp
then obtain f where f € bij(0,0)
using eqpoll_def by blast
then show thesis using ord_iso_def by auto
qed

Even weirder than empty_ord_iso The order automorphism of the empty set
is unique.

lemma empty_ord_iso_uniq:
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assumes f € ord_iso(0,r,0,R) g € ord_iso(0,r,0,R)
shows f = g
proof -
from assms have f : 0 - 0 and g: 0 — 0O
using ord_iso_def bij_def surj_def by auto
moreover have Vx€0. f(x) = g(x) by simp
ultimately show f = g by (rule func_eq)
qed

The empty set is the only order automorphism of itself.

lemma empty_ord_iso_empty: shows ord_iso(0,r,0,R) = {0}
proof -
have 0 € ord_iso(0,r,0,R)
proof -
have ord_iso(0,r,0,R) # 0 by (rule empty_ord_iso)
then obtain f where f € ord_iso(0,r,0,R) by auto
then show 0 € ord_iso(0,r,0,R)
using ord_iso_def bij_def surj_def fun_subset_prod
by auto
qed
then show ord_iso(0,r,0,R) = {0} using empty_ord_iso_uniq
by blast
qed

An induction (or maybe recursion?) scheme for linearly ordered sets. The
induction step is that we show that if the property holds when the set is
a singleton or for a set with the maximum removed, then it holds for the
set. The idea is that since we can build any finite set by adding elements on
the right, then if the property holds for the empty set and is invariant with
respect to this operation, then it must hold for all finite sets.

lemma fin_ord_induction:
assumes Al: IsLinOrder(X,r) and A2: P(0) and
A3: VA € FinPow(X). A # 0 — (P(A - {Maximum(r,A)}) — P(A))
and A4: B € FinPow(X) shows P(B)
proof -
note A2
moreover have V A € FinPow(X). A # 0 — (JdacA. P(A-{a}) — P(A))
proof -
{ fix A assume A € FinPow(X) and A # O
with A1 A3 have JacA. P(A-{a}) — P(A)
using IsLinOrder_def fin_has_max
IsLinOrder_def Order_ZF_4_L3
by blast
} thus thesis by simp
qed
moreover note A4
ultimately show P(B) by (rule FinPow_ind_rem_one)
qed
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A sligltly more complicated version of fin_ord_induction that allows to
prove properties that are not true for the empty set.

lemma fin_ord_ind:
assumes Al: IsLinOrder(X,r) and A2: VA € FinPow(X).
A =0V (A= {Maximum(r,A)} V P(A - {Maximum(r,A)}) — P(A))
and A3: B € FinPow(X) and A4: B#0
shows P(B)
proof -
{ fix A assume A € FinPow(X) and A # O
with A1 A2 have
JacA. A = {a} Vv P(A-{a}) — P(R)
using IsLinOrder_def fin_has_max
IsLinOrder_def Order_ZF_4_L3
by blast
} then have VA € FinPow(X).
A =0V (JdacA. A = {a} V P(A-{a}) — P(A))
by auto
with A3 A4 show P(B) using FinPow_rem_ind
by simp
qed

Yet another induction scheme. We build a linearly ordered set by adding
elements that are greater than all elements in the set.

lemma fin_ind_add_max:
assumes Al: IsLinOrder(X,r) and A2: P(0) and A3: V A € FinPow(X).

(V x € X-A. P(A) A (Va€A. (a,x) € T ) — P(A U {x})
and A4: B € FinPow(X)
shows P(B)
proof -
note Al A2
moreover have
VC € FinPow(X). C # 0 — (P(C - {Maximum(r,C)}) — P(C))
proof -
{ fix C assume C € FinPow(X) and C # 0
let x = Maximum(r,C)
let A =C - {x}
assume P(A)
moreover from ‘C € FinPow(X)‘ have A € FinPow(X)
using fin_rem_point_fin by simp
moreover from A1 ‘C € FinPow(X) ¢ ‘C # 0¢ have
x € Cand x € X - A and VacA. (a,x) € r
using linord_max_props by auto
moreover note A3
ultimately have P(A U {x}) by auto
moreover from ‘x € C‘ have A U {x} = C
by auto
ultimately have P(C) by simp
} thus thesis by simp
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qed
moreover note A4
ultimately show P(B) by (rule fin_ord_induction)
qed

The only order automorphism of a linearly ordered finite set is the identity.

theorem fin_ord_auto_id: assumes Al: IsLinOrder(X,r)
and A2: B € FinPow(X) and A3: B#0
shows ord_iso(B,r,B,r) = {id(B)}
proof -
note Al
moreover
{ fix A assume A € FinPow(X) A#0
let M = Maximum(r,A)
let Ag = A - {M}
assume A = {M} V ord_iso(Ag,r,Ap,r) = {id(4)}
moreover
{ assume A = {M}
have ord_iso({M},r,{M},r) = {id({M})}
using id_ord_auto_singleton by simp
with ‘A = {M}‘ have ord_iso(A,r,A,r) = {id(A)}
by simp }
moreover
{ assume ord_iso(Ag,r,Ap,r) = {id(Ap)}
have ord_iso(A,r,A,r) = {id(A)}
proof
show {id(A)} C ord_iso(A,r,A,r)
using id_ord_iso by simp
{ fix f assume f € ord_iso(A,r,A,r)
with A1 ‘A € FinPow(X) ¢ ‘A#0¢ have
restrict(f,Ay) € ord_iso(Ag, r, A-{f(M},r)
using IsLinOrder_def fin_has_max ord_iso_rem_max
by auto
with A1 ‘A € FinPow(X)‘ ‘A#0‘ ‘f € ord_iso(A,r,A,r)¢
‘ord_iso(Ag,r,Aq,r) = {id(Ap)}¢
have restrict(f,Ay) = id(Ag)
using IsLinOrder_def fin_has_max max_auto_fixpoint
by auto
moreover from A1 ‘f € ord_iso(A,r,A,r)°
‘A € FinPow(X)¢ ‘A#0‘ have
f:A—Aand M€ Aand £(M) = M
using ord_iso_def bij_is_fun IsLinOrder_def
fin_has_max Order_ZF_4_L3 max_auto_fixpoint
by auto
ultimately have f = id(A) using id_fixpoint_rem
by simp
} then show ord_iso(A,r,A,r) C {id(a)}
by auto
qed
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}

ultimately have ord_iso(A,r,A,r) = {id(A)}
by auto
} then have VA € FinPow(X). A =0V
(A = {Maximum(r,A)} V
ord_iso(A-{Maximum(r,A)},r,A-{Maximum(r,A)},r) =
{id(A-{Maximum(r,A)})} — ord_iso(A,r,A,r) = {id(A)})
by auto
moreover note A2 A3
ultimately show ord_iso(B,r,B,r) = {id(B)}
by (rule fin_ord_ind)
qed

Every two finite linearly ordered sets are order isomorphic. The statement
is formulated to make the proof by induction on the size of the set easier,
see fin_ord_iso_ex for an alternative formulation.

lemma fin_order_iso:
assumes Al: IsLinOrder(X,r) IsLinOrder(Y,R) and
A2: n € nat
shows VA € FinPow(X). VB € FinPow(Y).
A~nAB~n— ord_iso(A,r,B,R) # 0
proof -
note A2
moreover have VA € FinPow(X). VB € FinPow(Y).
A~0AB=O0— ord_iso(A,r,B,R) # 0
using eqpoll_0_is_O empty_ord_iso by blast
moreover have Vk € nat.
(VA € FinPow(X). VB € FinPow(Y).
A~k ANB =~k — ord_iso(A,r,B,R) #* 0) —
(VC € FinPow(X). VD € FinPow(Y).
C ~ succ(k) A D = succ(k) — ord_iso(C,r,D,R) # 0)
proof -
{ fix k assume k € nat
assume A3: VA € FinPow(X). VB € FinPow(Y).
A~k ANB =~ k — ord_iso(A,r,B,R) # 0
have VC € FinPow(X). VD € FinPow(Y).
C =~ succ(k) A D = succ(k) — ord_iso(C,r,D,R) # O
proof -
{ fix C assume C € FinPow(X)
fix D assume D € FinPow(Y)
assume C =~ succ(k) ~ succ(k)
then have C # 0 and D# 0
using eqpoll_succ_imp_not_empty by auto
let Mo = Maximum(r,C)
let Mp = Maximum(R,D)
let CQ =C - {MC}
let Dg = D - {Mp}
from ‘C € FinPow(X)‘ have C C X
using FinPow_def by simp
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with A1 have IsLinOrder(C,r)
using ord_linear_subset by blast

from ‘D € FinPow(Y)‘ have D C Y
using FinPow_def by simp

with A1 have IsLinOrder(D,R)
using ord_linear_subset by blast

from A1 ‘C € FinPow(X)¢ ‘D € FinPow(Y)°
‘C #£ 0¢ ‘D# 0° have
HasAmaximum(r,C) and HasAmaximum(R,D)
using IsLinOrder_def fin_has_max
by auto

with A1 have Mg € C and Mp € D
using IsLinOrder_def Order_ZF_4_L3 by auto

with ‘C =~ succ(k)¢ ‘D = succ(k)‘ have
Co ~ k and Dy ~ k using Diff_sing_eqpoll by auto

from ‘C € FinPow(X)‘ ‘D € FinPow(Y) ‘¢

have Cy € FinPow(X) and Dy € FinPow(Y)
using fin_rem_point_fin by auto

with A3 ‘C() ~ k¢ ‘D(] ~ k¢ have
ord_iso(Cy,r,Dg,R) # O by simp

with ‘IsLinOrder(C,r)¢ ‘IsLinOrder(D,R)°
‘HasAmaximum(r,C) ¢ ‘HasAmaximum(R,D) ¢

have ord_iso(C,r,D,R) # 0
by (rule rem_max_ord_iso)

} thus thesis by simp
ged
} thus thesis by blast
qed
ultimately show thesis by (rule ind_on_nat)
qed

Every two finite linearly ordered sets are order isomorphic.

lemma fin_ord_iso_ex:
assumes Al: IsLinOrder(X,r) IsLinOrder(Y,R) and
A2: A € FinPow(X) B € FinPow(Y) and A3: B =~ A
shows ord_iso(A,r,B,R) # 0
proof -
from A2 obtain n where n € nat and A =~ n
using finpow_decomp by auto
from A3 ‘A = n‘ have B = n by (rule eqpoll_trans)
with A1 A2 ‘A =~ n‘ ‘n € nat‘ show ord_iso(A,r,B,R) # 0
using fin_order_iso by simp
qed

Existence and uniqueness of order isomorphism for two linearly ordered sets
with the same number of elements.

theorem fin_ord_iso_ex_uniq:
assumes Al: IsLinOrder(X,r) IsLinOrder(Y,R) and
A2: A € FinPow(X) B € FinPow(Y) and A3: B =~ A
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shows J!f. f € ord_iso(A,r,B,R)
proof
from assms show Jf. f € ord_iso(A,r,B,R)
using fin_ord_iso_ex by blast
fix fg
assume A4: f € ord_iso(A,r,B,R) g € ord_iso(A,r,B,R)
then have converse(g) € ord_iso(B,R,A,r)
using ord_iso_sym by simp
with ‘f € ord_iso(A,r,B,R)‘ have
I: converse(g) 0 f € ord_iso(A,r,A,r)
by (rule ord_iso_trans)
{ assume A # 0
with A1 A2 I have converse(g) 0 £ = id(A)
using fin_ord_auto_id by auto
with A4 have f = g
using ord_iso_def comp_inv_id_eq_bij by auto }
moreover
{ assume A = 0
then have A ~ 0 using eqpoll_O_iff
by simp
with A3 have B ~ 0 by (rule eqpoll_trans)
with A4 ‘A = 0° have
f € ord_iso(0,r,0,R) and g € ord_iso(0,r,0,R)
using eqpoll_O_iff by auto
then have f = g by (rule empty_ord_iso_uniq) }
ultimately show f = g
using ord_iso_def comp_inv_id_eq_bij
by auto
qed

end
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13 EquivClassl.thy

theory EquivClassl imports EquivClass func_ZF ZF1
begin

In this theory file we extend the work on equivalence relations done in the
standard Isabelle’s EquivClass theory. That development is very good and
all, but we really would prefer an approach contained within the a standard
ZF set theory, without extensions specific to Isabelle. That is why this
theory is written.

13.1 Congruent functions and projections on the quotient

Suppose we have a set X with a relation r C X x X and a function f : X —
X. The function f can be compatible (congruent) with r in the sense that if
two elements x, y are related then the values f(x), f(x) are also related. This
is especially useful if 7 is an equivalence relation as it allows to ”project”
the function to the quotient space X/r (the set of equivalence classes of
r) and create a new function F' that satifies the formula F([z],) = [f(z)],-
When f is congruent with respect to r such definition of the value of F' on the
equivalence class [z], does not depend on which = we choose to represent the
class. In this section we also consider binary operations that are congruent
with respect to a relation. These are important in algebra - the congruency
condition allows to project the operation to obtain the operation on the
quotient space.

First we define the notion of function that maps equivalent elements to equiv-
alent values. We use similar names as in the Isabelle’s standard EquivClass
theory to indicate the conceptual correspondence of the notions.

definition
Congruent(r,f) =
Vx y. (x,y) € r — (£(x),£(y)) € 1)

Now we will define the projection of a function onto the quotient space. In
standard math the equivalence class of = with respect to relation r is usually
denoted [z],. Here we reuse notation r{z} instead. This means the image
of the set {z} with respect to the relation, which, for equivalence relations
is exactly its equivalence class if you think about it.

definition
ProjFun(A,r,f) =
{{c,U=xe€c. r{f(x)}). c € (A//)}
Elements of equivalence classes belong to the set.

lemma EquivClass_1_L1:
assumes Al: equiv(A,r) and A2: C € A//r and A3: x€&C
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shows x€A
proof -
from A2 have C C |J (A//r) by auto
with A1 A3 show x€A
using Union_quotient by auto
qed

The image of a subset of X under projection is a subset of A/r.

lemma EquivClass_1_L1A:
assumes ACX shows {r{x}. xe€A} C X//r
using assms quotientI by auto

If an element belongs to an equivalence class, then its image under relation
is this equivalence class.

lemma EquivClass_1_L2:
assumes Al: equiv(A,r) C € A//r and A2: x&C
shows r{x} = C
proof -
from A1 A2 have x € r{x}
using EquivClass_1_L1 equiv_class_self by simp
with A2 have I: r{x}NC # 0 by auto
from A1 A2 have r{x} € A//r
using EquivClass_1_L1 quotientI by simp
with A1 I show thesis
using quotient_disj by blast
qed

Elements that belong to the same equivalence class are equivalent.

lemma EquivClass_1_L2A:
assumes equiv(A,r) C € A//r xeC yeC
shows (x,y) € r
using assms EquivClass_1_L2 EquivClass_1_L1 equiv_class_eq_iff
by simp

Every z is in the class of y, then they are equivalent.

lemma EquivClass_1_L2B:
assumes Al: equiv(A,r) and A2: y€A and A3: x € r{y}
shows (x,y) € r
proof -
from A2 have r{y} € A//r
using quotientI by simp
with Al A3 show thesis using
EquivClass_1_L1 equiv_class_self equiv_class_nondisjoint by blast
qed

If a function is congruent then the equivalence classes of the values that
come from the arguments from the same class are the same.

lemma EquivClass_1_L3:
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assumes Al: equiv(A,r) and A2: Congruent(r,f)
and A3: C € A//r xeC yeC
shows r{f(x)} = r{f(y}
proof -
from A1 A3 have (x,y) € r
using EquivClass_1_L2A by simp
with A2 have (f(x),f(y)) € r
using Congruent_def by simp
with Al show thesis using equiv_class_eq by simp
qed

The values of congruent functions are in the space.

lemma EquivClass_1_L4:
assumes Al: equiv(A,r) and A2: C € A//r x€eC
and A3: Congruent(r,f)
shows f(x) € A
proof -
from A1 A2 have x€A
using EquivClass_1_L1 by simp
with A1 have (x,x) € r
using equiv_def refl_def by simp
with A3 have (f(x),f(x)) € r
using Congruent_def by simp
with A1 show thesis using equiv_type by auto
qed

Equivalence classes are not empty.

lemma EquivClass_1_L5:
assumes Al: refl(A,r) and A2: C € A//r
shows C+#0
proof -
from A2 obtain x where I: C = r{x} and x€A
using quotient_def by auto
from A1l ‘x€A‘ have x € r{x} using refl_def by auto
with I show thesis by auto
qed

To avoid using an axiom of choice, we define the projection using the ex-
pression | J o 7({f(2)}). The next lemma shows that for congruent function
this is in the quotient space A/r.

lemma EquivClass_1_L6:
assumes Al: equiv(A,r) and A2: Congruent(r,f)
and A3: C € A//r
shows (|JxeC. r{f(x)}) € A//r

proof -
from A1 have refl(A,r) unfolding equiv_def by simp
with A3 have C#0 using EquivClass_1_L5 by simp
moreover from A2 A3 Al have VxeC. r{f(x)} € A//r
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using EquivClass_1_L4 quotientI by auto
moreover from Al A2 A3 have
Vx y. x€C A yeC — r{f(x)} = r{f (M}
using EquivClass_1_L3 by blast
ultimately show thesis by (rule ZF1_1_L2)
qed

Congruent functions can be projected.

lemma EquivClass_1_TO:
assumes equiv(A,r) Congruent(r,f)
shows ProjFun(A,r,f) : A//r — A//r
using assms EquivClass_1_L6 ProjFun_def ZF_fun_from_total
by simp

We now define congruent functions of two variables (binary funtions). The
predicate Congruent?2 corresponds to congruent? in Isabelle’s standard EquivClass
theory, but uses ZF-functions rather than meta-functions.

definition
Congruent2(r,f) =
(Vx1 %2 y1 y2. (X1,%2) € T A (y1,y2) € T —
(£(x1,y1), £(x2,¥2) ) € 1)

Next we define the notion of projecting a binary operation to the quotient
space. This is a very important concept that allows to define quotient
groups, among other things.

definition
ProjFun2(A,r,f) =
{(p,U z € fst(p)xsnd(p). r{f(z2)}). p € (A//r)x(A//r) }

The following lemma is a two-variables equivalent of EquivClass_1_L3.

lemma EquivClass_1_L7:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: C; € A//r Cy € A//r
and A4: z; € C;xCy 29 € C1XCy
shows r{f(z1)} = r{f(z2)}
proof -
from A4 obtain x; y; x3 y2 where
x1€C; and y1€Cq and z; = <X1,y1> and
x2€C; and y2€Cy and zy = (x3,y2)
by auto
with A1 A3 have (x1,x2) € r and (y1,y2) € T
using EquivClass_1_L2A by auto
with A2 have (f(x1,y1),f(x2,y2)) € r
using Congruent2_def by simp
with A1 ‘z; = (x1,y1)¢ ‘22 = (X2,y2)¢ show thesis
using equiv_class_eq by simp
qed

The values of congruent functions of two variables are in the space.
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lemma EquivClass_1_L8:
assumes Al: equiv(A,r) and A2: C; € A//r and A3: Cy € A//r
and A4: z € C;xCy; and A5: Congruent2(r,f)
shows f(z) € A
proof -
from A4 obtain x y where x€C; and yeCy and z = (x,y)
by auto
with A1 A2 A3 have x€A and ye€A
using EquivClass_1_L1 by auto
with A1 A4 have (x,x) € r and (y,y) € r
using equiv_def refl_def by auto
with A5 have (f(x,y), f(x,y) ) € r
using Congruent2_def by simp
with A1 ‘z = (x,y)‘ show thesis using equiv_type by auto
qed

The values of congruent functions are in the space. Note that although this
lemma is intended to be used with functions, we don’t need to assume that
f is a function.

lemma EquivClass_1_L8A:
assumes Al: equiv(A,r) and A2: x€A yeA
and A3: Congruent2(r,f)
shows f(x,y) € A
proof -
from A1 A2 have r{x} € A//r r{y} € A//r
(x,y) € r{x}xr{y}
using equiv_class_self quotientI by auto
with A1 A3 show thesis using EquivClass_1_L8 by simp
qed

The following lemma is a two-variables equivalent of EquivClass_1_L6.

lemma EquivClass_1_L9:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: p € (A//r)x(A//T)
shows (|J z € fst(p)xsnd(p). r{f(2)}) € A//r
proof -
from A3 have fst(p) € A//r and snd(p) € A//r
by auto
with A1 A2 have
I: Vz € fst(p)xsnd(p). f(z) € A
using EquivClass_1_L8 by simp
from A3 A1 have fst(p)xsnd(p) # O
using equiv_def EquivClass_1_L5 Sigma_empty_iff
by auto
moreover from A1 I have
Vz € fst(p)xsnd(p). r{f(2)} € A//r
using quotientI by simp
moreover from Al A2 ‘fst(p) € A//r¢ ‘snd(p) € A//r‘ have
Vz) 2z2. 21 € fst(p)xsnd(p) A 2z € fst(p)xsnd(p) —
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r{f(z;)} = r{f(z)}

using EquivClass_1_L7 by blast

ultimately show thesis by (rule ZF1_1_L2)
qed

Congruent functions of two variables can be projected.

theorem EquivClass_1_T1:
assumes equiv(A,r) Congruent2(r,f)
shows ProjFun2(A,r,f) : (A//r)x(A//xr) — A//r
using assms EquivClass_1_L9 ProjFun2_def ZF_fun_from_total
by simp

The projection diagram commutes. I wish I knew how to draw this diagram
in LaTeX.

lemma EquivClass_1_L10:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: x€A ye€A
shows ProjFun2(A,r,f) (r{x},r{y}) = r{f(x,y)}
proof -
from A3 A1 have r{x} x r{y} # 0
using quotientI equiv_def EquivClass_1_L5 Sigma_empty_iff
by auto
moreover have
Vz € rix}xr{y}. r{f(2)} = r{f{x,y)}
proof
fix z assume A4: z € r{x}xr{y}
from A1 A3 have
r{x} € A//r r{y} € A//r
(x,y) € rixrxr{y}
using quotientI equiv_class_self by auto
with A1 A2 A4 show
r{f(2)} = r{f(x,y)}
using EquivClass_1_L7 by blast
qed
ultimately have
Uz € rizx¥xriyr. r{f(=2}) = r{f{x,y)}
by (rule ZF1_1_L1)
moreover have
ProjFun2(A,r,f) (r{x},r{y}) = (Uz € rizx}xr{y}. r{f(2}
proof -
from assms have
ProjFun2(A,r,f) : (A//r)x(A//x) — A//T
(r{x},r{y}) € (4//r)x(A//1)
using EquivClass_1_T1 quotientI by auto
then show thesis using ProjFun2_def ZF_fun_from_tot_val
by auto
qed
ultimately show thesis by simp
qed
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13.2 Projecting commutative, associative and distributive
operations.

In this section we show that if the operations are congruent with respect to
an equivalence relation then the projection to the quotient space preserves
commutativity, associativity and distributivity.

The projection of commutative operation is commutative.

lemma EquivClass_2_L1: assumes
Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: f {is commutative on} A
and A4: c1 € A//r c2 € A//r
shows ProjFun2(A,r,f){(cl,c2) = ProjFun2(A,r,f)(c2,cl)
proof -
from A4 obtain x y where D1:
cl = r{x} c2 = r{y}
x€hA yeA
using quotient_def by auto
with A1 A2 have ProjFun2(A,r,f)(cl,c2) = r{f(x,y)}
using EquivClass_1_L10 by simp
also from A3 D1 have
r{f(x,y)} = r{f(y,x)}
using IsCommutative_def by simp
also from A1 A2 D1 have
r{f{y,x)} = ProjFun2(A,r,f) (c2,cl)
using EquivClass_1_L10 by simp
finally show thesis by simp
qed

The projection of commutative operation is commutative.

theorem EquivClass_2_T1:
assumes equiv(A,r) and Congruent2(r,f)
and f {is commutative on} A
shows ProjFun2(A,r,f) {is commutative on} A//r
using assms IsCommutative_def EquivClass_2_L1 by simp

The projection of an associative operation is associative.

lemma EquivClass_2_L2:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: f {is associative on} A
and Ad: c1l € A//r c2 € A//r c3 € A//r
and A5: g = ProjFun2(A,r,f)
shows g(g(cl,c2),c3) = g(cl,g(c2,c3))
proof -
from A4 obtain x y z where D1:
cl = r{x} c2 = r{y} 3 = r{z}
x€A yeA zeA
using quotient_def by auto
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with A3 have T1:f(x,y) € A £(y,z) € A
using IsAssociative_def apply_type by auto
with A1 A2 D1 A5 have
glglcl,c2),c3) = r{f(£(x,y),2)}
using EquivClass_1_L10 by simp
also from D1 A3 have
.= r{f(x,f{y,z) )}
using IsAssociative_def by simp
also from T1 A1 A2 D1 A5 have
. = glc1,g(c2,c3))
using EquivClass_1_L10 by simp
finally show thesis by simp
qed

The projection of an associative operation is associative on the quotient.

theorem EquivClass_2_T2:
assumes Al: equiv(A,r) and A2: Congruent2(r,f)
and A3: f {is associative on} A
shows ProjFun2(A,r,f) {is associative on} A//r
proof -
let g = ProjFun2(A,r,f)
from A1 A2 have
g € (A//r)x(A//r) — A//r
using EquivClass_1_T1 by simp
moreover from A1 A2 A3 have
Vel € A//r.Vc2 € A//r.Vc3 € A//r.
g(g(cl,c2),c3) = g(cl,g(c2,c3))
using EquivClass_2_L2 by simp
ultimately show thesis
using IsAssociative_def by simp
qed

The essential condition to show that distributivity is preserved by projec-
tions to quotient spaces, provided both operations are congruent with respect
to the equivalence relation.

lemma EquivClass_2_L3:
assumes Al: IsDistributive(X,A,M)
and A2: equiv(X,r)
and A3: Congruent2(r,A) Congruent2(r,M)
and A4: a € X//r b€ X//r c € X//r
and A5: A, = ProjFun2(X,r,A) M, = ProjFun2(X,r,M)
shows M,(a,A,(b,c)) = Ap( My(a,b),M,(a,c)) A
Mp( Ap(b,c),a ) = Ay( Mp(b,a), My(c,a))
proof
from A4 obtain x y z where x€X yeX =zeX
a=r{x} b=r{y} c=r{z}
using quotient_def by auto
with A1 A2 A3 A5 show
My(a,Ap(b,c)) = Ap( Mp(a,b),My(a,c)) and
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Mp( Ap(b,c),a ) = Ap( Mp(b,a), Mpy(c,a))
using EquivClass_1_L8A EquivClass_1_L10 IsDistributive_def
by auto

qed

Distributivity is preserved by projections to quotient spaces, provided both
operations are congruent with respect to the equivalence relation.

lemma EquivClass_2_L4: assumes Al: IsDistributive(X,A,M)
and A2: equiv(X,r)
and A3: Congruent2(r,A) Congruent2(r,M)
shows IsDistributive(X//r,ProjFun2(X,r,A),ProjFun2(X,r,M))
proof-
let A, = ProjFun2(X,r,A)
let M, = ProjFun2(X,r,M)
from A1 A2 A3 have
VaeX//r.VbeX//r.VceXx//r.
Mp(a,Ap(b,c)) = Ap(My(a,b),Mp(a,c)) A
My (Ap(b,c),a) = Ap(My(b,a),My(c,a))
using EquivClass_2_L3 by simp
then show thesis using IsDistributive_def by simp
qed

13.3 Saturated sets

In this section we consider sets that are saturated with respect to an equiv-
alence relation. A set A is saturated with respect to a relation r if A =
r~1(r(A)). For equivalence relations saturated sets are unions of equiva-
lence classes. This makes them useful as a tool to define subsets of the
quoutient space using properties of representants. Namely, we often define
a set B C X/r by saying that [z], € B iff x € A. If A is a saturated set, this
definition is consistent in the sense that it does not depend on the choice of
x to represent [x],.

The following defines the notion of a saturated set. Recall that in Isabelle
r-(4) is the inverse image of A with respect to relation r. This definition is
not specific to equivalence relations.

definition
IsSaturated(r,A) = A = r—-(r(4))

For equivalence relations a set is saturated iff it is an image of itself.

lemma EquivClass_3_L1: assumes Al: equiv(X,r)
shows IsSaturated(r,A) <— A = r(A)
proof
assume IsSaturated(r,A)
then have A = (converse(r) 0 r)(A)
using IsSaturated_def vimage_def image_comp
by simp
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also from A1l have ... = r(4)
using equiv_comp_eq by simp
finally show A = r(A) by simp
next assume A = r(A)
with A1 have A = (converse(r) 0 r)(A)
using equiv_comp_eq by simp
also have ... = r-(r(4))
using vimage_def image_comp by simp
finally have A = r-(r(A)) by simp
then show IsSaturated(r,A) using IsSaturated_def
by simp
qed

For equivalence relations sets are contained in their images.

lemma EquivClass_3_L2: assumes Al: equiv(X,r) and A2: ACX
shows A C r(A)
proof
fix a assume a€A
with A1 A2 have a € r{a}
using equiv_class_self by auto
with ‘acA‘ show a € r(A) by auto
qed

7

The next lemma shows that if ”~” is an equivalence relation and a set A is
such that a € A and a ~ b implies b € A, then A is saturated with respect
to the relation.

lemma EquivClass_3_L3: assumes Al: equiv(X,r)
and A2: r C XxX and A3: ACX
and A4: VxeA. VyeX. (x,y) € r — yEA
shows IsSaturated(r,A)
proof -
from A2 A4 have r(A) C A
using image_iff by blast
moreover from Al A3 have A C r(A)
using EquivClass_3_L2 by simp
ultimately have A = r(A) by auto
with Al show IsSaturated(r,A) using EquivClass_3_L1
by simp
qed

If A C X and A is saturated and x ~ y, then x € A iff y € A. Here we show
only one direction.

lemma EquivClass_3_L4: assumes Al: equiv(X,r)
and A2: IsSaturated(r,A) and A3: ACX
and A4: (x,y) € r
and A5: x€X yeA
shows xe€A
proof -
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from A1 A5 have x € r{x}
using equiv_class_self by simp

with A1 A3 A4 A5 have x € r(4)
using equiv_class_eq equiv_class_self
by auto

with A1 A2 show x€A
using EquivClass_3_L1 by simp

qed

If AC X and A is saturated and x ~ y, then x € A iff y € A.

lemma EquivClass_3_L5: assumes Al: equiv(X,r)
and A2: IsSaturated(r,A) and A3: ACX
and A4: xeX yeX
and A5: (x,y) € r
shows x€A +— y€A
proof
assume ycA
with assms show x€A using EquivClass_3_L4
by simp
next assume xcA
from A1 A5 have (y,x) € r
using equiv_is_sym by blast
with A1 A2 A3 A4 ‘xeA‘ show ye€A
using EquivClass_3_L4 by simp
qed

If A is saturated then x € A iff its class is in the projection of A.

lemma EquivClass_3_L6: assumes Al: equiv(X,r)
and A2: IsSaturated(r,A) and A3: ACX and A4: xeX
and A5: B = {r{x}. xcA}
shows x€A +— r{x} € B
proof
assume xcA
with A5 show r{x} € B by auto
next assume r{x} € B
with A5 obtain y where y € A and r{x} = r{y}
by auto
with A1 A3 have (x,y) € r
using eq_equiv_class by auto
with A1 A2 A3 A4 ‘y € A‘ show x€A
using EquivClass_3_L4 by simp
qed

A technical lemma involving a projection of a saturated set and a logical
epression with exclusive or. Note that we don’t really care what Xor is here,
this is true for any predicate.

lemma EquivClass_3_L7: assumes equiv(X,r)
and IsSaturated(r,A) and ACX
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and x€X yeX

and B = {r{x}. x€A}

and (x€h) Xor (ye€hd)

shows (r{x} € B) Xor (r{y} € B)
using assms EquivClass_3_L6 by simp

end
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14 Fold_ZF.thy

theory Fold_ZF imports InductiveSeq_ZF
begin

Suppose we have a binary operation P : X x X — X written multiplicatively
as P(x,y) = x-y. In informal mathematics we can take a sequence {x }reo..n
of elements of X and consider the product xg-z1-..-x,. To do the same thing
in formalized mathematics we have to define precisely what is meant by that
7....7. The definitition we want to use is based on the notion of sequence
defined by induction discussed in InductiveSeq_zF. We don’t really want to
derive the terminology for this from the word ”product” as that would tie it
conceptually to the multiplicative notation. This would be awkward when
we want to reuse the same notions to talk about sums like zg + x1 + .. + 5.

In functional programming there is something called ”fold”. Namely for a
function f, initial point a and list [b, ¢, d] the expression fold(f, a, [b,c,d])
is defined to be f(£f(f(a,b),c),d) (in Haskell something like this is called
foldl). If we write f in multiplicative notation we get a - b- ¢ - d, so this
is exactly what we need. The notion of folds in functional programming
is actually much more general that what we need here (not that I know
anything about that). In this theory file we just make a slight generalization
and talk about folding a list with a binary operation f : X x Y — X with
X not necessarily the same as Y.

14.1 Folding in ZF

Suppose we have a binary operation f : X x Y — X. Then every y € Y
defines a transformation of X defined by Ty () = f(z,y). In IsarMathLib
such transformation is called as Fix2ndVar (f,y). Using this notion, given a
function f: X xY — X and a sequence y = {yx}ren of elements of X we
can get a sequence of transformations of X. This is defined in Seq2TransSeq
below. Then we use that sequence of tranformations to define the sequence
of partial folds (called FoldSeq) by means of InductiveSeqVarFN (defined in
InductiveSeq_ZF theory) which implements the inductive sequence deter-
mined by a starting point and a sequence of transformations. Finally, we

define the fold of a sequence as the last element of the sequence of the partial
folds.

Definition that specifies how to convert a sequence a of elements of Y into a
sequence of transformations of X, given a binary operation f: X xY — X.

definition
Seq2TrSeq(f,a) = {(k,Fix2ndVar(f,a(k))). k € domain(a)}

Definition of a sequence of partial folds.
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definition
FoldSeq(f,x,a) =
InductiveSeqVarFN(x,fstdom(f),Seq2TrSeq(f,a) ,domain(a))

Definition of a fold.

definition
Fold(f,x,a) = Last(FoldSeq(f,x,a))

If X is a set with a binary operation f : X xY — X then Seq2TransSeqN(f,a)
converts a sequence a of elements of Y into the sequence of corresponding
transformations of X.

lemma seq2trans_seq_props:
assumes Al: n € nat and A2: f : XXY — X and A3: a:n—Y and
A4: T = Seq2TrSeq(f,a)
shows
T : n— (X—=X) and
Vken. VxeX. (T(k))(x) = f(x,a(k))
proof -
from ‘a:n—Y‘ have D: domain(a) = n using funcl_1_L1 by simp
with A2 A3 A4 show T : n — (X—=X)
using apply_funtype fix_2nd_var_fun ZF_fun_from_total Seq2TrSeq_def
by simp
with A4 D have I: Vk € n. T(k) = Fix2ndVar(f,a(k))
using Seq2TrSeq_def ZF_fun_from_tot_val0 by simp
{ fix k fix x assume A5: kén x€X
with A1 A3 have a(k) € Y using apply_funtype
by auto

with A2 A5 I have (T(k))(x) = f(x,a(k))
using fix_var_val by simp
} thus Vken. VxeX. (T(k))(x) = £(x,a(k))

by simp
qed

Basic properties of the sequence of partial folds of a sequence a = {yi } re{o,..,n}-

theorem fold_seq_props:
assumes Al: n € nat and A2: f : XxY — X and
A3: y:n—Y and A4: x€X and A5: Y#0 and
A6: F = FoldSeq(f,x,y)
shows
F: succ(n) — X
F(0) = x and
Vken. F(succ(k)) = £(F(k), y&))
proof -
let T = Seq2TrSeq(f,y)
from A1 A3 have D: domain(y) = n
using funci_1_L1 by simp
from ‘f : XxXY — X ‘Y#£0‘ have I: fstdom(f) = X
using fstdomdef by simp
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with A1 A2 A3 A4 A6 D show
II: F: succ(n) — X and F(0) = x
using seq2trans_seq_props FoldSeq_def fin_indseq_var_f_props
by auto
from A1 A2 A3 A4 A6 I D have Vken. F(succ(k)) = T(k) (F(k))
using seq2trans_seq_props FoldSeq_def fin_indseq_var_f_props
by simp
moreover
{ fix k assume A5: ken hence k € succ(n) by auto
with A1 A2 A3 II A5 have (T(k))(F(k)) = £(F(k),y(k))
using apply_funtype seq2trans_seq_props by simp }
ultimately show Vken. F(succ(k)) = £(F), yk))
by simp
qed

A consistency condition: if we make the list shorter, then we get a shorter
sequence of partial folds with the same values as in the original sequence.
This can be proven as a special case of fin_indseq_var_f_restrict but a
proof using fold_seq_props and induction turns out to be shorter.

lemma foldseq_restrict: assumes
n € nat k € succ(n) and
i €Enat f :XXY X a:n—-Y b:i— Y and
nCi Vjemn b(G) =a@G xe€X Y#O
shows FoldSeq(f,x,b) (k) = FoldSeq(f,x,a) (k)
proof -
let P = FoldSeq(f,x,a)
let Q = FoldSeq(f,x,b)
from assms have
n € nat k € succ(n)
Q(0) = P(0) and
Vi € n. Q) = P(j) — Q(succ(j)) = P(succ(j))
using fold_seq_props by auto
then show Q(k) = P(k) by (rule fin_nat_ind)
qed

A special case of foldseq_restrict when the longer sequence is created from
the shorter one by appending one element.

corollary fold_seq_append:

assumes n € nat f : XxY — X a:n — Y and

x€X k € succ(n) yeyY

shows FoldSeq(f,x,Append(a,y)) (k) = FoldSeq(f,x,a) (k)
proof -

let b = Append(a,y)

from assms have b : succ(n) — Y Vj € n. b(j) = a(j)

using append_props by auto

with assms show thesis using foldseq_restrict by blast

qed

What we really will be using is the notion of the fold of a sequence, which we
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define as the last element of (inductively defined) sequence of partial folds.
The next theorem lists some properties of the product of the fold operation.

theorem fold_props:
assumes Al: n € nat and
A2: £ : XXY - X a:n - Y x€X Y#0
shows
Fold(f,x,a) = FoldSeq(f,x,a)(n) and
Fold(f,x,a) € X
proof -
from assms have FoldSeq(f,x,a) : succ(n) — X
using fold_seq_props by simp
with Al show
Fold(f,x,a) = FoldSeq(f,x,a)(n) and Fold(f,x,a) € X
using last_seq_elem apply_funtype Fold_def by auto
qed

A corner case: what happens when we fold an empty list?

theorem fold_empty: assumes Al: f : XxY — X and
A2: a:0—Y x€X Y#0
shows Fold(f,x,a) = x
proof -
let F = FoldSeq(f,x,a)
from assms have I:
0 € nat f : XXY = X a:0—=Y x€X Y0
by auto
then have Fold(f,x,a) = F(0) by (rule fold_props)
moreover
from I have
0 € nat f : XxY - X a:0—>Y x€X Y#0 and
F = FoldSeq(f,x,a) by auto
then have F(0) = x by (rule fold_seq_props)
ultimately show Fold(f,x,a) = x by simp
qed

The next theorem tells us what happens to the fold of a sequence when we
add one more element to it.

theorem fold_append:
assumes Al: n € nat and A2: f : XxY — X and
A3: a:n—Y and A4: x€X and A5: yeY
shows
FoldSeq(f,x,Append(a,y))(n) = Fold(f,x,a) and
Fold(f,x,Append(a,y)) = f(Fold(f,x,a), y)
proof -
let b = Append(a,y)
let P = FoldSeq(f,x,b)
from A5 have I: Y # 0 by auto
with assms show thesisl: P(n) = Fold(f,x,a)
using fold_seq_append fold_props by simp
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from assms I have II:
succ(n) € nat f : XxY —» X
b : succ(n) - Y x€X Y # 0
P = FoldSeq(f,x,b)
using append_props by auto

then have
Vk € succ(n). P(succ(k)) = £(Pk), bk))
by (rule fold_seq_props)

with A3 A5 thesisl have P(succ(n)) = f£( Fold(f,x,a), y)
using append_props by auto

moreover

from II have P : succ(succ(n)) — X
by (rule fold_seq_props)

then have Fold(f,x,b) = P(succ(n))
using last_seq_elem Fold_def by simp

ultimately show Fold(f,x,Append(a,y)) = f(Fold(f,x,a), y)
by simp

qed

end
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15 Partitions_ZF.thy

theory Partitions_ZF imports Finite_ZF FiniteSeq_ZF
begin

It is a common trick in proofs that we divide a set into non-overlapping
subsets. The first case is when we split the set into two nonempty disjoint
sets. Here this is modeled as an ordered pair of sets and the set of such
divisions of set X is called Bisections(X). The second variation on this
theme is a set-valued function (aren’t they all in ZF?) whose values are
nonempty and mutually disjoint.

15.1 Bisections
This section is about dividing sets into two non-overlapping subsets.
The set of bisections of a given set A is a set of pairs of nonempty subsets

of A that do not overlap and their union is equal to A.

definition
Bisections(X) = {p € Pow(X) xPow(X).
fst(p)#0 A snd(p)#0 A fst(p)Nsnd(p) = 0 A fst(p)Usnd(p) = X}

Properties of bisections.

lemma bisec_props: assumes (A,B) € Bisections(X) shows
A#0 B#A0ACX BCX ANB=0 AUB=X X #0
using assms Bisections_def by auto

Kind of inverse of bisec_props: a pair of nonempty disjoint sets form a
bisection of their union.

lemma is_bisec:
assumes A#0 B#0 AN B =0
shows (A,B) € Bisections(AUB) using assms Bisections_def
by auto

Bisection of X is a pair of subsets of X.

lemma bisec_is_pair: assumes Q € Bisections(X)
shows Q = (fst(Q), snd(Q))
using assms Bisections_def by auto

The set of bisections of the empty set is empty.

lemma bisec_empty: shows Bisections(0) = 0
using Bisections_def by auto

The next lemma shows what can we say about bisections of a set with
another element added.

lemma bisec_add_point:
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assumes Al: x ¢ X and A2: (A,B) € Bisections(X U {x})
shows (A = {x} VB = {x}) V ((A - {x}, B - {x}) € Bisections(X))
proof -
{ assume A # {x} and B # {x}
with A2 have A - {x} # 0 and B - {x} # O
using singl_diff_empty Bisections_def

by auto
moreover have (A - {x}) U (B - {x}) =X
proof -
have (A - {x}) U (B - {x}) = (A U B) - {x}
by auto

also from assms have (A U B) - {x} = X
using Bisections_def by auto
finally show thesis by simp
qed
moreover from A2 have (A - {x}) N (B - {x}) =0
using Bisections_def by auto
ultimately have (A - {x}, B - {x}) € Bisections(X)
using Bisections_def by auto
} thus thesis by auto
qed

A continuation of the lemma bisec_add_point that refines the case when the
pair with removed point bisects the original set.

lemma bisec_add_point_case3:
assumes Al: (A,B) € Bisections(X U {x1})
and A2: (A - {x}, B - {x}) € Bisections(X)
shows
({(A, B - {x}) € Bisections(X) A x € B) V
({(A - {x}, B) € Bisections(X) A x € A)
proof -
from Al have x € A U B
using Bisections_def by auto
hence x€A V x€B by simp
from A1 have A - {x} = AV B - {x} =B
using Bisections_def by auto
moreover
{ assume A - {x} = A
with A2 ‘x € A U B have
(A, B - {x}) € Bisections(X) A x € B
using singl_diff_eq by simp }
moreover
{ assume B - {x} = B
with A2 ‘x € A U B¢ have
(A - {x}, B) € Bisections(X) A x € A
using singl_diff_eq by simp }
ultimately show thesis by auto
qed
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Another lemma about bisecting a set with an added point.

lemma point_set_bisec:
assumes Al: x ¢ X and A2: ({x}, A) € Bisections(X U {x})
shows A = X and X # 0
proof -
from A2 have A C X using Bisections_def by auto
moreover
{ fix a assume acX
with A2 have a € {x} U A using Bisections_def by simp
with A1 ‘acX‘ have a € A by auto }
ultimately show A = X by auto
with A2 show X # 0 using Bisections_def by simp
qed

Yet another lemma about bisecting a set with an added point, very similar
to point_set_bisec with almost the same proof.

lemma set_point_bisec:
assumes Al: x ¢ X and A2: (A, {x}) € Bisections(X U {x})
shows A = X and X # 0
proof -
from A2 have A C X using Bisections_def by auto
moreover
{ fix a assume acX
with A2 have a € A U {x} using Bisections_def by simp
with A1 ‘acX‘ have a € A by auto }
ultimately show A = X by auto
with A2 show X # 0 using Bisections_def by simp
qed

If a pair of sets bisects a finite set, then both elements of the pair are finite.

lemma bisect_fin:
assumes Al: A € FinPow(X) and A2: Q € Bisections(A)
shows fst(Q) € FinPow(X) and snd(Q) € FinPow(X)
proof -
from A2 have (fst(Q), snd(Q)) € Bisections(A)
using bisec_is_pair by simp
then have fst(Q) C A and snd(Q) C A
using bisec_props by auto
with A1 show fst(Q) € FinPow(X) and snd(Q) € FinPow(X)
using FinPow_def subset_Finite by auto
qed

15.2 Partitions

This sections covers the situation when we have an arbitrary number of sets
we want to partition into.

We define a notion of a partition as a set valued function such that the values
for different arguments are disjoint. The name is derived from the fact that
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such function ”partitions” the union of its arguments. Please let me know
if you have a better idea for a name for such notion. We would prefer to
say "is a partition”, but that reserves the letter "a” as a keyword(?) which
causes problems.

definition
Partition (_ {is partition} [90] 91) where
P {is partition} = Vx € domain(P).

P(x) # 0 A (Vy € domain(P). x#y — P(x) N P(y) = 0)

A fact about lists of mutually disjoint sets.

lemma list_partition: assumes Al: n € nat and
A2: a : succ(n) — X a {is partition}
shows (|Ji€n. a(i)) N a(n) = 0
proof -
{ assume (Ji€n. a(i)) N a(n) # 0
then have 3x. x € (|Jien. a(i)) N an)
by (rule nonempty_has_element)
then obtain x where x € (|Jié€n. a(i)) and I: x € a(n)
by auto
then obtain i where i € n and x € a(i) by auto
with A2 I have False
using mem_imp_not_eq funcli_1_L1 Partition_def
by auto
} thus thesis by auto
qed

We can turn every injection into a partition.

lemma inj_partition:
assumes Al: b € inj(X,Y)
shows
Vx € X. {(x, {b(x)}). x € X}(x) = {b(x)} and
{{(x, {b(x)}). x € X} {is partition}
proof -
let p = {(x, {b(x)}). x € X}
{ fix x assume x € X
from A1 have b : X — Y using inj_def
by simp
with ‘x € X¢ have {b(x)} € Pow(Y)
using apply_funtype by simp
} hence Vx € X. {b(x)} € Pow(Y) by simp
then have p : X — Pow(Y) using ZF_fun_from_total
by simp
then have domain(p) = X using funcl_1_L1
by simp
from ‘p : X = Pow(Y)‘ show I: Vx € X. p(x) = {b(x)}
using ZF_fun_from_tot_valO by simp
{ fix x assume x € X
with I have p(x) = {b(x)} by simp
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hence p(x) # 0 by simp
moreover
{ fix t assume t € X and x # t
with A1 ‘x € X have b(x) # b(t) using inj_def
by auto
with I ‘xeX‘ ‘t € X¢ have p(x) N p(t) =0
by auto }
ultimately have
px) #0 A (Vt € X. x#£t — p(x) N pt) = 0)
by simp
} with ‘domain(p) = X‘ show {(x, {b(x)}). x € X} {is partition}
using Partition_def by simp
qed

end
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16 Enumeration ZF.thy

theory Enumeration_ZF imports NatOrder_ZF FiniteSeq_ZF FinOrd_ZF
begin

Suppose r is a linear order on a set A that has n elements, where n € N .
In the FinOrd_ZF theory we prove a theorem stating that there is a unique
order isomorphism between n = {0, 1,..,n — 1} (with natural order) and A.
Another way of stating that is that there is a unique way of counting the
elements of A in the order increasing according to relation r. Yet another
way of stating the same thing is that there is a unique sorted list of elements
of A. We will call this list the Enumeration of A.

16.1 Enumerations: definition and notation

In this section we introduce the notion of enumeration and define a proof
context (a "locale” in Isabelle terms) that sets up the notation for writing
about enumarations.

We define enumeration as the only order isomorphism beween a set A and
the number of its elements. We are using the formula | J{z} = = to extract
the only element from a singleton. Le is the (natural) order on natural
numbers, defined is Nat_zF theory in the standard Isabelle library.

definition
Enumeration(A,r) = |J ord_iso(|Al,Le,A,T)

To set up the notation we define a locale enums. In this locale we will assume
that r is a linear order on some set X. In most applications this set will
be just the set of natural numbers. Standard Isabelle uses < to denote
the ”less or equal” relation on natural numbers. We will use the < symbol
to denote the relation r. Those two symbols usually look the same in the
presentation, but they are different in the source.To shorten the notation the
enumeration Enumeration(A,r) will be denoted as o(A). Similarly as in the
Semigroup theory we will write a <= x for the result of appending an element
x to the finite sequence (list) a. Finally, a Ub will denote the concatenation
of the lists a and b.

locale enums =

fixes X r
assumes linord: IsLinOrder (X,r)

fixes ler (infix < 70)
defines ler_def[simpl: x < y = (x,y) € r

fixes o
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defines o_def [simp]: o(A) = Enumeration(A,r)

fixes append (infix + 72)
defines append_def [simp]: a < x = Append(a,x)

fixes concat (infixl U 69)
defines concat_def [simp]: a U b = Concat(a,b)

16.2 Properties of enumerations
In this section we prove basic facts about enumerations.

A special case of the existence and uniqueess of the order isomorphism for
finite sets when the first set is a natural number.

lemma (in enums) ord_iso_nat_fin:
assumes A € FinPow(X) and n € nat and A = n
shows J!f. f € ord_iso(n,Le,A,r)
using assms NatOrder_ZF_1_L2 linord nat_finpow_nat
fin_ord_iso_ex_uniq by simp

An enumeration is an order isomorhism, a bijection, and a list.

lemma (in enums) enum_props: assumes A € FinPow(X)
shows
o(A) € ord_iso(|A|,Le, A,r)
o(h) € bij(IAl,A)
o(A) : [Al — A
proof -
from assms have
IsLinOrder(nat,Le) and |A| € FinPow(nat) and A =~ |A]|
using NatOrder_ZF_1_L2 card_fin_is_nat nat_finpow_nat
by auto
with assms show o(A) € ord_iso(|A|,Le, A,r)
using linord fin_ord_iso_ex_uniq sigleton_extract
Enumeration_def by simp
then show o(4) € bij(lAl,A) and o(A) : [A] — A
using ord_iso_def bij_def surj_def
by auto
qed

A corollary from enum_props. Could have been attached as another assertion,
but this slows down verification of some other proofs.

lemma (in enums) enum_fun: assumes A € FinPow(X)
shows o(4) : |Al — X
proof -
from assms have o(A) : |A] — A and ACX
using enum_props FinPow_def by auto
then show o(A) : |A| — X by (rule funci_1_L1B)
qed
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If a list is an order isomorphism then it must be the enumeration.

lemma (in enums) ord_iso_enum: assumes Al: A € FinPow(X) and
A2: n € nat and A3: f € ord_iso(n,Le,A,r)
shows f = o(A)
proof -
from A3 have n ~ A using ord_iso_def eqpoll_def
by auto
then have A =~ n by (rule eqpoll_sym)
with A1 A2 have J!f. f € ord_iso(n,Le,A,r)
using ord_iso_nat_fin by simp
with assms ‘A =~ n‘ show f = o(4)
using enum_props card_card by blast
qed

What is the enumeration of the empty set?

lemma (in enums) empty_enum: shows ¢(0) = 0
proof -
have
0 € FinPow(X) and 0 € nat and 0 € ord_iso(0,Le,0,r)
using empty_in_finpow empty_ord_iso_empty
by auto
then show ¢(0) = 0 using ord_iso_enum
by blast
qed

Adding a new maximum to a set appends it to the enumeration.

lemma (in enums) enum_append:
assumes Al: A € FinPow(X) and A2: b € X-A and
A3: VaeA. a<b
shows o(A U {b}) = c(A)< b
proof -
let £ = 0(A) U {(lAl,b)}
from A1 have |A| € nat using card_fin_is_nat
by simp
from A1 A2 have A U {b} € FinPow(X)
using singleton_in_finpow union_finpow by simp
moreover from this have [A U {b}| € nat
using card_fin_is_nat by simp
moreover have f € ord_iso(|A U {b}| , Le, A U {b} ,r)
proof -
from A1 A2 have
oc(A) € ord_iso(|Al,Le, A,r) and
Al ¢ |Al and b ¢ A
using enum_props mem_not_refl by auto
moreover from ‘|A| € nat¢ have
Vk € |Al. (k, |A]) € Le
using elem_nat_is_nat by blast
moreover from A3 have VacA. (a,b) € r by simp
moreover have antisym(Le) and antisym(r)
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using linord NatOrder_ZF_1_L2 IsLinOrder_def by auto
moreover
from A2 ‘|A| € nat‘ have
(IAl,1A]) € Le and (b,b) € r
using linord NatOrder_ZF_1_L2 IsLinOrder_def
total_is_refl refl_def by auto
hence (|Al,|Al) € Le +— (b,b) € r by simp
ultimately have f € ord_iso(|A|l U {IAl} , Le, A U {b} ,r)
by (rule ord_iso_extend)
with A1 A2 show f € ord_iso(|A U {b}| , Le, A U {b} ,r)
using card_fin_add_one by simp
qed
ultimately have f = o(A U {b})
using ord_iso_enum by simp
moreover have c(A)« b = £
proof -
have o (A)<= b = 0(A) U {(domain(o(4)),b)}
using Append_def by simp
moreover from Al have domain(c(A)) = |A]l
using enum_props funcl_1_L1 by blast
ultimately show oc(A)<— b = f by simp
qed
ultimately show o(A U {b})
qed

oc(A)< b by simp

What is the enumeration of a singleton?

lemma (in enums) enum_singleton:

assumes Al: x€X shows o({x}): 1 — X and c({x})(0) = x
proof -

from A1 have

0 € FinPow(X) and x € (X - 0) and Vae0. a<x

using empty_in_finpow by auto
then have 0(0 U {x}) = 0(0)«= x by (rule enum_append)
with A1 show c({x}): 1 — X and oc({x})(0) = x

using empty_enum empty_appendl by auto
qed

end
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17 Semigroup_ZF.thy

theory Semigroup_ZF imports Partitions_ZF Fold_ZF Enumeration_ZF
begin

It seems that the minimal setup needed to talk about a product of a sequence
is a set with a binary operation. Such object is called "magma”. However,
interesting properties show up when the binary operation is associative and
such alebraic structure is called a semigroup. In this theory file we define and
study sequences of partial products of sequences of magma and semigroup
elements.

17.1 Products of sequences of semigroup elements

Semigroup is a a magma in which the binary operation is associative. In this
section we mostly study the products of sequences of elements of semigroup.
The goal is to establish the fact that taking the product of a sequence is
distributive with respect to concatenation of sequences, i.e for two sequences
a, b of the semigroup elements we have [[(aUb) = ([]a)-(]]b), where "alUlb”
is concatenation of a and b (a++b in Haskell notation). Less formally, we
want to show that we can discard parantheses in expressions of the form

(ap-ay-..-an)-(bo-..-bg).

First we define a notion similar to Fold, except that that the initial element
of the fold is given by the first element of sequence. By analogy with Haskell
fold we call that Fold1l

definition
Foldil(f,a) = Fold(f,a(0),Tail(a))

The definition of the semigr0 context below introduces notation for writing
about finite sequences and semigroup products. In the context we fix the
carrier and denote it G. The binary operation on G is called f. All theorems
proven in the context semigr0 will implicitly assume that f is an associative
operation on G. We will use multiplicative notation for the semigroup oper-
ation. The product of a sequence a is denoted [[ a. We will write a <= x for
the result of appending an element z to the finite sequence (list) a. This is a
bit nonstandard, but I don’t have a better idea for the "append” notation.
Finally, a U b will denote the concatenation of the lists a and b.

locale semigrO =
fixes G f
assumes assoc_assum: f {is associative on} G

fixes prod (infixl - 72)
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defines prod_def [simpl: x - y = f(x,y)

fixes seqprod (J] _ 71)
defines seqprod_def [simp]l: [[ a = Foldl(f,a)

fixes append (infix < 72)
defines append_def [simp]l: a < x = Append(a,x)

fixes concat (infixl U 69)
defines concat_def [simp]l: a U b = Concat(a,b)

The next lemma shows our assumption on the associativity of the semigroup
operation in the notation defined in in the semigr0 context.

lemma (in semigrO) semigr_assoc: assumes x € G y € G z € G
shows x-y-z = x-(y-2)
using assms assoc_assum IsAssociative_def by simp

In the way we define associativity the assumption that f is associative on
G also implies that it is a binary operation on X.

lemma (in semigrO) semigr_binop: shows f : GXG — G
using assoc_assum IsAssociative_def by simp

Semigroup operation is closed.

lemma (in semigrO) semigr_closed:
assumes acG beG shows ab € G
using assms semigr_binop apply_funtype by simp

Lemma append_lelem written in the notation used in the semigr0O context.

lemma (in semigrO) append_lelem_nice:
assumes n € nat and a: n — X and b : 1 — X
shows a U b = a < b(0)
using assms append_lelem by simp

Lemma concat_init_last_elem rewritten in the notation used in the semigro
context.

lemma (in semigrO) concat_init_last:
assumes n € nat k € nat and
a:n — X and b : succ(k) — X
shows (a U Init(b)) <= b(k) =a b
using assms concat_init_last_elem by simp

The product of semigroup (actually, magma — we don’t need associativity
for this) elements is in the semigroup.

lemma (in semigr0O) prod_type:
assumes n € nat and a : succ(n) — G
shows (J] a) € G

proof -
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from assms have
succ(n) € nat f : GXG — G Tail(a) : n — G
using semigr_binop tail_props by auto

moreover from assms have a(0) € G and G # 0
using empty_in_every_succ apply_funtype
by auto

ultimately show ([] a) € G using Foldl_def fold_props
by simp

qed

What is the product of one element list?

lemma (in semigrO) prod_of_lelem: assumes Al: a: 1 — G
shows ([] a) = a(0)
proof -
have f : GXG — G using semigr_binop by simp
moreover from Al have Tail(a) : 0 — G using tail_props
by blast
moreover from A1l have a(0) € G and G # 0
using apply_funtype by auto
ultimately show ([] a) = a(0) using fold_empty Foldl_def
by simp
qed

What happens to the product of a list when we append an element to the
list?

lemma (in semigrO) prod_append: assumes Al: n € nat and
A2: a : succ(n) — G and A3: x€G
shows (] a«x) = (] a) - x
proof -
from A1 A2 have I: Tail(a) : n — G a(0) € G
using tail_props empty_in_every_succ apply_funtype
by auto
from assms have (J] a+x) = Fold(f,a(0),Tail(a)+x)
using head_of_append tail_append_commute Foldl_def

by simp

also from A1 A3 I have ... = (][ &) - x
using semigr_binop fold_append Foldl_def
by simp

finally show thesis by simp

qed

The main theorem of the section: taking the product of a sequence is dis-
tributive with respect to concatenation of sequences. The proof is by induc-
tion on the length of the second list.

theorem (in semigrO) prod_conc_distr:
assumes Al: n € nat k € nat and
A2: a : succ(n) - G b: succ(k) — G
shows ([] a) - ([ ©) =[] (a U b)
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proof -
from A1 have k € nat by simp
moreover have Vb € succ(0) — G. (J] a) - ([ ) =] (@ U b)
proof -
{ fix b assume A3: b : succ(0) — G
with A1 A2 have
succ(n) € nat a : succ(n) - G b : 1 — G
by auto
then have a U b = a < b(0) by (rule append_lelem_nice)
with A1 A2 A3 have (J] a) - ([T b) =[] (a U b)
using apply_funtype prod_append semigr_binop prod_of_lelem
by simp
} thus thesis by simp
qed
moreover have Vj € nat.
Wb € suce(j) - G. (JJ @ - (I ®© =]] (@ U B)) —
(Vb € succ(succ(j)) — G. (J] a) - (J] v =] (a U b))
proof -
{ fix j assume A4: j € nat and
A5: (Vb € succ(j) — G. (J] a - ([T ») =[] (a U v))
{ fix b assume A6: b : succ(succ(j)) — G
let ¢ = Init(b)
from A4 A6 have T: b(succ(j)) € G and
I: ¢ : succ(j) — G and II: b = c<>b(succ(j))
using apply_funtype init_props by auto
from A1 A2 A4 A6 have
succ(n) € nat succ(j) € nat
a : succ(m) - G b : succ(succ(j)) — G
by auto
then have III: (a U c) ¢ b(succ(j)) =alUb
by (rule concat_init_last)
from A4 I T have (J] c+b(succ(j))) = (J] <) - b(succ(j))
by (rule prod_append)
with II have
T a - qI » = (] & - (] ¢ - blsucc(ji)))
by simp
moreover from Al A2 A4 T I have
(I @ € G (] ¢ € G Db(succ(j)) € G
using prod_type by auto
ultimately have
(T & - (I v = ] & - (I ©)) - b(succ(j))
using semigr_assoc by auto
with A5 I have (J] a) - (J] b) = (J] (a U ¢))-b(succ(j))
by simp
moreover
from Al A2 A4 I have
T1l: succ(n) € nat succ(j) € nat and
a : succ(n) - G ¢ : succ(j) = G
by auto
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then have Concat(a,c): succ(n) #+ succ(j) — G
by (rule concat_props)
with A1 A4 T have
succ(n #+ j) € nat
a U c : succ(succ(n #+j)) — G
b(succ(j)) € G
using succ_plus by auto
then have
(IT (& U e)4=b(succ(j))) = (J] (a U e))-b(succ(j))
by (rule prod_append)
with IIT have ([ (a U c))b(succ(j)) = ][] (a U b)
by simp
ultimately have ([] a) - ([ ®) =[] (a U b)
by simp
} hence (Vb € succ(succ(j)) — G. (] &) - ([ ®» =] @ u v
by simp
} thus thesis by blast
qed
ultimately have Vb € succ(k) — G. (J] & - ([ ) =] (@ U b)
by (rule ind_on_nat)
with A2 show (J] a) - (J[ ®) =[] (a U b) by simp
qed

17.2 Products over sets of indices

In this section we study the properties of expressions of the form [[;c, a; =
@, - @iy - .. - ai—1, i.e. what we denote as [[(A,a). A here is a finite subset of
some set X and a is a function defined on X with values in the semigroup

G.

Suppose @ : X — G is an indexed family of elements of a semigroup G
and A = {ip,41,..,in—1} € N is a finite set of indices. We want to define
[Lica @i = aiy - @i, - .. - aj—1. To do that we use the notion of Enumeration
defined in the Enumeration_ZF theory file that takes a set of indices and lists
them in increasing order, thus converting it to list. Then we use the Fold1l
to multiply the resulting list. Recall that in Isabelle/ZF the capital letter
70" denotes the composition of two functions (or relations).

definition
SetFold(f,a,A,r) = Fold1(f,a 0 Enumeration(A,r))

For a finite subset A of a linearly ordered set X we will write o(A) to denote
the enumeration of the elements of A, i.e. the only order isomorphism |A| —
A, where |[A| € N is the number of elements of A. We also define notation
for taking a product over a set of indices of some sequence of semigroup
elements. The product of semigroup elements over some set A C X of
indices of a sequence a : X — G (i.e. [[;c as) is denoted [J(A,a). In the
semigrl context we assume that a is a function defined on some linearly
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ordered set X with values in the semigroup G.

locale semigrl = semigrO +

fixes X r
assumes linord: IsLinOrder(X,r)

fixes a
assumes a_is_fun: a : X = G

fixes o
defines o_def [simp]: o(A) = Enumeration(A,r)

fixes setpr ([
defines setpr_def [simpl: [[(A,b) = SetFold(f,b,A,r)

We can use the enums locale in the semigr0O context.

lemma (in semigrl) enums_valid_in_semigrl: shows enums(X,r)
using linord enums_def by simp

Definition of product over a set expressed in notation of the semigr0 locale.

lemma (in semigrl) setproddef:
shows [[(A,a) =[] (a 0 o(A))
using SetFold_def by simp

A composition of enumeration of a nonempty finite subset of N with a se-
quence of elements of GG is a nonempty list of elements of G. This implies
that a product over set of a finite set of indices belongs to the (carrier of)
semigroup.

lemma (in semigrl) setprod_type: assumes
Al: A € FinPow(X) and A2: AF#0
shows
Jn € nat . |Al = succ(m) A a0 og(A) : succ(n) — G
and [J(A,a) € G
proof -
from assms obtain n where n € nat and |A| = succ(n)
using card_non_empty_succ by auto
from A1 have o(A) : [A]l — A
using enums_valid_in_semigrl enums.enum_props
by simp
with A1 have a 0 o(A): |Al — G
using a_is_fun FinPow_def comp_fun_subset

by simp

with ‘n € nat‘ and ‘|A| = succ(n)‘ show
dn € nat . |Al = succ(n) A a0 o(A) : succ(n) — G
by auto

from ‘n € nat‘ ‘|A|l = succ(@)‘ ‘a 0 o(A): [Al — Gf
show [[(A,a) € G using prod_type setproddef
by auto

140



qed

The enum_append lemma from the Enemeration theory specialized for natural
numbers.

lemma (in semigrl) semigrl_enum_append:
assumes A € FinPow(X) and
n € X - A and VkeA. (k,n) € 1
shows o(A U {n}) = c(A)< n
using assms FinPow_def enums_valid_in_semigrl
enums . enum_append by simp

What is product over a singleton?

lemma (in semigrl) gen_prod_singleton:
assumes Al: x € X
shows [[({x},a) = a(x)
proof -
from A1 have c({x}): 1 — X and o({x})(0) = x
using enums_valid_in_semigrl enums.enum_singleton
by auto
then show [[({x},a) = a(x)
using a_is_fun comp_fun setproddef prod_of_lelem
comp_fun_apply by simp
qed

A generalization of prod_append to the products over sets of indices.

lemma (in semigrl) gen_prod_append:
assumes
Al: A € FinPow(X) and A2: A # 0 and
A3: n € X - A and
A4: VkeA. (k,n) € r
shows [[(A U {n}, a) = (J[(A,2)) - a(n)
proof -
have [[(A U {n}, a) = J] (@ 0 o(A U {n}))
using setproddef by simp
also from A1 A3 A4 have ... = [[ (a 0 (6(A)+ n))
using semigrl_enum_append by simp
also have ... = [[ ((a 0 d(A))+ a(n))
proof -
from A1 A3 have
Al € nat and 0(A) : |[Al - X and n € X
using card_fin_is_nat enums_valid_in_semigrl enums.enum_fun

by auto
then show thesis using a_is_fun list_compose_append
by simp
qged
also from assms have ... = ([ (a 0 o(A)))-a(n)
using a_is_fun setprod_type apply_funtype prod_append
by blast
also have ... = (J][(A,2)) - a(@)
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using SetFold_def by simp
finally show [][(A U {n}, a) = (J[(A,2)) - a(n)
by simp
qed

Very similar to gen_prod_append: a relation between a product over a set of
indices and the product over the set with the maximum removed.

lemma (in semigrl) gen_product_rem_point:
assumes Al: A € FinPow(X) and
A2: n € A and A4: A - {n} # 0 and
A3: VkeA. (k, n) € r
shows
(IIA - {n},a)) - a(n) = [[(4, a)
proof -
let A=A - {n}
from Al A2 have A € FinPow(X) and n € X - A
using fin_rem_point_fin FinPow_def by auto
with A3 A4 have [J(A U {n}, a) = (J][(A,2)) - a(w)
using a_is_fun gen_prod_append by blast
with A2 show thesis using rem_add_eq by simp
qed

17.3 Commutative semigroups

Commutative semigroups are those whose operation is commutative, i.e.
‘b = b-a. This implies that for any permutation s : n — n we have
[Tj—o aj = ITj—¢ as(j), or, closer to the notation we are using in the semigro
context, [[a = [[(a o s). Maybe one day we will be able to prove this,
but for now the goal is to prove something simpler: that if the semigroup
operation is commutative taking the product of a sequence is distributive

with respect to the operation: [T}_o(a;-b;) = (H?:o aj)> <H?:o bj)>. Many
of the rearrangements (namely those that don’t use the inverse) proven in

the AbelianGroup_ZF theory hold in fact in semigroups. Some of them will
be reproven in this section.

A rearrangement with 3 elements.

lemma (in semigrO) rearr3elems:
assumes f {is commutative on} G and acG be&G ceG
shows ab.c = a-cb
using assms semigr_assoc IsCommutative_def by simp

A rearrangement of four elements.

lemma (in semigrO) rearr4elems:
assumes Al: f {is commutative on} G and
A2: acG beG ceG deG
shows ab-(c-d) = a-c-(b-d)

proof -
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from A2 have a'b-(c-d) = ab-cd
using semigr_closed semigr_assoc by simp
also have a'b-c:d = a-c-(b-d)
proof -
from A1 A2 have ab-c-d = c-(ab)-d
using IsCommutative_def semigr_closed

by simp
also from A2 have ... = c-abd
using semigr_closed semigr_assoc
by simp
also from A1 A2 have ... = a-c-bd
using IsCommutative_def semigr_closed
by simp
also from A2 have ... = a-c-(b-d)
using semigr_closed semigr_assoc
by simp
finally show abcd = a-c-(b-d) by simp
qed
finally show a-b-(c-d) = a-c-(b-d)
by simp

qed

We start with a version of prod_append that will shorten a bit the proof of
the main theorem.

lemma (in semigrO) shorter_seq: assumes Al: k € nat and
A2: a € succ(succ(k)) — G
shows ([[ a) = (J] Init(a)) - a(succ(k))
proof -
let x = Init(a)
from assms have
a(succ(k)) € G and x : succ(k) — G
using apply_funtype init_props by auto
with A1 have (J] xa(succ(k))) = (][] x) - a(succ(k))
using prod_append by simp
with assms show thesis using init_props
by simp
qed

A lemma useful in the induction step of the main theorem.

lemma (in semigrO) prod_distr_ind_step:
assumes Al: k € nat and
A2: a : succ(succ(k)) — G and
A3: b : succ(succ(k)) — G and
Ad: ¢ : succ(succ(k)) — G and
A5: Vjesucc(succ(k)). c(j) = a(jG) - b(j)
shows
Init(a) : succ(k) — G
Init(b) : succ(k) — G
Init(c) : succ(k) — G
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Vjesucc(k). Init(c)(j) = Init(a)(j) - Init(b) (j)
proof -
from A1 A2 A3 A4 show
Init(a) : succ(k) — G
Init(b) : succ(k) — G
Init(c) : succ(k) — G
using init_props by auto
from A1l have T: succ(k) € nat by simp
from T A2 have Vje€succ(k). Init(a)(j) = a(j)
by (rule init_props)
moreover from T A3 have Vjesucc(k). Init(b)(j) = b(j)
by (rule init_props)
moreover from T A4 have Vj€succ(k). Init(c)(j) = c(j)
by (rule init_props)
moreover from A5 have Vjesucc(k). c(j) = a(j) - b(j)
by simp
ultimately show Vje€succ(k). Init(c)(j) = Init(a)(j) - Init(b) (j)
by simp
qed

For commutative operations taking the product of a sequence is distributive
with respect to the operation. This version will probably not be used in
applications, it is formulated in a way that is easier to prove by induction.
For a more convenient formulation see prod_comm_distrib. The proof by
induction on the length of the sequence.

theorem (in semigr0) prod_comm_distr:
assumes Al: f {is commutative on} G and A2: n€nat
shows V a b c.
(a : succ(n)—G A b : succ(n)—G A ¢ : succ(n)—G A
(Vjesuccm). c(3) = a(j) - b)) —
I © = (I 2 - (] »
proof -
note A2
moreover have V a b c.
(a : succ(0)—G A b : succ(0)—G A ¢ : succ(0)—G A
(Vjesucc(0). c(j) = a(j) - (i) —
T o = (] 2 - (] »
proof -
{fixabec
assume a : succ(0)—G A b : succ(0)—G A c : succ(0)—G A
(Vjesucc(0). c(j) = a(j) - b(3))
then have
I:a: 123G b: 1-G c : 1—G and
ITI: c(0) = a(0) - b(0) by auto
from I have
(IT & = a0 and (J] b) = b(0) and (J] <) = c(0)
using prod_of_lelem by auto
with II have ([] ¢) = (J] a) - (J] b) by simp
} then show thesis using Foldl_def by simp

144



qed
moreover have Vk € nat.
(Vv abec.
(a : succ(k)—G A b : succ(k)—G A ¢ : succ(k)—=G A
(Vjesucc(k). c(j) = a(j) - b(3F))) —
] o = {q] 2 - (] 1)) —
(Vv abc.
(a : succ(succ(k))—G A b : succ(succ(k))—G A ¢ : succ(succ(k))—G

(Vjesucc(succ(k)). c(j) = a(G) - b(P)) —
I o = {qT1 2 - (] »»
proof
fix k assume k € nat
show (Va b c.
a € succ(k) — G A
b € succ(k) - G A ¢ € succ(k) — G A
(Vjesucc(k). c(j) = a(j) - b(§)) —
(] o = (] & - (] »)) —
(Va b c.
a € succ(succ(k)) — G A
b € succ(succ(k)) — G A
c € succ(succ(k)) — G A
(Vjesucc(succ(k)). c(j) = a(j) - b(§)) —
II o = qT 2 - (] »»
proof
assume A3: Va b c.
a € succ(k) — G A
b € succ(k) - G A ¢ € succ(k) — G A
(Vjesucc(k). c(j) = a(j) - b(§)) —
II o = T a - (] »
show Va b c.
a € succ(succ(k)) — G A
b € succ(succ(k)) — G A
c € succ(succ(k)) — G A
(Vjesucc(succ(k)). c(j) = a(j) - b(j)) —
II o = T a - (] »
proof -
{ fixabec
assume
a € succ(succ(k)) — G A
b € succ(succ(k)) — G A
c € succ(succ(k)) — G A
(Vjesucc(succ(k)). c(j) = a(j) - b(i)
with ‘k € nat‘ have I:
a : succ(succ(k)) — G
b : succ(succ(k)) — G
¢ : succ(succ(k)) — G
and II: Vjéesucc(succ(k)). c(j) = a(j) - b(j)
by auto
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let x = Init(a)
let y = Init(b)
let z = Init(c)
from ‘k € nat¢ I have III:
(II & = (I = - a(succ(k))
(I] » = (] y) - b(succ(k)) and
IV: (J] o = (] 2) - c(succ(k))
using shorter_seq by auto
moreover
from ‘k € nat‘ I II have
x : succ(k) — G
y : succ(k) — G
z : succ(k) — G and
Vjesucc(k). z(j) = x(3) - y(3)
using prod_distr_ind_step by auto
with A3 II IV have
] o = (] -] y-(alsucck)) - b(succ(k)))
by simp
moreover from Al ‘k € nat® I III have
(I -] y)-(alsucc(k)) - b(succ(k)))=
(II & - I »
using init_props prod_type apply_funtype
rearrdelems by simp
ultimately have ([] ¢) = (J] 2) - (J] b
by simp
} thus thesis by auto
qged
qed
qed
ultimately show thesis by (rule ind_on_nat)
qed

A reformulation of prod_comm_distr that is more convenient in applications.

theorem (in semigr0) prod_comm_distrib:
assumes f {is commutative on} G and n€nat and
a : succ(n)—G b : succ(n)—G c¢ : succ(n)—G and
Vje€succ(n). c(j) = a(j) - b(j)
shows ([] o) = ([ a) - (J] ©

using assms prod_comm_distr by simp

A product of two products over disjoint sets of indices is the product over
the union.

lemma (in semigrl) prod_bisect:

assumes Al: f {is commutative on} G and A2: A € FinPow(X)
shows

VP € Bisections(A). [[(A,a) = (J[(£fst(P),a))-(J][(snd(P),a))
proof -

have IsLinOrder(X,r) using linord by simp

moreover have
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VP € Bisections(0). [](0,2) = (J[(£fst(P),a)) - (J](snd(P),a))
using bisec_empty by simp
moreover have V A € FinPow(X).
(V neX-A.
(VP € Bisections(A). [[(a,2) = (J[(£fst(P),a)) -(J[(snd(P),a)))
A (VkeA. (k,n) € v ) —
(VQ € Bisections(A U {n}).
[1¢A U {n},a) = (J[(£st(Q),2))-([](snd(Q),a))))
proof -
{ fix A assume A € FinPow(X)
fix n assume n € X - A
have ( VP € Bisections(4).
[Ia,a) = (JI(Est(P),a))-(J](snd(P),a)))
A (VkeA. (k,n) €T ) —
(VQ € Bisections(A U {n}).
[T1¢A U {n},a) = (J](£st(Q),a))-([](snd(Q),2)))
proof -
{ assume I:
VP € Bisections(A). [[(A,a) = (J[(fst(P),a))-([[(snd(P),a))
and II: VkeA. (k,n) € r
have VQ € Bisections(A U {n}).
[TA U {n},a) = (J](£st(Q),a))-(J[(snd(Q),a))
proof -
{ fix Q assume Q € Bisections(A U {n})
let Qg = fst(Q)
let Q; = snd(Q)
from ‘A € FinPow(X)¢ ‘n € X - A‘ have A U {n} € FinPow(X)
using singleton_in_finpow union_finpow by auto
with ‘Q € Bisections(A U {n})‘ have
Qo € FinPow(X) Qp # 0 and Q; € FinPow(X) Q; # O
using bisect_fin bisec_is_pair Bisections_def by auto
then have [[(Qp,2) € G and [](Q;,2) € G
using a_is_fun setprod_type by auto
from ‘Q € Bisections(A U {n})¢ ‘A € FinPow(X)¢ ‘n € X-A¢
have refl(X,r) Qo € A U {n} Q; € A U {n}
ACXandn € X
using linord IsLinOrder_def total_is_refl Bisections_def
FinPow_def by auto
from ‘refl(X,r)¢ ‘Qp € A U {n}* ‘A C X¢ ‘n € X¢ II
have III: Vk € Qy. (k, n) € r by (rule refl_add_point)
from ‘refl(X,r)¢ ‘@1 € A U {n}* ‘A C X‘ ‘n € X¢ II
have 1IV: Vk € Q;. (k, n) € r by (rule refl_add_point)
from ‘n € X - A¢ ‘Q € Bisections(A U {n})°‘ have
Qo = {n} v Q1 = {n} V (Qo - {n},Q1-{n}) € Bisections(A)
using bisec_is_pair bisec_add_point by simp
moreover
{ assume Q; = {n}
from ‘n € X - A have n ¢ A by auto
moreover
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from ‘Q € Bisections(A U {n})*
have (Qo,Q; ) € Bisections(A U {n})
using bisec_is_pair by simp
with ‘Q; = {n}‘ have (Qp, {n}) € Bisections(A U {n})
by simp
ultimately have Qy = A and A # 0
using set_point_bisec by auto
with ‘A € FinPow(X)¢ ‘n € X - A¢ IT ‘Q; = {n}¢
have [[(A U {n},a) = (J](Qo,a))-[](Q1,2)
using a_is_fun gen_prod_append gen_prod_singleton
by simp }
moreover
{ assume Qy = {n}
from ‘n € X - A¢ have n € X by auto
then have {n} € FinPow(X) and {n} # 0
using singleton_in_finpow by auto
from ‘n € X - A have n ¢ A by auto
moreover
from ‘Q € Bisections(A U {n})°
have (Qp, Q1) € Bisections(A U {n})
using bisec_is_pair by simp
with ‘Qg = {n}‘ have ({n}, Qi) € Bisections(A U {n})
by simp
ultimately have Q; = A and A # 0 using point_set_bisec
by auto
with A1 ‘A € FinPow(X)‘ ‘n € X - A¢ II
‘{n} € FinPow(X)‘ ‘{n} # 0 ‘Qp = {n}‘
have [[(4 U {n},a) = ([T(Qo,a))-(J](Q1,a))
using a_is_fun gen_prod_append gen_prod_singleton
setprod_type IsCommutative_def by auto }
moreover
{ assume A4: (Qp - {n},Q; - {n}) € Bisections(A)
with ‘A € FinPow(X)‘ have
Qo - {n} € FinPow(X) Qo - {n} # 0 and
Q; - {n} € FinPow(X) Q; - {n} # 0
using FinPow_def Bisections_def by auto
with ‘n € X - A¢ have
[1@o - {n},a) € G J](@Q: - {n},a) € G and
T: a(n) € G
using a_is_fun setprod_type apply_funtype by auto
from ‘Q € Bisections(A U {n})‘ A4 have
({(Qo, Q1 - {n}) € Bisections(A) A n € Q) V
({Qop - {n}, Qi) € Bisections(A) A n € Qq)
using bisec_is_pair bisec_add_point_case3 by auto
moreover
{ assume (Qp, Q; - {n}) € Bisections(A) and n € @,
then have A # 0 using bisec_props by simp
with A2 ‘A € FinPow(X)‘ ‘n € X - A T II T IV
‘{Qo, Q1 - {n}) € Bisections(A)‘ ‘J[(Qp,a) € G¢
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‘11¢Q; - {n},a) € G* ‘Q; € FinPow(X) ¢
‘n € Qi ‘Qu - {n} # O°
have [J(A U {n},a) = (J](Qo,2))-(J](Q1,2))
using gen_prod_append semigr_assoc gen_product_rem_point
by simp }
moreover
{ assume (Qp - {n}, Qi) € Bisections(A) and n € Qg
then have A # 0 using bisec_props by simp
with A1 A2 ‘A € FinPow(X)¢ ‘n € X - A I II III T
“{Qo - {n}, Qi)€Bisections(A)¢ ‘J[(Qp - {n},a)eG*
‘11Q1,2) € G ‘Qp € FinPow(X)¢ ‘n € Qp¢ ‘Qo-{n}#0°¢
have [[(A U {n},a) = (J[(Qo,a))-([[(Q:,a))
using gen_prod_append rearr3elems gen_product_rem_point
by simp }
ultimately have
[IA U {n},a) = (J](Qo,a))-(J](Q1,2))
by auto }
ultimately have [[(A U {n},a) = (J][(Qo,2))-(J](Q1,a))
by auto
} thus thesis by simp
qed
} thus thesis by simp
qged
} thus thesis by simp
qed
moreover note A2
ultimately show thesis by (rule fin_ind_add_max)
qed

A better looking reformulation of prod_bisect.

theorem (in semigrl) prod_disjoint: assumes
Al: f {is commutative on} G and
A2: A € FinPow(X) A # 0 and
A3: B € FinPow(X) B # 0 and
Ad: ANB=20
shows [[(AUB,a) = ([](a,2))-(J](B,a))
proof -
from A2 A3 A4 have (A,B) € Bisections(AUB)
using is_bisec by simp
with A1 A2 A3 show thesis
using a_is_fun union_finpow prod_bisect by simp
qed

A generalization of prod_disjoint.

lemma (in semigrl) prod_list_of_lists: assumes
Al: f {is commutative on} G and A2: n € nat
shows VM € succ(n) — FinPow(X).
M {is partition} —
(T €@, [TMGE) ). 1 € succ@}) =
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(JIJWJ1i € succ(n). M(i),a))
proof -
note A2
moreover have VM € succ(0) — FinPow(X).
M {is partition} —
T 4@, TJMG ). i € succ(®}) = (JIUL € succ(0). M(>i),a))
using a_is_fun funcl_1_L1 Partition_def apply_funtype setprod_type
list_lenl_singleton prod_of_lelem
by simp
moreover have Vk € nat.
(VM € succ(k) — FinPow(X).
M {is partition} —
(IT @My ,a)). i € succI}) =
(JIMUJi € suce(k). M(i),a))) —
(VM € succ(succ(k)) — FinPow(X).
M {is partition} —
T {@E,[JM1),a)). i € succ(succ(k))}) =
(ITU1i € succ(succ(k)). M(i),a)))
proof -
{ fix k assume k € nat
assume A3: VM € succ(k) — FinPow(X).
M {is partition} —
(IT L@, [JM@ ,a). i € succk)}) =
(MIWJi € suce(k). M(i),a))
have (VN € succ(succ(k)) — FinPow(X).
N {is partition} —
(IT €@, [T ). i € succ(succ(k))}) =
(JTWJ1i € succ(succ(k)). N(i),a)))
proof -
{ fix N assume A4: N : succ(succ(k)) — FinPow(X)
assume A5: N {is partition}
with A4 have I: Vi € succ(succ(k)). N(i) # O
using funcl_1_L1 Partition_def by simp
let b = {{(i,[J(N(i),a)). i € succ(succ(k))}
let ¢ = {(i,][(N(),a)). i € succ(k)}
have II: Vi € succ(succ(k)). JJ(N(i),a) € G
proof
fix i assume i € succ(succ(k))
with A4 I have N(i) € FinPow(X) and N(i) # O
using apply_funtype by auto
then show [[(N(i),a) € G using setprod_type
by simp
qed
hence Vi € succ(k). [[(N(i),a) € G by auto
then have c : succ(k) — G by (rule ZF_fun_from_total)
have b = {(i,[J(N(i),a)). i € succ(succ(k))}
by simp
with II have b = Append(c,[[(N(succ(k)),a))
by (rule set_list_append)
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with II ‘k € nat‘ ‘c : succ(k) — Gf
have ([T b) = (] &) ([T (succ(k)),a))
using prod_append by simp
also have
.= (JIWUi € succ(k). N(i),a))-(J](N(succ(k)),a))
proof -
let M = restrict(N,succ(k))
have succ(k) C succ(succ(k)) by auto
with ‘N : succ(succ(k)) — FinPow(X) ¢
have M : succ(k) — FinPow(X) and
III: Vi € succ(k). M(i) = N(i)
using restrict_type2 restrict apply_funtype
by auto
with A5 ‘M : succ(k) — FinPow(X) ‘have M {is partition}
using funcl_1_L1 Partition_def by simp
with A3 ‘M : succ(k) — FinPow(X)‘ have
(T €@,[TMGE) ). 1 € succk)}) =
(JTWJ1i € succ(x). M(i),a))

by blast
with IITI show thesis by simp
qed
also have ... = ([J(Ui € succ(succ(k)). N(i),a))
proof -
let A = |Ji € succ(k). N(i)
let B = N(succ(k))

from A4 ‘k € nat‘ have succ(k) € nat and
Vi € succ(k). N(i) € FinPow(X)
using apply_funtype by auto
then have A € FinPow(X) by (rule union_fin_list_fin)
moreover from I have A # 0 by auto
moreover from A4 I have
N(succ(k)) € FinPow(X) and N(succ(k)) # 0
using apply_funtype by auto
moreover from ‘succ(k) € nat‘ A4 A5 have AN B =0
by (rule list_partition)
moreover note Al
ultimately have [J(AUB,a) = ([J(4,a))-([[(B,a))
using prod_disjoint by simp
moreover have A U B = (|Ji € succ(succ(k)). N(i))
by auto
ultimately show thesis by simp
qed
finally have (J] {(i,[]J(N(i),a)). i € succ(succ(k))}) =
(JTWJ1i € succ(succ(k)). N(i),a))
by simp
} thus thesis by auto
qed
} thus thesis by simp
qed
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ultimately show thesis by (rule ind_on_nat)
qed

A more convenient reformulation of prod_list_of_lists.

theorem (in semigrl) prod_list_of_sets:
assumes Al: f {is commutative on} G and
A2: n € nat n # 0 and
A3: M : n — FinPow(X) M {is partition}
shows
(IT €@, [IMGE ,a)). 1 € o} = (Ui € n. M(i),a))
proof -
from A2 obtain k where k € nat and n = succ(k)
using Nat_ZF_1_L3 by auto
with Al A3 show thesis using prod_list_of_lists
by simp
qed

The definition of the product [J(A,a) = SetFold(f,a,A,r) of a some (finite)
set of semigroup elements requires that r is a linear order on the set of indices
A. This is necessary so that we know in which order we are multiplying the
elements. The product over A is defined so that we have [[,a = [[acc(A)
where o : |A| — A is the enumeration of A (the only order isomorphism
between the number of elements in A and A), see lemma setproddef. How-
ever, if the operation is commutative, the order is irrelevant. The next
theorem formalizes that fact stating that we can replace the enumeration
o(A) by any bijection between |A| and A. In a way this is a generalization
of setproddef. The proof is based on application of prod_list_of_sets to
the finite collection of singletons that comprise A.

theorem (in semigrl) prod_order_irr:
assumes Al: f {is commutative on} G and
A2: A € FinPow(X) A # 0 and
A3: b € bij(lAl,A)
shows ([] (a 0 b)) = [[(4,a)
proof -
let n = |A]
let M = {(k, {b(X)}). k € n}
have ([[ (a 0 b)) = ([[ {(i,][IM(1),a)). i € n})
proof -
have Vi € n. [[(M(i),a) = (a 0 b) (1)
proof
fix i assume i € n
with A2 A3 ‘i € n‘ have b(i) € X
using bij_def inj_def apply_funtype FinPow_def
by auto
then have [[({b(i)},a) = a(b(i))
using gen_prod_singleton by simp
with A3 ‘1 € n¢ have [[({b(i)},a) = (a 0 b) (i)
using bij_def inj_def comp_fun_apply by auto
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with ‘i € n‘ A3 show [[(M(i),a) = (a 0 b) (i)
using bij_def inj_partition by auto

qed

hence {(i,[J(M(i),a)). i € n} = {(i,(a 0 b)(i)). i € n}
by simp

moreover have {(i,(a 0 b)(i)). i € n} =a 0D

proof -

from A3 have b : n — A using bij_def inj_def by simp
moreover from A2 have A C X using FinPow_def by simp
ultimately have b : n — X by (rule funcl_1_L1B)
then have a 0 b: n — G using a_is_fun comp_fun
by simp
then show {(i,(a 0 b)(i)). i € n} =a0b
using fun_is_set_of_pairs by simp
qed
ultimately show thesis by simp
qed
also have ... = (JJ(Ui € n. M@1),a))
proof -
note Al
moreover from A2 have n € nat and n # 0
using card_fin_is_nat card_non_empty_non_zero by auto
moreover have M : n — FinPow(X) and M {is partition}
proof -
from A2 A3 have Vk € n. {b(k)} € FinPow(X)
using bij_def inj_def apply_funtype FinPow_def
singleton_in_finpow by auto
then show M : n — FinPow(X) using ZF_fun_from_total
by simp
from A3 show M {is partition} using bij_def inj_partition
by auto
qed
ultimately show
(IT 4@, [JME ,a). i € o) = (JIUJi € n. M@D),a))
by (rule prod_list_of_sets)
qed
also from A3 have ([J(Ui € n. M(i),a)) = [[(4,a)
using bij_def inj_partition surj_singleton_image
by auto
finally show thesis by simp
qed

Another way of expressing the fact that the product dos not depend on the
order.

corollary (in semigrl) prod_bij_same:
assumes f {is commutative on} G and
A € FinPow(X) A # 0 and
b € bij(lAl,A) ¢ € bij(lAl,A)
shows ([ (@ 0Db)) = (][ (a 0 c))
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using assms prod_order_irr by simp

end
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18 Semigroup_ZF.thy

theory CommutativeSemigroup_ZF imports Semigroup_ZF
begin

In the Semigroup theory we introduced a notion of SetFold(f,a,A,r) that
represents the sum of values of some function a valued in a semigroup where
the arguments of that function vary over some set A. Using the additive
notation something like this would be expressed as ) ., f(z) in informal
mathematics. This theory considers an alternative to that notion that is
more specific to commutative semigroups.

18.1 Sum of a function over a set

The r parameter in the definition of SetFold(f,a,A,r) (from Semigroup_ZF)
represents a linear order relation on A that is needed to indicate in what
order we are summing the values f(z). If the semigroup operation is com-
mutative the order does not matter and the relation r is not needed. In this
section we define a notion of summing up values of some function a : X — G
over a finite set of indices I' C X, without using any order relation on X.

We define the sum of values of a function a : X — G over a set A as the only
element of the set of sums of lists that are bijections between the number of
values in A (which is a natural number n = {0, 1,..,n — 1} if A is finite) and
A. The notion of Fold1(f,c) is defined in Semigroup_ZF as the fold (sum) of
the list ¢ starting from the first element of that list. The intention is to use
the fact that since the result of summing up a list does not depend on the
order, the set {Fold1(f,a 0 b). b € bij( |Al, A)} is a singleton and we
can extract its only value by taking its union.

definition
CommSetFold(f,a,A) = |[J{Foldi(f,a 0 b). b € bij(IAl, A)}

the next locale sets up notation for writing about summation in commutative
semigroups. We define two kinds of sums. One is the sum of elements of a list
(which are just functions defined on a natural number) and the second one
represents a more general notion the sum of values of a semigroup valued
function over some set of arguments. Since those two types of sums are
different notions they are represented by different symbols. However in the
presentations they are both intended to be printed as >_.

locale commsemigr =
fixes G £

assumes csgassoc: f {is associative on} G
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assumes csgcomm: f {is commutative on} G

fixes csgsum (infixl + 69)
defines csgsum_def[simpl: x + y = f(x,y)

fixes X a
assumes csgaisfun: a : X — G

fixes csglistsum (3}, _ 70)
defines csglistsum_def [simp]: ) k = Fold1(f,k)

fixes csgsetsum ()
defines csgsetsum_def [simpl: > (A,h) = CommSetFold(f,h,A)

Definition of a sum of function over a set in notation defined in the commsemigr
locale.

lemma (in commsemigr) CommSetFolddef:
shows (>-(A,a)) = (U{d (@ 0Db). b € bij(lAl, MDD
using CommSetFold_def by simp

The next lemma states that the result of a sum does not depend on the order
we calculate it. This is similar to lemma prod_order_irr in the Semigroup
theory, except that the semigri locale assumes that the domain of the func-
tion we sum up is linearly ordered, while in commsemigr we don’t have this
assumption.

lemma (in commsemigr) sum_over_set_bij:
assumes Al: A € FinPow(X) A # 0 and A2: b € bij(|Al,A)
shows (3>-(A,2)) = (3 (a2 0 b))
proof -
have
Ve € bij(IAl,A). ¥V d € bij(lAl,8). o (@0 ) = (O (a0 4d)
proof -
{ fix c assume c € bij(|Al,A)
fix d assume d € bij(|Al,A)
let r = InducedRelation(converse(c), Le)
have semigri(G,f,A,r,restrict(a, A))
proof -
have semigr0(G,f) using csgassoc semigrO_def by simp
moreover from Al ‘c € bij(|Al,A)‘ have IsLinOrder(A,r)
using bij_converse_bij card_fin_is_nat
natord_lin_on_each_nat ind_rel_pres_lin by simp
moreover from Al have restrict(a, A) : A — G
using FinPow_def csgaisfun restrict_fun by simp
ultimately show thesis using semigrl_axioms.intro semigrl_def
by simp
qed
moreover have f {is commutative on} G using csgcomm
by simp
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moreover from Al have A € FinPow(A) A # 0O
using FinPow_def by auto
moreover note ‘c € bij(|Al,A) ‘d € bij(IAl,A)¢
ultimately have
Foldl(f,restrict(a,A) 0 c) = Foldi(f,restrict(a,A) 0 d)
by (rule semigrl.prod_bij_same)
hence ()  (restrict(a,A) 0 ¢)) = (. (restrict(a,A) 0 d))
by simp
moreover from Al ‘c € bij(lAl,A)‘ ‘d € bij(lAl,A)¢
have
restrict(a,A) 0 ¢ = a 0 ¢ and restrict(a,A) 0d=a04d
using bij_def surj_def csgaisfun FinPow_def comp_restrict
by auto
ultimately have (> (a 0 ¢)) = (0 (a 0 d)) by simp
} thus thesis by blast
qed
with A2 have ((J{d (@ 0 b). b € bij(lAl, A} = . (a 0 b))
by (rule singleton_comprehension)
then show thesis using CommSetFolddef by simp
qed

The result of a sum is in the semigroup. Also, as the second assertion
we show that every semigroup valued function generates a homomorphism
between the finite subsets of a semigroup and the semigroup. Adding an
element to a set coresponds to adding a value.

lemma (in commsemigr) sum_over_set_add_point:
assumes Al: A € FinPow(X) A # O
shows ) (A,a) € G and
Vx € X-A. Y (A U {x},a) = G (4,2)) + a(x)
proof -
from Al obtain b where b € bij(|Al,A)
using fin_bij_card by auto
with A1 have > (A,a) = (3 (a 0 b))
using sum_over_set_bij by simp
from A1 have |A| € nat using card_fin_is_nat by simp
have semigrO0(G,f) using csgassoc semigrO_def by simp
moreover
from A1 obtain n where n € nat and |A| = succ(n)
using card_non_empty_succ by auto
with A1 ‘b € bij(lIAl,A) ¢ have
n € nat and a 0 b : succ(n) — G
using bij_def inj_def FinPow_def comp_fun_subset csgaisfun
by auto
ultimately have Foldi(f,a 0 b) € G by (rule semigrO.prod_type)
with >"(A,a) = (C (a 0 b)) show > (A,a) € G
by simp
{ fix x assume x € X-A
with A1 have (A U {x}) € FinPow(X) and A U {x} # 0
using singleton_in_finpow union_finpow by auto
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moreover have Append(b,x) € bij(lA U {x}I, A U {x})
proof -
note ‘Al € nat‘ ‘D € bij(|Al,A)¢
moreover from ‘x € X-A‘ have x ¢ A by simp
ultimately have Append(b,x) € bij(succ(lAl), A U {x})
by (rule bij_append_point)
with Al ‘x € X-A‘ show thesis
using card_fin_add_one by auto
qed
ultimately have (3 (A U {x},a)) = (_ (a 0 Append(b,x)))
using sum_over_set_bij by simp

also have ... = (3 Append(a 0 b, a(x)))
proof -

note ‘|A| € natf

moreover

from A1 ‘b € bij(|Al, A)‘ have
b: |Al - Aand A C X
using bij_def inj_def using FinPow_def by auto
then have b : |A| — X by (rule funcl_1_L1B)
moreover from ‘x € X-A‘ have x € X and a : X — G
using csgaisfun by auto
ultimately show thesis using list_compose_append
by simp

qed
also have ... = (O (4,2)) + a(x)
proof -
note ‘semigr0(G,f)¢ ‘n € nat‘ ‘a 0 b : succ(n) — G°

moreover from ‘x € X-A¢ have a(x) € G
using csgaisfun apply_funtype by simp
ultimately have
Foldl(f,Append(a 0 b, a(x))) = £(Foldi(f,a 0 b),a(x))
by (rule semigrO.prod_append)
with A1 ‘b € bij(lAl,A)‘ show thesis
using sum_over_set_bij by simp

qed
finally have (3 (A U {x},2)) = O (4,a)) + a(x)
by simp
} thus Vx € X-A. Y (A U {x},a) = . (A,a)) + a(x)
by simp
qed
end
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19 Monoid ZF.thy

theory Monoid_ZF imports func_ZF
begin

This theory provides basic facts about monoids.

19.1 Definition and basic properties

In this section we talk about monoids. The notion of a monoid is similar to
the notion of a semigroup except that we require the existence of a neutral
element. It is also similar to the notion of group except that we don’t require
existence of the inverse.

Monoid is a set G with an associative operation and a neutral element. The
operation is a function on G x G with values in G. In the context of ZF set
theory this means that it is a set of pairs (x,y), where x € Gx G and y € G.
In other words the operation is a certain subset of (G x G) x G. We express
all this by defing a predicate IsAmonoid(G,f). Here GG is the ”carrier” of the
group and f is the binary operation on it.

definition
IsAmonoid(G,f) =
f {is associative on} G A

(JecG. (V geG. ( (f({e,g)) = g) N (£({g,e)) = )))

The next locale called "monoid0” defines a context for theorems that concern
monoids. In this contex we assume that the pair (G, f) is a monoid. We will
use the @& symbol to denote the monoid operation (for no particular reason).

locale monoid0 =
fixes G
fixes f
assumes monoidAsssum: IsAmonoid(G,f)

fixes monoper (infixl & 70)
defines monoper_def [simpl: a @& b = f(a,b)

The result of the monoid operation is in the monoid (carrier).

lemma (in monoid0) groupO_1_L1:
assumes acG beG shows a®b € G
using assms monoidAsssum IsAmonoid_def IsAssociative_def apply_funtype
by auto

There is only one neutral element in a monoid.

lemma (in monoid0) groupO_1_L2: shows
Jle. ecG A (V geG. ( (eBg = g) A gbe = g))
proof
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fix ey
assume e € G A (VgeG. e D g=gAgDe=g
and y € GA (VgeG. y D g=gANgdy=g
then have y®e = y y®e = e by auto
thus e = y by simp
next from monoidAsssum show
Je. ee G A (V g€G. ePg = g A ghe = g)
using IsAmonoid_def by auto
qed

We could put the definition of neutral element anywhere, but it is only usable
in conjuction with the above lemma.

definition
TheNeutralElement (G,f) =
( THE e. e€G A (V g€G. fle,g) = g A f(g,e) = g))

The neutral element is neutral.

lemma (in monoid0) unit_is_neutral:
assumes Al: e = TheNeutralElement(G,f)
shows e € G A (VgeG. e P g=g A gde=g)
proof -

let n = THE b. be G A (V geG. bdbg = g A gbb = g)
have 3!b. be G A (V geG. bdg = g A gbb = g)
using groupO_1_L2 by simp
then have nc G A (V ge€G. ndg = g A gbn = g)
by (rule thel)
with Al show thesis
using TheNeutralElement_def by simp
qed
The monoid carrier is not empty.
lemma (in monoid0) groupO_1_L3A: shows G#O0
proof -
have TheNeutralElement(G,f) € G using unit_is_neutral
by simp
thus thesis by auto
qed

The range of the monoid operation is the whole monoid carrier.

lemma (in monoid0) groupO_1_L3B: shows range(f) = G
proof
from monoidAsssum have f : GXG—G
using IsAmonoid_def IsAssociative_def by simp
then show range(f) C G
using funcl_1_L5B by simp
show G C range(f)
proof
fix g assume Al: geG
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let e = TheNeutralElement (G, f)
from A1 have (e,g) € GXG g = f(e,g)
using unit_is_neutral by auto
with ‘f : GXG—G* show g € range(f)
using funcl_1_L5A by blast
qed
qed

Another way to state that the range of the monoid operation is the whole
monoid carrier.

lemma (in monoid0) range_carr: shows f(GxG) = G
using monoidAsssum IsAmonoid_def IsAssociative_def
groupO_1_L3B range_image_domain by auto

In a monoid any neutral element is the neutral element.

lemma (in monoidO) groupO_1_L4:
assumes Al: e € G A (VgeG. e P g=g A gde=g)
shows e = TheNeutralElement (G,f)
proof -
let n = THE b. be G A (V g€G. b®dg = g A gPb
have 3'b. be G A (V g€G. bPg = g A gbb = g)
using group0_1_L2 by simp
moreover note Al
ultimately have n = e by (rule the_equality2)
then show thesis using TheNeutralElement_def by simp
qed

=g)

The next lemma shows that if the if we restrict the monoid operation to a
subset of G that contains the neutral element, then the neutral element of
the monoid operation is also neutral with the restricted operation.

lemma (in monoid0) groupO_1_L5:
assumes Al: VxeH.VyeH. x®y € H
and A2: HCG
and A3: e = TheNeutralElement (G,f)
and A4: g = restrict(f,HxH)

and A5: ecH

and A6: heH

shows g(e,h) = h A g(h,e) = h
proof -

from A4 A6 A5 have
g(e,h) = edh A g(h,e) = hde
using restrict_if by simp
with A3 A4 A6 A2 show
g(e,h) = h A glh,e) =h
using wunit_is_neutral by auto
qed

The next theorem shows that if the monoid operation is closed on a subset
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of G then this set is a (sub)monoid (although we do not define this notion).
This fact will be useful when we study subgroups.

theorem (in monoid0) groupO_1_T1:
assumes Al: H {is closed under} f
and A2: HCG
and A3: TheNeutralElement(G,f) € H
shows IsAmonoid(H,restrict(f,HxH))

proof -
let g = restrict(f,HxH)
let e = TheNeutralElement (G,f)

from monoidAsssum have f € GXG—G
using IsAmonoid_def IsAssociative_def by simp
moreover from A2 have HxH C GxG by auto
moreover from Al have Vp € HxH. f(p) € H
using IsOpClosed_def by auto
ultimately have g € HxH—H
using funcl_2_L4 by simp
moreover have VxcH.Vy€cH.Vz€eH.
gle(x,y) »2) = glx,g(y,z))
proof -
from A1 have VxeH.VyecH.VzeH.
glg(x,y),2) = xOydz
using IsOpClosed_def restrict_if by simp
moreover have VxcH.VycH.VzcH. x@ydz = xB(yPz)
proof -
from monoidAsssum have
Vx€G.VyeG.VzeG. xPydz = xP(ydz)
using IsAmonoid_def IsAssociative_def
by simp
with A2 show thesis by auto
qed
moreover from Al have
VxeH.VyeH.VzeH. x®(ydz) = g( x,g(y,z) )
using IsOpClosed_def restrict_if by simp
ultimately show thesis by simp
qed
moreover have
dneH. (VheH. g(n,h) = h A g(h,n) = h)
proof -
from Al have VxeH.VyeH. x®y € H
using IsOpClosed_def by simp
with A2 A3 have
V heH. gle,h) = h A glh,e) = h
using groupO_1_L5 by blast
with A3 show thesis by auto
qed
ultimately show thesis using IsAmonoid_def IsAssociative_def
by simp
qed
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Under the assumptions of group0_1_T1 the neutral element of a submonoid
is the same as that of the monoid.

lemma group0_1_L6:
assumes Al: IsAmonoid(G,f)
and A2: H {is closed under} f
and A3: HCG
and A4: TheNeutralElement(G,f) € H
shows TheNeutralElement (H,restrict(f,HxH)) = TheNeutralElement(G,f)
proof -
let e = TheNeutralElement (G,f)
let g = restrict(f,HxH)
from assms have monoid0(H,g)
using monoidO_def monoid0.groupO_1_T1
by simp
moreover have
e € HA (VheH. g(e,h) = h A g(h,e) = h)
proof -
{ fix h assume h € H
with assms have
monoid0(G,f) VxeH.VyeH. f(x,y) €
HCG e = TheNeutralElement(G,f) g
ecH heH
using monoidO_def IsOpClosed_def by auto
then have g(e,h) = h A g(h,e) = h
by (rule monoidO.groupO_1_L5)
} hence VheH. g(e,h) = h A g(h,e) = h by simp
with A4 show thesis by simp
qed
ultimately have e = TheNeutralElement(H,g)
by (rule monoidO.groupO_1_L4)
thus thesis by simp
qed

H
= restrict (f,HxH)

If a sum of two elements is not zero, then at least one has to be nonzero.

lemma (in monoid0) sum_nonzero_elmnt_nonzero:
assumes a @ b # TheNeutralElement(G,f)
shows a # TheNeutralElement(G,f) V b # TheNeutralElement (G,f)
using assms unit_is_neutral by auto

end
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20 Group_ZF.thy

theory Group_ZF imports Monoid_ZF
begin

This theory file covers basics of group theory.

20.1 Definition and basic properties of groups

In this section we define the notion of a group and set up the notation for
discussing groups. We prove some basic theorems about groups.

To define a group we take a monoid and add a requirement that the right
inverse needs to exist for every element of the group.

definition
IsAgroup(G,f) =
(IsAmonoid(G,f) A (VgeG. IbeG. f(g,b) = TheNeutralElement(G,f)))

We define the group inverse as the set {(z,y) € G x G : x -y = e}, where
e is the neutral element of the group. This set (which can be written as
(-)7'{e}) is a certain relation on the group (carrier). Since, as we show
later, for every & € G there is exactly one y € G such that z -y = e this
relation is in fact a function from G to G.

definition
GroupInv(G,f) = {(x,y) € GxG. f(x,y) = TheNeutralElement(G,f)}

We will use the miltiplicative notation for groups. The neutral element is
denoted 1.

locale group0 =
fixes G
fixes P
assumes groupAssum: IsAgroup(G,P)

fixes neut (1)
defines neut_def [simp]: 1 = TheNeutralElement(G,P)

fixes groper (infixl - 70)
defines groper_def[simp]: a - b = P(a,b)

fixes inv (_7' [90] 91)
defines inv_def[simp]l: x ! = GroupInv(G,P) (x)

First we show a lemma that says that we can use theorems proven in the
monoid0 context (locale).

lemma (in group0) groupO_2_L1: shows monoid0(G,P)
using groupAssum IsAgroup_def monoidO_def by simp
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In some strange cases Isabelle has difficulties with applying the definition of
a group. The next lemma defines a rule to be applied in such cases.

lemma definition_of_group: assumes IsAmonoid(G,f)
and VgeG. IbeG. f(g,b) = TheNeutralElement(G,f)
shows IsAgroup(G,f)
using assms IsAgroup_def by simp

A technical lemma that allows to use 1 as the neutral element of the group
without referencing a list of lemmas and definitions.

lemma (in group0) groupO_2_L2:
shows 1€G A (VgeG.(1.g =g A gl = g))
using group0_2_L1 monoid0.unit_is_neutral by simp

The group is closed under the group operation. Used all the time, useful to
have handy.

lemma (in group0) group_op_closed: assumes ac€G beG
shows a'b € G using assms group0_2_L1 monoid0.groupO_1_L1
by simp

The group operation is associative. This is another technical lemma that
allows to shorten the list of referenced lemmas in some proofs.

lemma (in group0) group_oper_assoc:
assumes acG beG ceG shows a-(b.c) = ab-c
using groupAssum assms IsAgroup_def IsAmonoid_def
IsAssociative_def group_op_closed by simp

The group operation maps G x G into G. It is conveniet to have this fact
easily accessible in the group0 context.

lemma (in group0) group_oper_assocA: shows P : GXG—G
using groupAssum IsAgroup_def IsAmonoid_def IsAssociative_def
by simp

The definition of a group requires the existence of the right inverse. We
show that this is also the left inverse.

theorem (in group0) groupO_2_T1:
assumes Al: geG and A2: beG and A3: gb =1
shows b-g = 1
proof -
from A2 groupAssum obtain ¢ where I: ¢ € G A b.c =1
using IsAgroup_def by auto
then have ceG by simp
have 1€G using group0_2_L2 by simp
with A1 A2 I have b.g = b-(g-(bc))
using group_op_closed groupO_2_L2 group_oper_assoc
by simp
also from A1l A2 ‘ceG‘ have b-(g-(b-c)) = b-(gb-c)
using group_oper_assoc by simp
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also from A3 A2 I have b-(g'b-c)= 1 using group0_2_L2 by simp
finally show b-g = 1 by simp
qed

For every element of a group there is only one inverse.

lemma (in group0) groupO_2_L4:
assumes Al: x€G shows Jly. yeG A xy =1
proof
from Al groupAssum show dy. yeG A xy =1
using IsAgroup_def by auto
fix yn
assume A2: yeG A xy = 1 and A3:n€G A xn = 1 show y=n
proof -
from A1 A2 have Ti: yx =1
using group0_2_T1 by simp
from A2 A3 have y = y-(xn)
using group0_2_L2 by simp

also from A1 A2 A3 have ... = (y:x)n
using group_oper_assoc by blast
also from T1 A3 have ... = n

using group0_2_L2 by simp
finally show y=n by simp
qed
qed

The group inverse is a function that maps G into G.

theorem group0_2_T2:
assumes Al: IsAgroup(G,f) shows GroupInv(G,f) : G—G
proof -
have GroupInv(G,f) C GXG using GroupInv_def by auto
moreover from A1l have
VxeG. Ily. yeG A (x,y) € GroupInv(G,f)
using group0_def groupO.group0_2_L4 GroupInv_def by simp
ultimately show thesis using funcl_1_L11 by simp
qed

We can think about the group inverse (the function) as the inverse image of
the neutral element. Recall that in Isabelle £-(A) denotes the inverse image
of the set A.

theorem (in group0) group0_2_T3: shows P-{1} = GroupInv(G,P)
proof -
from groupAssum have P : GXG — G
using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp
then show P-{1} = GroupInv(G,P)
using funcl_1_L14 GroupInv_def by auto
qed

The inverse is in the group.
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lemma (in group0O) inverse_in_group: assumes Al: x€G shows x 1€G
proof -
from groupAssum have GroupInv(G,P) : G—G using group0_2_T2 by simp
with A1 show thesis using apply_type by simp
qed

The notation for the inverse means what it is supposed to mean.

lemma (in group0) groupO_2_L6:
assumes Al: x€G shows xx 1 =1 A xlx =1
proof
from groupAssum have GroupInv(G,P) : G—G
using group0_2_T2 by simp
with A1 have (x,x7!) € GroupInv(G,P)
using apply_Pair by simp
then show x-x~! = 1 using GroupInv_def by simp
with A1 show x !'x = 1 using inverse_in_group groupO_2_T1
by blast
qed

The next two lemmas state that unless we multiply by the neutral element,
the result is always different than any of the operands.

lemma (in group0) groupO_2_L7:
assumes Al: a€G and A2: beG and A3: ab = a
shows b=1
proof -
from A3 have a=! - (ab) = a~'-a by simp
with A1 A2 show thesis using
inverse_in_group group_oper_assoc groupO_2_L6 groupO_2_L2
by simp
qed

See the comment to group0_2_L7.

lemma (in group0) groupO_2_L8:
assumes Al: acG and A2: beG and A3: ab =b
shows a=1
proof -
from A3 have (ab)-b~! = bb~! by simp
with A1 A2 have a-(b-b™!) = bb~! using
inverse_in_group group_oper_assoc by simp
with Al A2 show thesis
using group0_2_L6 group0_2_L2 by simp
qed

The inverse of the neutral element is the neutral element.

lemma (in group0) group_inv_of_one: shows 17! = 1
using group0_2_L2 inverse_in_group groupO_2_L6 group0_2_L7 by blast

if a=! =1, then a = 1.
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lemma (in group0) groupO_2_L8A:
assumes Al: acG and A2: a=! =1
shows a =1
proof -
from Al have a:a™" = 1 using group0_2_L6 by simp
with A1 A2 show a = 1 using group0_2_L2 by simp
qed

1

If a is not a unit, then its inverse is not a unit either.

lemma (in group0) groupO_2_L8B:
assumes acG and a # 1
shows a=! # 1 using assms group0_2_L8A by auto

If a=! is not a unit, then a is not a unit either.

lemma (in group0) groupO_2_L8C:
assumes acG and a=! # 1
shows a#1
using assms groupO_2_L8A group_inv_of_one by auto

If a product of two elements of a group is equal to the neutral element then
they are inverses of each other.

lemma (in group0) groupO_2_L9:
assumes Al: acG and A2: beG and A3: ab =1
shows a = b~! and b = a~!
proof -
from A3 have a-bb™! = 1.b~! by simp
with A1 A2 have a-(b-b~!) = 1.b~! using
inverse_in_group group_oper_assoc by simp
with A1 A2 show a = b~! using
group0_2_L6 inverse_in_group groupO_2_L2 by simp
from A3 have a~!-(ab) = a=!-1 by simp
with A1 A2 show b = a~! using
inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2
by simp
qed

It happens quite often that we know what is (have a meta-function for) the
right inverse in a group. The next lemma shows that the value of the group
inverse (function) is equal to the right inverse (meta-function).

lemma (in group0) groupO_2_L9A:
assumes Al: VgeG. b(g) € G A gb(g) =1
shows VgeG. b(g) = g !
proof
fix g assume geG
moreover from Al ‘geG‘ have b(g) € G by simp
moreover from Al ‘geG‘ have gb(g) = 1 by simp
ultimately show b(g) = g~ by (rule group0_2_L9)
qed
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What is the inverse of a product?

lemma (in group0) group_inv_of_two:
assumes Al: acG and A2: beG
shows b la! = (ab)!
proof -
from A1 A2 have
b 'eG a'eG abeG b laleG
using inverse_in_group group_op_closed
by auto
from A1 A2 ‘b la”! € G* have ab (b ta”!) = a(b-(b"la™!))
using group_oper_assoc by simp
moreover from A2 ‘b~'€G‘ ‘a='€G‘ have b-(b~l.a™!) = bb la™!
using group_oper_assoc by simp
moreover from A2 ‘a='€G‘ have bb~la™! = a7!
using group0_2_L6 group0_2_L2 by simp
ultimately have ab-(b~'a™!) = aa™!
by simp
with A1 have ab-(b~ta=!) =1
using group0_2_L6 by simp
with ‘ab € G¢ ‘b ta™! € G° show b ta! = (ab)~!
using group0_2_L9 by simp
qed

What is the inverse of a product of three elements?

lemma (in group0) group_inv_of_three:
assumes Al: acG beG ceG

shows
(abc)”™! = ¢l (ab)!
(abc) ! = ¢c (v ta™h)

(abc)”! = ¢ lptat
proof -
from A1 have T:
abeG alte6 blec clega
using group_op_closed inverse_in_group by auto
with A1 show
(abc)! = c7l(ab)7! and (abc)~! = c (b tal)
using group_inv_of_two by auto
with T show (ab-c)™! = ¢ !-b~l.a”! using group_oper_assoc
by simp
qed

The inverse of the inverse is the element.

lemma (in group0) group_inv_of_inv:
assumes acG shows a = (a=!)7!
using assms inverse_in_group groupO_2_L6 groupO_2_L9
by simp
Group inverse is nilpotent, therefore a bijection and involution.

lemma (in group0) group_inv_bij:
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shows GroupInv(G,P) 0 GroupInv(G,P) = id(G) and GroupInv(G,P) € bij(G,G)
and
GroupInv(G,P) = converse(GroupInv(G,P))
proof -
have I: GroupInv(G,P): G—G using groupAssum groupO_2_T2 by simp
then have GroupInv(G,P) 0 GroupInv(G,P): G—G and id(G):G—G
using comp_fun id_type by auto
moreover
{ fix g assume geG
with I have (GroupInv(G,P) 0 GroupInv(G,P))(g) = id(G) (g)
using comp_fun_apply group_inv_of_inv id_conv by simp
} hence VgeG. (GroupInv(G,P) 0 GroupInv(G,P))(g) = id(G)(g) by simp
ultimately show GroupInv(G,P) 0 GroupInv(G,P) = id(G)
by (rule func_eq)
with I show GroupInv(G,P) € bij(G,G) using nilpotent_imp_bijective
by simp
with ‘GroupInv(G,P) 0 GroupInv(G,P) = id(G)‘ show
GroupInv(G,P) = converse(GroupInv(G,P)) using comp_id_conv by simp
qed

For the group inverse the image is the same as inverse image.

lemma (in group0) inv_image_vimage: shows GroupInv(G,P) (V) = GroupInv(G,P)-(V)
using group_inv_bij vimage_converse by simp

If the unit is in a set then it is in the inverse of that set.

lemma (in group0) neut_inv_neut: assumes ACG and 1€A
shows 1 € GroupInv(G,P) (4)
proof -
have GroupInv(G,P):G—G using groupAssum groupO0_2_T2 by simp
with assms have 17! € GroupInv(G,P)(A) using func_imagedef by auto
then show thesis using group_inv_of_one by simp
qed

The group inverse is onto.

lemma (in group0) group_inv_surj: shows GroupInv(G,P)(G) = G
using group_inv_bij bij_def surj_range_image_domain by auto

Ifa=!-b=1, then a = b.

lemma (in group0) groupO_2_L11:

assumes Al: acG beG and A2: a~!b =1

shows a=b
proof -

from A1 A2 have a=! € G beG a'b =1

using inverse_in_group by auto

then have b = (a=!)~! by (rule group0_2_L9)

with Al show a=b using group_inv_of_inv by simp
qed

Ifa-b=' =1, then a = b.
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lemma (in group0) groupO_2_L11A:

assumes Al: ac€G beG and A2: ab ! =1

shows a=b
proof -

from A1 A2 have a € G b 'eG ab ! =1

using inverse_in_group by auto

then have a = (b~!)~! by (rule group0_2_L9)

with Al show a=b using group_inv_of_inv by simp
qed

If if the inverse of b is different than a, then the inverse of a is different than
b.

lemma (in group0) group0_2_L11B:
assumes Al: acG and A2: b~! # a
shows a=! # b
proof -
{ assume a=! = b
then have (a=!)~! = b~! by simp
with A1 A2 have False using group_inv_of_inv
by simp
} then show a=! # b by auto
qed

What is the inverse of ab—! ?

lemma (in group0) groupO_2_L12:
assumes Al: acG beG

shows

(ab 1)1 = pa!

(a7 ') ! =bla
proof -

from A1 have
(@bt =@ Htatland (atb)t =pt(a !
using inverse_in_group group_inv_of_two by auto
with A1 show (ab ") ! =ba! (a'b)™' =bla
using group_inv_of_inv by auto
qed

A couple useful rearrangements with three elements: we can insert a b - b~!
between two group elements (another version) and one about a product of
an element and inverse of a product, and two others.

lemma (in group0) groupO_2_L14A:
assumes Al: acG beG ceG
shows
a-c = (ab 1) -(b-c™h)
a lc = (alb)-(b~tc)
a-(bc) ! = aclp?
a-(b-c!) = abc!
(ab lc™)~ ! = cba!
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abc l(cb™l) = a
a-(b-c)-c™! = ab
proof -

from A1 have T:
al € ¢ v leG clea
a'lbeG ableG abeg
cb! €G bceG
using inverse_in_group group_op_closed

by auto

from A1 T have
ac! = a( 'b)c!
atlc= al@®bc

using group0_2_L2 group0_2_L6 by auto
with A1 T show
acl= (ab 1) (bch)
a—lc = (a''b)-(b7l0c)
using group_oper_assoc by auto
from A1 have a-(b-c)~! = a:-(c1b 1)
using group_inv_of_two by simp
with A1 T show a-(b-c)~! =a-c tb~!
using group_oper_assoc by simp
from A1 T show a-(b-c™!) = ab-c™!
using group_oper_assoc by simp
from A1 T show (ab l.c™!)~! = cba!
using group_inv_of_three group_inv_of_inv
by simp
from T have a-b-c™!-(cb™!) = ab-(c!-(cb1))
using group_oper_assoc by simp

also from A1 T have ... = abb!
using group_oper_assoc groupO_2_L6 groupO_2_L2
by simp

also from A1 T have ... = a-(b-b™ 1)
using group_oper_assoc by simp

also from A1 have ... = a

using group0_2_L6 group0_2_L2 by simp
finally show ab-c™!-(c:b™!) = a by simp
from A1 T have a-(b-c)-c™! = a-(b-(cc™!))
using group_oper_assoc by simp
also from A1 T have ... = ab
using group0_2_L6 group0_2_L2 by simp
finally show a-(b-c).:¢c™! = ab
by simp
qed

Another lemma about rearranging a product of four group elements.

lemma (in group0) groupO_2_L15:

assumes Al: acG beG ceG deG

shows (a-b)-(c-d)~! = a-(b-d"1-a ! (ac™!)
proof -
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from A1 have T1:
d~'eG c'eG abeG a-(b-d"1)eG
using inverse_in_group group_op_closed
by auto

with A1 have (a:b)-(c-:d)™! = (ab)-(d7'c™)
using group_inv_of_two by simp

also from A1 T1 have ... = a-(b-d™1).c!
using group_oper_assoc by simp
also from A1 T1 have ... = a-(b-d"1-a"l-(ac™D)

using groupO_2_L14A by blast
finally show thesis by simp
qed

We can cancel an element with its inverse that is written next to it.

lemma (in group0) inv_cancel_two:
assumes Al: acG beG
shows
ab lb =
abb ! =
a~l-(ab)
a-(a”1-b)
proof -
from A1 have
ab !b=a( b)) abb!=a(bb !
al(ab) =alab a(alb) =aaldb
using inverse_in_group group_oper_assoc by auto
with A1l show
ab b =
abb ! =
a~!.(ab) b
a-(a~tb) b
using group0_2_L6 group0_2_L2 by auto
qed

nhp

b
b

e

Another lemma about cancelling with two group elements.

lemma (in group0) groupO_2_L16A:
assumes Al: acG beG
shows a-(b-a) ™! = b~!
proof -
from A1 have (b-a)~! =alb! b lea
using group_inv_of_two inverse_in_group by auto
with A1 show a-(b-a) ™! = b~! using inv_cancel_two
by simp
qed

Adding a neutral element to a set that is closed under the group operation
results in a set that is closed under the group operation.

lemma (in group0) group0_2_L17:
assumes HCG
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and H {is closed under} P
shows (H U {1}) {is closed under} P
using assms IsOpClosed_def group0_2_L2 by auto

We can put an element on the other side of an equation.

lemma (in group0) group0_2_L18:
assumes Al: acG beG ceG
and A2: c = ab
shows cb™' =a alc=5b
proof-
from A2 Al have cb™! = a(bb ') alc=(ala)b
using inverse_in_group group_oper_assoc by auto
moreover from Al have a-(bb™!) =a (ala)b=">
using group0_2_L6 group0_2_L2 by auto
ultimately show c¢b™' =a alc=0»
by auto
qed

Multiplying different group elements by the same factor results in different
group elements.

lemma (in group0) group0_2_L19:
assumes Al: acG beG ceG and A2: a#b
shows a:c # b-c and c-a # cb
proof -
{ assume a-c = b.c V ca =cb
then have a.c-:c™! = bccc™! V ¢! (ca) = ¢ t-(cb)
by auto
with A1 A2 have False using inv_cancel_two by simp
} then show a-c # bc and c-a # cb by auto
qed

20.2 Subgroups

There are two common ways to define subgroups. One requires that the
group operation is closed in the subgroup. The second one defines subgroup
as a subset of a group which is itself a group under the group operations.
We use the second approach because it results in shorter definition.

The rest of this section is devoted to proving the equivalence of these two
definitions of the notion of a subgroup.

A pair (H, P) is a subgroup if H forms a group with the operation P re-
stricted to H x H. It may be surprising that we don’t require H to be a
subset of G. This however can be inferred from the definition if the pair
(G, P) is a group, see lemma group0_3_L2.

definition
IsAsubgroup(H,P) = IsAgroup(H, restrict(P,HxH))
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Formally the group operation in a subgroup is different than in the group as
they have different domains. Of course we want to use the original operation
with the associated notation in the subgroup. The next couple of lemmas
will allow for that.

The next lemma states that the neutral element of a subgroup is in the
subgroup and it is both right and left neutral there. The notation is very
ugly because we don’t want to introduce a separate notation for the subgroup
operation.

lemma group0_3_L1:
assumes Al: IsAsubgroup(H,f)
and A2: n = TheNeutralElement (H,restrict(f,HxH))
shows n € H
VheH. restrict(f,HxH)(n,h ) = h
VheH. restrict(f,HxH)(h,n) = h
proof -
let b = restrict(f,HxH)
let e = TheNeutralElement (H,restrict(f,HxH))
from A1 have groupO(H,b)
using IsAsubgroup_def groupO_def by simp
then have I:
e € HA (VheH. (b{e,h ) = h A bh,e) = h))
by (rule groupO.group0_2_L2)
with A2 show n € H by simp
from A2 I show VheH. b(n,h) = h and VheH. bth,n) = h
by auto
qed

A subgroup is contained in the group.

lemma (in group0) groupO_3_L2:
assumes Al: IsAsubgroup(H,P)
shows H C G
proof
fix h assume heH
let b = restrict(P,HxH)
let n = TheNeutralElement (H,restrict(P,HxH))
from A1l have b € HxH—H
using IsAsubgroup_def IsAgroup_def
IsAmonoid_def IsAssociative_def by simp
moreover from Al ‘heH¢ have ( n,h) € HxH
using group0_3_L1 by simp
moreover from Al ‘h€H‘ have h = b(n,h )
using group0_3_L1 by simp
ultimately have ((n,h),h) € b
using funci_1_L5A by blast
then have ((n,h),h) € P using restrict_subset by auto
moreover from groupAssum have P:GXG—G
using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp
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ultimately show heG using funcl_1_L5
by blast
qed

The group’s neutral element (denoted 1 in the group0 context) is a neutral
element for the subgroup with respect to the group action.

lemma (in group0) groupO_3_L3:
assumes IsAsubgroup(H,P)
shows VheH. 1'h = h A h-1l = h
using assms groupAssum groupO_3_L2 group0_2_L2
by auto

The neutral element of a subgroup is the same as that of the group.

lemma (in group0) groupO_3_L4: assumes Al: IsAsubgroup(H,P)
shows TheNeutralElement (H,restrict(P,HxH)) =1
proof -
let n = TheNeutralElement (H,restrict(P,HxH))
from A1 have n € H using group0_3_L1 by simp
with groupAssum A1 have neG using group0_3_L2 by auto
with Al ‘n € H‘ show thesis using
group0_3_L1 restrict_if group0_2_L7 by simp
qed

The neutral element of the group (denoted 1 in the group0 context) belongs
to every subgroup.

lemma (in group0) groupO_3_L5: assumes Al: IsAsubgroup(H,P)
shows 1 € H
proof -
from A1 show 1€H using group0_3_L1 group0_3_L4
by fast
qed

Subgroups are closed with respect to the group operation.

lemma (in group0) groupO_3_L6: assumes Al: IsAsubgroup(H,P)
and A2: acH beH
shows ab € H
proof -
let £ = restrict(P,HxH)
from A1 have monoidO(H,f) using
IsAsubgroup_def IsAgroup_def monoidO_def by simp
with A2 have f ((a,b)) € H using monoid0.groupO_1_L1
by blast
with A2 show a-b € H using restrict_if by simp
qed

A preliminary lemma that we need to show that taking the inverse in the
subgroup is the same as taking the inverse in the group.

lemma group0_3_L7A:
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assumes Al: IsAgroup(G,f)
and A2: IsAsubgroup(H,f) and A3: g = restrict(f,HxH)
shows GroupInv(G,f) N HxH = GroupInv(H,g)
proof -
let e = TheNeutralElement(G,f)
let e; = TheNeutralElement (H,g)
from A1 have group0(G,f) using groupO_def by simp
from A2 A3 have groupO(H,g)
using IsAsubgroup_def groupO_def by simp
from ‘group0(G,f)‘ A2 A3 have GroupInv(G,f) = f-{e1}
using group0.group0_3_L4 groupO.group0_2_T3
by simp
moreover have g-{e;} = f-{e;} N HxH
proof -
from A1 have f € GxG—G
using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp
moreover from A2 ‘group0(G,f)‘ have HxH C GXG
using group0.group0_3_L2 by auto
ultimately show g-{e;} = f-{e;} N HxH
using A3 funcli_2_L1 by simp
qed
moreover from A3 ‘groupO(H,g) ¢ have GroupInv(H,g) = g-{ei}
using group0.group0_2_T3 by simp
ultimately show thesis by simp
qed

Using the lemma above we can show the actual statement: taking the inverse
in the subgroup is the same as taking the inverse in the group.

theorem (in group0) groupO_3_T1:
assumes Al: IsAsubgroup(H,P)
and A2: g = restrict(P,HxH)
shows GroupInv(H,g) = restrict(GroupInv(G,P),H)
proof -
from groupAssum have GroupInv(G,P) : G—G
using group0_2_T2 by simp
moreover from Al A2 have GroupInv(H,g) : H—H
using IsAsubgroup_def groupO_2_T2 by simp
moreover from Al have H C G
using group0_3_L2 by simp
moreover from groupAssum Al A2 have
GroupInv(G,P) N HxH = GroupInv(H,g)
using group0_3_L7A by simp
ultimately show thesis
using funcl_2_L3 by simp
qed

A sligtly weaker, but more convenient in applications, reformulation of the
above theorem.
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theorem (in group0) group0_3_T2:
assumes IsAsubgroup(H,P)
and g = restrict(P,HxH)
shows VheH. GroupInv(H,g)(h) = h™!
using assms group0_3_T1 restrict_if by simp

Subgroups are closed with respect to taking the group inverse.

theorem (in group0) groupO_3_T3A:
assumes Al: IsAsubgroup(H,P) and A2: heH
shows h=le H
proof -
let g = restrict(P,HxH)
from A1 have GroupInv(H,g) € H—H
using IsAsubgroup_def group0_2_T2 by simp
with A2 have GroupInv(H,g)(h) € H
using apply_type by simp
with A1 A2 show h~'€ H using group0_3_T2 by simp
qed

The next theorem states that a nonempty subset of a group G that is closed
under the group operation and taking the inverse is a subgroup of the group.

theorem (in group0) group0_3_T3:
assumes Al: H#0
and A2: HCG
and A3: H {is closed under} P
and A4: VxeH. x! € H
shows IsAsubgroup(H,P)
proof -
let g = restrict(P,HxH)
let n = TheNeutralElement(H,g)
from A3 have I: VxeH.VyeH. xy € H
using IsOpClosed_def by simp
from A1 obtain x where x€H by auto
with A4 I A2 have 1€H
using group0_2_L6 by blast
with A3 A2 have T2: IsAmonoid(H,g)
using group0_2_L1 monoid0.groupO_1_T1
by simp
moreover have YheH.3beH. g(h,b) = n
proof
fix h assume heH
with A4 A2 have h-h™! =1
using group0_2_L6 by auto
moreover from groupAssum A2 A3 ‘1€H‘ have 1 = n
using IsAgroup_def groupO_1_L6 by auto
moreover from A4 ‘heH‘ have g(h,h™!) = h-h™!
using restrict_if by simp
ultimately have g(h,h™!) = n by simp
with A4 ‘heH‘ show JbeH. g(h,b) = n by auto
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qed
ultimately show IsAsubgroup(H,P) using
IsAsubgroup_def IsAgroup_def by simp
qed

Intersection of subgroups is a subgroup.

lemma group0_3_L7:
assumes Al: IsAgroup(G,f)
and A2: IsAsubgroup(H;,f)
and A3: IsAsubgroup(Hs,f)
shows IsAsubgroup(H;NHy,restrict(f,H;xH;))
proof -
let e = TheNeutralElement(G,f)
let g = restrict(f,H;xH;)
from A1 have I: groupO(G,f)
using groupO_def by simp
from A2 have groupO(H;,g)
using IsAsubgroup_def groupO_def by simp
moreover have HiNHy # 0
proof -
from A1 A2 A3 have e € Hi{NHy
using groupO_def groupO.group0_3_L5 by simp
thus thesis by auto
qed
moreover have HiNHy C H; by auto
moreover from A2 A3 I ‘HiNHy; C H; ¢ have
HiNHy {is closed under} g
using group0.group0_3_L6 IsOpClosed_def
func_ZF_4_L7 func_ZF_4_L5 by simp
moreover from A2 A3 I have
Vx € HiNHy. GroupInv(H;,g) (x) € HiNHy
using group0.group0_3_T2 groupl.group0_3_T3A
by simp
ultimately show thesis
using group0.group0_3_T3 by simp
qed

The range of the subgroup operation is the whole subgroup.

lemma image_subgr_op: assumes Al: IsAsubgroup(H,P)
shows restrict(P,HxH) (HxH) = H
proof -
from A1 have monoidO(H,restrict(P,HxH))
using IsAsubgroup_def IsAgroup_def monoidO_def
by simp
then show thesis by (rule monoid0.range_carr)
qed

If we restrict the inverse to a subgroup, then the restricted inverse is onto
the subgroup.
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lemma (in group0) restr_inv_onto: assumes Al: IsAsubgroup(H,P)
shows restrict(GroupInv(G,P),H)(H) = H
proof -
from A1 have GroupInv(H,restrict(P,HxH)) (H) = H
using IsAsubgroup_def groupO_def groupO.group_inv_surj
by simp
with Al show thesis using group0_3_T1 by simp
qed

end
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21 Group_ZF _1.thy

theory Group_ZF_1 imports Group_ZF
begin

In this theory we consider right and left translations and odd functions.

21.1 Translations

In this section we consider translations. Translations are maps T : G — G
of the form Ty(a) = g-a or Ty(a) = a - g. We also consider two-dimensional
translations Ty : G x G — G x G, where Ty(a,b) = (a-g,b- g) or Ty(a,b) =
(9-a,g-b).

For an element a € G the right translation is defined a function (set of pairs)
such that its value (the second element of a pair) is the value of the group
operation on the first element of the pair and g. This looks a bit strange in
the raw set notation, when we write a function explicitely as a set of pairs
and value of the group operation on the pair (a,b) as P(a,b) instead of the
usual infix a - b or a + b.

definition
RightTranslation(G,P,g) = {( a,b) € GxG. P(a,g) = b}

A similar definition of the left translation.

definition
LeftTranslation(G,P,g) = {(a,b) € GXG. P(g,a) = b}

Translations map G into G. Two dimensional translations map G x G into
itself.

lemma (in group0) groupO_5_L1: assumes Al: geG
shows RightTranslation(G,P,g) : G—G and LeftTranslation(G,P,g)
G—G
proof -
from Al have VacG. ag € G and VacG. ga € G
using group_oper_assocA apply_funtype by auto
then show
RightTranslation(G,P,g) : G—G
LeftTranslation(G,P,g) : G—G
using RightTranslation_def LeftTranslation_def funcl_1_L11A
by auto
qed

The values of the translations are what we expect.

lemma (in group0) groupO_5_L2: assumes gcG acG
shows
RightTranslation(G,P,g)(a) = ag
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LeftTranslation(G,P,g) (a) = ga
using assms groupO_5_L1 RightTranslation_def LeftTranslation_def
funcl_1_L11B by auto

Composition of left translations is a left translation by the product.

lemma (in group0) groupO_5_L4: assumes Al: ge€G heG acG and
A2: T, = LeftTranslation(G,P,g) T, = LeftTranslation(G,P,h)
shows

T4(Th(a)) = gha
Ty(Tp(a)) = LeftTranslation(G,P,g-h)(a)
proof -

from A1 have I: h-acG gheG

using group_oper_assocA apply_funtype by auto
with A1 A2 show T,(T,(a)) = gha

using group0_5_L2 group_oper_assoc by simp
with A1 A2 T show

T¢(Tp(a)) = LeftTranslation(G,P,gh) (a)

using groupO_5_L2 group_oper_assoc by simp

qed

Composition of right translations is a right translation by the product.

lemma (in group0) groupO_5_L5: assumes Al: geG heG acG and
A2: T, = RightTranslation(G,P,g) T, = RightTranslation(G,P,h)
shows
T4(Tp(a)) = ahg
T,(Tn(a)) = RightTranslation(G,P,h-g) (a)
proof -
from A1 have I: a-heG h-g €G
using group_oper_assocA apply_funtype by auto
with A1 A2 show T,(T,(a)) = ahg
using group0_5_L2 group_oper_assoc by simp
with A1 A2 I show
T4(Tp(a)) = RightTranslation(G,P,h-g)(a)
using groupO0_5_L2 group_oper_assoc by simp
qed

Point free version of group0_5_L4 and groupO_5_L5.

lemma (in group0) trans_comp: assumes g€G heG shows
RightTranslation(G,P,g) 0 RightTranslation(G,P,h) = RightTranslation(G,P,h-g)
LeftTranslation(G,P,g) 0 LeftTranslation(G,P,h) = LeftTranslation(G,P,gh)
proof -
let T, = RightTranslation(G,P,g)
let T, RightTranslation(G,P,h)
from assms have T,:6—G and Tj,:G—G
using group0_5_L1 by auto
then have T, 0 Tj,:G—G using comp_fun by simp
moreover from assms have RightTranslation(G,P,h-g):G—G
using group_op_closed group0_5_L1 by simp
moreover from assms ‘T, :G—G‘ have
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VacG. (T, 0 Tp)(a) = RightTranslation(G,P,h-g) (a)
using comp_fun_apply groupO_5_L5 by simp
ultimately show T, 0 T, = RightTranslation(G,P,h-g)
by (rule func_eq)
next
let T, = LeftTranslation(G,P,g)
let T;, = LeftTranslation(G,P,h)
from assms have T,:G—G and Tj,:G—G
using group0_5_L1 by auto
then have T, 0 T,:G—G using comp_fun by simp
moreover from assms have LeftTranslation(G,P,gh):G—G
using group_op_closed group0_5_L1 by simp
moreover from assms ‘T, :G—G‘ have
VacG. (T, 0 Tp)(a) = LeftTranslation(G,P,g-h) (a)
using comp_fun_apply groupO_5_L4 by simp
ultimately show T, 0 T, = LeftTranslation(G,P,gh)
by (rule func_eq)
qed

The image of a set under a composition of translations is the same as the
image under translation by a product.

lemma (in group0) trans_comp_image: assumes Al: g€G heG and
A2: T, = LeftTranslation(G,P,g) T, = LeftTranslation(G,P,h)
shows T,(T,(A)) = LeftTranslation(G,P,gh) (A)
proof -
from A2 have T,(T,(A)) = (T, 0 Tp) (A)
using image_comp by simp
with assms show thesis using trans_comp by simp
qed

Another form of the image of a set under a composition of translations

lemma (in group0) groupO_5_L6:
assumes Al: g€G heG and A2: ACG and
A3: T, = RightTranslation(G,P,g) T, = RightTranslation(G,P,h)
shows T,(T,(A)) = {a-h-.g. acA}
proof -
from A2 have VacA. acG by auto
from A1 A3 have T, : G=G T, : G—=G
using groupO_5_L1 by auto
with assms ‘Va€cA. acG‘ show
Tg(Tp(A)) = {a'h-g. acA}
using funcl_1_L15C groupO_5_L5 by auto
qed

The translation by neutral element is the identity on group.

lemma (in group0) trans_neutral: shows
RightTranslation(G,P,1) = id(G) and LeftTranslation(G,P,1) = id(G)
proof -
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have RightTranslation(G,P,1):G—G and Va&cG. RightTranslation(G,P,1) (a)
= a
using group0_2_L2 group0_5_L1 group0_5_L2 by auto
then show RightTranslation(G,P,1) = id(G) by (rule indentity_fun)
have LeftTranslation(G,P,1):G—G and VaeG. LeftTranslation(G,P,1) (a)
= a
using group0_2_L2 group0_5_L1 group0_5_L2 by auto
then show LeftTranslation(G,P,1) = id(G) by (rule indentity_fun)
qed

Composition of translations by an element and its inverse is identity.

lemma (in group0) trans_comp_id: assumes gcG shows
RightTranslation(G,P,g) 0 RightTranslation(G,P,g™!) = id(G) and
RightTranslation(G,P,gfl) 0 RightTranslation(G,P,g) = id(G) and
LeftTranslation(G,P,g) O LeftTranslation(G,P,g_l) = id(G) and
LeftTranslation(G,P,g~!) 0 LeftTranslation(G,P,g) = id(G)
using assms inverse_in_group trans_comp groupO_2_L6 trans_neutral by
auto

Translations are bijective.

lemma (in group0) trans_bij: assumes gcG shows
RightTranslation(G,P,g) € bij(G,G) and LeftTranslation(G,P,g) € bij(G,G)
proof-
from assms have
RightTranslation(G,P,g) :G—G and
RightTranslation(G,P,g’l):G—%G and
RightTranslation(G,P,g) O RightTranslation(G,P,g_l) 1id(G)
RightTranslation(G,P,g~!) 0 RightTranslation(G,P,g) = id(G)
using inverse_in_group groupO_5_L1 trans_comp_id by auto
then show RightTranslation(G,P,g) € bij(G,G) using fg_imp_bijective
by simp
from assms have
LeftTranslation(G,P,g) :G—G and
LeftTranslation(G,P,g_l):G—%G and
LeftTranslation(G,P,g) O LeftTranslation(G,P,g’l) id(G)
LeftTranslation(G,P,g~!) 0 LeftTranslation(G,P,g) id(G)
using inverse_in_group groupO_5_L1 trans_comp_id by auto
then show LeftTranslation(G,P,g) € bij(G,G) using fg_imp_bijective
by simp
qed

Converse of a translation is translation by the inverse.

lemma (in group0) trans_conv_inv: assumes ge€G shows
converse(RightTranslation(G,P,g)) = RightTranslation(G,P,g ') and
converse(LeftTranslation(G,P,g)) = LeftTranslation(G,P,g_l) and
LeftTranslation(G,P,g) = converse(LeftTranslation(G,P,g_l)) and
RightTranslation(G,P,g) = converse(RightTranslation(G,P,g~ 1))
proof -
from assms have
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RightTranslation(G,P,g) € bij(G,G) RightTranslation(G,P,g™!) € bij(G,G)
and
LeftTranslation(G,P,g) € bij(G,G) LeftTranslation(G,P,g_l) € bij(G,®)
using trans_bij inverse_in_group by auto
moreover from assms have
RightTranslation(G,P,g’l) 0 RightTranslation(G,P,g) = id(G) and

LeftTranslation(G,P,g~!) 0 LeftTranslation(G,P,g) = id(G) and
LeftTranslation(G,P,g) O LeftTranslation(G,P,g’l) = i1d(G) and
LeftTranslation(G,P,g_l) 0 LeftTranslation(G,P,g) = id(G)

using trans_comp_id by auto
ultimately show

converse(RightTranslation(G,P,g)) = RightTranslation(G,P,g”!) and
converse (LeftTranslation(G,P,g)) = LeftTranslation(G,P,g”!) and
LeftTranslation(G,P,g) = converse(LeftTranslation(G,P,g~!)) and
RightTranslation(G,P,g) = converse(RightTranslation(G,P,g~ 1))
using comp_id_conv by auto

qed

The image of a set by translation is the same as the inverse image by by the
inverse element translation.

lemma (in group0) trans_image_vimage: assumes gcG shows
LeftTranslation(G,P,g) (A) = LeftTranslation(G,P,g’l)—(A) and
RightTranslation(G,P,g) (A) = RightTranslation(G,P,g 1)-(A)
using assms trans_conv_inv vimage_converse by auto

Another way of looking at translations is that they are sections of the group
operation.

lemma (in group0) trans_eq_section: assumes g€G shows
RightTranslation(G,P,g) = Fix2ndVar(P,g) and
LeftTranslation(G,P,g) = FixlstVar(P,g)
proof -
let T = RightTranslation(G,P,g)
let F = Fix2ndVar(P,g)
from assms have T: G—G and F: G—G
using group0_5_L1 group_oper_assocA fix_2nd_var_fun by auto
moreover from assms have VacG. T(a) = F(a)
using group0_5_L2 group_oper_assocA fix_var_val by simp
ultimately show T = F by (rule func_eq)
next
let T = LeftTranslation(G,P,g)
let F = FixlstVar(P,g)
from assms have T: G—G and F: G—G
using group0_5_L1 group_oper_assocA fix_1st_var_fun by auto
moreover from assms have VacG. T(a) = F(a)
using groupO0_5_L2 group_oper_assocA fix_var_val by simp
ultimately show T = F by (rule func_eq)
qed

A lemma about translating sets.
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lemma (in group0) ltrans_image: assumes Al: VCG and A2: x€G
shows LeftTranslation(G,P,x) (V) = {xv. veV}
proof -
from assms have LeftTranslation(G,P,x) (V) = {LeftTranslation(G,P,x) (v).
vev}
using group0_5_L1 func_imagedef by blast
moreover from assms have VveV. LeftTranslation(G,P,x) (v) = xv
using group0_5_L2 by auto
ultimately show thesis by auto
qed

A technical lemma about solving equations with translations.

lemma (in group0) ltrans_inv_in: assumes Al: VCG and A2: yeG and
A3: x € LeftTranslation(G,P,y) (GroupInv(G,P) (V))
shows y € LeftTranslation(G,P,x) (V)
proof -
have xeG
proof -
from A2 have LeftTranslation(G,P,y):G—G using groupO_5_L1 by simp
then have LeftTranslation(G,P,y) (GroupInv(G,P)(V)) C G
using funcl_1_L6 by simp
with A3 show x€G by auto

qed
have Jvev. x = yv !
proof -
have GroupInv(G,P): G—G using groupAssum groupO_2_T2
by simp

with assms obtain z where z € GroupInv(G,P)(V) and x = y-z
using funcl_1_L6 ltrans_image by auto
with Al ‘GroupInv(G,P): G—G‘ show thesis using func_imagedef by
auto
qed
then obtain v where veV and x = y-v~! by auto
with Al A2 have y = x-v using inv_cancel_two by auto
with assms ‘xeG¢ ‘veV‘ show thesis using ltrans_image by auto
qged

We can look at the result of interval arithmetic operation as union of trans-
lated sets.

lemma (in group0) image_ltrans_union: assumes ACG BCG shows
(P {lifted to subsets of} G)(A,B) = (|JacA. LeftTranslation(G,P,a)(B))
proof
from assms have I: (P {lifted to subsets of} G)(A,B) = {ab . (a,b) €
AxB}
using group_oper_assocA lift_subsets_explained by simp
{ fix c assume c € (P {lifted to subsets of} G)(A,B)
with I obtain a b where ¢ = ab and acA beB by auto
hence ¢ € {a'b. beB} by auto
moreover from assms ‘a€A‘ have
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LeftTranslation(G,P,a) (B) = {a-b. beB} using ltrans_image by auto
ultimately have ¢ € LeftTranslation(G,P,a)(B) by simp
with ‘acA‘ have ¢ € (|JacA. LeftTranslation(G,P,a)(B)) by auto
} thus (P {lifted to subsets of} G)(A,B) C (|JacA. LeftTranslation(G,P,a)(B))
by auto
{ fix ¢ assume c € (|Ja€A. LeftTranslation(G,P,a)(B))
then obtain a where acA and ¢ € LeftTranslation(G,P,a) (B)
by auto
moreover from assms ‘acA‘ have LeftTranslation(G,P,a)(B) = {ab.
beB}
using ltrans_image by auto
ultimately obtain b where beB and ¢ = a-b by auto
with I ‘acA‘ have ¢ € (P {lifted to subsets of} G)(A,B) by auto
} thus (|JacA. LeftTranslation(G,P,a) (B)) C (P {lifted to subsets of}
G)(A,B)
by auto
qed

If the neutral element belongs to a set, then an element of group belongs
the translation of that set.

lemma (in group0) neut_trans_elem:

assumes Al: ACG g€G and A2: 1€A

shows g € LeftTranslation(G,P,g) (A)
proof -

from assms have g-1 € LeftTranslation(G,P,g) (A)

using ltrans_image by auto

with A1 show thesis using group0_2_L2 by simp

qed

The neutral element belongs to the translation of a set by the inverse of an
element that belongs to it.

lemma (in group0) elem_trans_neut: assumes Al: ACG and A2: gecA
shows 1 € LeftTranslation(G,P,g_l)(A)
proof -
from assms have g=! € G using inverse_in_group by auto
with assms have g=!-g € LeftTranslation(G,P,g~ 1) (A)
using ltrans_image by auto
moreover from assms have g!.g = 1 using group0_2_L6 by auto
ultimately show thesis by simp
qed

21.2 0Odd functions

This section is about odd functions.

Odd functions are those that commute with the group inverse: f(a~=!) =
(f(a))~.

definition
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Is0dd(G,P,f) = (VaeG. f(GroupInv(G,P)(a)) = GroupInv(G,P)(f(a)) )

Let’s see the definition of an odd function in a more readable notation.

lemma (in group0) groupO_6_L1:
shows Is0dd(G,P,p) «— ( VacG. p(a™!) = (p(a))~!)
using IsOdd_def by simp

We can express the definition of an odd function in two ways.

lemma (in group0) groupO_6_L2:
assumes Al: p : G—=G
shows
(VacG. pa™) = (p(a) ™) +— (YacG. (pa 1)) ! = pa))
proof
assume VacG. p(a~!) = (p(a))~!
with A1 show VacG. (p(a=1))~! = p(a)
using apply_funtype group_inv_of_inv by simp
next assume A2: VacG. (p(a=1))~! = p(a)
{ fix a assume a€cG
with A1 A2 have
pa™® € ¢ and ((pa )™ H~t = (pa))!
using apply_funtype inverse_in_group by auto
then have p(a™!) = (p(a))~!
using group_inv_of_inv by simp
} then show VacG. p(a=!) = (p(a))~! by simp
qed

end
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22 Group_ZF 1b.thy

theory Group_ZF_1b imports Group_ZF
begin

In a typical textbook a group is defined as a set G with an associative
operation such that two conditions hold:

A: there is an element e € G such that for all g € G we have e- g = g and
g-e = g. We call this element a "unit” or a "neutral element” of the group.

B: for every a € G there exists a b € G such that a - b = e, where e is the
element of G whose existence is guaranteed by A.

The validity of this definition is rather dubious to me, as condition A does
not define any specific element e that can be referred to in condition B -
it merely states that a set of such units e is not empty. Of course it does
work in the end as we can prove that the set of such neutral elements has
exactly one element, but still the definition by itself is not valid. You just
can’t reference a variable bound by a quantifier outside of the scope of that
quantifier.

One way around this is to first use condition A to define the notion of a
monoid, then prove the uniqueness of e and then use the condition B to
define groups.

Another way is to write conditions A and B together as follows:
Jeea (VgeG e-g=gAhg-e :9) A (vaEGabeG a-b= 6)-
This is rather ugly.

What I want to talk about is an amusing way to define groups directly
without any reference to the neutral elements. Namely, we can define a
group as a non-empty set G with an associative operation ”-” such that

C: for every a,b € G the equations a-x = b and y-a = b can be solved in G.
This theory file aims at proving the equivalence of this alternative definition
with the usual definition of the group, as formulated in Group_zF.thy. The
informal proofs come from an Aug. 14, 2005 post by buli on the matem-
atyka.org forum.

22.1 An alternative definition of group
First we will define notation for writing about groups.

We will use the multiplicative notation for the group operation. To do this,
we define a context (locale) that tells Isabelle to interpret a - b as the value
of function P on the pair (a, b).

locale group2 =
fixes P
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fixes dot (infixl - 70)
defines dot_def [simp]: a - b = P(a,b)

The next theorem states that a set G with an associative operation that
satisfies condition C is a group, as defined in IsarMathLib Group_zF theory.

theorem (in group2) altgroup_is_group:
assumes Al: G#0 and A2: P {is associative on} G
and A3: VaeG.VbeG. Ix€G. ax =D
and A4: VaeG.VbeG. JyeG. ya=b
shows IsAgroup(G,P)
proof -
from A1 obtain a where a€G by auto
with A3 obtain x where x€G and ax = a

by auto

from A4 ‘acG‘ obtain y where ycG and y-a = a
by auto

have I: VbeG. b = bx A b =yb

proof

fix b assume beG

with A4 ‘a€G‘ obtain y, where y,cG
and yp-a = b by auto

from A3 ‘aeG‘ ‘beG‘ obtain x;, where x,€G
and ax; = b by auto

from ‘ax = a‘ ‘y.a =a‘ ‘ypra =b‘ ‘ax, = b’

have b = y,-(a'x) and b = (y-a)x
by auto

moreover from A2 ‘acG‘ ‘xeG‘ ‘yeG¢ ‘x€G’ ‘yp,€G‘ have
(y-a)xp, = y-(axp) yp(ax) = (ypa)x
using IsAssociative_def by auto

moreover from ‘yy-a = b¢ ‘ax, = b‘ have
(yp-a)x = bx y(axy) =yb

by auto
ultimately show b = b-x A b = y-b by simp
qed
moreover have x = y
proof -

from ‘xeG‘ I have x = y-x by simp
also from ‘yeG¢ I have yx = y by simp
finally show x = y by simp
qed
ultimately have VbeG. bx = b A xb = b by simp
with A2 ‘x€G‘ have IsAmonoid(G,P) using IsAmonoid_def by auto
with A3 show IsAgroup(G,P)
using monoidO_def monoid0.unit_is_neutral IsAgroup_def
by simp
qed

The converse of altgroup_is_group: in every (classically defined) group con-
dition C holds. In informal mathematics we can say ” Obviously condition C
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holds in any group.” In formalized mathematics the word ”obviously” is not
in the language. The next theorem is proven in the context called group0
defined in the theory Group_ZF.thy. Similarly to the group2 that context
defines a - b as P(a,b) It also defines notation related to the group inverse
and adds an assumption that the pair (G, P) is a group to all its theorems.
This is why in the next theorem we don’t explicitely assume that (G, P) is
a group - this assumption is implicit in the context.

theorem (in group0) group_is_altgroup: shows
Va€eG.VbeG. Ix€G. ax = b and VaeG.VbeG. JyeG. ya = Db
proof -
{ fix a b assume a€G beG
let x =al b
let y = ba™!
from ‘acG‘ ‘beG‘ have
Xx€G y€G and ax=b ya=>
using inverse_in_group group_op_closed inv_cancel_two

by auto
hence 3x€G. a-x = b and 3yeG. y-a = b by auto
} thus
Va€eG.VbeG. Ix€G. ax = b and
VaeG.VbeG. JyeG. ya=">b
by auto
qed
end
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23 AbelianGroup_ZF.thy

theory AbelianGroup_ZF imports Group_ZF
begin

A group is called “abelian“ if its operation is commutative, i.e. P{a,b) =
P{a,b) for all group elements a,b, where P is the group operation. It is
customary to use the additive notation for abelian groups, so this condition
is typically written as a+b = b4 a. We will be using multiplicative notation
though (in which the commutativity condition of the operation is written as
a-b=>b-a), just to avoid the hassle of changing the notation we used for
general groups.

23.1 Rearrangement formulae

This section is not interesting and should not be read. Here we will prove
formulas is which right hand side uses the same factors as the left hand side,
just in different order. These facts are obvious in informal math sense, but
Isabelle prover is not able to derive them automatically, so we have to prove
them by hand.

Proving the facts about associative and commutative operations is quite
tedious in formalized mathematics. To a human the thing is simple: we can
arrange the elements in any order and put parantheses wherever we want,
it is all the same. However, formalizing this statement would be rather
difficult (I think). The next lemma attempts a quasi-algorithmic approach
to this type of problem. To prove that two expressions are equal, we first
strip one from parantheses, then rearrange the elements in proper order,
then put the parantheses where we want them to be. The algorithm for
rearrangement is easy to describe: we keep putting the first element (from
the right) that is in the wrong place at the left-most position until we get
the proper arrangement. As far removing parantheses is concerned Isabelle
does its job automatically.

lemma (in group0) groupO_4_L2:
assumes A1:P {is commutative on} G
and A2:a€G beG ceG deG E€G FeG
shows (a-b)-(c-d)-(EF) = (a:-(d-F))-(b-(cE))
proof -
from A2 have (ab)-(c-d)-(E-F) = a-b-c-d-EF
using group_op_closed group_oper_assoc
by simp
also have a'b.c:dEF = a-d'F-b-.cE
proof -
from A1 A2 have ab-c-d-EF = F-(a-b-c-d-E)
using IsCommutative_def group_op_closed
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by simp
also from A2 have F-(a-b-c-d-E) = F-a-b-c-d-E
using group_op_closed group_oper_assoc
by simp
also from A1 A2 have F-a-b-c:d-E = d-(F-a-b-.c)E
using IsCommutative_def group_op_closed
by simp
also from A2 have d.(F-a-b-c)-E = d-F-a-b-cE
using group_op_closed group_oper_assoc
by simp
also from A1 A2 have d-F-abcE = a-(dF)-bcE
using IsCommutative_def group_op_closed
by simp
also from A2 have a:-(d-F)-b-c:E = a-d-F-b-cE
using group_op_closed group_oper_assoc
by simp
finally show thesis by simp
qed
also from A2 have a-d-F-b-.c:E = (a-(d-F))-(b-(c-E))
using group_op_closed group_oper_assoc
by simp
finally show thesis by simp
qed

Another useful rearrangement.

lemma (in group0) groupO_4_L3:
assumes Al:P {is commutative on} G
and A2: aeG beG and A3: ceG deG EeG FeG
shows a-b-((c-d) "1-(EF)™1) = (a-(Ec) ™D (b-(F-d)™H)
proof -
from A3 have T1:
c leG d7'eG E7leG FleG (cd)~leG (E-F)~'eg
using inverse_in_group group_op_closed
by auto
from A2 T1 have
ab-((c:d)"H(EFH = ab-(cd) L EF) !
using group_op_closed group_oper_assoc
by simp
also from A2 A3 have
ab(cd)LER! = (ab)-(dteH (FLE™D
using group_inv_of_two by simp
also from A1 A2 T1 have
(ab)-(dte™)-(FLE™) = (a(cHE™H)-(b-(dF 1))
using group0_4_L2 by simp
also from A2 A3 have
(a(c7VE71)) (b (@ F D) = (a(Ee) ™) (b-(F-d) 1)
using group_inv_of_two by simp
finally show thesis by simp
qed
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Some useful rearrangements for two elements of a group.

lemma (in group0) groupO_4_L4:
assumes Al1:P {is commutative on} G
and A2: acG beG

shows

b~lal = a~lp!

(ab)™! = alp?!

(ab ™)1 =alyp
proof -

from A2 have T1: b !€G a~'€G using inverse_in_group by auto
with A1 show b ta~! = a=l.b~! using IsCommutative_def by simp
with A2 show (a:b)™! = a=1.b~! using group_inv_of_two by simp
from A2 T1 have (ab !)~! = (b71)~l.a=! using group_inv_of_two by simp
with A1 A2 T1 show (ab™')~!' = a~tb
using group_inv_of_inv IsCommutative_def by simp
qed

Another bunch of useful rearrangements with three elements.

lemma (in group0) groupO_4_L4A:
assumes Al: P {is commutative on} G
and A2: aeG beG ceG
shows
a-b-c = c-ab
a_l-(b_1~c_1)_1 = (a~(b-c)_1)_1
a-(b-c)™t = ab tc!
a-(bc™)7! = ablc
ab lic7! = aclb!
proof -
from A1 A2 have ab-c = c-(a'b)
using IsCommutative_def group_op_closed
by simp
with A2 show ab.c = c-a'b using
group_op_closed group_oper_assoc
by simp
from A2 have T:
b'eG c'eG b lcl €6 abea
using inverse_in_group group_op_closed
by auto
with A1 A2 show a= !l (b~lc 1)1 = (a-(bc)~1)7!
using group_inv_of_two IsCommutative_def
by simp
from A1 A2 T have a-(b-c)™! = a:(b~lc™!)
using group_inv_of_two IsCommutative_def by simp
with A2 T show a-(b-c)~! = ab l.c!
using group_oper_assoc by simp
from A1 A2 T have a-(b-c™!)™! = a-(b~1-(c™H™H)
using group_inv_of_two IsCommutative_def by simp
with A2 T show a-(b-c™!)~™! = ab lc
using group_oper_assoc group_inv_of_inv by simp
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from A1 A2 T have ab l.c7! = a-(c7!1b71)
using group_oper_assoc IsCommutative_def by simp
with A2 T show ab l.c™! = ac7lb7?
using group_oper_assoc by simp
qed

Another useful rearrangement.

lemma (in group0) groupO_4_L4B:
assumes P {is commutative on} G
and acG beG ceG
shows ab™ ' (bc™!) = ac™
using assms inverse_in_group group_op_closed

1

group0_4_L4 group_oper_assoc inv_cancel_two by simp

A couple of permutations of order for three alements.

lemma (in group0) groupO_4_LA4C:
assumes Al: P {is commutative on} G
and A2: aEeG beG ceG
shows
a‘b-c = c-ab
a-b-c = a-(c-b)
a-b-c = c-(a-b)
a‘b-c = cba
proof -
from A1 A2 show I: abc = cab
using group0_4_L4A by simp
also from A1 A2 have c-ab = a-cb
using IsCommutative_def by simp
also from A2 have a-c-b = a-(cb)
using group_oper_assoc by simp
finally show a:b-c = a-(c-b) by simp
from A2 I show ab-c = c-(ab)
using group_oper_assoc by simp
also from A1 A2 have c-(ab) = c-(b-a)
using IsCommutative_def by simp
also from A2 have c-(b-a) = cb-a
using group_oper_assoc by simp
finally show ab-c = c-b-a by simp
qed

Some rearangement with three elements and inverse.

lemma (in group0) groupO_4_L4D:
assumes Al: P {is commutative on} G
and A2: acG bEG ceG
shows
a b ltc=calb!
b~ lalc = ca tb?
(albc)”! = abltc!

proof -
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from A2 have T:
ateG bled clea
using inverse_in_group by auto

with Al A2 show
a b ltc=catlp!
b lalc=calb!
using group0_4_L4A by auto

from A1 A2 T show (a~!'bc)”! = ablc!
using group_inv_of_three group_inv_of_inv groupO_4_L4C
by simp

qed

Another rearrangement lemma with three elements and equation.

lemma (in group0) groupO_4_L5: assumes Al:P {is commutative on} G
and A2: aceG beG ceG
and A3: ¢ = ab!
shows a = b-c
proof -
from A2 A3 have c:(b"1)"! = a
using inverse_in_group groupO_2_L18
by simp
with A1 A2 show thesis using
group_inv_of_inv IsCommutative_def by simp

qed

In abelian groups we can cancel an element with its inverse even if separated
by another element.

lemma (in group0) groupO_4_L6A: assumes Al: P {is commutative on} G
and A2: acG beG
shows
aba! =
a~lba =
a~!(b-a)
a-(b-a™!)
proof -

from A1 A2 have

aba! =alab

using inverse_in_group groupO_4_L4A by blast
also from A2 have ... = b

using group0_2_L6 group0_2_L2 by simp
finally show ab-a~! = b by simp
from A1 A2 have

alba=aalb

using inverse_in_group groupO_4_L4A by blast
also from A2 have ... = b

using group0_2_L6 group0_2_L2 by simp
finally show a~!-b-a = b by simp
moreover from A2 have a=!b-a = a~!-(b-a)

using inverse_in_group group_oper_assoc by simp

o o

b
b
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ultimately show a=!'-(b-a) = b by simp
from A1 A2 show a-(b-a”!) = b
using inverse_in_group IsCommutative_def inv_cancel_two
by simp
qed

Another lemma about cancelling with two elements.

lemma (in group0) groupO_4_L6AA:
assumes Al: P {is commutative on} G and A2: acG beG
shows ab~la=! = b!
using assms inverse_in_group groupO_4_L6A
by auto

Another lemma about cancelling with two elements.

lemma (in group0) groupO_4_L6AB:
assumes Al: P {is commutative on} G and A2: acG beG
shows

a-(ab)~! = p7!
a-(ba”l) = b
proof -

from A2 have a-(a-b) ! = a-(b~ta"1)
using group_inv_of_two by simp

also from A2 have ... = ab la”!
using inverse_in_group group_oper_assoc by simp
also from A1 A2 have ... = b7!

using group0_4_L6AA by simp
finally show a-(a-b) ™! = b~! by simp
from A1 A2 have a-(b-a™!) = a-(a=!b)
using inverse_in_group IsCommutative_def by simp

also from A2 have ... = b
using inverse_in_group group_oper_assoc groupO_2_L6 groupO_2_L2
by simp
finally show a-(b-a=!) = b by simp
qed

Another lemma about cancelling with two elements.

lemma (in group0) groupO_4_L6AC:
assumes P {is commutative on} G and acG beG
shows a-(ab™ )"t = b
using assms inverse_in_group groupO_4_L6AB group_inv_of_inv
by simp

In abelian groups we can cancel an element with its inverse even if separated
by two other elements.

lemma (in group0) groupO_4_L6B: assumes Al: P {is commutative on} G
and A2: acG beG ceG
shows
ab-ca”l = bc
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a~lbca = bec
proof -
from A2 have
abcal = a(bc)al
a~lbca=al(bc)a
using group_op_closed group_oper_assoc inverse_in_group
by auto
with A1 A2 show
ab-ca”! = b
a~lb-ca = bc
using group_op_closed groupO_4_L6A
by auto
qed

In abelian groups we can cancel an element with its inverse even if separated
by three other elements.

lemma (in group0) groupO_4_L6C: assumes Al: P {is commutative on} G
and A2: acG beG ceG deG
shows a-b-c-d-a”! = b-c-d
proof -
from A2 have ab-c-d-a”! = a-(b-cd)-a?
using group_op_closed group_oper_assoc
by simp
with A1 A2 show thesis
using group_op_closed groupO_4_L6A
by simp
qed

Another couple of useful rearrangements of three elements and cancelling.

lemma (in group0) groupO_4_L6D:
assumes Al: P {is commutative on} G
and A2: aeG beG ceG
shows
ab l(ac)7! = cp!
(a-:c) 1 (bc) = albp
a-(b-(cca”tp 1)) =¢
abcl(cca™?) =b
proof -
from A2 have T:
atec plteg cltea
abecG ableg claleg calteg
using inverse_in_group group_op_closed by auto
with A1 A2 show ab !'-(ac™!)7! = cb!
using group0_2_L12 group_oper_assoc groupO_4_L6B
IsCommutative_def by simp
from A2 T have (a-c) ! (bc) = c la~lbc
using group_inv_of_two group_oper_assoc by simp
also from A1 A2 T have ... = a~lb
using group0_4_L6B by simp
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finally show (a-c) !-(bc) = a~lb
by simp
from A1 A2 T show a:-(b-(c:a=tb7 1)) = ¢
using group_oper_assoc groupO_4_L6B group0_4_L6A
by simp
from T have ab-c ! (ca™!) = ab-(c ! (ca™!))
using group_oper_assoc by simp

also from A1 A2 T have ... = b
using group_oper_assoc group0_2_L6 group0_2_L2 group0_4_L6A
by simp
finally show ab-c™!-(c-a™') = b by simp
qed

Another useful rearrangement of three elements and cancelling.

lemma (in group0) groupO_4_L6E:
assumes Al: P {is commutative on} G
and A2: a€G beG ceG
shows
ab-(ac)™! = bc!
proof -
from A2 have T: b™! € ¢ ¢! €@
using inverse_in_group by auto
with A1 A2 have
a( H @) Ht =cl@H!
using group0_4_L6D by simp
with A1 A2 T show ab-(a:c)”! = b-c™!
using group_inv_of_inv IsCommutative_def
by simp
qed

A rearrangement with two elements and canceelling, special case of group0_4_L6D
when ¢ = b~ L.

lemma (in group0) groupO_4_L6F:
assumes Al: P {is commutative on} G
and A2: acG DbeG
shows a-b~!-(ab)”! = b 1b!
proof -
from A2 have b~! € G
using inverse_in_group by simp
with A1 A2 have ab ' (a-(b~!)"!1)~t = b lp!
using group0_4_L6D by simp
with A2 show ab !'-(ab)™! = b lb!
using group_inv_of_inv by simp
qed

Some other rearrangements with four elements. The algorithm for proof as
in group0_4_L2 works very well here.

lemma (in group0) rearr_ab_gr_4_elemA:
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assumes Al: P {is commutative on} G
and A2: acG beG ceG deG

shows

a-b-c-d = a-d-b-c

a-b-c-d = a-c-(b-d)
proof -

from A1 A2 have ab-c-d = d-(a-b-c)
using IsCommutative_def group_op_closed

by simp

also from A2 have ... = d-a-b-c
using group_op_closed group_oper_assoc
by simp

also from A1 A2 have ... = a-d:b-c
using IsCommutative_def group_op_closed
by simp

finally show a-b-c-d = a-d-b-c
by simp

from A1 A2 have ab-c:d = c-(a-b)-d
using IsCommutative_def group_op_closed

by simp

also from A2 have ... = c-a-bd
using group_op_closed group_oper_assoc
by simp

also from A1 A2 have ... = a.c-bd
using IsCommutative_def group_op_closed
by simp

also from A2 have ... = a-c-(b-d)
using group_op_closed group_oper_assoc
by simp

finally show a-b-c:d = a-c-(b-d)
by simp

qed

Some rearrangements with four elements and inverse that are applications
of rearr_ab_gr_4_elem

lemma (in group0) rearr_ab_gr_4_elemB:
assumes Al: P {is commutative on} G
and A2: aeG beG ceG  deG
shows
ab lctda! =adlblc!
abcd! = ad lbc
abcld! = acl(bd™h
proof -
from A2 have T: bl € ¢ ¢l eg¢ da ! eg
using inverse_in_group by auto
with A1 A2 show
ab lctd! = ad b tc!
abcd! = adlbc
abctdl = acl(bd D)
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using rearr_ab_gr_4_elemA by auto
qed

Some rearrangement lemmas with four elements.

lemma (in group0) groupO_4_L7:

assumes Al: P {is commutative on} G

and A2: aeG beG ceG deG

shows

abcd™! = ad! b

a-d (b-d-(cd))™! = a(bc) ta™!

a-(b-c)-d = a-b-d-c

proof -

from A2 have T:
bc € Gd!eGbleG cleq
d'beGecldes (ba) ! €
bd € G bdc € G (bdc) ™t €
ad € G bceG
using group_op_closed inverse_in_group
by auto

with A1 A2 have abcd™! = a:-(d"!b-c)
using group_oper_assoc groupO_4_L4A by simp

also from A2 T have a-(d"!'b-c) = a-d !bc
using group_oper_assoc by simp

finally show a-b-c:d™! = a-d™!- b-c by simp

from A2 T have a-d-(b-d-(c-d))™! = a:-d-(d7 ! (b-d-c)™1)
using group_oper_assoc group_inv_of_two by simp

also from A2 T have ... = a-(b-d-c) !

using group_oper_assoc inv_cancel_two by simp
also from A1 A2 have ... = a-(d-(b-c))™!

using IsCommutative_def group_oper_assoc by simp
also from A2 T have ... = a-((b-c)~1.d™1)

using group_inv_of_two by simp
also from A2 T have ... = a-(b-c) !.d7!

using group_oper_assoc by simp
finally show a-d-(b-d-(c-d))~! = a-(b-c)~t.d7!
by simp
from A2 have a:(b-c)-d = a-(b-(c-d))
using group_op_closed group_oper_assoc by simp

also from A1 A2 have ... = a-(b-(d-c))
using IsCommutative_def group_op_closed by simp
also from A2 have ... = abd-cc

using group_op_closed group_oper_assoc by simp
finally show a-(b-c)-d = a-b-d-c by simp
qed

Some other rearrangements with four elements.

lemma (in group0) groupO_4_L8:
assumes Al: P {is commutative on} G
and A2: acG beG ceG deG
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shows
a-(b-c)”! = (adlc)-(db )
a-b-(c-d) = c-a-(b-d)
a-b-(c-d) = a-c-(b-d)
a-(b-c71)-d = ab-dc!
(ab)-(c-d) "t (bd )"t = ac?
proof -
from A2 have T:
bc€GabeGd!eGbletclea
d'b e GectdeG (ba)! €
ab€eG (cd) ' €6 (dHles dblega
using group_op_closed inverse_in_group
by auto
from A2 have a-(b-c)~! = a-c”!b~! using group0_2_L14A by blast
moreover from A2 have ac™! = (a-d7!)-(d:c™!) using group0_2_L14A
by blast
ultimately have a-(b-c)™! = (a-d™1)-(d-c™!)-b~! by simp
with A1 A2 T have a-(b-c)!= ad™'-(c71d)b~!
using IsCommutative_def by simp
with A2 T show a-(b-c)~! = (a-d tc™1)-(db 1)
using group_op_closed group_oper_assoc by simp
from A2 T have a'b-(c:d) = ab-cd
using group_oper_assoc by simp
also have a-b-c-d = c-a-b-d
proof -
from A1 A2 have ab-c-d = c-(ab)-d
using IsCommutative_def group_op_closed

by simp
also from A2 have ... = c-a-b-d
using group_op_closed group_oper_assoc
by simp
finally show thesis by simp
qed

also from A2 have c-a-b-d = c-a-(b-d)
using group_op_closed group_oper_assoc
by simp
finally show a-b-(c-d) = c-a-(b-d) by simp
with A1 A2 show a'b-(c-d) = a-c-(b-d)
using IsCommutative_def by simp
from A1 A2 T show a-(b-c™!).d = ab-dc™!
using group0_4_L7 by simp
from T have (ab)-(c-d) "' (b-d”)"! = (ab)-((c-d) ' (bd™)™1)
using group_oper_assoc by simp

also from A1 A2 T have ... = (ab)-(c td !-(ab™ 1))
using group_inv_of_two groupO_2_L12 IsCommutative_def
by simp

also from T have ... = (a-b)-(c7!1-(d71-(db 1))
using group_oper_assoc by simp

also from A1 A2 T have ... = a-c™!
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using group_oper_assoc group0_2_L6 group0_2_L2 IsCommutative_def
inv_cancel_two by simp
finally show (a-b)-(c-d) " '-(b-d™1)"! = ac™!
by simp
qed

Some other rearrangements with four elements.

lemma (in group0) groupO_4_L8A:
assumes Al: P {is commutative on} G
and A2: acG beG ceG deG

shows

ab l(cd™!) = ac- (b td™!)

ab ' (cd™!) = acblda7!
proof -

from A2 have
T: acG b! € G ceG d ! €G
using inverse_in_group by auto

with A1 show ab™!-(c:d™!) = ac:(b™td™h)
by (rule groupO_4_L8)

with A2 T show ab ' (cd™) = acb td™!
using group_op_closed group_oper_assoc
by simp

qed

Some rearrangements with an equation.

lemma (in group0) groupO_4_L9:
assumes Al: P {is commutative on} G
and A2: acG beG ceG deG
and A3: a = bc hd7!
shows
d = batc!
d = altbc?
b = a-d-c
proof -
from A2 have T:
aleG cltecg alted bctea
using group_op_closed inverse_in_group
by auto
with A2 A3 have a-(d"1)"! = b.c7!
using group0_2_L18 by simp
with A2 have b-c™! = ad
using group_inv_of_inv by simp
with A2 T have I: a=!-(bc™!) =d
using group0_2_L18 by simp
with A1 A2 T show
d =batc!
d =albc!
using group_oper_assoc IsCommutative_def by auto
from A3 have a-d-c = (b-.c!-d"!)-d-c by simp
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also from A2 T have ... = b.c™!-(d7'-d)-c
using group_oper_assoc by simp

also from A2 T have ... = b-clc
using group0_2_L6 group0_2_L2 by simp

also from A2 T have ... = b-(c t-c)
using group_oper_assoc by simp

also from A2 have ... = b
using group0_2_L6 group0_2_L2 by simp

finally have a-d-c = b by simp

thus b = a-d-.c by simp

qed

end
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24 Group_ZF 2.thy

theory Group_ZF_2 imports AbelianGroup_ZF func_ZF EquivClassi
begin

This theory continues Group_ZF.thy and considers lifting the group struc-
ture to function spaces and projecting the group structure to quotient spaces,
in particular the quotient qroup.

24.1 Lifting groups to function spaces

If we have a monoid (group) G than we get a monoid (group) structure on
a space of functions valued in in G by defining (f - g)(z) := f(z) - g(z). We
call this process "lifting the monoid (group) to function space”. This section
formalizes this lifting.

The lifted operation is an operation on the function space.

assumes Al: F = f {lifted to function space over} X
shows F : (X—=G) x (X—G) —(X—G)
proof -
from monoidAsssum have f : GXG—G
using IsAmonoid_def IsAssociative_def by simp
with A1 show thesis
using func_ZF_1_L3 group0_1_L3B by auto
qed

lemma (in monoid0) Group_ZF_2_1_LOA:

The result of the lifted operation is in the function space.

lemma (in monoid0) Group_ZF_2_1_LO:
assumes A1:F = f {lifted to function space overl} X
and A2:s:X—G r:X—G
shows F( s,r) : X—G
proof -
from A1l have F : (X—G) X (X—=G) = (X—G)
using Group_ZF_2_1_LOA
by simp
with A2 show thesis using apply_funtype
by simp
qged

The lifted monoid operation has a neutral element, namely the constant
function with the neutral element as the value.

lemma (in monoid0) Group_ZF_2_1_L1:
assumes Al: F = f {lifted to function space over} X
and A2: E = ConstantFunction(X,TheNeutralElement(G,f))
shows E : X—G A (Vs€X—G. F( E,s) = s A F( s,E) = s)
proof
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from A2 show T1:E : X—G
using unit_is_neutral funcl_3_L1 by simp
show VseX—G. F( E,s) = s A F( s,E) = s
proof
fix s assume A3:s:X—G
from monoidAsssum have T2:f : GXG—G
using IsAmonoid_def IsAssociative_def by simp
from A3 A1 T1 have
F( E,s) : X—G F( s,E) : X=G s : X—G
using Group_ZF_2_1_LO by auto
moreover from T2 A1 T1 A2 A3 have
VxeX. (F( E,s))(x) = sx)
VxeX. (F( s,E) () = s(x)
using func_ZF_1_L4 groupO_1_L3B funcl_3_L2
apply_type unit_is_neutral by auto
ultimately show
F(E,s) = s A F( s,E) =s
using fun_extension_iff by auto
qed
qed

Monoids can be lifted to a function space.

lemma (in monoidO) Group_ZF_2_1_T1:
assumes Al: F = f {lifted to function space over} X
shows IsAmonoid (X—G,F)
proof -
from monoidAsssum Al have
F {is associative on} (X—G)
using IsAmonoid_def func_ZF_2_L4 groupO_1_L3B
by auto
moreover from Al have
3 E € X—G. Vs € X»G. F( E,s) = s A F( s,E) = s
using Group_ZF_2_1_L1 by blast
ultimately show thesis using IsAmonoid_def
by simp
qed

The constant function with the neutral element as the value is the neutral
element of the lifted monoid.

lemma Group_ZF_2_1_L2:
assumes Al: IsAmonoid(G,f)
and A2: F = f {lifted to function space over} X
and A3: E = ConstantFunction(X,TheNeutralElement(G,f))
shows E = TheNeutralElement (X—G,F)
proof -
from A1 A2 have
T1:monoid0(G,f) and T2:monoid0(X—G,F)
using monoidO_def monoidO.Group_ZF_2_1_T1
by auto
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from T1 A2 A3 have
E : X—»G A (Vs€X—G. F( E,s) = s A F( s,E) = s)
using monoidO.Group_ZF_2_1_L1 by simp
with T2 show thesis
using monoid0.group0_1_L4 by auto
qed

The lifted operation acts on the functions in a natural way defined by the
monoid operation.

lemma (in monoid0) lifted_val:
assumes F = f {lifted to function space over} X
and s:X—G r:X—G
and x€X
shows (F(s,r)) (x) = s(x) @ r(x)
using monoidAsssum assms IsAmonoid_def IsAssociative_def
groupO_1_L3B func_ZF_1_14
by auto

The lifted operation acts on the functions in a natural way defined by the
group operation. This is the same as lifted_val, but in the group0 context.

lemma (in group0) Group_ZF_2_1_L3:
assumes F = P {lifted to function space over} X
and s:X—G r:X—G
and xeX
shows (F(s,r)) (x) = s(x)-r(x)
using assms groupO_2_L1 monoid0.lifted_val by simp

In the group0 context we can apply theorems proven in monoid0 context to
the lifted monoid.

lemma (in group0) Group_ZF_2_1_L4:
assumes Al: F = P {lifted to function space over} X
shows monoid0(X—G,F)
proof -
from Al show thesis
using group0_2_L1 monoid0.Group_ZF_2_1_T1 monoidO_def
by simp
qed

The compostion of a function f : X — G with the group inverse is a right
inverse for the lifted group.

lemma (in group0) Group_ZF_2_1_L5:

assumes Al: F = P {lifted to function space over} X

and A2: s : X—G

and A3: i = GroupInv(G,P) O s

shows i: X—G and F( s,i) = TheNeutralElement (X—G,F)
proof -

let E = ConstantFunction(X,1)

have E : X—G
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using group0_2_L2 funcl_3_L1 by simp
moreover from groupAssum A2 A3 Al have
F( s,i) : X—G using group0_2_T2 comp_fun
Group_ZF_2_1_L4 monoid0.groupO_1_L1
by simp
moreover from groupAssum A2 A3 Al have
VxeX. (F( s,i))(x) = E)
using group0_2_T2 comp_fun Group_ZF_2_1_L3
comp_fun_apply apply_funtype groupO_2_L6 funcl_3_L2
by simp
moreover from groupAssum Al have
E = TheNeutralElement (X—G,F)
using IsAgroup_def Group_ZF_2_1_L2 by simp
ultimately show F( s,i) = TheNeutralElement (X—G,F)
using fun_extension_iff IsAgroup_def Group_ZF_2_1_L2
by simp
from groupAssum A2 A3 show i: X—G
using group0_2_T2 comp_fun by simp
qed

Groups can be lifted to the function space.

theorem (in group0O) Group_ZF_2_1_T2:
assumes Al: F = P {lifted to function space over} X
shows IsAgroup(X—G,F)
proof -
from A1 have IsAmonoid(X—G,F)
using group0_2_L1 monoidO.Group_ZF_2_1_T1
by simp
moreover have
VseX—G. 3i€X—G. F( s,i) = TheNeutralElement(X—G,F)
proof
fix s assume A2: s : X—=G
let i = GroupInv(G,P) 0 s
from groupAssum A2 have i:X—G
using group0_2_T2 comp_fun by simp
moreover from A1 A2 have
F( s,i) = TheNeutralElement(X—G,F)
using Group_ZF_2_1_L5 by fast
ultimately show 3i€X—G. F( s,i) = TheNeutralElement (X—G,F)
by auto
qed
ultimately show thesis using IsAgroup_def
by simp
qed

What is the group inverse for the lifted group?

lemma (in group0) Group_ZF_2_1_L6:
assumes Al: F = P {lifted to function space over} X
shows Vsec(X—G). GroupInv(X—G,F)(s) = GroupInv(G,P) O s
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proof -
from A1 have group0(X—G,F)
using groupO_def Group_ZF_2_1_T2
by simp
moreover from Al have Vsc€X—G. GroupInv(G,P) 0 s : X—G A
F( s,GroupInv(G,P) 0 s) = TheNeutralElement(X—G,F)
using Group_ZF_2_1_L5 by simp
ultimately have
Vse(X—G). GroupInv(G,P) 0 s = GroupInv(X—G,F) (s)
by (rule groupO.group0_2_L9A)
thus thesis by simp
qed

What is the value of the group inverse for the lifted group?

corollary (in group0) lift_gr_inv_val:
assumes F = P {lifted to function space over} X and
s : X—G and xeX
shows (GroupInv(X—G,F)(s))(x) = (s(x))!
using groupAssum assms Group_ZF_2_1_L6 groupO_2_T2 comp_fun_apply
by simp

What is the group inverse in a subgroup of the lifted group?

lemma (in group0) Group_ZF_2_1_L6A:
assumes Al: F = P {lifted to function space over} X
and A2: IsAsubgroup(H,F)
and A3: g = restrict(F,HxH)

and A4: scH
shows GroupInv(H,g) (s) = GroupInv(G,P) O s
proof -

from A1 have T1: groupO(X—G,F)
using groupO_def Group_ZF_2_1_T2
by simp
with A2 A3 A4 have GroupInv(H,g)(s) = GroupInv(X—G,F)(s)
using group0O.group0_3_T1 restrict by simp
moreover from T1 Al A2 A4 have
GroupInv(X—G,F)(s) = GroupInv(G,P) 0 s
using group0.group0_3_L2 Group_ZF_2_1_L6 by blast
ultimately show thesis by simp
qed

If a group is abelian, then its lift to a function space is also abelian.

lemma (in group0) Group_ZF_2_1_L7:
assumes Al: F = P {lifted to function space over} X
and A2: P {is commutative on} G
shows F {is commutative on} (X—G)
proof-
from A1 A2 have
F {is commutative on} (X—range(P))
using group_oper_assocA func_ZF_2_L2
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by simp
moreover from groupAssum have range(P) = G
using group0_2_L1 monoid0.groupO_1_L3B
by simp
ultimately show thesis by simp
qed

24.2 Equivalence relations on groups

The goal of this section is to establish that (under some conditions) given
an equivalence relation on a group or (monoid )we can project the group
(monoid) structure on the quotient and obtain another group.

The neutral element class is neutral in the projection.

lemma (in monoid0) Group_ZF_2_2_L1:
assumes Al: equiv(G,r) and A2:Congruent2(r,f)
and A3: F = ProjFun2(G,r,f)
and A4: e = TheNeutralElement(G,f)
shows r{e} € G//r A
(Ve € G//r. F{ r{e},c) = ¢ A F( c,r{e}) = ¢
proof
from A4 show Til:r{e} € G//r
using unit_is_neutral quotientI
by simp
show
Ve € G//r. F( r{e},c) = c A F( c,r{e}) =c
proof
fix ¢ assume A5:c € G//r
then obtain g where D1:gcG ¢
using quotient_def by auto
with A1 A2 A3 A4 D1 show
F( r{e},c) = c A F({ c,r{e}) = ¢
using unit_is_neutral EquivClass_1_L10
by simp
qed
qed

r{g}

The projected structure is a monoid.

theorem (in monoidO) Group_ZF_2_2_T1:
assumes Al: equiv(G,r) and A2: Congruent2(r,f)
and A3: F = ProjFun2(G,r,f)
shows IsAmonoid(G//r,F)
proof -
let E = r{TheNeutralElement(G,f)}
from A1 A2 A3 have
E € G//t N (VceG//r. F(E,c) = ¢ A F( c,E) = ¢
using Group_ZF_2_2_L1 by simp
hence
JE€G//r. V c€G//r. F{ E,c) = ¢ A F( c,E) = ¢
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by auto
with monoidAsssum Al A2 A3 show thesis
using IsAmonoid_def EquivClass_2_T2
by simp
qed

The class of the neutral element is the neutral element of the projected
monoid.

lemma Group_ZF_2_2_L1:
assumes Al: IsAmonoid(G,f)
and A2: equiv(G,r) and A3: Congruent2(r,f)
and A4: F = ProjFun2(G,r,f)
and A5: e = TheNeutralElement (G,f)
shows r{e} = TheNeutralElement(G//r,F)
proof -
from A1 A2 A3 A4 have
T1:monoid0(G,f) and T2:monoid0(G//r,F)
using monoidO_def monoidO.Group_ZF_2_2_T1 by auto
from T1 A2 A3 A4 A5 have r{e} € G//r A
(Ve € G//r. F{ r{e},c) = ¢ A F( c,r{e}) = ©)
using monoidO.Group_ZF_2_2_L1 by simp
with T2 show thesis using monoid0.group0O_1_L4
by auto
qed

The projected operation can be defined in terms of the group operation on
representants in a natural way.

lemma (in group0) Group_ZF_2_2_L2:
assumes Al: equiv(G,r) and A2: Congruent2(r,P)
and A3: F = ProjFun2(G,r,P)
and A4: acG beG
shows F( r{a},r{b}) = r{ab}
proof -
from A1 A2 A3 A4 show thesis
using EquivClass_1_L10 by simp
qed

The class of the inverse is a right inverse of the class.

lemma (in group0) Group_ZF_2_2_L3:
assumes Al: equiv(G,r) and A2: Congruent2(r,P)
and A3: F = ProjFun2(G,r,P)

and A4: acG
shows F(r{a},r{a !'}) = TheNeutralElement(G//r,F)
proof -

from A1 A2 A3 A4 have
F(r{a},r{a '}) = r{1}
using inverse_in_group Group_ZF_2_2_L2 group0_2_L6
by simp
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with groupAssum A1 A2 A3 show thesis
using IsAgroup_def Group_ZF_2_2_L1 by simp
qed

The group structure can be projected to the quotient space.

theorem (in group0) Group_ZF_3_T2:
assumes Al: equiv(G,r) and A2: Congruent2(r,P)
shows IsAgroup(G//r,ProjFun2(G,r,P))

proof -
let F = ProjFun2(G,r,P)
let E = TheNeutralElement(G//r,F)

from groupAssum Al A2 have IsAmonoid(G//r,F)
using IsAgroup_def monoidO_def monoidO.Group_ZF_2_2_T1
by simp
moreover have
VceG//r. IbeG//r. F( c,b) = E
proof
fix ¢ assume A3: ¢ € G//r
then obtain g where D1: geG c¢ = r{g}
using quotient_def by auto
let b = r{g !}
from D1 have b € G//r
using inverse_in_group quotientI

by simp
moreover from Al A2 D1 have
F( c,b) = E

ultimately show 3beG//r. F( c,b) = E
by auto
qed
ultimately show thesis
using IsAgroup_def by simp
qed

using Group_ZF_2_2_L3 by simp

The group inverse (in the projected group) of a class is the class of the
inverse.

lemma (in group0) Group_ZF_2_2_L4:
assumes Al: equiv(G,r) and
A2: Congruent2(r,P) and
A3: F = ProjFun2(G,r,P) and
Ad: aeG
shows r{a='} = GroupInv(G//r,F) (r{a})
proof -
from A1 A2 A3 have group0(G//r,F)
using Group_ZF_3_T2 groupO_def by simp
moreover from A4 have
r{a} € G//r r{a™'} € G//r
using inverse_in_group quotientI by auto
moreover from A1 A2 A3 A4 have
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F(r{a},r{a"'}) = TheNeutralElement(G//r,F)
using Group_ZF_2_2_L3 by simp

ultimately show thesis
by (rule group0O.group0O_2_L9)
qed

24.3 Normal subgroups and quotient groups

If H is a subgroup of G, then for every a € G we can cosider the sets
{a-hh € H} and {h-a.h € H} (called a left and right ”coset of H”,
resp.) These sets sometimes form a group, called the ”quotient group”.
This section discusses the notion of quotient groups.

A normal subgorup N of a group G is such that aba™! belongs to N if
a€G,beN.

definition
IsAnormalSubgroup(G,P,N) = IsAsubgroup(N,P) A
(VneN.VgeG. P( P( g,n ),GroupInv(G,P)(g) ) € N)

Having a group and a normal subgroup N we can create another group
consisting of eqivalence classes of the relation a ~ b = a-b~! € N. We
will refer to this relation as the quotient group relation. The classes of this
relation are in fact cosets of subgroup H.

definition
QuotientGroupRel(G,P,H) =
{( a,b) € GxG. P( a, GroupInv(G,P)(b)) € H}

Next we define the operation in the quotient group as the projection of the
group operation on the classses of the quotient group relation.

definition
QuotientGroupOp(G,P,H) = ProjFun2(G,QuotientGroupRel(G,P,H ),P)

Definition of a normal subgroup in a more readable notation.

lemma (in group0) Group_ZF_2_4_LO:
assumes IsAnormalSubgroup(G,P,H)
and geG neH
shows gn.g! € H
using assms IsAnormalSubgroup_def by simp

The quotient group relation is reflexive.

lemma (in group0) Group_ZF_2_4_L1:
assumes IsAsubgroup(H,P)
shows refl(G,QuotientGroupRel(G,P,H))
using assms group0_2_L6 group0_3_L5
QuotientGroupRel_def refl_def by simp

The quotient group relation is symmetric.
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lemma (in group0) Group_ZF_2_4_L2:
assumes Al:IsAsubgroup(H,P)
shows sym(QuotientGroupRel(G,P,H))
proof -

{

fix a b assume A2: ( a,b) € QuotientGroupRel(G,P,H)
with A1 have (ab !)~! € H

using QuotientGroupRel_def groupO_3_T3A

by simp
moreover from A2 have (ab~!)"! = ba!

using QuotientGroupRel_def group0_2_L12

by simp

ultimately have b-a=! € H by simp
with A2 have ( b,a) € QuotientGroupRel(G,P,H)
using QuotientGroupRel_def by simp
}

then show thesis using symI by simp
qed

The quotient group relation is transistive.

assumes Al: IsAsubgroup(H,P) and
A2: ( a,b) € QuotientGroupRel(G,P,H) and
A3: ( b,c) € QuotientGroupRel(G,P,H)
shows ( a,c) € QuotientGroupRel(G,P,H)
proof -
let r = QuotientGroupRel(G,P,H)
from A2 A3 have T1l:a€G beG ceG
using QuotientGroupRel_def by auto
from A1 A2 A3 have (ab !)-(bc™!) € H
using QuotientGroupRel_def group0_3_L6
by simp
moreover from T1 have
ac™! = (@b H-(bc™h)
using group0_2_L14A by blast
ultimately have a.c™! € H
by simp
with T1 show thesis using QuotientGroupRel_def
by simp
qed

lemma (in group0) Group_ZF_2_4_L3A:

The quotient group relation is an equivalence relation. Note we do not need
the subgroup to be normal for this to be true.

lemma (in group0) Group_ZF_2_4_L3: assumes Al:IsAsubgroup(H,P)
shows equiv(G,QuotientGroupRel(G,P,H))
proof -
let r = QuotientGroupRel(G,P,H)
from A1 have
Vabec. ((a, b) er A (b, c)€r — (a, c) € 1)
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using Group_ZF_2_4_L3A by blast
then have trans(r)
using Foll_L2 by blast
with Al show thesis
using Group_ZF_2_4_L1 Group_ZF_2_4_L2
QuotientGroupRel_def equiv_def
by auto

qed

The next lemma states the essential condition for congruency of the group
operation with respect to the quotient group relation.

lemma (in group0) Group_ZF_2_4_L4:
assumes Al: IsAnormalSubgroup(G,P,H)
and A2: (al,a2) € QuotientGroupRel(G,P,H)
and A3: (b1,b2) € QuotientGroupRel(G,P,H)
shows (al-bl, a2:b2) € QuotientGroupRel(G,P,H)
proof -
from A2 A3 have T1:
aleG a2eG bleG b2eG
albl € G a2b2 € G
b1b2"! € H ala2™! € H
using QuotientGroupRel_def groupO_2_L1 monoidO.groupO_1_L1
by auto
with Al show thesis using
IsAnormalSubgroup_def group0_3_L6 groupO_2_L15
QuotientGroupRel_def by simp
qed

If the subgroup is normal, the group operation is congruent with respect to
the quotient group relation.

assumes IsAgroup(G,P)

and IsAnormalSubgroup(G,P,H)

shows Congruent2(QuotientGroupRel(G,P,H),P)

using assms groupO_def groupO.Group_ZF_2_4_L4 Congruent2_def
by simp

lemma Group_ZF_2_4_L5A:

The quotient group is indeed a group.

theorem Group_ZF_2_4_T1:
assumes IsAgroup(G,P) and IsAnormalSubgroup(G,P,H)
shows
IsAgroup(G//QuotientGroupRel (G,P,H) ,QuotientGroupOp(G,P,H))
using assms groupO_def groupO.Group_ZF_2_4_L3 IsAnormalSubgroup_def
Group_ZF_2_4_L5A groupO.Group_ZF_3_T2 QuotientGroupOp_def
by simp

The class (coset) of the neutral element is the neutral element of the quotient
group.
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lemma Group_ZF_2_4_L5B:

assumes IsAgroup(G,P) and IsAnormalSubgroup(G,P,H)

and r = QuotientGroupRel(G,P,H)

and e = TheNeutralElement(G,P)

shows r{e} = TheNeutralElement(G//r,QuotientGroupOp(G,P,H))

using assms IsAnormalSubgroup_def groupO_def
IsAgroup_def groupO.Group_ZF_2_4_L3 Group_ZF_2_4_L5A
QuotientGroupOp_def Group_ZF_2_2_L1

by simp

A group element is equivalent to the neutral element iff it is in the subgroup
we divide the group by.

lemma (in group0) Group_ZF_2_4_L5C: assumes acG
shows (a,1) € QuotientGroupRel(G,P,H) «— acH
using assms QuotientGroupRel_def group_inv_of_one groupO_2_L2

by auto

A group element is in H iff its class is the neutral element of G/H.

lemma (in group0) Group_ZF_2_4_L5D:
assumes Al: IsAnormalSubgroup(G,P,H) and
A2: acG and
A3: r = QuotientGroupRel(G,P,H) and
A4: TheNeutralElement(G//r,QuotientGroupOp(G,P,H)) = e
shows r{a} = e +— (a,1) € r
proof
assume r{a} = e
with groupAssum assms have
r{1} = r{a} and I: equiv(G,r)
using Group_ZF_2_4_L5B IsAnormalSubgroup_def Group_ZF_2_4_L3
by auto
with A2 have (1,a) € r using eq_equiv_class
by simp
with I show (a,1) € r by (rule equiv_is_sym)
next assume (a,1) € r
moreover from Al A3 have equiv(G,r)
using IsAnormalSubgroup_def Group_ZF_2_4_L3
by simp
ultimately have r{a} = r{1}
using equiv_class_eq by simp
with groupAssum A1 A3 A4 show r{a} = e
using Group_ZF_2_4_L5B by simp
qed

The class of a € G is the neutral element of the quotient G/H iff a € H.
lemma (in group0) Group_ZF_2_4_L5E:

assumes IsAnormalSubgroup(G,P,H) and
acG and r = QuotientGroupRel(G,P,H) and
TheNeutralElement (G//r,QuotientGroupOp(G,P,H)) = e

shows r{a} = e «+— acH
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using assms Group_ZF_2_4_L5C Group_ZF_2_4_L5D
by simp

Essential condition to show that every subgroup of an abelian group is nor-
mal.

lemma (in group0) Group_ZF_2_4_L5:
assumes Al: P {is commutative on} G
and A2: IsAsubgroup(H,P)
and A3: geG heH
shows ghg™! € H
proof -
from A2 A3 have T1:heG g~ ! € G
using group0_3_L2 inverse_in_group by auto
with A3 A1 have ghg™! = g7l.gh
using groupO_4_L4A by simp
with A3 T1 show thesis using
groupO_2_L6 group0_2_L2
by simp
qed

Every subgroup of an abelian group is normal. Moreover, the quotient group
is also abelian.

lemma Group_ZF_2_4_16:
assumes Al: IsAgroup(G,P)
and A2: P {is commutative on} G
and A3: IsAsubgroup(H,P)
shows IsAnormalSubgroup(G,P,H)
QuotientGroupOp(G,P,H) {is commutative on} (G//QuotientGroupRel(G,P,H))
proof -
from A1 A2 A3 show T1: IsAnormalSubgroup(G,P,H) using
groupO_def IsAnormalSubgroup_def groupO.Group_ZF_2_4_L5
by simp
let r = QuotientGroupRel(G,P,H)
from A1 A3 T1 have equiv(G,r) Congruent2(r,P)
using groupO_def groupO.Group_ZF_2_4_L3 Group_ZF_2_4_L5A
by auto
with A2 show
QuotientGroupOp(G,P,H) {is commutative on} (G//QuotientGroupRel(G,P,H))
using EquivClass_2_T1 QuotientGroupOp_def
by simp
qed

The group inverse (in the quotient group) of a class (coset) is the class of
the inverse.

lemma (in group0) Group_ZF_2_4_L7:
assumes IsAnormalSubgroup(G,P,H)
and acG and r = QuotientGroupRel(G,P,H)
and F = QuotientGroupOp(G,P,H)
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shows r{a='} = GroupInv(G//r,F) (r{al})

using groupAssum assms IsAnormalSubgroup_def Group_ZF_2_4_L3
Group_ZF_2_4_L5A QuotientGroupOp_def Group_ZF_2_2_L4

by simp

24.4 Function spaces as monoids

On every space of functions {f : X — X} we can define a natural monoid
structure with composition as the operation. This section explores this fact.

The next lemma states that composition has a neutral element, namely the
identity function on X (the one that maps x € X into itself).

lemma Group_ZF_2_5_L1: assumes Al: F = Composition(X)
shows JI€(X—X). VE€(X—X). F( I,f) = £ A F( £,I) = £
proof-
let T = id(X)
from A1 have
I € XX A (VEEX-X). F(I,f) = £ A F( £,I) = £)
using id_type func_ZF_6_L1A by simp
thus thesis by auto
qed

The space of functions that map a set X into itsef is a monoid with compo-
sition as operation and the identity function as the neutral element.

lemma Group_ZF_2_5_L2: shows
IsAmonoid (X—X,Composition(X))
id(X) = TheNeutralElement (X—X,Composition(X))
proof -
let T = id(X)
let F = Composition(X)
show IsAmonoid(X—X,Composition(X))
using func_ZF_5_L5 Group_ZF_2_5_L1 IsAmonoid_def
by auto
then have monoid0(X—X,F)
using monoid0O_def by simp
moreover have
I€X=XA (VEe@X=X). F(I,f) =f A F( £,I) = f)
using id_type func_ZF_6_L1A by simp
ultimately show I = TheNeutralElement(X—X,F)
using monoidO.groupO_1_L4 by auto
qed

end
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25 Group_ZF _3.thy

theory Group_ZF_3 imports Group_ZF_2 Finitel
begin

In this theory we consider notions in group theory that are useful for the
construction of real numbers in the Real_ZF_x series of theories.

25.1 Group valued finite range functions

In this section show that the group valued functions f : X — G, with the
property that f(X) is a finite subset of G, is a group. Such functions play
an important role in the construction of real numbers in the Real_ZF series.

The following proves the essential condition to show that the set of finite
range functions is closed with respect to the lifted group operation.

lemma (in group0) Group_ZF_3_1_L1:
assumes Al: F = P {lifted to function space over} X
and
A2: s € FinRangeFunctions(X,G) r € FinRangeFunctions(X,G)
shows F( s,r) € FinRangeFunctions(X,G)
proof -
let q = F( s,r)
from A2 have T1:s:X—G r:X—G
using FinRangeFunctions_def by auto
with A1 have T2:q : X—G
using group0_2_L1 monoid0.Group_ZF_2_1_LO
by simp
moreover have q(X) € Fin(G)
proof -
from A2 have
{s(x). x€X} € Fin(G)
{r(x). x€X} € Fin(G)
using Finitel_L18 by auto
with A1 T1 T2 show thesis using
group_oper_assocA Finitel_L15 Group_ZF_2_1_L3 func_imagedef
by simp
qed
ultimately show thesis using FinRangeFunctions_def
by simp
qed

The set of group valued finite range functions is closed with respect to the
lifted group operation.

lemma (in group0) Group_ZF_3_1_L2:
assumes Al: F = P {lifted to function space over} X
shows FinRangeFunctions(X,G) {is closed under} F
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proof -
let A = FinRangeFunctions(X,G)
from A1 have VxeA. VyeA. F( x,y) € A
using Group_ZF_3_1_L1 by simp

then show thesis using IsOpClosed_def by simp
qed

A composition of a finite range function with the group inverse is a finite
range function.

lemma (in group0) Group_ZF_3_1_L3:
assumes Al: s € FinRangeFunctions(X,G)
shows GroupInv(G,P) 0 s € FinRangeFunctions(X,G)
using groupAssum assms group0_2_T2 Finitel_L20 by simp

The set of finite range functions is s subgroup of the lifted group.

theorem Group_ZF_3_1_T1:
assumes Al: IsAgroup(G,P)
and A2: F = P {lifted to function space over} X

and A3: X#0
shows IsAsubgroup(FinRangeFunctions(X,G),F)
proof -

let e = TheNeutralElement(G,P)
let S = FinRangeFunctions(X,G)
from A1 have T1: groupO(G,P) using groupO_def
by simp
with A1 A2 have T2:group0(X—G,F)
using group0.Group_ZF_2_1_T2 groupO_def
by simp
moreover have S # 0
proof -
from T1 A3 have
ConstantFunction(X,e) € S
using group0.group0_2_L1 monoidO.unit_is_neutral
Finitel_L17 by simp
thus thesis by auto
qed
moreover have S C X—G
using FinRangeFunctions_def by auto
moreover from A2 T1 have
S {is closed under} F
using group0.Group_ZF_3_1_L2
by simp
moreover from Al A2 T1 have
Vs € S. GroupInv(X—G,F)(s) € S
using FinRangeFunctions_def groupO.Group_ZF_2_1_L6
group0.Group_ZF_3_1_L3 by simp
ultimately show thesis
using group0.group0_3_T3 by simp
qed
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25.2 Almost homomorphisms

An almost homomorphism is a group valued function defined on a monoid
M with the property that the set {f(m+n) — f(m) — f(n)}mnenm is finite.
This term is used by R. D. Arthan in ”The Eudoxus Real Numbers”. We
use this term in the general group context and use the A‘Campo’s term
"slopes” (see his ”A natural construction for the real numbers”) to mean
an almost homomorphism mapping interegers into themselves. We consider
almost homomorphisms because we use slopes to define real numbers in the
Real _ZF_x series.

HomDiff is an acronym for ”homomorphism difference”. This is the expres-
sion s(mn)(s(m)s(n))~1, or s(m+n)—s(m) —s(n) in the additive notation.

It is equal to the neutral element of the group if s is a homomorphism.

definition
HomDiff (G, f,s,x) =
f(s(£( fst(x),snd(x))) ,
(GroupInv(G,£) (£{ s(fst(x)),s(snd(x))))))

Almost homomorphisms are defined as those maps s : G — G such that the
homomorphism difference takes only finite number of values on G x G.

definition
AlmostHoms (G,f) =
{s € G—=>G.{HomDiff(G,f,s,x). x € GXG } € Fin(G)}

AlHomOpl1(G, f) is the group operation on almost homomorphisms defined
in a natural way by (s-r)(n) = s(n)-r(n). In the terminology defined in
funcl.thy this is the group operation f (on G) lifted to the function space
G — G and restricted to the set AlmostHoms(G, f).

definition
AlHomOp1 (G,f) =
restrict(f {lifted to function space over} G,
AlmostHoms (G, f) xAlmostHoms (G,f))

We also define a composition (binary) operator on almost homomorphisms
in a natural way. We call that operator AlHomOp2 - the second operation on
almost homomorphisms. Composition of almost homomorphisms is used to
define multiplication of real numbers in Real_ZF series.

definition
AlHomOp2(G,f) =
restrict (Composition(G),AlmostHoms (G,f) xAlmostHoms (G,f))

This lemma provides more readable notation for the HomDiff definition.
Not really intended to be used in proofs, but just to see the definition in the
notation defined in the group0 locale.

lemma (in group0) HomDiff_notation:
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shows HomDiff(G,P,s,{ m,n)) = s(mn)-(s(m)-s(n)) !
using HomDiff_def by simp

The next lemma shows the set from the definition of almost homomorphism
in a different form.

lemma (in group0) Group_ZF_3_2_L1A: shows
{HomDiff(G,P,s,x). x € GXG } = {s(mn)-(s(m)-s(n))~!. ( m,n) € GxG}
proof -
have VmeG.VneG. HomDiff (G,P,s,( m,n)) = s(mn)-(s(m)-s(n)) !
using HomDiff_notation by simp
then show thesis by (rule ZF1_1_L4A)
qed

Let’s define some notation. We inherit the notation and assumptions from
the group0 context (locale) and add some. We will use AH to denote the
set of almost homomorphisms. ~ is the inverse (negative if the group is
the group of integers) of almost homomorphisms, (~ p)(n) = p(n)~!. § will
denote the homomorphism difference specific for the group (HomDiff(G, f)).
The notation s ~ r will mean that s,r are almost equal, that is they are in
the equivalence relation defined by the group of finite range functions (that
is a normal subgroup of almost homomorphisms, if the group is abelian).
We show that this is equivalent to the set {s(n)-7(n)~! : n € G} being
finite. We also add an assumption that the G is abelian as many needed
properties do not hold without that.

locale groupl = group0O +

assumes isAbelian: P {is commutative on} G

fixes AH
defines AH_def [simp]: AH = AlmostHoms(G,P)

fixes Op1
defines Opl_def [simp]l: Opl = AlHomOp1(G,P)

fixes 0p2
defines Op2_def [simp]: Op2 = AlHomOp2(G,P)

fixes FR
defines FR_def [simp]: FR = FinRangeFunctions(G,G)

fixes neg (~_ [90] 91)
defines neg_def [simp]l: ~s = GroupInv(G,P) O s

fixes §
defines J_def [simp]l: §(s,x) = HomDiff(G,P,s,x)

fixes AHprod (infix - 69)
defines AHprod_def [simpl: s - r = AlHomOpl(G,P)(s,r)
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fixes AHcomp (infix o 70)
defines AHcomp_def [simp]l: s o r = AlHomOp2(G,P)(s,r)

fixes AlEq (infix ~ 68)
defines AlEq_def [simp]:
s & r = (s,r) € QuotientGroupRel (AH,0p1,FR)

HomDiff is a homomorphism on the lifted group structure.

lemma (in groupl) Group_ZF_3_2_L1:
assumes Al: s:G—G r:G—=G
and A2: x € GXG
and A3: F = P {lifted to function space over} G
shows 6(F( s,r),x) = 6(s,x)-6(r,x)
proof -
let p = F( s,1)
from A2 obtain m n where
D1: x = ( m,n) mEG neG
by auto
then have Til:mn € G
using group0_2_L1 monoid0.groupO_1_L1 by simp
with A1 D1 have T2:
s(m)€G s(n)EG r(m)EG
r(n)€G s(mn)€G r(mn)EG
using apply_funtype by auto
from A3 A1 have T3:p : G—G
using group0_2_L1 monoid0.Group_ZF_2_1_L0
by simp
from D1 T3 have
§(p,x) = p(mn)-((p@)) L (pm) 1)
using HomDiff_notation apply_funtype group_inv_of_two
by simp
also from A3 A1 D1 T1 isAbelian T2 have
oo = 0(s,x) 0(r,x)
using Group_ZF_2_1_L3 group0_4_L3 HomDiff_notation
by simp
finally show thesis by simp
qed

The group operation lifted to the function space over GG preserves almost
homomorphisms.

lemma (in groupl) Group_ZF_3_2_L2: assumes Al: s € AH r € AH
and A2: F = P {lifted to function space over} G
shows F( s,r) € AH
proof -
let p = F( s,1)
from A1 A2 have p : G—G
using AlmostHoms_def group0_2_L1 monoid0.Group_ZF_2_1_LO
by simp
moreover have
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{0(p,x). x € GXG} € Fin(G)
proof -
from A1 have
{6(s,x). x € GXG } € Fin(G)
{0(r,x). x € GXG } € Fin(G)
using AlmostHoms_def by auto
with groupAssum Al A2 show thesis
using IsAgroup_def IsAmonoid_def IsAssociative_def
Finitel_L15 AlmostHoms_def Group_ZF_3_2_L1
by auto
qed
ultimately show thesis using AlmostHoms_def
by simp
qed

The set of almost homomorphisms is closed under the lifted group operation.

lemma (in groupl) Group_ZF_3_2_L3:
assumes F = P {lifted to function space over} G
shows AH {is closed under} F
using assms IsOpClosed_def Group_ZF_3_2_L2 by simp

The terms in the homomorphism difference for a function are in the group.

lemma (in groupl) Group_ZF_3_2_L4:
assumes s:G—G and meG neG
shows
mn € G
s(mn) € G
s(m) € G s € G
0(s,{ m,n)) € G
s(m)-s(n) € G
using assms group_op_closed inverse_in_group
apply_funtype HomDiff_def by auto

It is handy to have a version of Group_ZF_3_2_L4 specifically for almost ho-
momorphisms.

corollary (in groupl) Group_ZF_3_2_L4A:
assumes s € AH and meG neG
shows mn € G
s(mn) € G
s(m) € Gstn) € G
§(s,{ m,n)) € G
s(m)-s(n) € G
using assms AlmostHoms_def Group_ZF_3_2_L4
by auto

The terms in the homomorphism difference are in the group, a different
form.

lemma (in groupl) Group_ZF_3_2_L4B:
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assumes Al:s € AH and A2:x€GXG
shows fst(x)-snd(x) € G
s(fst(x)-snd(x)) € G

s(fst(x)) € G s(snd(x)) € G

6(s,x) € G
s(fst(x))-s(snd(x)) € G
proof -

let m = fst(x)
let n = snd(x)
from A1 A2 show
mn € G s(mn) € G
s(m) € Gs(n) € G
s(m)-s(n) € G
using Group_ZF_3_2_L4A
by auto
from A1 A2 have §(s,( m,n)) € G using Group_ZF_3_2_L4A
by simp
moreover from A2 have ( m,n) = x by auto
ultimately show §(s,x) € G by simp
qed

What are the values of the inverse of an almost homomorphism?

lemma (in groupl) Group_ZF_3_2_L5:
assumes s € AH and néeG
shows (~s)(n) = (s(n))!
using assms AlmostHoms_def comp_fun_apply by auto

Homomorphism difference commutes with the inverse for almost homomor-
phisms.

lemma (in groupl) Group_ZF_3_2_L6:
assumes Al:s € AH and A2:x€GXG
shows §(~s,x) = (§(s,x)) !
proof -
let m = fst(x)
let n = snd(x)
have §(~s,x) = (~s)(@mn)-((~s) @) -(~s)@)) !
using HomDiff_def by simp
from A1 A2 isAbelian show thesis
using Group_ZF_3_2_L4B HomDiff_def
Group_ZF_3_2_L5 group0_4_L4A
by simp
qed

The inverse of an almost homomorphism maps the group into itself.

lemma (in groupl) Group_ZF_3_2_L7:
assumes s € AH
shows ~s : G—=G
using groupAssum assms AlmostHoms_def groupO_2_T2 comp_fun by auto
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The inverse of an almost homomorphism is an almost homomorphism.

lemma (in groupl) Group_ZF_3_2_L8:
assumes Al: F = P {lifted to function space over} G
and A2: s € AH
shows GroupInv(G—G,F)(s) € AH
proof -
from A2 have {6(s,x). x € GxG} € Fin(G)
using AlmostHoms_def by simp
with groupAssum have
GroupInv(G,P){d(s,x). x € GXG} € Fin(G)
using group0_2_T2 Finitel_L6A by blast
moreover have
GroupInv(G,P){d(s,x). x € GXG} =
{(5(s,x))7 . x € GxG}
proof -
from groupAssum have
GroupInv(G,P) : G—G
using group0_2_T2 by simp
moreover from A2 have
VxeGxG. d(s,x)€EG
using Group_ZF_3_2_L4B by simp
ultimately show thesis
using funcl_1_L17 by simp
qed
ultimately have {(§(s,x))~'. x € GxG} € Fin(G)
by simp
moreover from A2 have
{(5(s,x))7 . x € GxGY = {6(~s,x). x € GXG}
using Group_ZF_3_2_L6 by simp
ultimately have {§(~s,x). x € GXG} € Fin(G)
by simp
with A2 groupAssum Al show thesis
using Group_ZF_3_2_L7 AlmostHoms_def Group_ZF_2_1_L6
by simp
qed

The function that assigns the neutral element everywhere is an almost ho-
momorphism.

lemma (in groupl) Group_ZF_3_2_L9: shows
ConstantFunction(G,1) € AH and AH#0
proof -
let z = ConstantFunction(G,1)
have GXxG#0 using group0_2_L1 monoid0.groupO_1_L3A
by blast
moreover have VxeGxG. §(z,x) =1
proof
fix x assume Al:x € G X G
then obtain m n where x = ( m,n) meG neG
by auto
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then show d0(z,x) =1
using group0_2_L1 monoidO.groupO_1_L1
funcl_3_L2 HomDiff_def groupO_2_L2
group_inv_of_one by simp
qed
ultimately have {§(z,x). x€GxG} = {1} by (rule ZF1_1_L5)
then show z € AH using groupO_2_L2 Finitel_L16
funcl_3_L1 group0_2_L2 AlmostHoms_def by simp
then show AH#0 by auto
qed

If the group is abelian, then almost homomorphisms form a subgroup of the
lifted group.

lemma Group_ZF_3_2_L10:
assumes Al: IsAgroup(G,P)
and A2: P {is commutative on} G
and A3: F = P {lifted to function space over} G
shows IsAsubgroup(AlmostHoms(G,P),F)
proof -
let AH = AlmostHoms(G,P)
from A2 A1 have T1: groupl(G,P)
using groupl_axioms.intro groupO_def groupl_def
by simp
from A1 A3 have group0(G—G,F)
using group0O_def groupO.Group_ZF_2_1_T2 by simp
moreover from T1 have AH#0
using groupl.Group_ZF_3_2_L9 by simp
moreover have T2:AH C G—G
using AlmostHoms_def by auto
moreover from T1 A3 have
AH {is closed under} F
using groupl.Group_ZF_3_2_L3 by simp
moreover from T1 A3 have
Vs€AH. GroupInv(G—G,F)(s) € AH
using groupl.Group_ZF_3_2_L8 by simp
ultimately show IsAsubgroup(AlmostHoms(G,P),F)
using group0.group0_3_T3 by simp
qed

If the group is abelian, then almost homomorphisms form a group with the
first operation, hence we can use theorems proven in group0O context aplied
to this group.

lemma (in groupl) Group_ZF_3_2_L10A:

shows IsAgroup(AH,Opl) groupO(AH,O0p1)
using groupAssum isAbelian Group_ZF_3_2_L10 IsAsubgroup_def
AlHomOpl_def groupO_def by auto

The group of almost homomorphisms is abelian

lemma Group_ZF_3_2_L11: assumes Al: IsAgroup(G,f)
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and A2: f {is commutative on} G
shows
IsAgroup(AlmostHoms (G,f) ,A1HomOp1(G,£f))
AlHomOp1(G,f) {is commutative on} AlmostHoms(G,f)
proof-
let AH = AlmostHoms(G,f)
let F = £ {lifted to function space over} G
from A1 A2 have IsAsubgroup(AH,F)
using Group_ZF_3_2_L10 by simp
then show IsAgroup(AH,A1HomOp1(G,f))
using IsAsubgroup_def AlHomOpl_def by simp
from A1 have F : (G—G) x(G—G)—(G—=G)
using IsAgroup_def monoidO_def monoidO.Group_ZF_2_1_LOA
by simp
moreover have AH C G—G
using AlmostHoms_def by auto
moreover from Al A2 have
F {is commutative on} (G—G)
using groupO_def groupO.Group_ZF_2_1_L7
by simp
ultimately show
AlHomOp1(G,f){is commutative on} AH
using func_ZF_4_L1 AlHomOpl_def by simp
qed

The first operation on homomorphisms acts in a natural way on its operands.

lemma (in groupl) Group_ZF_3_2_L12:
assumes s€AH recAH and neG
shows (s-r)(n) = s(n)-r(n)
using assms AlHomOpl_def restrict AlmostHoms_def Group_ZF_2_1_L3
by simp

What is the group inverse in the group of almost homomorphisms?

lemma (in groupl) Group_ZF_3_2_L13:
assumes Al: scAH
shows
GroupInv(AH,0p1) (s) = GroupInv(G,P) 0 s
GroupInv(AH,O0pl)(s) € AH
GroupInv(G,P) 0 s € AH
proof -
let F = P {lifted to function space over} G
from groupAssum isAbelian have IsAsubgroup(AH,F)
using Group_ZF_3_2_L10 by simp
with Al show I: GroupInv(AH,0p1)(s) = GroupInv(G,P) O s
using AlHomOpl_def Group_ZF_2_1_L6A by simp
from Al show GroupInv(AH,Opl)(s) € AH
using Group_ZF_3_2_L10A groupO.inverse_in_group by simp
with I show GroupInv(G,P) 0 s € AH by simp
qed
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The group inverse in the group of almost homomorphisms acts in a natural
way on its operand.

lemma (in groupl) Group_ZF_3_2_L14:
assumes scAH and neG
shows (GroupInv(AH,Op1)(s))(n) = (s(n)) !
using isAbelian assms Group_ZF_3_2_L13 AlmostHoms_def comp_fun_apply
by auto

The next lemma states that if s, are almost homomorphisms, then s - 7!

is also an almost homomorphism.

lemma Group_ZF_3_2_L15: assumes IsAgroup(G,f)
and f {is commutative on} G
and AH = AlmostHoms(G,f) Opl = AlHomOp1(G,f)
and s € AH r € AH
shows
Opi( s,r) € AH
GroupInv(AH,0p1) (r) € AH
Op1( s,GroupInv(AH,0p1) (r)) € AH
using assms groupO_def groupl_axioms.intro groupl_def
groupl.Group_ZF_3_2_L10A groupO.groupO_2_L1

monoid0.groupO_1_L1 groupO.inverse_in_group by auto

A version of Group_zF_3_2_L15 formulated in notation used in groupl con-
text. States that the product of almost homomorphisms is an almost homo-
morphism and the the product of an almost homomorphism with a (point-

wise) inverse of an almost homomorphism is an almost homomorphism.

corollary (in groupl) Group_ZF_3_2_L16: assumes s € AH r € AH
shows s.r € AH s-(~r) € AH
using assms isAbelian groupO_def groupl_axioms groupl_def

Group_ZF_3_2_L15 Group_ZF_3_2_L13 by auto

25.3 The classes of almost homomorphisms

In the Real_ZF series we define real numbers as a quotient of the group of
integer almost homomorphisms by the integer finite range functions. In this
section we setup the background for that in the general group context.

Finite range functions are almost homomorphisms.

lemma (in groupl) Group_ZF_3_3_L1: shows FR C AH
proof
fix s assume Al:s € FR
then have Ti:{s(n). n € G} € Fin(G)
{s(fst(x)). x€GXG} € Fin(G)
{s(snd(x)). x€GXG} € Fin(G)
using Finitel_L18 Finitel_L6B by auto
have {s(fst(x)-snd(x)). x € GxG} € Fin(G)
proof -
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have VxeGxG. fst(x)-snd(x) € G
using group0_2_L1 monoidO.groupO_1_L1 by simp
moreover from T1 have {s(n). n € G} € Fin(G) by simp
ultimately show thesis by (rule Finitel_L6B)
qed
moreover have
{(s(fst(x))-s(snd(x)))~'. x€GXG} € Fin(G)
proof -
have VgeG. g~! € G using inverse_in_group
by simp
moreover from T1 have
{s(fst(x))-s(snd(x)). x€GXG} € Fin(G)
using group_oper_assocA Finitel_L15 by simp
ultimately show thesis
by (rule Finitel_L6C)
qed
ultimately have {§(s,x). x€GxG} € Fin(G)
using HomDiff_def Finitel L15 group_oper_assocA
by simp
with Al show s € AH
using FinRangeFunctions_def AlmostHoms_def
by simp
qed

Finite range functions valued in an abelian group form a normal subgroup
of almost homomorphisms.

lemma Group_ZF_3_3_L2: assumes Al:IsAgroup(G,f)
and A2:f {is commutative on} G
shows
IsAsubgroup (FinRangeFunctions(G,G) ,A1HomOp1(G,f))
IsAnormalSubgroup (AlmostHoms (G,f) ,A1HomOp1(G,f),
FinRangeFunctions(G,G))
proof -
let H1 = AlmostHoms(G,f)
let H2 = FinRangeFunctions(G,G)
let F = f {lifted to function space over} G
from A1 A2 have T1:groupO(G,f)
monoid0(G,f) groupl(G,f)
using group0_def group0.group0_2_L1
groupl_axioms.intro groupl_def
by auto
with A1 A2 have IsAgroup(G—G,F)
IsAsubgroup(H1,F) IsAsubgroup(H2,F)
using group0.Group_ZF_2_1_T2 Group_ZF_3_2_L10
monoid0O.groupO_1_L3A Group_ZF_3_1_T1
by auto
then have
IsAsubgroup (H1NH2,restrict (F,H1xH1))
using group0_3_L7 by simp
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moreover from T1 have H1NH2 = H2
using groupl.Group_ZF_3_3_L1 by auto

ultimately show IsAsubgroup(H2,A1HomOp1(G,f))
using AlHomOpl_def by simp

with A1 A2 show IsAnormalSubgroup(AlmostHoms(G,f),A1HomOp1(G,f),
FinRangeFunctions(G,G))
using Group_ZF_3_2_L11 Group_ZF_2_4_L6
by simp

qed

The group of almost homomorphisms divided by the subgroup of finite range
functions is an abelian group.

theorem (in groupl) Group_ZF_3_3_T1:
shows
IsAgroup (AH//QuotientGroupRel (AH,0pl,FR) ,QuotientGroupOp (AH,0p1,FR))
and
QuotientGroupOp(AH,0p1,FR) {is commutative on}
(AH//QuotientGroupRel (AH,O0p1,FR))
using groupAssum isAbelian Group_ZF_3_3_L2 Group_ZF_3_2_L10A

Group_ZF_2_4_T1 Group_ZF_3_2_L10A Group_ZF_3_2_L11

Group_ZF_3_3_L2 IsAnormalSubgroup_def Group_ZF_2_4_L6 by auto

It is useful to have a direct statement that the quotient group relation is an
equivalence relation for the group of AH and subgroup FR.

lemma (in groupl) Group_ZF_3_3_L3: shows
QuotientGroupRel (AH,Op1,FR) C AH x AH and
equiv (AH,QuotientGroupRel (AH,0p1,FR))
using groupAssum isAbelian QuotientGroupRel_def
Group_ZF_3_3_L2 Group_ZF_3_2_L10A groupO.Group_ZF_2_4_L3

by auto

The ”almost equal” relation is symmetric.

lemma (in groupl) Group_ZF_3_3_L3A: assumes Al: s~r
shows rxs
proof -
let R = QuotientGroupRel (AH,0p1l,FR)
from Al have equiv(AH,R) and (s,r) € R
using Group_ZF_3_3_L3 by auto
then have (r,s) € R by (rule equiv_is_sym)
then show rxs by simp
qed

Although we have bypassed this fact when proving that group of almost
homomorphisms divided by the subgroup of finite range functions is a group,
it is still useful to know directly that the first group operation on AH is
congruent with respect to the quotient group relation.

lemma (in groupl) Group_ZF_3_3_L4:
shows Congruent2(QuotientGroupRel (AH,Op1,FR),0p1l)
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using groupAssum isAbelian Group_ZF_3_2_L10A Group_ZF_3_3_L2
Group_ZF_2_4_L5A by simp

The class of an almost homomorphism s is the neutral element of the quo-
tient group of almost homomorphisms iff s is a finite range function.

r = QuotientGroupRel (AH,0pl1,FR) and

TheNeutralElement (AH//r,QuotientGroupOp (AH,Op1,FR)) = e

shows r{s} = e +— s € FR

using groupAssum isAbelian assms Group_ZF_3_2_L11
groupO_def Group_ZF_3_3_L2 groupO.Group_ZF_2_4_L5E

by simp

lemma (in groupl) Group_ZF_3_3_L5: assumes s € AH and

The group inverse of a class of an almost homomorphism f is the class of
the inverse of f.

lemma (in groupl) Group_ZF_3_3_L6:
assumes Al: s € AH and
r = QuotientGroupRel (AH,Opl1,FR) and
F = ProjFun2(AH,r,0Opl)
shows r{~s} = GroupInv(AH//r,F) (r{s})
proof -
from groupAssum isAbelian assms have
r{GroupInv(AH, Opl)(s)} = GroupInv(AH//r,F)(r {s})
using Group_ZF_3_2_L10A Group_ZF_3_3_L2 QuotientGroupOp_def
group0.Group_ZF_2_4_L7 by simp
with Al show thesis using Group_ZF_3_2_L13
by simp
qed

25.4 Compositions of almost homomorphisms

The goal of this section is to establish some facts about composition of almost
homomorphisms. needed for the real numbers construction in Real_ZF_x
series. In particular we show that the set of almost homomorphisms is
closed under composition and that composition is congruent with respect
to the equivalence relation defined by the group of finite range functions (a
normal subgroup of almost homomorphisms).

The next formula restates the definition of the homomorphism difference to
express the value an almost homomorphism on a product.

lemma (in groupl) Group_ZF_3_4_L1:
assumes s€AH and meG neG
shows s(mn) = s(m)-s(n)-d0(s,( m,n))
using isAbelian assms Group_ZF_3_2_L4A HomDiff_def groupO_4_L5
by simp

What is the value of a composition of almost homomorhisms?
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lemma (in groupl) Group_ZF_3_4_L2:
assumes s€AH recAH and meG
shows (sor)(m) = s(r(m) s(r(m)) € G
using assms AlmostHoms_def func_ZF_5_L3 restrict AlHomOp2_def
apply_funtype by auto

What is the homomorphism difference of a composition?

lemma (in groupl) Group_ZF_3_4_L3:
assumes Al: s€AH reAH and A2: meG neG
shows 0 (sor,( m,n)) =
0(s,( r@,r(m))) s (r,( m,n)))-6(s,{ r(m)-r(m),d(r,{ m,n))))
proof -
from A1 A2 have T1:
s(r(m))- s(r(n)) € G
0(s,({ r(m),r@))e€ G s(0(r,( m,n))) €G
§(s,( (x(@)r(@)),d(r,( m,n)))) € G
using Group_ZF_3_4_L2 AlmostHoms_def apply_funtype
Group_ZF_3_2_L4A groupO_2_L1 monoidO.groupO_1_L1
by auto
from A1 A2 have §(sor,( m,n)) =
s(r(m)-r(n)-0(r,( m,n))) (s((x(m)))-s(r(n)))!
using HomDiff_def groupO_2_L1 monoidO.groupO_1_L1 Group_ZF_3_4_L2
Group_ZF_3_4_L1 by simp
moreover from A1 A2 have
s(r(m) r(n)-0(r,{ m,n))) =
s(r(m) r(n))-s(6(r,{ m,n)))-6(s,{ (r(m)-r(n)),d(r,( m,n))))
s(zr(m)-r(n)) = s(xm))-s(x@))-6(s,{ r(m),r(n)))
using Group_ZF_3_2_L4A Group_ZF_3_4_L1 by auto
moreover from T1 isAbelian have
s(r(m))-s(r(m))-6(s,{ rm),r(n)))-
s((r,( m,n)))0(s,{ (x@)-r(n)),d(r,( m,n))))-
(s((xm))-s(x@))~ ! =
d0(s,{( r(m),r(@)))s((x,( m,n)))-6(s,( (x(m)-r(n)),dé(r,( m,n))))
using group0_4_L6C by simp
ultimately show thesis by simp
qed

What is the homomorphism difference of a composition (another form)?
Here we split the homomorphism difference of a composition into a product
of three factors. This will help us in proving that the range of homomorphism
difference for the composition is finite, as each factor has finite range.

lemma (in groupl) Group_ZF_3_4_L4:
assumes Al: scAH recAH and A2: x € GXG

and A3:

A=06Cs,( r(fst(x)),r(snd(x))))

B = s(6(r,x))

C = 6(s,( (x(fst(x))-r(snd(x))),d(xr,x)))

shows ¢ (sor,x) = A-B-C
proof -
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let m = fst(x)

let n = snd(x)

note Al

moreover from A2 have meG neG
by auto

ultimately have
d(sor,( m,n)) =
0(s,{ r(m),r(m)))s(0(r,( m,n)))-
0(s,( (@) r@)),d(xr,{ m,n))))
by (rule Group_ZF_3_4_L3)

with A1 A2 A3 show thesis
by auto

qed

The range of the homomorphism difference of a composition of two almost
homomorphisms is finite. This is the essential condition to show that a
composition of almost homomorphisms is an almost homomorphism.

lemma (in groupl) Group_ZF_3_4_L5:
assumes Al: scAH 1rcAH
shows {d(Composition(G){ s,r),x). x € GXG} € Fin(G)
proof -
from A1 have
VxeGXG. ( r(fst(x)),r(snd(x))) € GXG
using Group_ZF_3_2_L4B by simp
moreover from Al have
{6(s,x). x€GxG} € Fin(G)
using AlmostHoms_def by simp
ultimately have
{6(s,( r(fst(x)),r(snd(x)))). xEGXG} € Fin(G)
by (rule Finitel_L6B)
moreover have {s(/(r,x)). x€GxG} € Fin(G)
proof -
from A1 have VmeG. s(m) € G
using AlmostHoms_def apply_funtype by auto
moreover from Al have {6(r,x). x€GxG} € Fin(G)
using AlmostHoms_def by simp
ultimately show thesis
by (rule Finitel_L6C)
qed
ultimately have
{0(s,{ r(fst(x)),r(snd(x))))-s(d(r,x)). xEGXG} € Fin(G)
using group_oper_assocA Finitel_L15 by simp
moreover have
{0(s,({ (xr(fst(x))-r(snd(x))),0(r,x))). =XEGXG} € Fin(®)
proof -
from A1 have
Vx€GXG. ( (r(fst(x))-r(snd(x))),d(r,x)) € GXG
using Group_ZF_3_2_L4B by simp
moreover from Al have
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{6(s,x). x€GxG} € Fin(G)
using AlmostHoms_def by simp
ultimately show thesis by (rule Finitel_L6B)
qed
ultimately have
{0(s,{ r(£fst(x)),r(snd(x))))-s(d(x,x))-
0(s,{ (r(fst(x))-r(snd(x))),0(r,x))). x€GXG} € Fin(G)
using group_oper_assocA Finitel_L15 by simp
moreover from Al have {§(sor,x). x€GXG} =
{0(s,{ r(fst(x)),r(snd(x))))-s(6(r,x))-
0(s,{ (r(£fst(x))-r(snd(x))),0(r,x))). xEGXG}
using Group_ZF_3_4_L4 by simp
ultimately have {§(sor,x). x€GxG} € Fin(G) by simp
with Al show thesis using restrict AlHomOp2_def
by simp
qed

Composition of almost homomorphisms is an almost homomorphism.

theorem (in groupl) Group_ZF_3_4_T1:
assumes Al: scAH rcAH
shows Composition(G)( s,r) € AH sor € AH
proof -
from A1 have ( s,r) € (G—G)x(G—G)
using AlmostHoms_def by simp
then have Composition(G)( s,r) : G—G
using func_ZF_5_L1 apply_funtype by blast
with A1 show Composition(G)( s,r) € AH
using Group_ZF_3_4_L5 AlmostHoms_def
by simp
with A1 show sor € AH using AlHomOp2_def restrict
by simp
qed

The set of almost homomorphisms is closed under composition. The second
operation on almost homomorphisms is associative.

lemma (in groupl) Group_ZF_3_4_L6: shows
AH {is closed under} Composition(G)
AlHomOp2(G,P) {is associative on} AH
proof -
show AH {is closed under} Composition(G)
using Group_ZF_3_4_T1 IsOpClosed_def by simp
moreover have AH C G—G using AlmostHoms_def
by auto
moreover have
Composition(G) {is associative on} (G—G)
using func_ZF_5_L5 by simp
ultimately show AlHomOp2(G,P) {is associative on} AH
using func_ZF_4_L3 AlHomOp2_def by simp
qed
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Type information related to the situation of two almost homomorphisms.

lemma (in groupl) Group_ZF_3_4_L7:
assumes Al: s€AH recAH and A2: neG
shows
sn) € G (rm) !t ea
s(n)-(rm)' € G sx@) €6
proof -
from A1 A2 show
s(n) € G
@)t ea
s(r(n)) € G
s -x@) ! €
using AlmostHoms_def apply_type
group0_2_L1 monoidO.groupO_1_L1 inverse_in_group
by auto
qed

Type information related to the situation of three almost homomorphisms.

lemma (in groupl) Group_ZF_3_4_L8:
assumes Al: s€AH reAH q€AH and A2: neG
shows
q(n)€G
s(r(n)) € G
r(n)-(q))~! € ¢
s(r(m)-(q)~H € ¢
§(s,{ q@),r()-(q)~')) € ¢
proof -
from A1 A2 show
qgme ¢ sx@)) € ¢ r(n)-(qm))~! € ¢
using AlmostHoms_def apply_type
groupO0_2_L1 monoid0.groupO_1_L1 inverse_in_group
by auto
with A1 A2 show s(r(n)-(q(n))~!) € @G
5(s,( q(m),r(n)-(@@m))~) € a
using AlmostHoms_def apply_type Group_ZF_3_2_L4A
by auto
qed

A formula useful in showing that the composition of almost homomorphisms
is congruent with respect to the quotient group relation.

lemma (in groupl) Group_ZF_3_4_L9:
assumes Al: s1 € AH r1 € AH s2 € AH r2 € AH
and A2: neG
shows (slorl) (n)-((s20r2) (n))~! =
s1(r2(m))- (s2(r2(m))) " ts1(ri(n)-(x2(m))~1)-
d(s1,( r2(n),r1(n)-(r2(n)) 1)

proof -
from A1 A2 isAbelian have
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(stor1) (n)-((s20r2) (n)) ' =
s1(r2(m)-(r1(n)-(r2(n)) 1)) -(s2(x2(m))) !
using Group_ZF_3_4_L2 Group_ZF_3_4_L7 group0_4_L6A
group_oper_assoc by simp

with A1 A2 have (sloril) (n)-((s20r2)(n))~! = s1(r2(n))-
s1(r1(n)-(xr2(n)) ~1-5(s1,( r2(n),r1(n)-(r2(n)) ~1))-
(s2(r2(m))) !
using Group_ZF_3_4_L8 Group_ZF_3_4_L1 by simp

with Al A2 isAbelian show thesis using
Group_ZF_3_4_L8 group0_4_L7 by simp

qed

The next lemma shows a formula that translates an expression in terms of
the first group operation on almost homomorphisms and the group inverse
in the group of almost homomorphisms to an expression using only the
underlying group operations.

lemma (in groupl) Group_ZF_3_4_L10: assumes Al: s € AH r € AH
and A2: n € G
shows (s-(GroupInv(AH,O0p1) (r))) () = s)-(r(n)) !
proof -
from A1 A2 show thesis
using isAbelian Group_ZF_3_2_L13 Group_ZF_3_2_L12 Group_ZF_3_2_L14
by simp
qed

A neccessary condition for two a. h. to be almost equal.

lemma (in groupl) Group_ZF_3_4_L11:
assumes Al: s~r
shows {s(n)-(r(n))~!. neG} € Fin(G)
proof -
from A1 have s€AH reAH
using QuotientGroupRel_def by auto
moreover from Al have
{(s:(GroupInv(AH,0p1) (r))) (n). neG} € Fin(G)
using QuotientGroupRel_def Finitel_L18 by simp
ultimately show thesis
using Group_ZF_3_4_L10 by simp
qed

A sufficient condition for two a. h. to be almost equal.

lemma (in groupl) Group_ZF_3_4_L12: assumes Al: s€AH rcAH
and A2: {s(n)-(r(n))~!. neG} € Fin(G)
shows s~r
proof -
from groupAssum isAbelian A1 A2 show thesis
using Group_ZF_3_2_L15 AlmostHoms_def
Group_ZF_3_4_L10 Finitel_L19 QuotientGroupRel_def
by simp
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qed

Another sufficient consdition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

lemma (in groupl) Group_ZF_3_4_L12A: assumes s€AH rcAH
and s-(GroupInv(AH,0p1)(r)) € FR
shows s~r r=~s
proof -
from assms show s~r using assms QuotientGroupRel_def
by simp
then show r=xs by (rule Group_ZF_3_3_L3A)
qed

Another necessary condition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

lemma (in groupl) Group_ZF_3_4_L12B: assumes s~r
shows s:(GroupInv(AH,0pl)(r)) € FR
using assms QuotientGroupRel_def by simp

The next lemma states the essential condition for the composition of a. h.
to be congruent with respect to the quotient group relation for the subgroup
of finite range functions.

lemma (in groupl) Group_ZF_3_4_L13:
assumes Al: sl~xs2 rixr2
shows (slorl) =~ (s20r2)
proof -
have {s1(r2(n))- (s2(r2(n)))~!'. neG} € Fin(G)
proof -
from A1 have VneG. r2(n) € G
using QuotientGroupRel_def AlmostHoms_def apply_funtype
by auto
moreover from A1 have {s1(n)-(s2(n))~!. n€G} € Fin(G)
using Group_ZF_3_4_L11 by simp
ultimately show thesis by (rule Finitel_L6B)
qed
moreover have {s1(ri(n)-(r2(n))~"). n € G} € Fin(G)
proof -
from A1 have VneG. s1(n)eG
using QuotientGroupRel_def AlmostHoms_def apply_funtype
by auto
moreover from A1 have {ri(n)-(r2(n))~!. n€G} € Fin(G)
using Group_ZF_3_4_L11 by simp
ultimately show thesis by (rule Finitel_L6C)
qed
ultimately have
{s1(r2(n))- (s2(r2(n))) 'si(ri(@)-(r2(n))~1).
neG} € Fin(G)
using group_oper_assocA Finitel_L15 by simp
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moreover have
{6(s1,{ r2(n),r1(n)-(r2(n))"1)). neG} € Fin(G)
proof -
from A1 have VneG. ( r2(n),ri(n)-(r2(n))~!) € GxG
using QuotientGroupRel_def Group_ZF_3_4_L7 by auto
moreover from A1 have {§(s1,x). x € GxXG} € Fin(G)
using QuotientGroupRel_def AlmostHoms_def by simp
ultimately show thesis by (rule Finitel_L6B)
qed
ultimately have
{s1(r2(m))- (s2(r2(m))) 's1(r1(n)-(x2(n))~H-
§(s1,( r2(n),r1(n)-(r2(n)) 1)) . neG} € Fin(G)
using group_oper_assocA Finitel L15 by simp
with Al show thesis using
QuotientGroupRel_def Group_ZF_3_4_L9
Group_ZF_3_4_T1 Group_ZF_3_4_L12 by simp
qed

Composition of a. h. to is congruent with respect to the quotient group
relation for the subgroup of finite range functions. Recall that if an operation
say 70o” on X is congruent with respect to an equivalence relation R then we
can define the operation on the quotient space X/R by [s|go[r]r :=[sor|r
and this definition will be correct i.e. it will not depend on the choice of

representants for the classes [z] and [y]. This is why we want it here.

lemma (in groupl) Group_ZF_3_4_L13A: shows
Congruent2(QuotientGroupRel (AH,Op1,FR),0p2)
proof -
show thesis using Group_ZF_3_4_L13 Congruent2_def
by simp
qed

The homomorphism difference for the identity function is equal to the neu-
tral element of the group (denoted e in the groupl context).

lemma (in groupl) Group_ZF_3_4_L14: assumes Al: x € GXG
shows 0(1d(G),x) =1
proof -
from A1 show thesis using
group0_2_L1 monoid0O.groupO_1_L1 HomDiff_def id_conv groupO_2_L6
by simp
qed

The identity function (I(z) = x) on G is an almost homomorphism.

lemma (in groupl) Group_ZF_3_4_L15: shows id(G) € AH
proof -
have GxG # 0 using group0_2_L1 monoid0.groupO_1_L3A
by blast
then show thesis using Group_ZF_3_4_L14 group0_2_L2
id_type AlmostHoms_def by simp
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qed

Almost homomorphisms form a monoid with composition. The identity
function on the group is the neutral element there.

lemma (in groupl) Group_ZF_3_4_L16:
shows
IsAmonoid (AH,Op2)
monoid0 (AH,0p2)
id(G) = TheNeutralElement (AH,0p2)
proof-
let i = TheNeutralElement(G—G,Composition(G))
have
IsAmonoid (G—G,Composition(G))
monoid0(G—G,Composition(G))
using monoidO_def Group_ZF_2_5_L2 by auto
moreover have AH {is closed under} Composition(G)
using Group_ZF_3_4_L6 by simp
moreover have AH C G—G
using AlmostHoms_def by auto
moreover have i € AH
using Group_ZF_2_5_L2 Group_ZF_3_4_L15 by simp
moreover have id(G) = i
using Group_ZF_2_5_L2 by simp
ultimately show
IsAmonoid (AH,0p2)
monoidO (AH, 0p2)
id(G) = TheNeutralElement (AH,0p2)
using monoidO.group0_1_T1 groupO_1_L6 AlHomOp2_def monoidO_def
by auto
qed

We can project the monoid of almost homomorphisms with composition to
the group of almost homomorphisms divided by the subgroup of finite range
functions. The class of the identity function is the neutral element of the
quotient (monoid).

theorem (in groupl) Group_ZF_3_4_T2:
assumes Al: R = QuotientGroupRel (AH,Op1,FR)
shows
IsAmonoid (AH//R,ProjFun2(AH,R,0p2))
R{id(G)} = TheNeutralElement (AH//R,ProjFun2(AH,R,0p2))
proof -
have groupO(AH,0pl) using Group_ZF_3_2_L10A groupO_def
by simp
with Al groupAssum isAbelian show
IsAmonoid (AH//R,ProjFun2(AH,R,0p2))
R{id(G)} = TheNeutralElement (AH//R,ProjFun2(AH,R,0p2))
using Group_ZF_3_3_L2 group0.Group_ZF_2_4_L3 Group_ZF_3_4_L13A
Group_ZF_3_4_L16 monoid0O.Group_ZF_2_2_T1 Group_ZF_2_2_L1
by auto
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qed

25.5 Shifting almost homomorphisms

In this this section we consider what happens if we multiply an almost
homomorphism by a group element. We show that the resulting function is
also an a. h., and almost equal to the original one. This is used only for
slopes (integer a.h.) in Int_ZF_2 where we need to correct a positive slopes
by adding a constant, so that it is at least 2 on positive integers.

If s is an almost homomorphism and ¢ is some constant from the group,
then s - ¢ is an almost homomorphism.

lemma (in groupl) Group_ZF_3_5_L1:
assumes Al: s € AH and A2: ceG and
A3: r = {(x,s(x)-c). x€G}
shows
VxeG. r(x) = s(x)-c
r € AH
s ~T
proof -
from A1 A2 A3 have I: r:G—G
using AlmostHoms_def apply_funtype group_op_closed
ZF_fun_from_total by auto
with A3 show II: VxeG. r(x) = s(x)-c
using ZF_fun_from_tot_val by simp
with isAbelian A1 A2 have III:
Vp € GxG. d(r,p) = d(s,p)-c?
using group_op_closed AlmostHoms_def apply_funtype
HomDiff_def group0_4_L7 by auto
have {6(r,p). p € GXG} € Fin(G®)
proof -
from A1 A2 have
{6(s,p). p € GxXG} € Fin(G) c 'eG
using AlmostHoms_def inverse_in_group by auto
then have {6(s,p).:c”!. p € GxG} € Fin(G)
using group_oper_assocA Finitel_L16AA
by simp
moreover from III have
{6(r,p). p € GxG} = {6(s,p)-c”'. p € GxG}
by (rule ZF1_1_L4B)
ultimately show thesis by simp
qed
with I show IV: r € AH using AlmostHoms_def
by simp
from isAbelian A1 A2 I II have
Vn € G. s()-(r(m)) ! = ¢!
using AlmostHoms_def apply_funtype groupO_4_L6AB
by auto
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then have {s(n)-(r(n))~!. neG} = {c7!. neG}
by (rule ZF1_1_L4B)
with A1 A2 IV show s =~ r
using group0_2_L1 monoid0.groupO_1_L3A
inverse_in_group Group_ZF_3_4_L12 by simp
qed

end
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26 DirectProduct_ZF.thy

theory DirectProduct_ZF imports func_ZF
begin

This theory considers the direct product of binary operations. Contributed
by Seo Sanghyeon.

26.1 Definition

In group theory the notion of direct product provides a natural way of
creating a new group from two given groups.

Given (G,-) and (H,o) a new operation (G x H, x) is defined as (g, h) x
(g W) =(g9-g' hol).
definition

DirectProduct (P,Q,G,H) =

{(x,(P(fst(fst(x)),fst(snd(x))) , Q(snd(fst(x)),snd(snd(x))))).
x € (GXH)x(GxH)}

We define a context called direct0 which holds an assumption that P, Q) are
binary operations on G, H, resp. and denotes R as the direct product of

(G, P) and (H,Q).

locale direct0 =
fixes P Q G H
assumes Pfun: P : GXG—G
assumes Qfun: Q : HxH—H
fixes R
defines Rdef [simp]: R = DirectProduct(P,Q,G,H)

The direct product of binary operations is a binary operation.

lemma (in directO) DirectProduct_ZF_1_L1:
shows R : (GxH)x (GxH)—>GxH
proof -
from Pfun Qfun have Vxe(GxH)x (GxH).
(P(fst(fst(x)),fst(snd(x))),Q(snd(fst(x)),snd(snd(x)))) € GxH
by auto
then show thesis using ZF_fun_from_total DirectProduct_def
by simp
qed

And it has the intended value.

lemma (in directO) DirectProduct_ZF_1_L2:
shows Vxe(GxH). Vye(GxH).
R(x,y) = (P(fst(x),fst(y)),Q(snd(x),snd(y)))
using DirectProduct_def DirectProduct_ZF_1_L1 ZF_fun_from_tot_val
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by simp

And the value belongs to the set the operation is defined on.

lemma (in directO) DirectProduct_ZF_1_L3:
shows Vxe(GxH). Vye(GxH). R(x,y) € GxH
using DirectProduct_ZF_1_L1 by simp

26.2 Associative and commutative operations

If P and Q are both associative or commutative operations, the direct prod-
uct of P and Q has the same property.

Direct product of commutative operations is commutative.

lemma (in direct0) DirectProduct_ZF_2_L1:
assumes P {is commutative on} G and Q {is commutative on} H
shows R {is commutative on} GxH
proof -
from assms have Vxe(GxH). Vye(GxH). R(x,y) = R(y,x)
using DirectProduct_ZF_1_L2 IsCommutative_def by simp
then show thesis using IsCommutative_def by simp
qed

Direct product of associative operations is associative.

lemma (in directO) DirectProduct_ZF_2_L2:
assumes P {is associative on} G and Q {is associative on} H
shows R {is associative on} GXxH
proof -
have VxeGxH. VyeGxH. VzeGxH. R(R(x,y),z) =
(P(P(fst(x),fst(y)),fst(2)),Q(Q(snd(x),snd(y)),snd(z)))
using DirectProduct_ZF_1_L2 DirectProduct_ZF_1_L3
by auto
moreover have VxeGxH. VyeGxH. VzeGxH. R(x,R(y,z)) =
(P(fst(x) ,P{fst(y),fst(=2))),Q(snd(x),Q(snd(y),snd(z))))
using DirectProduct_ZF_1_L2 DirectProduct_ZF_1_L3 by auto
ultimately have Vx€GxH. VyeGxH. VzeGxH. R(R(x,y),z) = R(x,R{(y,z))
using assms IsAssociative_def by simp
then show thesis
using DirectProduct_ZF_1_L1 IsAssociative_def by simp
qed

end
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27 OrderedGroup_ZF.thy

theory OrderedGroup_ZF imports Group_ZF_1 AbelianGroup_ZF Order_ZF Finite_ZF_1
begin

This theory file defines and shows the basic properties of (partially or lin-
early) ordered groups. We define the set of nonnegative elements and the
absolute value function. We show that in linearly ordered groups finite sets
are bounded and provide a sufficient condition for bounded sets to be finite.
This allows to show in Int_ZF_IML.thy that subsets of integers are bounded
iff they are finite.

27.1 Ordered groups
This section defines ordered groups and various related notions.

An ordered group is a group equipped with a partial order that is ”transla-
tion invariant”, that is if a < bthena-g<b-gand g-a <g-b.
definition

IsAnOrdGroup(G,P,r) =

(IsAgroup(G,P) A rCGxG A IsPartOrder(G,r) A (VgeG. Va b.

(a,b) €er — (P{a,g),P(b,g) ) er A (P(g,a),P{g,b)) ecr))

We define the set of nonnegative elements in the obvious way as Gt = {z €

G:1<ux}.

definition
Nonnegative(G,P,r) = {x€G. ( TheNeutralElement(G,P),x) € r}

The PositiveSet(G,P,r) is a set similar to Nonnegative(G,P,r), but without
the unit.

definition
PositiveSet(G,P,r) =
{x€G. ( TheNeutralElement(G,P),x) € r A TheNeutralElement(G,P)# x}

We also define the absolute value as a ZF-function that is the identity on
G and the group inverse on the rest of the group.

definition
AbsoluteValue(G,P,r) = id(Nonnegative(G,P,r)) U
restrict (GroupInv(G,P),G - Nonnegative(G,P,r))

The odd functions are defined as those having property f(a™') = (f(a))™!.
This looks a bit strange in the multiplicative notation, I have to admit. For
linearly oredered groups a function f defined on the set of positive elements
iniquely defines an odd function of the whole group. This function is called
an odd extension of f
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definition
0ddExtension(G,P,r,f) =
(f U {(a, GroupInv(G,P)(f(GroupInv(G,P)(a)))).
a € GroupInv(G,P) (PositiveSet(G,P,r))} U
{(TheNeutralElement (G,P) ,TheNeutralElement (G,P))})

We will use a similar notation for ordered groups as for the generic groups.
G' denotes the set of nonnegative elements (that satisfy 1 < a) and G, is
the set of (strictly) positive elements. -A is the set inverses of elements from
A. T hope that using additive notation for this notion is not too shocking
here. The symbol £° denotes the odd extension of f. For a function defined
on G this is the unique odd function on G that is equal to f on G.

locale group3 =
fixes G and P and r
assumes ordGroupAssum: IsAnOrdGroup(G,P,r)

fixes unit (1)
defines unit_def [simp]: 1 = TheNeutralElement(G,P)

fixes groper (infixl - 70)
defines groper_def [simpl: a - b = P( a,b)

fixes inv (_7' [90] 91)
defines inv_def [simpl: x~! = GroupInv(G,P) (x)

fixes lesseq (infix < 68)
defines lesseq_def [simpl: a < b = ( a,b) € r

fixes sless (infix < 68)
defines sless_def [simpl: a < b = a<b A a#b

fixes nonnegative (G1)
defines nonnegative_def [simp]: G' = Nonnegative(G,P,r)

fixes positive (Gy)
defines positive_def [simp]: G, = PositiveSet(G,P,r)

fixes setinv (- _ 72)
defines setninv_def [simp]l: -A = GroupInv(G,P) (A)

fixes abs (| _ I)
defines abs_def [simp]: |al = AbsoluteValue(G,P,r)(a)

fixes oddext (_ °)
defines oddext_def [simp]: f° = 0OddExtension(G,P,r,f)

In group3 context we can use the theorems proven in the group0 context.
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lemma (in group3) OrderedGroup_ZF_1_L1: shows group0(G,P)
using ordGroupAssum IsAnOrdGroup_def groupO_def by simp

Ordered group (carrier) is not empty. This is a property of monoids, but it
is good to have it handy in the group3 context.

lemma (in group3) OrderedGroup_ZF_1_L1A: shows G#0
using OrderedGroup_ZF_1_L1 groupO.group0_2_L1 monoid0.groupO_1_L3A
by blast

The next lemma is just to see the definition of the nonnegative set in our
notation.

lemma (in group3) OrderedGroup_ZF_1_L2:
shows geGt +— 1<g
using ordGroupAssum IsAnOrdGroup_def Nonnegative_def
by auto

The next lemma is just to see the definition of the positive set in our notation.

lemma (in group3) OrderedGroup_ZF_1_L2A:
shows geGy +— (1<g A g#1)
using ordGroupAssum IsAnOrdGroup_def PositiveSet_def
by auto

For total order if g is not in G, then it has to be less or equal the unit.

lemma (in group3) OrderedGroup_ZF_1_L2B:
assumes Al: r {is total on} G and A2: acG-GT
shows a<1
proof -
from A2 have acG 1 € G —(1<a)
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2 OrderedGroup_ZF_1_L2

by auto
with Al show thesis using IsTotal_def by auto
qed

The group order is reflexive.

lemma (in group3) OrderedGroup_ZF_1_L3: assumes gcG
shows g<g
using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def refl_def
by simp

1 is nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L3A: shows 1€G™
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L3
OrderedGroup_ZF_1_L1 groupO.group0_2_L2 by simp

In this context a < b implies that both a and b belong to G.
lemma (in group3) OrderedGroup_ZF_1_L4:
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assumes a<b shows acG beG
using ordGroupAssum assms IsAnOrdGroup_def by auto

It is good to have transitivity handy.

lemma (in group3) Group_order_transitive:
assumes Al: a<b b<c shows a<c
proof -
from ordGroupAssum have trans(r)
using IsAnOrdGroup_def IsPartOrder_def
by simp
moreover from Al have ( a,b) € r A ( b,c) € r by simp
ultimately have ( a,c) € r by (rule Foll_L3)
thus thesis by simp
qed

The order in an ordered group is antisymmetric.

lemma (in group3) group_order_antisym:
assumes Al: a<b b<a shows a=b
proof -
from ordGroupAssum Al have
antisym(r) ( a,b) € r (b,a) €r
using IsAnOrdGroup_def IsPartOrder_def by auto
then show a=b by (rule Foll_L4)
qed

Transitivity for the strict order: if a < b and b < ¢, then a < c.

lemma (in group3) OrderedGroup_ZF_1_L4A:
assumes Al: a<b and A2: b<c
shows a<c
proof -
from A1 A2 have a<b b<c by auto
then have a<c by (rule Group_order_transitive)
moreover from Al A2 have as#c using group_order_antisym by auto
ultimately show a<c by simp
qed

Another version of transitivity for the strict order: if a < b and b < ¢, then
a<c.

lemma (in group3) group_strict_ord_transit:
assumes Al: a<b and A2: b<c
shows a<c
proof -
from A1 A2 have a<b b<c by auto
then have a<c by (rule Group_order_transitive)
moreover from Al A2 have a#c using group_order_antisym by auto
ultimately show a<c by simp
qed

Strict order is preserved by translations.
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lemma (in group3) group_strict_ord_transl_inv:
assumes a<b and ceG
shows
a-c < bc
ca <cb
using ordGroupAssum assms IsAnOrdGroup_def
OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1 groupO.groupO_2_L19
by auto

If the group order is total, then the group is ordered linearly.

lemma (in group3) group_ord_total_is_lin:
assumes r {is total on} G
shows IsLinOrder(G,r)
using assms ordGroupAssum IsAnOrdGroup_def Order_ZF_1_L3
by simp

For linearly ordered groups elements in the nonnegative set are greater than
those in the complement.

lemma (in group3) OrderedGroup_ZF_1_L4B:
assumes r {is total on} G
and acG'™ and b € G-GT
shows b<a
proof -
from assms have b<1 1<a
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L2B by auto
then show thesis by (rule Group_order_transitive)
qed

Ifa<landa#1,thenaecG\GT.

lemma (in group3) OrderedGroup_ZF_1_LA4C:
assumes Al: a<l and A2: a#l
shows a € G-GT
proof -
{ assume a ¢ G-GT
with ordGroupAssum Al A2 have False
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2
OrderedGroup_ZF_1_L4 IsAnOrdGroup_def IsPartOrder_def antisym_def
by auto
} thus thesis by auto
qed

An element smaller than an element in G\ G* is in G\ G*.

lemma (in group3) OrderedGroup_ZF_1_L4D:
assumes Al: a€G-GT and A2: b<a
shows beG-GT
proof -
{ assume b ¢ G - G
with A2 have 1<b b<a
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using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2 by auto
then have 1<a by (rule Group_order_transitive)
with A1 have False using OrderedGroup_ZF_1_L2 by simp
} thus thesis by auto
qed

The nonnegative set is contained in the group.

lemma (in group3) OrderedGroup_ZF_1_L4E: shows GT C G
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L4 by auto

Taking the inverse on both sides reverses the inequality.

lemma (in group3) OrderedGroup_ZF_1_L5:
assumes Al: a<b shows b~ 1<a~!
proof -
from A1 have T1: acG beG a~'eG b leG
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
groupO.inverse_in_group by auto
with A1l ordGroupAssum have a-a~!<b-a~! using IsAnOrdGroup_def
by simp
with T1 ordGroupAssum have b l.1<p= ! (b-a=l)
using OrderedGroup_ZF_1_L1 group0.group0_2_L6 IsAnOrdGroup_def
by simp
with T1 show thesis using
OrderedGroup_ZF_1_L1 groupO.group0_2_L2 groupO.group_oper_assoc
group0.group0_2_L6 by simp
qed

If an element is smaller that the unit, then its inverse is greater.

lemma (in group3) OrderedGroup_ZF_1_L5A:
assumes Al: a<l shows 1<a™!
proof -
from Al have 17 1<a™! using OrderedGroup_ZF_1_L5
by simp
then show thesis using OrderedGroup_ZF_1_L1 groupO.group_inv_of_one

by simp
qed

If an the inverse of an element is greater that the unit, then the element is
smaller.

lemma (in group3) OrderedGroup_ZF_1_L5AA:
assumes Al: acG and A2: 1<a~!
shows a<1
proof -
from A2 have (a=!)~!'<17! using OrderedGroup_ZF_1_L5
by simp
with A1 show a<1
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv groupO.group_inv_of_one
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by simp
qed

If an element is nonnegative, then the inverse is not greater that the unit.
Also shows that nonnegative elements cannot be negative

lemma (in group3) OrderedGroup_ZF_1_L5AB:
assumes Al: 1<a shows a~1<1 and —(a<1l A a#1)
proof -
from A1 have a—!<1-!
using OrderedGroup_ZF_1_L5 by simp
then show a~!'<1 using OrderedGroup_ZF_1_L1 group0.group_inv_of_one
by simp
{ assume a<1 and a#l
with Al have False using group_order_antisym
by blast
} then show —(a<1 A a#1) by auto
qed

If two elements are greater or equal than the unit, then the inverse of one
is not greater than the other.

lemma (in group3) OrderedGroup_ZF_1_L5AC:

assumes Al: 1<a 1<b

shows a=! < b
proof -

from A1 have a—!<1 1<b

using OrderedGroup_ZF_1_L5AB by auto

then show a—! < b by (rule Group_order_transitive)

qed

27.2 Inequalities
This section developes some simple tools to deal with inequalities.

Taking negative on both sides reverses the inequality, case with an inverse
on one side.

lemma (in group3) OrderedGroup_ZF_1_L5AD:
assumes Al: b € G and A2: a<b~!
shows b < a~!
proof -
from A2 have (b~ 1)1 < a!
using OrderedGroup_ZF_1_L5 by simp
with A1 show b < a™!
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp
qed

We can cancel the same element on both sides of an inequality.

lemma (in group3) OrderedGroup_ZF_1_L5AE:
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assumes Al: acG beG ceG and A2: ab < a-c
shows b<c
proof -
from ordGroupAssum Al A2 have a—!-(ab) < a~!-(a-c)
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group
IsAnOrdGroup_def by simp
with A1 show b<c
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
by simp
qed

We can cancel the same element on both sides of an inequality, a version
with an inverse on both sides.

lemma (in group3) OrderedGroup_ZF_1_L5AF:
assumes Al: a€G beG ceG and A2: ab ! < ac™!
shows c<b
proof -
from A1 A2 have (¢ 1)1 < (1!
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group
OrderedGroup_ZF_1_L5AE OrderedGroup_ZF_1_L5 by simp
with A1 show c<b
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv by simp
qed

Taking negative on both sides reverses the inequality, another case with an
inverse on one side.

lemma (in group3) OrderedGroup_ZF_1_L5AG:
assumes Al: a € G and A2: a~'<b
shows b1 < a
proof -
from A2 have b1 < (g~ 1)~
using OrderedGroup_ZF_1_L5 by simp
with A1 show b™! < a
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp
qed

We can multiply the sides of two inequalities.

lemma (in group3) OrderedGroup_ZF_1_L5B:
assumes Al: a<b and A2: c<d
shows a-c < bd
proof -
from A1 A2 have c&G beG using OrderedGroup_ZF_1_L4 by auto
with Al A2 ordGroupAssum have a-c< b-c b-c<b-d
using IsAnOrdGroup_def by auto
then show a-c < b-d by (rule Group_order_transitive)
qed

We can replace first of the factors on one side of an inequality with a greater
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one.

lemma (in group3) OrderedGroup_ZF_1_L5C:
assumes Al: c€G and A2: a<b-c and A3: b<b;
shows a<b;-c
proof -
from A1 A3 have b-c < bj-c
using OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L5B by simp
with A2 show a<b;-c by (rule Group_order_transitive)
qed

We can replace second of the factors on one side of an inequality with a
greater one.

lemma (in group3) OrderedGroup_ZF_1_L5D:
assumes Al: beG and A2: a < b-c and A3: c<b;
shows a < b'b;
proof -
from A1 A3 have b-c < b-b;
using OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L5B by auto
with A2 show a<b-b; by (rule Group_order_transitive)
qed

We can replace factors on one side of an inequality with greater ones.

lemma (in group3) OrderedGroup_ZF_1_L5E:

assumes Al: a < b-c and A2: b<b; c<c;

shows a < b;- ¢
proof -

from A2 have b-c < bj-c; using OrderedGroup_ZF_1_L5B

by simp

with Al show a<b;-c; by (rule Group_order_transitive)

qed

We don’t decrease an element of the group by multiplying by one that is
nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L5F:
assumes Al: 1<a and A2: beG
shows b<a'b b<b-a
proof -
from ordGroupAssum Al A2 have
1 b<ab b-1<b-a
using IsAnOrdGroup_def by auto
with A2 show b<ab b<b-a
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by auto
qed

We can multiply the right hand side of an inequality by a nonnegative ele-
ment.

lemma (in group3) OrderedGroup_ZF_1_L5G: assumes Al: a<b
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and A2: 1<c shows a<b-c a<cb
proof -
from A1 A2 have I: b<b-c and II: b<cb
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L5F by auto
from A1 I show a<b-c by (rule Group_order_transitive)
from A1 II show a<cb by (rule Group_order_transitive)
qed

We can put two elements on the other side of inequality, changing their sign.

lemma (in group3) OrderedGroup_ZF_1_L5H:
assumes Al: acG beG and A2: ab™ ! < ¢
shows
a < cb
cla<b
proof -
from A2 have T: c€G c ! € G
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
groupO.inverse_in_group by auto
from ordGroupAssum Al A2 have ab lb < cb
using IsAnOrdGroup_def by simp
with A1 show a < c¢cb
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
by simp
with ordGroupAssum A2 T have cla < ¢ l(ehb)
using IsAnOrdGroup_def by simp
with A1 T show ¢ la < b
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
by simp
qed

We can multiply the sides of one inequality by inverse of another.

lemma (in group3) OrderedGroup_ZF_1_L5I:
assumes a<b and c<d
shows a-d™! < bc!
using assms OrderedGroup_ZF_1_L5 OrderedGroup_ZF_1_L5B
by simp

We can put an element on the other side of an inequality changing its sign,
version with the inverse.

lemma (in group3) OrderedGroup_ZF_1_L5J:
assumes Al: acG beG and A2: ¢ < ab!
shows cb < a
proof -
from ordGroupAssum Al A2 have cb < ab lb
using IsAnOrdGroup_def by simp
with A1 show cb < a
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
by simp
qed
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We can put an element on the other side of an inequality changing its sign,
version with the inverse.

lemma (in group3) OrderedGroup_ZF_1_L5JA:
assumes Al: acG beG and A2: ¢ < a~lb
shows a-c< b
proof -
from ordGroupAssum A1 A2 have a-c < a-(a~1b)
using IsAnOrdGroup_def by simp
with A1 show a-c< b
using OrderedGroup_ZF_1_L1 groupO.inv_cancel_two
by simp
qed

A special case of OrderedGroup_ZF_1_L5J where ¢ = 1.

corollary (in group3) OrderedGroup_ZF_1_L5K:
assumes Al: acG beG and A2: 1 < ab™!
shows b < a
proof -
from A1 A2 have 1b < a
using OrderedGroup_ZF_1_L5J by simp
with A1 show b < a
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by simp
qed

A special case of OrderedGroup_ZF_1_L5JA where ¢ = 1.

corollary (in group3) OrderedGroup_ZF_1_L5KA:
assumes Al: acG beG and A2: 1 < a~lb
shows a < b
proof -
from A1 A2 have a1 < b
using OrderedGroup_ZF_1_L5JA by simp
with A1 show a < b
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by simp
qed

If the order is total, the elements that do not belong to the positive set are
negative. We also show here that the group inverse of an element that does
not belong to the nonnegative set does belong to the nonnegative set.

lemma (in group3) OrderedGroup_ZF_1_L6:
assumes Al: r {is total on} G and A2: acG-G*
shows a<1 a=! € Gt restrict(GroupInv(G,P),G-GT)(a) € GT
proof -
from A2 have T1: acG a¢Gt 1€G
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2 by auto
with Al show a<1 using OrderedGroup_ZF_1_L2 IsTotal_def
by auto
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then show a—! € G* using OrderedGroup_ZF_1_L5A OrderedGroup_ZF_1_L2
by simp
with A2 show restrict(GroupInv(G,P),G-GT)(a) € GT
using restrict by simp
qed

If a property is invariant with respect to taking the inverse and it is true on
the nonnegative set, than it is true on the whole group.

lemma (in group3) OrderedGroup_ZF_1_L7:
assumes Al: r {is total on} G
and A2: VaeG".VbeGT. Q(a,b)
and A3: VacG.VbeG. Q(a,b)—Q(at,b)
and A4: VacG.VbeG. Q(a,b)—Q(a,b™1)
and A5: a€G beG
shows Q(a,b)
proof -
{ assume A6: acGT have Q(a,b)
proof -
{ assume beG™
with A6 A2 have Q(a,b) by simp }
moreover
{ assume b¢G"
with A1 A2 A4 A5 A6 have Q(a,(b™1)™1)
using OrderedGroup_ZF_1_L6 OrderedGroup_ZF_1_L1 groupO.inverse_in_group
by simp
with A5 have Q(a,b) using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp }
ultimately show Q(a,b) by auto
qed }
moreover
{ assume a¢G™
with A1 A5 have Ti: a—! € G' using OrderedGroup_ZF_1_L6 by simp
have Q(a,b)
proof -
{ assume beG™
with A2 A3 A5 T1 have Q((a=!)~!,b)
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group by simp
with A5 have Q(a,b) using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp }
moreover
{ assume b¢G™
with A1 A2 A3 A4 A5 T1 have Q((a ) !, (b~ 1)
using OrderedGroup_ZF_1_L6 OrderedGroup_ZF_1_L1 groupO.inverse_in_group

by simp
with A5 have Q(a,b) using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp }
ultimately show Q(a,b) by auto
ged }

ultimately show Q(a,b) by auto
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qed

A lemma about splitting the ordered group ”plane” into 6 subsets. Useful
for proofs by cases.

lemma (in group3) OrdGroup_6cases: assumes Al: r {is total on} G
and A2: acG beG
shows
1<a A 1<b V. a<l A b<1 V
< 1 <ab Va<i Al1<b AN ab <1 V
< 1 <ab V 1<a Ab<l Aab<1
proof -
from A1 A2 have
1<a Vv a1
1<b Vv b<1
1 <abVvVab<l1
using OrderedGroup_ZF_1_L1 group0.group_op_closed group0.group0_2_L2
IsTotal_def by auto
then show thesis by auto
qed

The next lemma shows what happens when one element of a totally ordered
group is not greater or equal than another.

lemma (in group3) OrderedGroup_ZF_1_L8:
assumes Al: r {is total on} G
and A2: acG beEG
and A3: —(a<b)
shows b < a a ! < b! a#b b<a

proof -
from A1 A2 A3 show I: b < a using IsTotal_def
by auto
then show a=! < b~! using OrderedGroup_ZF_1_L5 by simp
from A2 have a < a using OrderedGroup_ZF_1_L3 by simp
with I A3 show a#b b < a by auto
qed

If one element is greater or equal and not equal to another, then it is not
smaller or equal.

lemma (in group3) OrderedGroup_ZF_1_L8AA:
assumes Al: a<b and A2: a#b
shows —(b<a)
proof -
{ note A1
moreover assume b<a
ultimately have a=b by (rule group_order_antisym)
with A2 have False by simp
} thus —(b<a) by auto
qed
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A special case of OrderedGroup_ZF_1_L8 when one of the elements is the unit.

corollary (in group3) OrderedGroup_ZF_1_L8A:
assumes Al: r {is total on} G
and A2: acG and A3: —(1<a)
shows 1 < a=! 1#a a<l
proof -
from A1 A2 A3 have I:
r {is total on} G
1eG aeG
-(1<a)
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by auto
then have 17! < a~!
by (rule OrderedGroup_ZF_1_L8)
then show 1 < a~!
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_one by simp
from I show 1#a by (rule OrderedGroup_ZF_1_L8)
from A1 I show a<1 using IsTotal_def
by auto
qed

A negative element can not be nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L8B:
assumes Al: a<l and A2: a#1 shows —(1<a)
proof -
{ assume 1<a
with A1 have a=1 using group_order_antisym
by auto
with A2 have False by simp
} thus thesis by auto
qed

An element is greater or equal than another iff the difference is nonpositive.

lemma (in group3) OrderedGroup_ZF_1_L9:
assumes Al: acG beG
shows a<b «— ab ! < 1
proof
assume a < b
with ordGroupAssum Al have ab™l < pb~!
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group
IsAnOrdGroup_def by simp
with A1 show ab ! < 1
using OrderedGroup_ZF_1_L1 groupO.group0_2_L6
by simp
next assume A2: ab- ! < 1
with ordGroupAssum A1 have a-b~!b < 1b
using IsAnOrdGroup_def by simp
with A1 show a < b
using OrderedGroup_ZF_1_L1
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group0.inv_cancel_two groupO.group0_2_L2
by simp
qed

We can move an element to the other side of an inequality.

lemma (in group3) OrderedGroup_ZF_1_L9A:
assumes Al: acG beG ceG
shows ab < ¢ +— a < ¢cb~?
proof
assume ab < c
with ordGroupAssum Al have abb ! < cb!
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group IsAnOrdGroup_def
by simp
with A1 show a < cb~!
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two by simp
next assume a < cb~!
with ordGroupAssum A1 have ab < cb~lb
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group IsAnOrdGroup_def
by simp
with A1 show ab < ¢
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two by simp
qed

A one side version of the previous lemma with weaker assuptions.

lemma (in group3) OrderedGroup_ZF_1_LO9B:
assumes Al: ac€G beG and A2: ab ! < ¢
shows a < c¢b
proof -
from A1 A2 have acG b !'eG ceG
using OrderedGroup_ZF_1_L1 group0.inverse_in_group
OrderedGroup_ZF_1_L4 by auto
with A1 A2 show a < c¢b
using OrderedGroup_ZF_1_L9A OrderedGroup_ZF_1_L1
group0.group_inv_of_inv by simp
qed

We can put en element on the other side of inequality, changing its sign.

lemma (in group3) OrderedGroup_ZF_1_LOC:
assumes Al: acG beG and A2: c<ab
shows
cb~!
a~lc
proof -
from ordGroupAssum A1l A2 have
cbt < abb!
a~lc < a=l(ab)
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group IsAnOrdGroup_def
by auto
with A1 show

< a
<b
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cb™! < a

alc <b

using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
by auto

qed

If an element is greater or equal than another then the difference is nonneg-
ative.

lemma (in group3) OrderedGroup_ZF_1_L9D: assumes Al: a<b
shows 1 < b-a™!
proof -
from A1 have T: acG beG a ! €@
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto
with ordGroupAssum A1 have aa=! < b-a™!
using IsAnOrdGroup_def by simp
with T show 1 < b-a~!
using OrderedGroup_ZF_1_L1 groupO.group0_2_L6
by simp
qed

If an element is greater than another then the difference is positive.

lemma (in group3) OrderedGroup_ZF_1_L9E:
assumes Al: a<b a#b
shows 1 < ba™! 1 # ba! ba!l € Gy

proof -
from A1l have T: a€G beG using OrderedGroup_ZF_1_L4
by auto
from A1 show I: 1 < b-a~! using OrderedGroup_ZF_1_L9D
by simp

{ assume ba"! =1
with T have a=b
using OrderedGroup_ZF_1_L1 groupO.group0_2_L11A
by auto
with A1 have False by simp
} then show 1 # b-a=! by auto
then have b-a~! # 1 by auto
with I show b-a~! € G, using OrderedGroup_ZF_1_L2A
by simp
qed

If the difference is nonnegative, then a < b.

lemma (in group3) OrderedGroup_ZF_1_LOF:
assumes Al: a€G beG and A2: 1 < ba~!
shows a<b
proof -
from A1 A2 have 1-a < b
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L9A
by simp
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with A1 show a<b
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by simp
qed

If we increase the middle term in a product, the whole product increases.

lemma (in group3) OrderedGroup_ZF_1_L10:
assumes acG beG and c<d
shows a-c:b < a-db
using ordGroupAssum assms IsAnOrdGroup_def by simp

A product of (strictly) positive elements is not the unit.

lemma (in group3) OrderedGroup_ZF_1_L11:
assumes Al: 1<a 1<b
and A2: 1 #a 1 #bD
shows 1 # ab
proof -
from A1l have T1: acG beG
using OrderedGroup_ZF_1_L4 by auto
{ assume 1 = ab
with A1 T1 have a<1l 1<a
using OrderedGroup_ZF_1_L1 groupO.group0_2_L9 OrderedGroup_ZF_1_L5AA

by auto
then have a = 1 by (rule group_order_antisym)
with A2 have False by simp
} then show 1 # ab by auto
qed

A product of nonnegative elements is nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L12:
assumes Al: 1 < a 1 <bD
shows 1 < ab
proof -
from A1 have 11 < ab
using OrderedGroup_ZF_1_L5B by simp
then show 1 < ab
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by simp
qed

If a is not greater than b, then 1 is not greater than b-a~!.

lemma (in group3) OrderedGroup_ZF_1_L12A:
assumes Al: a<b shows 1 < b-a—!
proof -
from A1 have T: 1 € G a€G beG
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by auto
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with A1 have 1-a < b
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by simp
with T show 1 < b-a~! using OrderedGroup_ZF_1_L9A
by simp
qed

We can move an element to the other side of a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12B:
assumes Al: acG beG and A2: ab ! < ¢
shows a < cb
proof -
from A1 A2 have ab !b < cb
using group_strict_ord_transl_inv by auto
moreover from A1 have ab™!b = a
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
by simp
ultimately show a < cb
by auto
qed

We can multiply the sides of two inequalities, first of them strict and we get
a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12C:
assumes Al: a<b and A2: c<d
shows a-c < b-d
proof -
from A1 A2 have T: aeG beG ceG deG
using OrderedGroup_ZF_1_L4 by auto
with ordGroupAssum A2 have ac < ad
using IsAnOrdGroup_def by simp
moreover from Al T have a-d < bd
using group_strict_ord_transl_inv by simp
ultimately show a.c < b-d
by (rule group_strict_ord_transit)
qed

We can multiply the sides of two inequalities, second of them strict and we
get a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12D:
assumes Al: a<b and A2: c<d
shows a.c < bd
proof -
from A1 A2 have T: acG beG ceG deG
using OrderedGroup_ZF_1_L4 by auto
with A2 have a.c < ad
using group_strict_ord_transl_inv by simp
moreover from ordGroupAssum Al T have a-d < bd
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using IsAnOrdGroup_def by simp
ultimately show a-c < b-d
by (rule OrderedGroup_ZF_1_L4A)
qed

27.3 The set of positive elements

In this section we study G, - the set of elements that are (strictly) greater
than the unit. The most important result is that every linearly ordered
group can decomposed into {1}, G; and the set of those elements a € G
such that a=! €G,. Another property of linearly ordered groups that we
prove here is that if G,# (), then it is infinite. This allows to show that
nontrivial linearly ordered groups are infinite.

The positive set is closed under the group operation.

lemma (in group3) OrderedGroup_ZF_1_L13: shows G, {is closed under}
P
proof -
{ fix a b assume a€G; beG,
then have T1: 1 < ab and 1 # ab
using PositiveSet_def OrderedGroup_ZF_1_L11 OrderedGroup_ZF_1_L12
by auto
moreover from T1 have ab € G
using OrderedGroup_ZF_1_L4 by simp
ultimately have a'b € G, using PositiveSet_def by simp
} then show G, {is closed under} P using IsOpClosed_def
by simp
qed

For totally ordered groups every nonunit element is positive or its inverse is
positive.

lemma (in group3) OrderedGroup_ZF_1_L14:
assumes Al: r {is total on} G and A2: acG
shows a=1 V acG, V a~leG,
proof -
{ assume A3: a#l
moreover from A1 A2 have a<1l V 1<a
using IsTotal_def OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by simp
moreover from A3 A2 have T1: a=! # 1
using OrderedGroup_ZF_1_L1 groupO.groupO_2_L8B
by simp
ultimately have a='€G, V acG,
using OrderedGroup_ZF_1_L5A OrderedGroup_ZF_1_L2A
by auto
} thus a=1 Vv acG, V a~!'eG, by auto
qed
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If an element belongs to the positive set, then it is not the unit and its
inverse does not belong to the positive set.

lemma (in group3) OrderedGroup_ZF_1_L15:
assumes Al: acG, shows a#l a~'¢G,
proof -
from A1 show T1: a#1 using PositiveSet_def by auto
{ assume a=! € G,
with A1 have a<1l 1<a
using OrderedGroup_ZF_1_L5AA PositiveSet_def by auto
then have a=1 by (rule group_order_antisym)
with T1 have False by simp
} then show a='¢G, by auto
qed

If a~! is positive, then a can not be positive or the unit.

lemma (in group3) OrderedGroup_ZF_1_L16:
assumes Al: acG and A2: a~!€G, shows a#l1 a¢G,
proof -
from A2 have a'#1 (a™)7! ¢ Gy
using OrderedGroup_ZF_1_L15 by auto
with A1 show a#l ad¢G,
using OrderedGroup_ZF_1_L1 groupO.group0_2_L8C groupl.group_inv_of_inv

by auto
qed

For linearly ordered groups each element is either the unit, positive or its
inverse is positive.

lemma (in group3) OrdGroup_decomp:
assumes Al: r {is total on} G and A2: acG
shows Exactly_1_of_3_holds (a=1,acG,,a '€G})
proof -
from A1 A2 have a=1 V acG, V a 'eG,
using OrderedGroup_ZF_1_L14 by simp
moreover from A2 have a=1 — (a¢G, A a '¢Gy)
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_one
PositiveSet_def by simp
moreover from A2 have acG, — (a#l A a~'¢G,)
using OrderedGroup_ZF_1_L15 by simp
moreover from A2 have a~!'e€G, — (a#l A a¢G.)
using OrderedGroup_ZF_1_L16 by simp
ultimately show Exactly_1_of_3_holds (a=1,acG,,a '€G.)
by (rule Foll_L5)
qed

A if @ is a nonunit element that is not positive, then a=!

is useful for some proofs by cases.

is is positive. This

lemma (in group3) OrdGroup_cases:
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assumes Al: r {is total on} G and A2: acG
and A3: a#l a¢Gy
shows a=! € G,

proof -
from A1 A2 have a=1 V acG, V a~leG,

using OrderedGroup_ZF_1_L14 by simp

with A3 show a=! € G, by auto

qed

Elements from G \ G4 are not greater that the unit.

lemma (in group3) OrderedGroup_ZF_1_L17:
assumes Al: r {is total on} G and A2: a € G-G
shows a<1
proof -
{ assume a=1
with A2 have a<1 using OrderedGroup_ZF_1_L3 by simp }
moreover
{ assume a#1l
with A1 A2 have a<l1
using PositiveSet_def OrderedGroup_ZF_1_L8A
by auto }
ultimately show a<1 by auto
qged

The next lemma allows to split proofs that something holds for all a € G
into casesa=1,a € G4, —a € G4.

lemma (in group3) OrderedGroup_ZF_1_L18:
assumes Al: r {is total on} G and A2: beG
and A3: Q(1) and A4: VaeG,. Q(a) and A5: VaeG,. Qa—h)
shows Q(b)
proof -
from A1 A2 A3 A4 A5 have Q(b) V Q((b~1)~h)
using OrderedGroup_ZF_1_L14 by auto
with A2 show Q(b) using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp
qed

All elements greater or equal than an element of G, belong to G, .

lemma (in group3) OrderedGroup_ZF_1_L19:
assumes Al: a € G and A2: a<b
shows b € G
proof -
from A1 have I: 1<a and II: a#l
using OrderedGroup_ZF_1_L2A by auto
from I A2 have 1<b by (rule Group_order_transitive)
moreover have b#1
proof -
{ assume b=1
with I A2 have 1<a a<1
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by auto
then have 1=a by (rule group_order_antisym)
with ITI have False by simp
} then show b#1 by auto
qed
ultimately show b € G
using OrderedGroup_ZF_1_L2A by simp
qed

The inverse of an element of G, cannot be in G, .

lemma (in group3) OrderedGroup_ZF_1_L20:
assumes Al: r {is total on} G and A2: a € Gy
shows a=! ¢ G,
proof -
from A2 have acG using PositiveSet_def
by simp
with A1 have Exactly_1_of_3_holds (a=1,acG,,a '€G,)
using OrdGroup_decomp by simp
with A2 show a=! ¢ G, by (rule Foll_L7)
qed

The set of positive elements of a nontrivial linearly ordered group is not
empty.

lemma (in group3) OrderedGroup_ZF_1_L21:
assumes Al: r {is total on} G and A2: G # {1}
shows G, # 0
proof -
have 1 € G using OrderedGroup_ZF_1_L1 groupO.group0O_2_L2
by simp
with A2 obtain a where acG a#1 by auto
with A1 have acG, V a~'eGy
using OrderedGroup_ZF_1_L14 by auto
then show G, # 0 by auto
qed

If b €G4, then a < a - b. Multiplying a by a positive elemnt increases a.

lemma (in group3) OrderedGroup_ZF_1_L22:
assumes Al: acG beGy
shows a<ab a # ab ab € G
proof -
from ordGroupAssum Al have a1 < ab
using OrderedGroup_ZF_1_L2A IsAnOrdGroup_def
by simp
with A1 show a<a'b
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp
then show ab € G
using OrderedGroup_ZF_1_L4 by simp
{ from Al have a€G beG
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using PositiveSet_def by auto

moreover assume a = ab

ultimately have b = 1
using OrderedGroup_ZF_1_L1 groupO.group0_2_L7
by simp

with A1 have False using PositiveSet_def
by simp

} then show a # ab by auto
qed

If G is a nontrivial linearly ordered hroup, then for every element of G we
can find one in G, that is greater or equal.

lemma (in group3) OrderedGroup_ZF_1_L23:
assumes Al: r {is total on} G and A2: G # {1}

and A3: acG
shows 3beG;. a<b
proof -

{ assume A4: acG; then have a<a
using PositiveSet_def OrderedGroup_ZF_1_L3
by simp
with A4 have JbeG,. a<b by auto }
moreover
{ assume a¢G,
with A1 A3 have I: a<1l using OrderedGroup_ZF_1_L17
by simp
from A1 A2 obtain b where II: beG
using OrderedGroup_ZF_1_L21 by auto
then have 1<b using PositiveSet_def by simp
with I have a<b by (rule Group_order_transitive)
with II have 3beGy. a<b by auto }
ultimately show thesis by auto
qed

The G* is G, plus the unit.

lemma (in group3) OrderedGroup_ZF_1_L24: shows GT = G U{1}
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L2A OrderedGroup_ZF_1_L3A
by auto

What is —G, really?

lemma (in group3) OrderedGroup_ZF_1_L25: shows
(-Gy) = {a7!. acG }
(-Gy) € G
proof -
from ordGroupAssum have I: GroupInv(G,P) : G—G
using IsAnOrdGroup_def groupO_2_T2 by simp
moreover have G, C G using PositiveSet_def by auto
ultimately show
(‘G+) = {ail. a€G+}
(-G4) € G
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using func_imagedef funcl_1_L6 by auto
qed

If the inverse of a is in G, then a is in the inverse of G...

lemma (in group3) OrderedGroup_ZF_1_L26:
assumes Al: acG and A2: a=! € Gy
shows a € (-G)
proof -
from A1 have a=! € G a = (a~!)~! using OrderedGroup_ZF_1_L1
group0.inverse_in_group groupO.group_inv_of_inv
by auto
with A2 show a € (-G;) using OrderedGroup_ZF_1_L25
by auto
qed

If @ is in the inverse of G4, then its inverse is in G.

lemma (in group3) OrderedGroup_ZF_1_L27:
assumes a € (-G4)
shows a=! € G,
using assms OrderedGroup_ZF_1_L25 PositiveSet_def
OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by auto

A linearly ordered group can be decomposed into G4, {1} and —G

lemma (in group3) OrdGroup_decomp2:
assumes Al: r {is total on} G
shows
G =0y U (-GHU {1}
G, N(-G4) = 0
1 ¢ GLU(-G4)
proof -
{ fix a assume A2: acG
with A1 have acG, V a~leG, V a=1
using OrderedGroup_ZF_1_L14 by auto
with A2 have acG, V ac(-Gy) V a=1
using OrderedGroup_ZF_1_L26 by auto
then have a € (G, U (-G,)U {1})
by auto
} then have G C Gy U (-G;)U {1}
by auto
moreover have G, U (-Gi)U {1} C G
using OrderedGroup_ZF_1_L25 PositiveSet_def
OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by auto
ultimately show G = G, U (-G;)U {1} by auto
{ let A = G+ﬂ(—G+)
assume G;N(-Gy) # 0
then have A#0 by simp
then obtain a where acA by blast
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then have False using OrderedGroup_ZF_1_L15 OrderedGroup_ZF_1_L27
by auto
} then show G,N(-G;) = 0 by auto
show 1 ¢ GLU(-G4)
using OrderedGroup_ZF_1_L27
OrderedGroup_ZF_1_L1 groupO.group_inv_of_one
OrderedGroup_ZF_1_L2A by auto
qed

If a- b~! is nonnegative, then b < a. This maybe used to recover the order
from the set of nonnegative elements and serve as a way to define order by
prescibing that set (see the ” Alternative definitions” section).

lemma (in group3) OrderedGroup_ZF_1_L28:
assumes Al: acG beG and A2: ab~! € GF
shows b<a
proof -
from A2 have 1 < ab ! using OrderedGroup_ZF_1_L2
by simp
with A1 show b<a using OrderedGroup_ZF_1_L5K
by simp
qed

A special case of OrderedGroup_zF_1_128 when a - b~! is positive.

corollary (in group3) OrderedGroup_ZF_1_L29:
assumes Al: a€G beG and A2: ab™! € G,
shows b<a b#a
proof -
from A2 have 1 < ab™! and I: ab™! # 1
using OrderedGroup_ZF_1_L2A by auto
with Al show b<a using OrderedGroup_ZF_1_L5K
by simp
from A1 I show b#a
using OrderedGroup_ZF_1_L1 group0.group0_2_L6
by auto
qed

A bit stronger that OrderedGroup_zZF_1_L29, adds case when two elements
are equal.

lemma (in group3) OrderedGroup_ZF_1_L30:
assumes acG beG and a=b V ba~! € G,
shows a<b
using assms OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L29
by auto

A different take on decomposition: we can have a = bor a < bor b < a.

lemma (in group3) OrderedGroup_ZF_1_L31:
assumes Al: r {is total on} G and A2: acG beG
shows a=b V (a<b A a#b) V (b<a A b#a)
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proof -
from A2 have a-b~! € G using OrderedGroup_ZF_1_L1
group0.inverse_in_group groupO.group_op_closed
by simp
with A1 have ab™' =1V ab! € G, vV (ab 1)t € G,
using OrderedGroup_ZF_1_L14 by simp
moreover
{ assume ab ! =1
then have a-b~!b = 1-b by simp
with A2 have a=b V (a<b A a#b) V (b<a A b#a)
using OrderedGroup_ZF_1_L1
group0.inv_cancel_two group0.group0_2_L2 by auto }
moreover
{ assume ab~! € G,
with A2 have a=b V (a<b A a#b) V (b<a A b#a)
using OrderedGroup_ZF_1_L29 by auto }
moreover
{ assume (ab 1)~ € G,
with A2 have b-a~! € G, using OrderedGroup_ZF_1_L1
group0.group0_2_L12 by simp
with A2 have a=b V (a<b A a#b) V (b<a A b#a)
using OrderedGroup_ZF_1_L29 by auto }
ultimately show a=b V (a<b A a#b) V (b<a A b#a)
by auto
qed

27.4 Intervals and bounded sets
Intervals here are the closed intervals of the form {z € G.a < z < b}.

A bounded set can be translated to put it in G* and then it is still bounded
above.

lemma (in group3) OrderedGroup_ZF_2_L1:
assumes Al: VgeA. L<g A g<M
and A2: S = RightTranslation(G,P,L™1)
and A3: a € S(A)
shows a < ML™! 1<a
proof -
from A3 have A#0 using funcl_1_L13A by fast
then obtain g where gcA by auto
with A1 have T1: LEG MeG L™'€G
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto
with A2 have S : G—G using OrderedGroup_ZF_1_L1 groupO.groupO_5_L1
by simp
moreover from Al have T2: ACG using OrderedGroup_ZF_1_L4 by auto
ultimately have S(A) = {S(b). beA} using func_imagedef
by simp
with A3 obtain b where T3: bcA a = S(b) by auto
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with A1 ordGroupAssum T1 have b-L7'<M-L™! L.L7!<b.L7!
using IsAnOrdGroup_def by auto
with T3 A2 T1 T2 show a<ML™! 1<a
using OrderedGroup_ZF_1_L1 groupO.group0_5_L2 groupO.group0_2_L6
by auto
qed

Every bounded set is an image of a subset of an interval that starts at 1.

lemma (in group3) OrderedGroup_ZF_2_L2:

assumes Al: IsBounded(A,r)

shows 3B.3geGt.3T€G—G. A = T(B) A B C Interval(r,1,g)
proof -

{ assume A2: A=0

let B =0
let g =1
let T = ConstantFunction(G,1)

have geG™ using OrderedGroup_ZF_1_L3A by simp
moreover have T : G—G
using func1l_3_L1 OrderedGroup_ZF_1_L1 groupO.group0_2_L2 by simp
moreover from A2 have A = T(B) by simp
moreover have B C Interval(r,1l,g) by simp
ultimately have
3B.3geGT.3T€G—=G. A = T(B) A B C Interval(r,1,g)
by auto }
moreover
{ assume A3: A#0
with A1 have JdL. Vxe€A. L<x and JU. VxeA. x<U
using IsBounded_def IsBoundedBelow_def IsBoundedAbove_def
by auto
then obtain L U where D1: VxeA. L<x A x<U
by auto
with A3 have T1: ACG using OrderedGroup_ZF_1_L4 by auto
from A3 obtain a where acA by auto
with D1 have T2: L<a a<U by auto
then have T3: LeG L™'e G UeG
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
groupO.inverse_in_group by auto
let T = RightTranslation(G,P,L)

let B = RightTranslation(G,P,L™1) (A)
let g = UL™!

have gcG™

proof -

from T2 have L<U using Group_order_transitive by fast
with ordGroupAssum T3 have L-L~!<g
using IsAnOrdGroup_def by simp
with T3 show thesis using OrderedGroup_ZF_1_L1 groupO.groupO_2_L6
OrderedGroup_ZF_1_L2 by simp
qed
moreover from T3 have T : G—G
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using OrderedGroup_ZF_1_L1 groupO.group0_5_L1
by simp
moreover have A = T(B)
proof -
from T3 T1 have T(B) = {aL !'L. acA}
using OrderedGroup_ZF_1_L1 groupO.group0_5_L6
by simp
moreover from T3 T1 have VacA. aL 'L = a-(L7'.L)
using OrderedGroup_ZF_1_L1 groupO.group_oper_assoc by auto
ultimately have T(B) = {a-(L7!L). acA} by simp
with T3 have T(B) = {a-1. acA}
using OrderedGroup_ZF_1_L1 groupO.group0_2_L6 by simp
moreover from T1 have VacA. a-l=a
using OrderedGroup_ZF_1_L1 groupO.group0_2_L2 by auto
ultimately show thesis by simp
qed
moreover have B C Interval(r,1,g)
proof
fix y assume A4: y € B
let S = RightTranslation(G,P,L~ %)
from D1 have T4: VxeA. L<x A x<U by simp
moreover have T5: S = RightTranslation(G,P,L™1)
by simp
moreover from A4 have T6: y € S(A) by simp
ultimately have y<U.L~! using OrderedGroup_ZF_2_L1
by blast
moreover from T4 T5 T6 have 1<y by (rule OrderedGroup_ZF_2_L1)
ultimately show y € Interval(r,1l,g) using Interval_def by auto
qed
ultimately have
3B.ﬂg€G+.3T€G—>G. A =T(B) AN B C Interval(r,1,g)
by auto }
ultimately show thesis by auto
qed

If every interval starting at 1 is finite, then every bounded set is finite. 1
find it interesting that this does not require the group to be linearly ordered
(the order to be total).

theorem (in group3) OrderedGroup_ZF_2_T1:
assumes Al: VgEG+. Interval(r,1,g) € Fin(G)
and A2: IsBounded(A,r)
shows A € Fin(G)
proof -
from A2 have
3B.3geGT.3T€G—G. A = T(B) A B C Interval(r,1,g)
using OrderedGroup_ZF_2_L2 by simp
then obtain B g T where D1: geG™ B C Interval(r,1l,g)
and D2: T : GG A = T(B) by auto
from D1 Al have B€Fin(G) using Fin_subset_lemma by blast
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with D2 show thesis using Finitel L6A by simp
qed

In linearly ordered groups finite sets are bounded.

theorem (in group3) ord_group_fin_bounded:
assumes r {is total on} G and BeFin(G)
shows IsBounded(B,r)
using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def Finite_ZF_1_T1
by simp

For nontrivial linearly ordered groups if for every element G we can find one
in A that is greater or equal (not necessarily strictly greater), then A can
neither be finite nor bounded above.

lemma (in group3) OrderedGroup_ZF_2_L2A:
assumes Al: r {is total on} G and A2: G # {1}
and A3: VaeG. dbeA. a<b
shows
Va€cG. dbeA. a#b A a<b
—IsBoundedAbove (A,r)
A ¢ Fin(G)
proof -
{ fix a
from A1 A2 obtain c¢c where ¢ € G,
using OrderedGroup_ZF_1_L21 by auto
moreover assume acG
ultimately have
ac € G and I: a < ac
using OrderedGroup_ZF_1_L22 by auto
with A3 obtain b where II: beA and III: ac < b
by auto
moreover from I III have a<b by (rule OrderedGroup_ZF_1_L4A)
ultimately have JbcA. a#b A a<b by auto
} thus VacG. IbeA. a#b A a<b by simp
with ordGroupAssum Al show
—IsBoundedAbove(A,r)
A ¢ Fin(G)
using IsAnOrdGroup_def IsPartOrder_def
OrderedGroup_ZF_1_L1A Order_ZF_3_L14 Finite_ZF_1_1_L3
by auto
qed

Nontrivial linearly ordered groups are infinite. Recall that Fin(A) is the
collection of finite subsets of A. In this lemma we show that G ¢ Fin(G),
that is that G is not a finite subset of itself. This is a way of saying that
G is infinite. We also show that for nontrivial linearly ordered groups G, is
infinite.

theorem (in group3) Linord_group_infinite:
assumes Al: r {is total on} G and A2: G # {1}
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shows
G, ¢ Fin(G)
G ¢ Fin(G)
proof -
from A1 A2 show I: G, ¢ Fin(G)
using OrderedGroup_ZF_1_L23 OrderedGroup_ZF_2_L2A
by simp
{ assume G € Fin(G)
moreover have G, C G using PositiveSet_def by auto
ultimately have G; € Fin(G) using Fin_subset_lemma
by blast
with I have False by simp
} then show G ¢ Fin(G) by auto
qed

A property of nonempty subsets of linearly ordered groups that don’t have
a maximum: for any element in such subset we can find one that is strictly
greater.

lemma (in group3) OrderedGroup_ZF_2_L2B:
assumes Al: r {is total on} G and A2: ACG and
A3: —HasAmaximum(r,A) and A4: xcA
shows JyecA. x<y
proof -
from ordGroupAssum assms have
antisym(r)
r {is total on} G
ACG -—HasAmaximum(r,A) =x€A
using IsAnOrdGroup_def IsPartOrder_def
by auto
then have Jye€A. (x,y) € r A y#x
using Order_ZF_4_L16 by simp
then show JycA. x<y by auto
qed

In linearly ordered groups G \ G is bounded above.

lemma (in group3) OrderedGroup_ZF_2_L3:
assumes Al: r {is total on} G shows IsBoundedAbove(G-Gy,r)
proof -
from A1 have VaeG-G;. a<l
using OrderedGroup_ZF_1_L17 by simp
then show IsBoundedAbove(G-Gi,r)
using IsBoundedAbove_def by auto
qed

In linearly ordered groups if A NG is finite, then A is bounded above.

lemma (in group3) OrderedGroup_ZF_2_L4:
assumes Al: r {is total on} G and A2: ACG
and A3: A N Gy € Fin(G)
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shows IsBoundedAbove(A,r)
proof -
have A N (G-G;) C G-G; by auto
with Al have IsBoundedAbove(A N (G-Gi),r)
using OrderedGroup_ZF_2_L3 Order_ZF_3_L13
by blast
moreover from Al A3 have IsBoundedAbove(A N G4 ,r)
using ord_group_fin_bounded IsBounded_def
by simp
moreover from Al ordGroupAssum have
r {is total on} G trans(r) rCGXG
using IsAnOrdGroup_def IsPartOrder_def by auto
ultimately have IsBoundedAbove(A N (G-Gy) U A N Gy,r)
using Order_ZF_3_L3 by simp
moreover from A2 have A = A N (G-G4) U A N G4
by auto
ultimately show IsBoundedAbove(A,r) by simp
qed

If a set —A C G is bounded above, then A is bounded below.

lemma (in group3) OrderedGroup_ZF_2_L5:
assumes Al: ACG and A2: IsBoundedAbove(-A,r)
shows IsBoundedBelow(A,r)
proof -
{ assume A = 0 then have IsBoundedBelow(A,r)
using IsBoundedBelow_def by auto }
moreover
{ assume A3: A#0
from ordGroupAssum have I: GroupInv(G,P) : G—G
using IsAnOrdGroup_def group0_2_T2 by simp
with A1 A2 A3 obtain u where D: Vac(-4A). a<u
using funcl_1_L15A IsBoundedAbove_def by auto
{ fix b assume beA
with A1 I D have b™! < u and T: beG
using func_imagedef by auto
then have u=!'<(b~!)~! using OrderedGroup_zF_1_L5
by simp
with T have u~!<b
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp
} then have VbeA. (u!,b) € r by simp
then have IsBoundedBelow(A,r)
using Order_ZF_3_L9 by blast }
ultimately show thesis by auto
qed

If @ < b, then the image of the interval a..b by any function is nonempty.

lemma (in group3) OrderedGroup_ZF_2_L6:
assumes a<b and f:G—G
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shows f(Interval(r,a,b)) # 0
using ordGroupAssum assms OrderedGroup_ZF_1_L4
Order_ZF_2_L6 Order_ZF_2_L2A
IsAnOrdGroup_def IsPartOrder_def funci_1_L15A
by auto

end
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28 OrderedGroup_ZF 1.thy

theory OrderedGroup_ZF_1 imports OrderedGroup_ZF
begin

In this theory we continue the OrderedGroup_ZF theory development.

28.1 Absolute value and the triangle inequality
The goal of this section is to prove the triangle inequality for ordered groups.

Absolute value maps G into G.

lemma (in group3) OrderedGroup_ZF_3_L1:
shows AbsoluteValue(G,P,r) : G—G
proof -
let £ = id(G™)
let g = restrict (GroupInv(G,P),G-GT)
have f : GT"—G" using id_type by simp
then have f : GT—G using OrderedGroup_ZF_1_L4E fun_weaken_type
by blast
moreover have g : G-GT—G
proof -
from ordGroupAssum have GroupInv(G,P) : G—G
using IsAnOrdGroup_def group0_2_T2 by simp
moreover have G-GT C G by auto
ultimately show thesis using restrict_type2 by simp
qed
moreover have GTN(G-GT) = 0 by blast
ultimately have f U g : GTU(G-GT)—GUG
by (rule fun_disjoint_Un)
moreover have GTU(G-GT) = G using OrderedGroup_ZF_1_L4E
by auto
ultimately show AbsoluteValue(G,P,r) : G—G
using AbsoluteValue_def by simp
qed

If a € GT, then |a| = a.

lemma (in group3) OrderedGroup_ZF_3_L2:
assumes Al: acG' shows |al = a
proof -
from ordGroupAssum have GroupInv(G,P) : G—G
using IsAnOrdGroup_def groupO0_2_T2 by simp
with Al show thesis using
funcl_1_L1 OrderedGroup_ZF_1_L4E fun_disjoint_applyl
AbsoluteValue_def id_conv by simp
qed
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The absolute value of the unit is the unit. In the additive totation that
would be [0] = 0.

lemma (in group3) OrderedGroup_ZF_3_L2A:
shows |1| = 1 using OrderedGroup_ZF_1_L3A OrderedGroup_ZF_3_L2
by simp

If @ is positive, then |a| = a.

lemma (in group3) OrderedGroup_ZF_3_L2B:
assumes acG; shows |al = a
using assms PositiveSet_def Nonnegative_def OrderedGroup_ZF_3_L2
by auto

If a € G\ GV, then |a|] = a™ L.

lemma (in group3) OrderedGroup_ZF_3_L3:
assumes Al: a € G-G* shows |a] = a!
proof -
have domain(id(G™)) = GT
using id_type funci_1_L1 by auto
with Al show thesis using fun_disjoint_apply2 AbsoluteValue_def
restrict by simp
qed

For elements that not greater than the unit, the absolute value is the inverse.

lemma (in group3) OrderedGroup_ZF_3_L3A:
assumes Al: a<l1

shows |a| = a~!
proof -
{ assume a=1 then have |a| = a~!
using OrderedGroup_ZF_3_L2A OrderedGroup_ZF_1_L1 groupO.group_inv_of_one
by simp }
moreover

{ assume a#l
with A1 have |a| = a~! using OrderedGroup_ZF_1_LA4C OrderedGroup_ZF_3_L3
by simp }
ultimately show |al = a=! by blast
qed

In linearly ordered groups the absolute value of any element is in G™.

lemma (in group3) OrderedGroup_ZF_3_L3B:
assumes Al: r {is total on} G and A2: acG
shows |al € G*
proof -
{ assume a € G* then have |al € GT
using OrderedGroup_ZF_3_L2 by simp }
moreover
{ assume a ¢ G*
with A1 A2 have |al € G' using OrderedGroup_ZF_3_L3
OrderedGroup_ZF_1_L6 by simp }
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ultimately show |al € G by blast
qed

For linearly ordered groups (where the order is total), the absolute value
maps the group into the positive set.

lemma (in group3) OrderedGroup_ZF_3_L3C:
assumes Al: r {is total on} G
shows AbsoluteValue(G,P,r) : G—Gt
proof-
have AbsoluteValue(G,P,r) : G—G using OrderedGroup_ZF_3_L1
by simp
moreover from A1 have T2:
VgeG. AbsoluteValue(G,P,r)(g) € G
using OrderedGroup_ZF_3_L3B by simp
ultimately show thesis by (rule funcl_1_L1A)
qed

If the absolute value is the unit, then the elemnent is the unit.

lemma (in group3) OrderedGroup_ZF_3_L3D:
assumes Al: acG and A2: |al =1
shows a =1
proof -
{ assume a € G"
with A2 have a = 1 using OrderedGroup_ZF_3_L2 by simp }
moreover
{ assume a ¢ G*
with A1 A2 have a = 1 using
OrderedGroup_ZF_3_L3 OrderedGroup_ZF_1_L1 groupO.group0_2_L8A
by auto }
ultimately show a = 1 by blast
qed

In linearly ordered groups the unit is not greater than the absolute value of
any element.

lemma (in group3) OrderedGroup_ZF_3_L3E:
assumes r {is total on} G and acG
shows 1 < |al
using assms OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2 by simp

If b is greater than both a and a~!, then b is greater than |al.

lemma (in group3) OrderedGroup_ZF_3_L4:
assumes Al: a<b and A2: a—'< b
shows |al< b
proof -
{ assume acG"
with A1 have |al< b using OrderedGroup_ZF_3_L2 by simp }
moreover
{ assume a¢G"t
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with A1 A2 have |al< b
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L3 by simp }
ultimately show |al< b by blast
qed

In linearly ordered groups a < |a|.

lemma (in group3) OrderedGroup_ZF_3_L5:
assumes Al: r {is total on} G and A2: acG
shows a < |al
proof -
{ assume a € G*
with A2 have a < |al
using OrderedGroup_ZF_3_L2 OrderedGroup_ZF_1_L3 by simp }
moreover
{ assume a ¢ G*
with A1 A2 have a < |al
using OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L4B by simp }
ultimately show a < |al by blast
qed

a~! < |a| (in additive notation it would be —a < |al.

lemma (in group3) OrderedGroup_ZF_3_L6:
assumes Al: acG shows a=! < J|a]
proof -
{ assume a € G"
then have T1: 1<a and T2: |al = a using OrderedGroup_ZF_1_L2
OrderedGroup_ZF_3_L2 by auto
then have a~!'<17! using OrderedGroup_ZF_1_L5 by simp
then have T3: a—1<1
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_one by simp
from T3 T1 have a~!<a by (rule Group_order_transitive)
with T2 have a=! < |a| by simp }
moreover
{ assume A2: a ¢ GT
from A1 have |al € G
using OrderedGroup_ZF_3_L1 apply_funtype by auto
with ordGroupAssum have |al < |al
using IsAnOrdGroup_def IsPartOrder_def refl_def by simp
with A1 A2 have a~! < |a| using OrderedGroup_ZF_3_L3 by simp }
ultimately show a=! < |al by blast
qed

Some inequalities about the product of two elements of a linearly ordered
group and its absolute value.

lemma (in group3) OrderedGroup_ZF_3_L6A:
assumes r {is total on} G and a€G beG
shows
ab <lal-Ibl
ab~! <lal-Ibl
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a~tb <lal-Ib]

a~lb! <lal bl

using assms OrderedGroup_ZF_3_L5 OrderedGroup_ZF_3_L6
OrderedGroup_ZF_1_L5B by auto

™| < lal.

lemma (in group3) OrderedGroup_ZF_3_L7:
assumes r {is total on} G and acG
shows |a=1|<|al
using assms OrderedGroup_ZF_3_L5 OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
OrderedGroup_ZF_3_L6 OrderedGroup_ZF_3_L4 by simp

o™ = lal.

lemma (in group3) OrderedGroup_ZF_3_L7A:
assumes Al: r {is total on} G and A2: acG

shows |a71| = |al
proof -
from A2 have a~'€G using OrderedGroup_ZF_1_L1 group0.inverse_in_group
by simp

with A1 have |(a=!)~!| < |a~!| using OrderedGroup_ZF_3_L7 by simp
with A1 A2 have la~!| < lal lal < la7?
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv OrderedGroup_ZF_3_L7

by auto
then show thesis by (rule group_order_antisym)
qed
la- b7t = |b-a~!. Tt doesn’t look so strange in the additive notation:
la —b] = |b—al.

lemma (in group3) OrderedGroup_ZF_3_L7B:
assumes Al: r {is total on} G and A2: acG beG

shows |a-b~!| = |b-a?|
proof -
from A1 A2 have |(ab™!)7!| = |ab™!| using

OrderedGroup_ZF_1_L1 groupO.inverse_in_group groupO.groupO_2_L1
monoid0.groupO_1_L1 OrderedGroup_ZF_3_L7A by simp
moreover from A2 have (ab !)"! = ba!
using OrderedGroup_ZF_1_L1 groupO.group0_2_L12 by simp
ultimately show thesis by simp
qed

Triangle inequality for linearly ordered abelian groups. It would be nice to
drop commutativity or give an example that shows we can’t do that.

theorem (in group3) OrdGroup_triangle_ineq:
assumes Al: P {is commutative on} G
and A2: r {is total on} G and A3: a€eG beG
shows |ab| < |al-|bl

proof -
from A1 A2 A3 have
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a< lal b < Ibl a=! < Jal b ! < |bl
using OrderedGroup_ZF_3_L5 OrderedGroup_ZF_3_L6 by auto
then have ab < |al-Ib| a=!b™! < |al-|b]
using OrderedGroup_ZF_1_L5B by auto
with A1 A3 show |abl < |al-Ibl
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_two IsCommutative_def

OrderedGroup_ZF_3_L4 by simp
qed

We can multiply the sides of an inequality with absolute value.

lemma (in group3) OrderedGroup_ZF_3_L7C:
assumes Al: P {is commutative on} G
and A2: r {is total on} G and A3: acG beG
and A4d: |lal < c |bl < d
shows |abl < cd
proof -
from A1 A2 A3 A4 have |abl < |al-|bl
using OrderedGroup_ZF_1_L4 OrdGroup_triangle_ineq
by simp
moreover from A4 have |al-Ib| < cd
using OrderedGroup_ZF_1_L5B by simp
ultimately show thesis by (rule Group_order_transitive)
qed

A version of the OrderedGroup_ZF_3_L7C but with multiplying by the inverse.

lemma (in group3) OrderedGroup_ZF_3_L7CA:
assumes P {is commutative on} G
and r {is total on} G and acG beG
and |lal < c¢c |b] <d
shows |ab~!| < cd
using assms OrderedGroup_ZF_1_L1 group0.inverse_in_group
OrderedGroup_ZF_3_L7A OrderedGroup_ZF_3_L7C by simp

Triangle inequality with three integers.

lemma (in group3) OrdGroup_triangle_ineq3:
assumes Al: P {is commutative on} G
and A2: r {is total on} G and A3: acG beG c&G
shows |a-b-cl < |al-Ibl-lc]
proof -
from A3 have T: ab € G |c| € G
using OrderedGroup_ZF_1_L1 groupO.group_op_closed
OrderedGroup_ZF_3_L1 apply_funtype by auto
with A1 A2 A3 have |ab-c| < |abl-lc|
using OrdGroup_triangle_ineq by simp
moreover from ordGroupAssum A1 A2 A3 T have
labl-lcl < lal-Ibl-lcl
using OrdGroup_triangle_ineq IsAnOrdGroup_def by simp
ultimately show |ab.c| < |al:|bl-lcl
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by (rule Group_order_transitive)
qed

Some variants of the triangle inequality.

lemma (in group3) OrderedGroup_ZF_3_L7D:
assumes Al: P {is commutative on} G
and A2: r {is total on} G and A3: acG beG
and A4: |labl| < ¢
shows
lal < c-Ibl
lal < Ibl-c
c L. b
a-c” b
a < bc
proof -
from A3 A4 have
T: ab™' € G |bl €G ceG c ! e@
using OrderedGroup_ZF_1_L1
group0.inverse_in_group groupO.groupO_2_L1 monoid0.groupO_1_L1
OrderedGroup_ZF_3_L1 apply_funtype OrderedGroup_ZF_1_L4

<
<

by auto

from A3 have |al = |ab !
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
by simp

with A1 A2 A3 T have |lal < lab™'|-|b]
using OrdGroup_triangle_ineq by simp

with T A4 show |al < c-|b| using OrderedGroup_ZF_1_L5C
by blast

with T A1 show |al < |bl-c
using IsCommutative_def by simp

from A2 T have ab~! < |ab !
using OrderedGroup_ZF_3_L5 by simp

moreover note A4

ultimately have I: ab™! < ¢
by (rule Group_order_transitive)

with A3 show c l.a < b
using OrderedGroup_ZF_1_L5H by simp

with A1 A3 T show ac™! < b
using IsCommutative_def by simp

from A1 A3 T I show a < b-c
using OrderedGroup_ZF_1_L5H IsCommutative_def
by auto

qed

Some more variants of the triangle inequality.

lemma (in group3) OrderedGroup_ZF_3_L7E:
assumes Al: P {is commutative on} G
and A2: r {is total on} G and A3: acG beG
and A4: lab7!| < ¢
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shows b-c™! < a
proof -
from A3 have ab™! € G
using OrderedGroup_ZF_1_L1
group0.inverse_in_group groupO.group_op_closed
by auto
with A2 have |(ab 1)~"'| = |ab™!|
using OrderedGroup_ZF_3_L7A by simp
moreover from A3 have (a-b~!)~! = b.a™!
using OrderedGroup_ZF_1_L1 group0.group0_2_L12
by simp
ultimately have |b-a=!| = |ab™!|
by simp
with A1 A2 A3 A4 show bc™! < a
using OrderedGroup_ZF_3_L7D by simp
qed
An application of the triangle inequality with four group elements.

lemma (in group3) OrderedGroup_ZF_3_L7F:
assumes Al: P {is commutative on} G
and A2: r {is total on} G and
A3: aceG beG ceG deG
shows |a-c™!| < labl-lcd|-|b-d7 1|

proof -

from A3 have T:
acleG abe G cde G bd!eg

(cd)™t eG (bdaH) !t ea
using OrderedGroup_ZF_1_L1
group0.inverse_in_group groupl.group_op_closed

by auto
with A1 A2 have |(ab)-(c-d) 1 (b-d 1 < labl-|(cd) ][ (bd 1)1

using OrdGroup_triangle_ineq3 by simp
moreover from A2 T have |(c-d)~!| =lc-dl and |(b-d" 1)~} = |b-d7 |
using OrderedGroup_ZF_3_L7A by auto
moreover from A1 A3 have (a-b)-(c-d) !-(b-d™1)7! = ac™!
using OrderedGroup_ZF_1_L1 group0.group0_4_L8
by simp
ultimately show la-c™ | < |abl-lcdl-|bd~ ]
by simp
qed
la| < L implies L~ < a (it would be —L < a in the additive notation).

lemma (in group3) OrderedGroup_ZF_3_L8:
assumes Al: acG and A2: |al|<L
shows
L~ !'<a

proof -
from A1 have I: a—! < |a| using OrderedGroup_ZF_3_L6 by simp

from I A2 have a=! < L by (rule Group_order_transitive)
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then have L™'<(a"!)~! using OrderedGroup_ZF_1_L5 by simp
with A1 show L~ !'<a using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp
qed

In linearly ordered groups |a| < L implies a < L (it would be a < L in the
additive notation).

lemma (in group3) OrderedGroup_ZF_3_L8A:
assumes Al: r {is total on} G
and A2: acG and A3: |al|<L
shows
a<L
1<L
proof -
from A1 A2 have I: a < |al| using OrderedGroup_ZF_3_L5 by simp
from I A3 show a<L by (rule Group_order_transitive)
from A1 A2 A3 have 1 < |al Jal<L
using OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2 by auto
then show 1<L by (rule Group_order_transitive)
qed

A somewhat generalized version of the above lemma.

lemma (in group3) OrderedGroup_ZF_3_L8B:
assumes Al: acG and A2: |al<L and A3: 1<c
shows (L.¢)~! < a
proof -
from A1 A2 A3 have ¢ 1L7! < 1.a
using OrderedGroup_ZF_3_L8 OrderedGroup_ZF_1_L5AB
OrderedGroup_ZF_1_L5B by simp
with A1 A2 A3 show (Lc) ! < a
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
groupO.group_inv_of_two groupO.groupO0_2_L2
by simp
qed

If b is between a and a - ¢, then b-a~! < c.

lemma (in group3) OrderedGroup_ZF_3_L8C:
assumes Al: a<b and A2: c€G and A3: b<c-a
shows |ba~!| < ¢
proof -
from A1 A2 A3 have ba™! < ¢
using OrderedGroup_ZF_1_L9C OrderedGroup_ZF_1_L4
by simp
moreover have (b-a=1)~1 < ¢
proof -
from A1 have T: acG beG
using OrderedGroup_ZF_1_L4 by auto
with A1 have ab~! < 1
using OrderedGroup_ZF_1_L9 by blast
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moreover
from A1 A3 have a<c-a
by (rule Group_order_transitive)
with ordGroupAssum T have aa”l < caa”
using OrderedGroup_ZF_1_L1 group0.inverse_in_group
IsAnOrdGroup_def by simp
with T A2 have 1 < ¢
using OrderedGroup_ZF_1_L1
group0.group0_2_L6 groupO.inv_cancel_two
by simp
ultimately have ab™! < ¢
by (rule Group_order_transitive)
with T show (b-a1)~! < ¢
using OrderedGroup_ZF_1_L1 groupO.group0_2_L12
by simp
qed
ultimately show |b-a™!] < ¢
using OrderedGroup_ZF_3_L4 by simp
qed

1

For linearly ordered groups if the absolute values of elements in a set are
bounded, then the set is bounded.

lemma (in group3) OrderedGroup_ZF_3_L9:
assumes Al: r {is total on} G
and A2: ACG and A3: VacA. lal < L
shows IsBounded(A,r)
proof -
from A1 A2 A3 have
Vach. a<L Va€cA. L7 '<a
using OrderedGroup_ZF_3_L8 OrderedGroup_ZF_3_L8A by auto
then show IsBounded(A,r) using
IsBoundedAbove_def IsBoundedBelow_def IsBounded_def
by auto
qed

A slightly more general version of the previous lemma, stating the same fact
for a set defined by separation.

lemma (in group3) OrderedGroup_ZF_3_L9A:

assumes Al: r {is total on} G

and A2: VxeX. b(x)€G A |b(x) <L

shows IsBounded ({b(x). x€X},r)
proof -

from A2 have {b(x). x€X} C G Vae{b(x). x€X}. lal] < L

by auto

with Al show thesis using OrderedGroup_ZF_3_L9 by blast

qed

A special form of the previous lemma stating a similar fact for an image of
a set by a function with values in a linearly ordered group.
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lemma (in group3) OrderedGroup_ZF_3_L9B:
assumes Al: r {is total on} G
and A2: f:X—G and A3: ACX
and A4: VxeA. |[f(x)| <L
shows IsBounded(f(A),r)
proof -
from A2 A3 A4 have VxeA. f(x) e G A |[fx)| <L
using apply_funtype by auto
with A1 have IsBounded({f(x). x€A},r)
by (rule OrderedGroup_ZF_3_L9A)
with A2 A3 show IsBounded(f(A),r)
using func_imagedef by simp
qed

For linearly ordered groups if | < a < u then |a| is smaller than the greater
of [1],|ul.

lemma (in group3) OrderedGroup_ZF_3_L10:
assumes Al: r {is total on} G
and A2: 1<a a<u
shows
|lal < Greater0f(r,|1l,|ul)
proof -
from A2 have Ti: |1| € G |al € G |ul € G
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L1 apply_funtype
by auto
{ assume A3: acG"
with A2 have 1<a a<u
using OrderedGroup_ZF_1_L2 by auto
then have 1<u by (rule Group_order_transitive)
with A2 A3 have |al|<|ul
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_3_L2 by simp
moreover from A1 T1 have |ul < GreaterOf(r,|1ll,lul)
using Order_ZF_3_L2 by simp
ultimately have |a| < GreaterOf(r,I|1ll,lul)
by (rule Group_order_transitive) }
moreover
{ assume A4: agG™
with A2 have T2:
1€G |11 € G lal € G lul € G a € G-GT
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L1 apply_funtype
by auto
with A2 have 1 € G-G* using OrderedGroup_ZF_1_L4D by fast
with T2 A2 have lal < |1]
using OrderedGroup_ZF_3_L3 OrderedGroup_ZF_1_L5
by simp
moreover from A1l T2 have |1| < GreaterOf(r, |1/, [ul)
using Order_ZF_3_L2 by simp
ultimately have |a|l < GreaterOf(r,|1],|ul)
by (rule Group_order_transitive) }
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ultimately show thesis by blast
qed

For linearly ordered groups if a set is bounded then the absolute values are

bounded.

lemma (in group3) OrderedGroup_ZF_3_L10A:
assumes Al: r {is total on} G
and A2: IsBounded(A,r)
shows JdL. VaeA. |al] < L
proof -
{ assume A = 0 then have thesis by auto }
moreover
{ assume A3: A#0
with A2 have Ju. VgeA. g<u and J1.VgeA. 1<g
using IsBounded_def IsBoundedAbove_def IsBoundedBelow_def
by auto
then obtain u 1 where VgecA. 1<g A g<u
by auto
with A1 have VacA. |al < Greater0f(r,|1l,|ul)
using OrderedGroup_ZF_3_L10 by simp
then have thesis by auto }
ultimately show thesis by blast
qed

A slightly more general version of the previous lemma, stating the same fact
for a set defined by separation.

lemma (in group3) OrderedGroup_ZF_3_L11:
assumes r {is total on} G
and IsBounded({b(x).x€X},r)
shows JL. VxeX. |bx)| < L
using assms OrderedGroup_ZF_3_L10A by blast

Absolute values of elements of a finite image of a nonempty set are bounded
by an element of the group.

lemma (in group3) OrderedGroup_ZF_3_L11A:
assumes Al: r {is total on} G
and A2: X#0 and A3: {b(x). x€X} € Fin(G)
shows JLeG. VxeX. |b(x)| < L
proof -
from A1 A3 have dL. VxeX. |b(x)| < L
using ord_group_fin_bounded OrderedGroup_ZF_3_L11
by simp
then obtain L where I: VxeX. |[b(x)| < L
using OrderedGroup_ZF_3_L11 by auto
from A2 obtain x where x€X by auto
with I show thesis using OrderedGroup_ZF_1_L4
by blast
qed
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In totally oredered groups the absolute value of a nonunit element is in G .

lemma (in group3) OrderedGroup_ZF_3_L12:
assumes Al: r {is total on} G
and A2: acG and A3: a#l
shows |al € G4
proof -
from A1 A2 have |al] € G 1 < |al
using OrderedGroup_ZF_3_L1 apply_funtype
OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2
by auto
moreover from A2 A3 have |lal # 1
using OrderedGroup_ZF_3_L3D by auto
ultimately show |al € G
using PositiveSet_def by auto
qed

28.2 Maximum absolute value of a set

Quite often when considering inequalities we prefer to talk about the abso-
lute values instead of raw elements of a set. This section formalizes some
material that is useful for that.

If a set has a maximum and minimum, then the greater of the absolute
value of the maximum and minimum belongs to the image of the set by the
absolute value function.

lemma (in group3) OrderedGroup_ZF_4_L1:

assumes A C G

and HasAmaximum(r,A) HasAminimum(r,A)

and M = GreaterOf(r, |[Minimum(r,A) |, |IMaximum(r,A)|)

shows M € AbsoluteValue(G,P,r) (A)

using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def
Order_ZF_4_L3 Order_ZF_4_L4 OrderedGroup_ZF_3_L1
func_imagedef GreaterOf_def by auto

If a set has a maximum and minimum, then the greater of the absolute value
of the maximum and minimum bounds absolute values of all elements of the
set.

lemma (in group3) OrderedGroup_ZF_4_L2:
assumes Al: r {is total on} G
and A2: HasAmaximum(r,A) HasAminimum(r,A)

and A3: acA
shows |al< Greater0f(r, IMinimum(r,A) |, |[Maximum(r,A)|)
proof -

from ordGroupAssum A2 A3 have
Minimum(r,A)< a a< Maximum(r,A)
using IsAnOrdGroup_def IsPartOrder_def Order_ZF_4_L3 Order_ZF_4_L4
by auto
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with Al show thesis by (rule OrderedGroup_ZF_3_L10)
qed

If a set has a maximum and minimum, then the greater of the absolute value
of the maximum and minimum bounds absolute values of all elements of the
set. In this lemma the absolute values of ekements of a set are represented
as the elements of the image of the set by the absolute value function.

lemma (in group3) OrderedGroup_ZF_4_L3:
assumes r {is total on} G and A C G
and HasAmaximum(r,A) HasAminimum(r,A)
and b € AbsoluteValue(G,P,r) (A)
shows b< Greater0f (r, IMinimum(r,A) |, |[Maximum(r,A)|)
using assms OrderedGroup_ZF_3_L1 func_imagedef OrderedGroup_ZF_4_L2
by auto

If a set has a maximum and minimum, then the set of absolute values also
has a maximum.

lemma (in group3) OrderedGroup_ZF_4_L4:
assumes Al: r {is total on} G and A2: A C G
and A3: HasAmaximum(r,A) HasAminimum(r,A)
shows HasAmaximum(r,AbsoluteValue(G,P,r) (A))
proof -
let M = GreaterOf(r, |[Minimum(r,A) |, |[Maximum(r,A)|)
from A2 A3 have M € AbsoluteValue(G,P,r) (A)
using OrderedGroup_ZF_4_L1 by simp
moreover from A1 A2 A3 have
Vb € AbsoluteValue(G,P,r)(A). b < M
using OrderedGroup_ZF_4_L3 by simp
ultimately show thesis using HasAmaximum_def by auto
qed

If a set has a maximum and a minimum, then all absolute values are bounded
by the maximum of the set of absolute values.

lemma (in group3) OrderedGroup_ZF_4_L5:
assumes Al: r {is total on} G and A2: A C G
and A3: HasAmaximum(r,A) HasAminimum(r,A)

and A4: acA
shows |a|l < Maximum(r,AbsoluteValue(G,P,r) (A))
proof -

from A2 A4 have |al € AbsoluteValue(G,P,r) (A)
using OrderedGroup_ZF_3_L1 func_imagedef by auto
with ordGroupAssum Al A2 A3 show thesis using
IsAnOrdGroup_def IsPartOrder_def OrderedGroup_ZF_4_L4
Order_ZF_4_L3 by simp
qed
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28.3 Alternative definitions

Sometimes it is usful to define the order by prescibing the set of positive
or nonnegative elements. This section deals with two such definitions. One
takes a subset H of G that is closed under the group operation, 1 ¢ H and
for every a € H we have either a € H or a=! € H. Then the order is defined
as a < biff a =bor a'b € H. For abelian groups this makes a linearly
ordered group. We will refer to order defined this way in the comments
as the order defined by a positive set. The context used in this section is
the group0 context defined in Group_ZzF theory. Recall that £ in that context
denotes the group operation (unlike in the previous sections where the group
operation was denoted P.

The order defined by a positive set is the same as the order defined by a
nonnegative set.

lemma (in group0) OrderedGroup_ZF_5_L1:
assumes Al: r = {p € GxG. fst(p) = snd(p) V fst(p) !-snd(p) € H}
shows (a,b) € r +— acG A beG A a~!'b € H U {1}
proof
assume (a,b) € r
with A1 show a€G A beG A a~!'b € H U {1}
using group0_2_L6 by auto
next assume acG A beG A a='b € H U {1}
then have acG A beG A b=(a™')"! V acG A beG A a''b € H
using inverse_in_group group0_2_L9 by auto
with A1 show (a,b) € r using group_inv_of_inv
by auto
qed

The relation defined by a positive set is antisymmetric.

lemma (in group0) OrderedGroup_ZF_5_L2:
assumes Al: r = {p € GxG. fst(p) = snd(p) V fst(p) '-snd(p) € H}
and A2: YacG. a#l — (acH) Xor (a~'€H)
shows antisym(r)
proof -
{ fix a b assume A3: (a,b) € r (b,a) € r
with A1 have T: a€G beG by auto
{ assume A4: a#b
with A1 A3 have a='b € G a!b € H (a™'b)7! € H
using inverse_in_group groupO_2_L1 monoid0.groupO_1_L1 groupO_2_L12
by auto
with A2 have a—!b = 1 using Xor_def by auto
with T A4 have False using group0_2_L11 by auto
} then have a=b by auto
} then show antisym(r) by (rule antisymI)
qed

The relation defined by a positive set is transitive.
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lemma (in group0) OrderedGroup_ZF_5_L3:
assumes Al: r = {p € GxG. fst(p) = snd(p) V fst(p) !-snd(p) € H}
and A2: HCG H {is closed under} P
shows trans(r)
proof -
{ fix a b c assume (a,b) € r (b,c) € r
with A1 have
a€G A beG A a~'b € H U {1}
bEG A c€G A b lc € HU {1}
using OrderedGroup_ZF_5_L1 by auto
with A2 have
I: acG beG ceG
and (a=!'b)-(b~lc) € HU {1}
using inverse_in_group groupO_2_L17 IsOpClosed_def
by auto
moreover from I have a—!':c = (a=!'b)-(b~!-c)
by (rule group0_2_L14A)
ultimately have (a,c) € GxG a'c¢ € HU {1}

by auto
with A1 have (a,c) € r using OrderedGroup_ZF_5_L1
by auto
} then have V abc. (a, b) e r A (b, ¢c) €r — (a, ¢) €r
by blast
then show trans(r) by (rule Foll_L2)

qed

The relation defined by a positive set is translation invariant. With our
definition this step requires the group to be abelian.

lemma (in group0) OrderedGroup_ZF_5_L4:
assumes Al: r = {p € GxG. fst(p) = snd(p) V fst(p) '-snd(p) € H}
and A2: P {is commutative on} G
and A3: (a,b) € r and A4: ceG
shows (a-c,bc) € r A {(ca,cb) € r
proof
from A1 A3 A4 have
I: acG beG ac € G bc G
and II: a~'b € HU {1}
using OrderedGroup_ZF_5_L1 group_op_closed
by auto
with A2 A4 have (a-c) !'-(bc) € HU {1}
using group0_4_L6D by simp
with A1 I show (a-c,bc) € r using OrderedGroup_ZF_5_L1
by auto
with A2 A4 I show (ca,cb) € r
using IsCommutative_def by simp
qed

If H C G is closed under the group operation 1 ¢ H and for every a € H
we have either a € H or a~! € H, then the relation ”<” defined bya<b<&
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a~'b € H orders the group G. In such order H may be the set of positive
or nonnegative elements.

lemma (in group0) OrderedGroup_ZF_5_L5:
assumes Al: P {is commutative on} G
and A2: HCG H {is closed under} P
and A3: VacG. a#l — (acH) Xor (a~'€H)
and A4: r = {p € GxG. fst(p) = snd(p) V fst(p) '-snd(p) € H}
shows
IsAnOrdGroup(G,P,r)
r {is total on} G
Nonnegative(G,P,r) = PositiveSet(G,P,r) U {1}
proof -
from groupAssum A2 A3 A4 have
IsAgroup(G,P) r C GXG IsPartOrder(G,r)
using refl_def OrderedGroup_ZF_5_L2 OrderedGroup_ZF_5_L3
IsPartOrder_def by auto
moreover from Al A4 have
VgeG. Vab. (a,b) € r — (ag,bg) €r A (ga,gb) €T
using OrderedGroup_ZF_5_L4 by blast
ultimately show IsAnOrdGroup(G,P,r)
using IsAnOrdGroup_def by simp
then show Nonnegative(G,P,r) = PositiveSet(G,P,r) U {1}
using group3_def group3.0rderedGroup_ZF_1_L24
by simp
{ fix ab
assume T: acG beG
then have T1: a='b € G
using inverse_in_group group_op_closed by simp
{ assume ( a,b) ¢ r
with A4 T have I: a#b and II: a~!b ¢ H
by auto
from A3 T T1 I have (a~'b € H) Xor ((a~!'b)~! € H)
using group0_2_L11 by auto
with A4 T II have ( b,a) € r
using Xor_def group0_2_L12 by simp
} then have ( a,b) € r V ( b,a) € r by auto
} then show r {is total on} G using IsTotal_def
by simp
qed

If the set defined as in OrderedGroup_ZF_5_L4 does not contain the neutral
element, then it is the positive set for the resulting order.

lemma (in group0) OrderedGroup_ZF_5_L6:
assumes P {is commutative on} G
and HCG and 1 ¢ H
and r = {p € GxG. fst(p) = snd(p) V fst(p) '-snd(p) € H}
shows PositiveSet(G,P,r) = H
using assms group_inv_of_one groupO_2_L2 PositiveSet_def
by auto
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The next definition describes how we construct an order relation from the
prescribed set of positive elements.

definition
OrderFromPosSet (G,P,H) =
{p € GxG. fst(p) = snd(p) V P(GroupInv(G,P)(fst(p)),snd(p)) € H }

The next theorem rephrases lemmas OrderedGroup_zF_5_L5 and OrderedGroup_ZF_5_L6
using the definition of the order from the positive set OrderFromPosSet. To
summarize, this is what it says: Suppose that H C G is a set closed under

that group operation such that 1 ¢ H and for every nonunit group element a

either a € H or a~! € H. Define the order as a < biffa=bora ' -b e H.

Then this order makes G into a linearly ordered group such H is the set

of positive elements (and then of course H U {1} is the set of nonnegative
elements).

theorem (in group0) Group_ord_by_positive_set:
assumes P {is commutative on} G
and HCG H {is closed under} P 1 ¢ H
and VacG. a#l — (a€H) Xor (a~'€H)
shows
IsAnOrdGroup(G,P,OrderFromPosSet (G,P,H))
OrderFromPosSet(G,P,H) {is total on} G
PositiveSet (G,P,0rderFromPosSet(G,P,H)) H
Nonnegative(G,P,OrderFromPosSet (G,P,H)) HU {1}
using assms OrderFromPosSet_def OrderedGroup_ZF_5_L5 OrderedGroup_ZF_5_L6
by auto

28.4 0dd Extensions

In this section we verify properties of odd extensions of functions defined on
G+. An odd extension of a function f : G4 — G is a function f°: G —- G
defined by f°(z) = f(z) if z € G4, f(1) = 1 and f°(z) = (f(z~1))~! for
x < 1. Such function is the unique odd function that is equal to f when
restricted to G

The next lemma is just to see the definition of the odd extension in the
notation used in the groupl context.

lemma (in group3) OrderedGroup_ZF_6_L1:
shows £f° = £ U {(a, (f(a™1))7!). a € -G.} U {(1,1)}
using OddExtension_def by simp

A technical lemma that states that from a function defined on G, with values
in G we have (f(a™1))~! € G.

lemma (in group3) OrderedGroup_ZF_6_L2:
assumes f: G;—G and ae-Gy
shows
fa) e @G
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(fa'Htea

using assms OrderedGroup_ZF_1_L27 apply_funtype
OrderedGroup_ZF_1_L1 groupO.inverse_in_group

by auto

The main theorem about odd extensions. It basically says that the odd
extension of a function is what we want to to be.

lemma (in group3) odd_ext_props:

assumes Al: r {is total on} G and A2: f: Gy —G

shows

¢ : G = G

VacGy. (£°)(a) = f(a)

Vac(-Gy). (f°)(a) = (f(a=1H)) !

()@ =1

proof -

from A1 A2 have I:
f: GL—G
Vac-G,. (f(a )t eg¢
G+N(-GL) =0
1 ¢ GLU(-G4)
o =f U {(a, (F@'N7. a € -6;3 U {(1,1)}
using OrderedGroup_ZF_6_L2 OrdGroup_decomp2 OrderedGroup_ZF_6_L1
by auto

then have £°: Gy U (-Gy) U {1} —GUGU{1}
by (rule funci_1_L11E)

moreover from Al have
G U (-G U{1}r=¢G

GUGUA{1} =G
using OrdGroup_decomp2 OrderedGroup_ZF_1_L1 groupO.group0_2_L2
by auto

ultimately show f° : G — G by simp

from I show VaeG,. (£°)(a) = f(a)
by (rule funcl_1_L11E)

from I show Vac(-G,). (f°)(a) = (f(a=1))!
by (rule funcl_1_L11E)

from I show (£°)(1) =1
by (rule funcl_1_L11E)

qed

Odd extensions are odd, of course.

lemma (in group3) oddext_is_odd:
assumes Al: r {is total on} G and A2: f: GL—G

and A3: acG
shows (£°)(a™!) = ((£°)(a)) !
proof -

from A1 A3 have acG, V a € (-G;) V a=1
using OrdGroup_decomp2 by blast

moreover

{ assume acG;
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with A1 A2 have a=! € -G, and (£f°)(a) = f£(a)
using OrderedGroup_ZF_1_L25 odd_ext_props by auto
with A1 A2 have
()@ = @ H M and E@) = (ED) @)
using odd_ext_props by auto
with A3 have (£°)(a™') = ((£f°)(a))~!
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp }
moreover
{ assume A4: a € -G;
with A1 A2 have a=! € G, and (£f°)(a) = (f(a=1))!
using OrderedGroup_ZF_1_L27 odd_ext_props
by auto
with A1 A2 A4 have (£°)(a™) = ((£°)(a)) !
using odd_ext_props OrderedGroup_ZF_6_L2
OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp }
moreover
{ assume a =1
with A1 A2 have (£f°)(a™!) = ((f°)(a))!
using OrderedGroup_ZF_1_L1 group0.group_inv_of_one
odd_ext_props by simp
}
ultimately show (£°)(a™1) = ((£°)(a))!
by auto
qed

Another way of saying that odd extensions are odd.
lemma (in group3) oddext_is_odd_alt:
assumes Al: r {is total on} G and A2: f: G.—G
and A3: acG
shows ((£°)(a ")) ~! = (£°)(a)
proof -
from A1 A2 have
f° : G — G
VaeG. (£°)(a™h) = ((£2) (@)}
using odd_ext_props oddext_is_odd by auto
then have VacG. ((£°)(a 1))~ = (£°)(a)
using OrderedGroup_ZF_1_L1 groupO.group0_6_L2 by simp
with A3 show ((£°)(a™!))~! = (£°)(a) by simp
qed

28.5 Functions with infinite limits

In this section we consider functions f : G — G with the property that for
f(x) is arbitrarily large for large enough x. More precisely, for every a € G
there exist b € G such that for every > b we have f(z) > a. In a sense
this means that lim, ,~ f(x) = oo, hence the title of this section. We also
prove dual statements for functions such that lim,_,_ f(z) = —o0.
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If an image of a set by a function with infinite positive limit is bounded
above, then the set itself is bounded above.

lemma (in group3) OrderedGroup_ZF_7_L1:
assumes Al: r {is total on} G and A2: G # {1} and
A3: £:G—G and
A4: VaeG.dbeGy . Vx. b<x — a < f(x) and
A5: ACG and
A6: IsBoundedAbove(f(A),r)
shows IsBoundedAbove(A,r)
proof -
{ assume —IsBoundedAbove(A,r)
then have I: Vu. dxeA. —-(x<u)
using IsBoundedAbove_def by auto
have VacG. Jycf(A). aly
proof -
{ fix a assume acG
with A4 obtain b where
II: beGy and IIT: Vx. b<x — a < f(x)
by auto
from I obtain x where IV: xcA and —(x<b)
by auto
with A1 A5 II have
r {is total on} G
x€G beG - (x<b)
using PositiveSet_def by auto
with III have a < f(x)
using OrderedGroup_ZF_1_L8 by blast
with A3 A5 IV have Jyef(A). a<y
using func_imagedef by auto
} thus thesis by simp

qed
with A1 A2 A6 have False using OrderedGroup_ZF_2_L2A
by simp
} thus thesis by auto
qed

If an image of a set defined by separation by a function with infinite positive
limit is bounded above, then the set itself is bounded above.

lemma (in group3) OrderedGroup_ZF_7_L2:
assumes Al: r {is total on} G and A2: G # {1} and
A3: X#0 and A4: f:G—G and
A5: Va€eG.3dbeG, . Vy. b<y — a < f(y) and
A6: VxeX. b(x) € G A £(b(x)) < U
shows Ju.VxeX. b(x) < u

proof -
let A = {b(x). xeX}
from A6 have I: ACG by auto
moreover note assms
moreover have IsBoundedAbove(f(A),r)
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proof -
from A4 A6 I have Vzef(A). (z,U) € r
using func_imagedef by simp
then show IsBoundedAbove(f(A),r)
by (rule Order_ZF_3_L10)
qed
ultimately have IsBoundedAbove(A,r) using OrderedGroup_ZF_7_L1
by simp
with A3 have Ju.VyeA. y < u
using IsBoundedAbove_def by simp
then show Ju.VxeX. b(x) < u by auto
qed

If the image of a set defined by separation by a function with infinite negative
limit is bounded below, then the set itself is bounded above. This is dual to
OrderedGroup_ZF_7_L2.

lemma (in group3) OrderedGroup_ZF_7_L3:
assumes Al: r {is total on} G and A2: G # {1} and
A3: X#0 and A4: f:G—G and
A5: Va€eG.3beG, .Vy. b<y — £f(y 1) < a and
A6: VxeX. b(x) € G AL < £(b(x))
shows 31.VxeX. 1 < b(x)
proof -
let g = GroupInv(G,P) 0 £ 0 GroupInv(G,P)
from ordGroupAssum have I: GroupInv(G,P) : G—G
using IsAnOrdGroup_def group0_2_T2 by simp
with A4 have II: VxcG. g(x) = (f(x~1))7!
using funcl_1_L18 by simp
note Al A2 A3
moreover from A4 I have g : G—G
using comp_fun by blast
moreover have VacG.3beG,.Vy. b<y — a < g(y)
proof -
{ fix a assume A7: acG
then have a=! € G
using OrderedGroup_ZF_1_L1 group0.inverse_in_group
by simp
with A5 obtain b where
III: beG, and Vy. b<y — f(y~ 1) < a’!
by auto
with IT A7 have Vy. b<y — a < g(y)
using OrderedGroup_ZF_1_L5AD OrderedGroup_ZF_1_L4
by simp
with IIT have dbeG,.Vy. b<y — a < g(y)
by auto
} then show VacG.3beG;.Vy. b<y — a < g(y)
by simp
qed
moreover have VxcX. b(x)™! € G A gb(x)™!) < L7t
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proof-
{ fix x assume x€X
with A6 have
T: b(x) € G b(x)™' € Gand L < £(b(x))
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group
by auto
then have (f(b(x)))~! < L7!
using OrderedGroup_ZF_1_L5 by simp
moreover from II T have (f(b(x)))"! = gb&x)™H
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by simp
ultimately have g(b(x)~!) < L™! by simp
with T have b(x)™! € ¢ A gb(x)~"1) < L7!
by simp
} then show VxeX. b(x)"! € G A gb(x)™!) < L7!
by simp
qed
ultimately have Ju.VxeX. (b(x))~! < u
by (rule OrderedGroup_ZF_7_L2)
then have Ju.VxeX. u ! < (b(x)~1)!
using OrderedGroup_ZF_1_L5 by auto
with A6 show d1.VxeX. 1 < b(x)
using OrderedGroup_ZF_1_L1 groupO.group_inv_of_inv
by auto
qed

The next lemma combines OrderedGroup_ZF_7_L2 and OrderedGroup_ZF_7_L3
to show that if an image of a set defined by separation by a function with
infinite limits is bounded, then the set itself i bounded.

lemma (in group3) OrderedGroup_ZF_7_L4:
assumes Al: r {is total on} G and A2: G # {1} and
A3: X#£0 and A4: f:G—G and
A5: VaeG.3beGy . Vy. b<y — a < f(y) and
A6: YacG.3beG, .Vy. b<y — f(y!) < a and
A7: VxeX. b(x) € G AL < £(bx)) A f(bx) <U
shows IM.VxeX. |b(x)| < M
proof -
from A7 have
I: VxeX. b(x) € G A £(b(x)) < U and
II: VxeX. b(x) € G AL < £(b(x))
by auto
from A1 A2 A3 A4 A5 I have Ju.VxeX. b(x) < u
by (rule OrderedGroup_ZF_7_L2)
moreover from A1 A2 A3 A4 A6 II have d1.VxeX. 1 < b(x)
by (rule OrderedGroup_ZF_7_L3)
ultimately have Ju 1. VxeX. 1<b(x) A b(x) < u
by auto
with A1 have Ju 1.Vx€X. |b(x)| < Greater0f(r,I|1l,|ul)
using OrderedGroup_ZF_3_L10 by blast
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then show dM.VxeX. |b(x)| < M
by auto
qed

end
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29 Ring ZF.thy

theory Ring ZF imports AbelianGroup_ZF
begin

This theory file covers basic facts about rings.

29.1 Definition and basic properties
In this section we define what is a ring and list the basic properties of rings.

We say that three sets (R, A, M) form a ring if (R, A) is an abelian group,
(R, M) is a monoid and A is distributive with respect to M on R. A rep-
resents the additive operation on R. As such it is a subset of (R x R) X R
(recall that in ZF set theory functions are sets). Similarly M represents the
multiplicative operation on R and is also a subset of (R x R) x R. We don’t
require the multiplicative operation to be commutative in the definition of
a ring.
definition
IsAring(R,A,M) = IsAgroup(R,A) A (A {is commutative on} R) A
IsAmonoid(R,M) A IsDistributive(R,A,M)

We also define the notion of having no zero divisors. In standard notation
the ring has no zero divisors if for all a,b € R we have a-b = 0 implies a = 0
or b= 0.

definition
HasNoZeroDivs(R,A,M) = (VacR. VbeR.
M( a,b) = TheNeutralElement(R,A) —
a = TheNeutralElement(R,A) V b = TheNeutralElement(R,A))

Next we define a locale that will be used when considering rings.

locale ring0 =
fixes R and A and M
assumes ringAssum: IsAring(R,A,M)

fixes ringa (infixl + 90)
defines ringa_def [simp]: a+b = A({ a,b)

fixes ringminus (- _ 89)
defines ringminus_def [simp]: (-a) = GroupInv(R,A) (a)

fixes ringsub (infixl - 90)
defines ringsub_def [simp]l: a-b = a+(-b)
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fixes ringm (infix]l - 95)
defines ringm_def [simp]: ab = M{ a,b)

fixes ringzero (0)
defines ringzero_def [simp]: O = TheNeutralElement(R,A)

fixes ringone (1)
defines ringone_def [simp]: 1 = TheNeutralElement(R,M)

fixes ringtwo (2)

defines ringtwo_def [simp]l: 2 = 1+1
fixes ringsq (_? [96] 97)
defines ringsq_def [simp]l: a? = a-a

In the ring0 context we can use theorems proven in some other contexts.

lemma (in ring0) Ring_ZF_1_L1: shows
monoidO(R,M)
groupO(R,A)
A {is commutative on} R
using ringAssum IsAring_def groupO_def monoidO_def by auto

The additive operation in a ring is distributive with respect to the multi-
plicative operation.

lemma (in ring0) ring oper_distr: assumes Al: acR be&R ceR
shows
a-(btc) = ab + ac
(btc)-a = b-a + ca
using ringAssum assms IsAring_def IsDistributive_def by auto

Zero and one of the ring are elements of the ring. The negative of zero is
Z€ero.

lemma (in ring0) Ring ZF_1_L2:
shows OcR 1cR (-0) =0
using Ring_ZF_1_L1 groupO.group0_2_L2 monoid0.unit_is_neutral
group0.group_inv_of_one by auto

The next lemma lists some properties of a ring that require one element of
a ring.

lemma (in ring0O) Ring_ZF_1_L3: assumes a€cR

shows

(-a) € R
(-(-a)) = a
at0 = a
O+a = a

al = a

l.a = a

a-a = 0
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a-0 = a

2.a = ata

(ra)+ta =0

using assms Ring ZF_1_L1 groupO.inverse_in_group groupO.group_inv_of_inv

groupO0.group0_2_L6 group0.groupO_2_L2 monoid0.unit_is_neutral
Ring_ZF_1_L2 ring_oper_distr
by auto

Properties that require two elements of a ring.

lemma (in ring0) Ring ZF_1_L4: assumes Al: acR beR

shows

atb € R

a-b € R

ab € R

atb = b+a

using ringAssum assms Ring ZF_1_L1 Ring ZF_1_L3
group0.group0_2_L1 monoid0.groupO_1_L1
IsAring_def IsCommutative_def

by auto

Cancellation of an element on both sides of equality. This is a property of
groups, written in the (additive) notation we use for the additive operation
in rings.
lemma (in ring0) ring_cancel_add:

assumes Al: acR beR and A2: a + b = a

shows b = 0
using assms Ring_ZF_1_L1 groupO.group0_2_L7 by simp

Any element of a ring multiplied by zero is zero.

lemma (in ring0) Ring ZF_1_L6:
assumes Al: x€R shows 00x =0 x0 =0

proof -
let a = x1
let b = x-0
let ¢ = 1.x
let 4 = 0-x

from A1 have
a+b=x(1+0) c+d=(1+0)x
using Ring ZF_1_L2 ring_oper_distr by auto
moreover have x-(1 + 0) =a (1 + 0)x =c
using Ring ZF_1_L2 Ring ZF_1_L3 by auto
ultimately have a + b = a and Tl: ¢ +d = ¢
by auto
moreover from Al have
a€R beRand T2: c € R d € R
using Ring ZF_1_L2 Ring ZF_1_14 by auto
ultimately have b = 0 using ring_cancel_add
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by blast
moreover from T2 T1 have d = 0 using ring_cancel_add
by blast
ultimately show x-0 = 0 0-x = 0 by auto
qed

Negative can be pulled out of a product.

lemma (in ring0) Ring ZF_1_L7:
assumes Al: acR beR
shows
(-a)b = -(a-b)
a-(-b) = -(ab)
(-a)b = a-(-b)
proof -
from A1 have I:
ab € R (-a) € R ((ra)b) € R
(-b) € R a-(-b) € R
using Ring_ZF_1_L3 Ring ZF_1_L4 by auto
moreover have (-a)b + ab = 0
and II: a-(-b) + ab =0
proof -
from A1 I have
(ra)b + ab = ((-a)+ a)b
a-(-b) + ab= a-((-b)+b)
using ring_oper_distr by auto
moreover from Al have
((ca)+ A b =0
a-((-b)+b) = 0
using Ring_ZF_1_L1 groupO.group0_2_L6 Ring ZF_1_L6
by auto
ultimately show
(-a)b + ab =0
a-(-b) + ab =0
by auto
qed
ultimately show (-a)-b = -(a‘b)
using Ring ZF_1_L1 groupO.group0_2_L9 by simp
moreover from I II show a-(-b) = -(ab)
using Ring ZF_1_L1 group0.group0_2_L9 by simp
ultimately show (-a)b = a-(-b) by simp
qed

Minus times minus is plus.

lemma (in ring0) Ring ZF_1_L7A: assumes acR beR
shows (-a)-(-b) = ab
using assms Ring_ZF_1_L3 Ring_ZF_1_L7 Ring ZF_1_L4
by simp

Subtraction is distributive with respect to multiplication.
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lemma (in ring0) Ring ZF_1_L8: assumes a€R beR cE€R
shows
a-(b-c) = ab - ac
(b-c)-a = b-a - ca
using assms Ring_ZF_1_L3 ring_oper_distr Ring_ZF_1_L7 Ring ZF_1_L4
by auto

Other basic properties involving two elements of a ring.

lemma (in ring0) Ring_ZF_1_L9: assumes a€R beER

shows

(-b)-a = (-a)-b
(-(atb)) = (-a)-b
(-(a-b)) = ((-a)+b)
a-(-b) = atb

using assms ringAssum IsAring_def
Ring_ZF_1_L1 groupO.group0_4_L4 groupO.group_inv_of_inv
by auto

If the difference of two element is zero, then those elements are equal.

lemma (in ring0) Ring_ ZF_1_L9A:
assumes Al: acR beR and A2: a-b =0
shows a=b
proof -
from A1 A2 have
groupO(R,A)
acR beR
A(a,GroupInv(R,A) (b)) = TheNeutralElement (R,A)
using Ring ZF_1_L1 by auto
then show a=b by (rule groupO.group0_2_L11A)
qed

Other basic properties involving three elements of a ring.

lemma (in ring0) Ring ZF_1_L10:
assumes acR beR c€R

shows

a+(b+c) = atb+c
a-(b+c) = a-b-c
a-(b-c) = a-b+c

using assms ringAssum Ring ZF_1_L1 group0.group_oper_assoc
IsAring_def groupO.groupO_4_L4A by auto
Another property with three elements.

lemma (in ring0) Ring_ZF_1_L10A:
assumes Al: acR b&R ceR
shows a+(b-c) = atb-c
using assms Ring ZF_1_L3 Ring ZF_1_L10 by simp

Associativity of addition and multiplication.
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lemma (in ring0) Ring ZF_1_L11:
assumes acR beR c€R
shows
atb+c = a+(b+c)
ab-c = a-(b-c)
using assms ringAssum Ring ZF_1_L1 group0.group_oper_assoc
IsAring _def IsAmonoid_def IsAssociative_def
by auto

An interpretation of what it means that a ring has no zero divisors.

lemma (in ring0) Ring ZF_1_L12:
assumes HasNoZeroDivs(R,A,M)
and acR a#0 bER Db#0
shows ab#0
using assms HasNoZeroDivs_def by auto

In rings with no zero divisors we can cancel nonzero factors.

lemma (in ring0) Ring ZF_1_L12A:
assumes Al: HasNoZeroDivs(R,A,M) and A2: acR be&R ceR
and A3: a-c = b-.c and A4d: c#0
shows a=b
proof -
from A2 have T: a=c € R a-b € R
using Ring ZF_1_L4 by auto
with A1 A2 A3 have a-b = 0 V c=0
using Ring_ZF_1_L3 Ring_ZF_1_L8 HasNoZeroDivs_def

by simp
with A2 A4 have acR beR a-b =0
by auto
then show a=b by (rule Ring_ZF_1_L9A)
qed

In rings with no zero divisors if two elements are different, then after mul-
tiplying by a nonzero element they are still different.

lemma (in ring0) Ring ZF_1_L12B:
assumes Al: HasNoZeroDivs(R,A,M)
ac€R  DbER ceR  a#b c#0
shows a-c # b
using Al Ring ZF_1_L12A by auto

In rings with no zero divisors multiplying a nonzero element by a nonone
element changes the value.

lemma (in ring0) Ring_ZF_1_L12C:
assumes Al: HasNoZeroDivs(R,A,M) and
A2: a€R DbeR and A3: 0#a 1#b
shows a # ab

proof -
{ assume a = ab
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with A1 A2 have a = 0 V b-1 = 0
using Ring ZF_1_L3 Ring ZF_1_L2 Ring ZF_1_L8
Ring_ZF_1_L3 Ring_ZF_1_L2 Ring_ZF_1_L4 HasNoZeroDivs_def
by simp
with A2 A3 have False
using Ring_ZF_1_L2 Ring_ZF_1_L9A by auto
} then show a # ab by auto
qed

If a square is nonzero, then the element is nonzero.

lemma (in ring0) Ring ZF_1_L13:
assumes acR and a2 # 0
shows a#0
using assms Ring_ZF_1_L2 Ring ZF_1_L6 by auto

Square of an element and its opposite are the same.

lemma (in ring0) Ring ZF_1_L14:
assumes acR shows (-a)? = ((a)?)
using assms Ring ZF_1_L7A by simp

Adding zero to a set that is closed under addition results in a set that is
also closed under addition. This is a property of groups.

lemma (in ring0) Ring ZF_1_L15:
assumes H C R and H {is closed under} A
shows (H U {0}) {is closed under} A
using assms Ring_ZF_1_L1 groupO.group0_2_L17 by simp

Adding zero to a set that is closed under multiplication results in a set that
is also closed under multiplication.

lemma (in ring0) Ring ZF_1_L16:
assumes Al: H C R and A2: H {is closed under} M
shows (H U {0}) {is closed under} M
using assms Ring_ZF_1_L2 Ring ZF_1_L6 IsOpClosed_def
by auto

The ring is trivial iff 0 = 1.

lemma (in ring0) Ring ZF_1_L17: shows R = {0} +— 0=1
proof
assume R = {0}
then show 0=1 using Ring ZF_1_L2
by blast
next assume Al: 0 =1
then have R C {0}
using Ring ZF_1_L3 Ring ZF_1_L6 by auto
moreover have {0} C R using Ring ZF_1_L2 by auto
ultimately show R = {0} by auto
qed
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The sets {m - z.z € R} and {—m - x.x € R} are the same.

lemma (in ring0) Ring_ZF_1_L18: assumes Al: m€R
shows {m-x. x€R} = {(-m)-x. x€R}
proof
{ fix a assume a € {mx. x€R}
then obtain x where x€R and a = mx
by auto
with A1 have (-x) € R and a = (-m)-(-x)
using Ring ZF_1_L3 Ring ZF_1_L7A by auto
then have a € {(-m)-x. x€R}
by auto
} then show {mx. x€R} C {(-m)-x. x€R}
by auto
next
{ fix a assume a € {(-m)-x. x€R}
then obtain x where x€R and a = (-m)-x
by auto
with A1 have (-x) € R and a = m-(-x)
using Ring_ZF_1_L3 Ring_ZF_1_L7 by auto
then have a € {mx. x€R} by auto
} then show {(-m)-x. x€R} C {m-x. x€R}
by auto
qed

29.2 Rearrangement lemmas

In happens quite often that we want to show a fact like (a + b)c + d =
(ac+d—e)+ (be+ e)in rings. This is trivial in romantic math and probably
there is a way to make it trivial in formalized math. However, I don’t know
any other way than to tediously prove each such rearrangement when it is
needed. This section collects facts of this type.

Rearrangements with two elements of a ring.

lemma (in ring0) Ring ZF_2_L1: assumes a€R beR
shows a+b-a = (b+l)-a
using assms Ring_ZF_1_L2 ring_oper_distr Ring_ZF_1_L3 Ring ZF_1_L4
by simp

Rearrangements with two elements and cancelling.

lemma (in ring0) Ring_ZF_2_L1A: assumes acR beR
shows
a-b+b = a
atb-a = b

at(b-a) = Db
using assms Ring ZF_1_L1 groupO.inv_cancel_two groupO.group0_4_L6A
by auto
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In commutative rings a—(b+1)c = (a—d—c)+(d—bc). For unknown reasons
we have to use the raw set notation in the proof, otherwise all methods fail.

lemma (in ring0) Ring ZF_2_L2:
assumes Al: acR beR ceR deR
shows a-(b+1)-c = (a-d-c)+(d-b-c)
proof -
let B = b-c
from ringAssum have A {is commutative on} R
using IsAring_def by simp
moreover from Al have acR B € R c€R deR
using Ring ZF_1_14 by auto
ultimately have A(a, GroupInv(R,A)(A(B, c))) =
A(A(A(a, GroupInv(R, A)(d)),GroupInv(R, A)(c)),
A(d,GroupInv(R, A)(B)))
using Ring ZF_1_L1 groupO.group0_4_L8 by blast
with Al show thesis
using Ring ZF_1_L2 ring_oper_distr Ring ZF_1_L3 by simp
qed

Rerrangement about adding linear functions.

lemma (in ring0) Ring_ZF_2_L3:
assumes Al: acR beR ceR deR x€R
shows (ax + b) + (cx + d) = (a+c)x + (b+d)
proof -
from A1 have
groupO(R,A)
A {is commutative on} R
ax € R beR c¢cx € R deR
using Ring ZF_1_L1 Ring ZF_1_L4 by auto
then have A(A({ a-x,b),A{ cx,d)) = A(A( ax,cx),A( b,d))
by (rule groupO.group0O_4_L8)
with Al show
(ax + b) + (cx + d) = (atc)x + (b+d)
using ring_oper_distr by simp
qed

Rearrangement with three elements

lemma (in ring0) Ring ZF_2_L4:
assumes M {is commutative on} R
and acR beER ceR
shows a-(b-c) = a-cb
using assms IsCommutative_def Ring ZF_1_L11
by simp

Some other rearrangements with three elements.

lemma (in ring0) ring_rearr_3_elemA:
assumes Al: M {is commutative on} R and
A2: a€eR DbeR ceR
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shows
a-(a-c) - b-(-b-c)
a-(-b-c) + b-(a-c)
proof -
from A2 have T:
bc € R aaa € R bbecR
b-(b.c) € R a-(bc) €R
using Ring ZF_1_L4 by auto
with A2 show
a-(ac) - b-(-b-c) = (aa + b-b)-c
using Ring_ZF_1_L7 Ring_ZF_1_L3 Ring ZF_1_L11
ring_oper_distr by simp
from A2 T have
a-(-b-c) + b-(a:c) = (-a-(b-c)) + bac
using Ring ZF_1_L7 Ring_ZF_1_L11 by simp

(a-a + b'b)-c
0

also from A1 A2 T have ... = 0
using IsCommutative_def Ring ZF_1_L11 Ring ZF_1_L3
by simp
finally show a-(-b-c) + b-(a:c) = 0
by simp
qed

Some rearrangements with four elements. Properties of abelian groups.

lemma (in ring0) Ring ZF_2_L5:
assumes acR beR ceR deR

shows

a-b-c-d=a-d-b-c
a+b+c-d=a-d+b+c
a+b-c-d=a-c+ (b-4d
a+b+c+d=a+c+ (b+d

using assms Ring_ZF_1_L1 groupO.rearr_ab_gr_4_elemB

groupO.rearr_ab_gr_4_elemA by auto

Two big rearranegements with six elements, useful for proving properties of
complex addition and multiplication.

lemma (in ring0) Ring ZF_2_L6:
assumes Al: acR beR ceR deR eceR feR
shows
a-(cce - df) - b-(c:f + d-e)
(a:c - b-d)-e - (a-d + b-c)-f
a-(cf + de) + b-(ce - d-f)
(a:c - b-d)-f + (a-d + b-c)-e
a-(cte) - b-(d+f) = ac - b-d + (ae - b-f)
a-(d+f) + b-(c+e) a-d + b.c + (a-f + b-e)
proof -
from A1 have T:
ce€R df € R cf €¢ R de €R
aac € R bd € R ad &R bceR
bf € R ae €R be &R af €R
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a-cce € R adf €R
b.ccf € R bde € R
b.cce € R bdf € R
a-ccf € R ade €R

m
=o = el )

a-cce - adf
a-ce - bde €
acf + ade €
a-c:f - bdf €
a-c + a-e € R
ad + af € R
using Ring_ ZF_1_L4 by auto

with Al show a-(cce - df) - b-(c:f + de) =
(a:c - bd)-e - (ad + b-c)-f
using Ring ZF_1_L8 ring_oper_distr Ring ZF_1_L11

Ring_ZF_1_L10 Ring_ZF_2_L5 by simp

from A1 T show
a-(c:f + d-e) + b-(ce - df) =
(a:c - b:d)-f + (ad + bc)e
using Ring ZF_1_18 ring _oper_distr Ring ZF_1_L11
Ring_ZF_1_L10A Ring ZF_2_L5 Ring ZF_1_L10
by simp

from A1 T show
a-(c+e) - b-(d+f) a-c - bd + (ae - b-f)
a-(d+f) + b-(c+e) ad + b.c + (af + b-e)
using ring_oper_distr Ring ZF_1_L10 Ring ZF_2_L5
by auto

qed

end
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30 Ring ZF 1.thy

theory Ring ZF_1 imports Ring ZF Group_ZF_3

begin

This theory is devoted to the part of ring theory specific the construction of
real numbers in the Real_ZF_x series of theories. The goal is to show that
classes of almost homomorphisms form a ring.

30.1 The ring of classes of almost homomorphisms

Almost homomorphisms do not form a ring as the regular homomorphisms
do because the lifted group operation is not distributive with respect to
composition — we have so (r-q) # sor-soq in general. However, we do
have so (r-q) = sor-soq in the sense of the equivalence relation defined
by the group of finite range functions (that is a normal subgroup of almost
homomorphisms, if the group is abelian). This allows to define a natural
ring structure on the classes of almost homomorphisms.

The next lemma provides a formula useful for proving that two sides of the
distributive law equation for almost homomorphisms are almost equal.

lemma (in groupl) Ring ZF_1_1_L1:
assumes Al: s€AH rcAH q€AH and A2: neG
shows
((so(r-q)) (n))-(((sor)-(soq)) (n)) ~!= §(s,( r(n),qn)))
((r-q)os) (m) = ((ros)-(qos)) (n)
proof -
from groupAssum isAbelian A1 have T1:
r-q € AH sor € AH soq € AH (sor)-(soq) € AH
ros € AH qos € AH (ros)-(qos) € AH
using Group_ZF_3_2_L15 Group_ZF_3_4_T1 by auto
from A1 A2 have T2: r(n) € G q(n) € G s(n) € G
s(r(m)) € G s(qm)) € G d(s,( r(n),qm))) € G
s(r(n))-s(q(n)) € G r(s(n)) € G q(s(n)) € G
r(s(n))-q(s(m)) € G
using AlmostHoms_def apply_funtype Group_ZF_3_2_L4B
groupO_2_L1 monoid0.groupO_1_L1 by auto
with T1 Al A2 isAbelian show
((so(zr-q)) (n))-(((sor)-(soq)) (n)) ~!= §(s,( r(n),q@)))
((r-q)os) () = ((ros)-(qgos)) (n)
using Group_ZF_3_2_L12 Group_ZF_3_4_L2 Group_ZF_3_4_L1 groupO_4_L6A
by auto
qed

The sides of the distributive law equations for almost homomorphisms are
almost equal.

lemma (in groupl) Ring ZF_1_1_L2:
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assumes Al: scAH rcAH qcAH

shows

so(r-q) =~ (sor)-(soq)

(r-q)os = (ros)-(qos)

proof -

from A1 have VneG. ( r(n),q(n)) € GXG
using AlmostHoms_def apply_funtype by auto

moreover from Al have {0(s,x). x € GXG} € Fin(G)
using AlmostHoms_def by simp

ultimately have {§(s,{ r(n),q(®))). neG} € Fin(G)
by (rule Finitel_L6B)

with A1 have
{((so(x-q)) (m))-(((sor)-(soq)) (m))~'. n € G} € Fin(G)
using Ring ZF_1_1_L1 by simp

moreover from groupAssum isAbelian Al Al have
so(r-q) € AH (sor)-(soq) € AH
using Group_ZF_3_2_L15 Group_ZF_3_4_T1 by auto

ultimately show so(r-q) ~ (sor)-(soq)
using Group_ZF_3_4_L12 by simp

from groupAssum isAbelian Al have
(r-q)os : G—G (ros)-(qos) : G—G
using Group_ZF_3_2_L15 Group_ZF_3_4_T1 AlmostHoms_def
by auto

moreover from Al have
VneG. ((r-q)os)(n) = ((ros)-(qos))(n)
using Ring_ZF_1_1_L1 by simp

ultimately show (r-q)os = (ros)-(qos)
using fun_extension_iff by simp

qed

The essential condition to show the distributivity for the operations defined
on classes of almost homomorphisms.

lemma (in groupl) Ring ZF_1_1_L3:
assumes Al: R = QuotientGroupRel (AH,Op1,FR)
and A2: a € AH//R b € AH//R ¢ € AH//R
and A3: A = ProjFun2(AH,R,0pl) M = ProjFun2(AH,R,0p2)
shows M(a,A( b,c)) = AM( a,b),M( a,c)) A
M(A({ b,c),a) = A(M{ b,a),M{ c,a))
proof
from A2 obtain s q r where D1: s€AH rcAH q€AH
a = R{s} b = R{q} c = R{r}
using quotient_def by auto
from A1 have T1l:equiv(AH,R)
using Group_ZF_3_3_L3 by simp
with A1 A3 D1 groupAssum isAbelian have
M( a,A{ b,c) ) = R{so(q-r)}
using Group_ZF_3_3_L4 EquivClass_1_L10

Group_ZF_3_2_L15 Group_ZF_3_4_L13A by simp

also have R{so(q:r)} = R{(soq)-(sor)}
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proof -
from T1 D1 have equiv(AH,R) so(qg-r)=(soq)-(sor)
using Ring ZF_1_1_L2 by auto
with A1 show thesis using equiv_class_eq by simp
qed
also from A1 T1 D1 A3 have
R{(soq)-(sor)} = AM( a,b),M( a,c))
using Group_ZF_3_3_L4 Group_ZF_3_4_T1 EquivClass_1_L10
Group_ZF_3_3_L3 Group_ZF_3_4_L13A EquivClass_1_L10 Group_ZF_3_4_T1
by simp
finally show M{a,A( b,c)) = AM( a,b),M( a,c)) by simp
from A1 A3 T1 D1 groupAssum isAbelian show
M(A( b,c),a) = A(M( b,a),M( c,a))
using Group_ZF_3_3 L4 EquivClass_1_L10 Group_ZF_3_4_L13A
Group_ZF_3_2_L15 Ring ZF_1_1_L2 Group_ZF_3_4_T1 by simp
qed

The projection of the first group operation on almost homomorphisms is
distributive with respect to the second group operation.

lemma (in groupl) Ring ZF_1_1_L4:
assumes Al: R = QuotientGroupRel (AH,Op1l,FR)
and A2: A = ProjFun2(AH,R,Opl) M = ProjFun2(AH,R,0p2)
shows IsDistributive(AH//R,A,M)
proof -
from A1 A2 have Vac(AH//R).Vbe(AH//R) .V ce(AH//R).
M(a,A( b,c)) = AM( a,b), M({ a,c)) A
M(A( b,c), a) = A(M({ b,a),M({ c,a))
using Ring ZF_1_1_L3 by simp

then show thesis using IsDistributive_def by simp
qed

The classes of almost homomorphisms form a ring.

theorem (in groupl) Ring ZF_1_1_T1:
assumes R = QuotientGroupRel(AH,0p1,FR)
and A = ProjFun2(AH,R,Opl) M = ProjFun2(AH,R,0p2)
shows IsAring(AH//R,A,M)
using assms QuotientGroupOp_def Group_ZF_3_3_T1 Group_ZF_3_4_T2
Ring ZF_1_1_L4 IsAring_def by simp

end
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31 OrderedRing ZF.thy

theory OrderedRing_ ZF imports Ring ZF OrderedGroup_ZF_1
begin

In this theory file we consider ordered rings.

31.1 Definition and notation
This section defines ordered rings and sets up appriopriate notation.

We define ordered ring as a commutative ring with linear order that is
preserved by translations and such that the set of nonnegative elements is
closed under multiplication. Note that this definition does not guarantee
that there are no zero divisors in the ring.

definition
IsAnOrdRing(R,A,M,r) =
( IsAring(R,A,M) A (M {is commutative on} R) A
rCRxR A IsLinOrder(R,r) A
(Va b. V ceR. ( a,b) € r — (A( a,c),A{ b,c)) € ) A
(Nonnegative(R,A,r) {is closed under} M))

The next context (locale) defines notation used for ordered rings. We do
that by extending the notation defined in the ring0 locale and adding some
assumptions to make sure we are talking about ordered rings in this context.

locale ringl = ring0 +
assumes mult_commut: M {is commutative on} R
fixes r
assumes ordincl: r € RXR
assumes linord: IsLinOrder(R,r)

fixes lesseq (infix < 68)
defines lesseq_def [simp]l: a < b = ( a,b) € r

fixes sless (infix < 68)
defines sless_def [simp]l: a < b = a<b A a#b

assumes ordgroup: Va b. V c€R. a<b — atc < b+c
assumes pos_mult_closed: Nonnegative(R,A,r) {is closed under} M

fixes abs (| _ |)
defines abs_def [simp]l: |al = AbsoluteValue(R,A,r)(a)
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fixes positiveset (Ry)
defines positiveset_def [simp]l: R, = PositiveSet(R,A,r)

The next lemma assures us that we are talking about ordered rings in the
ringl context.

lemma (in ringl) OrdRing ZF_1_L1: shows IsAnOrdRing(R,A,M,r)
using ring0_def ringAssum mult_commut ordincl linord ordgroup
pos_mult_closed IsAnOrdRing_def by simp

We can use theorems proven in the ringl context whenever we talk about
an ordered ring.

lemma OrdRing ZF_1_L2: assumes IsAnOrdRing(R,A,M,r)
shows ringi(R,A,M,r)
using assms IsAnOrdRing_def ringl_axioms.intro ringO_def ringl_def
by simp

In the ringl context a < b implies that a, b are elements of the ring.

lemma (in ringl) OrdRing_ZF_1_L3: assumes a<b
shows acR DbeR
using assms ordincl by auto

Ordered ring is an ordered group, hence we can use theorems proven in the
group3 context.

lemma (in ringl) OrdRing_ZF_1_L4: shows
IsAnOrdGroup(R,A,r)
r {is total on} R
A {is commutative on} R
group3(R,A,r)
proof -
{ fix a b g assume Al: gcR and A2: a<b
with ordgroup have a+g < b+g
by simp
moreover from ringAssum Al A2 have
atg = gta b+g = g+b
using OrdRing ZF_1_L3 IsAring_def IsCommutative_def by auto
ultimately have
atg < btg gta < gt+b
by auto
} hence
VgeR. Va b. a<b — atg < b+tg A gta < g+b
by simp
with ringAssum ordincl linord show
IsAnOrdGroup(R,A,r)
group3(R,A,r)
r {is total on} R
A {is commutative on} R
using IsAring def Order_ZF_1_L2 IsAnOrdGroup_def group3_def IsLinOrder_def
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by auto
qed

The order relation in rings is transitive.

lemma (in ringl) ring ord_transitive: assumes Al: a<b b<c
shows a<c
proof -
from A1 have
group3(R,A,r) (a,b) € r (b,c) €
using OrdRing ZF_1_L4 by auto
then have (a,c) € r by (rule group3.Group_order_transitive)
then show a<c by simp
qed

Transitivity for the strict order: if a < b and b < ¢, then a < ¢. Property of
ordered groups.

lemma (in ringl) ring_strict_ord_trans:
assumes Al: a<b and A2: b<c
shows a<c
proof -
from A1 A2 have
group3(R,A,r)
(a,b) € r A a#b (b,c) € r
using OrdRing ZF_1_1L4 by auto
then have (a,c) € r A a#c by (rule group3.OrderedGroup_ZF_1_L4A)
then show a<c by simp
qed

Another version of transitivity for the strict order: if a < b and b < ¢, then
a < c. Property of ordered groups.

lemma (in ringl) ring strict_ord_transit:
assumes Al: a<b and A2: b<c
shows a<c
proof -
from A1 A2 have
group3(R,A,r)
(a,b) € r (b,c) € T A b#c
using OrdRing_ZF_1_L4 by auto
then have (a,c) € r A a#c by (rule group3.group_strict_ord_transit)
then show a<c by simp
qed

The next lemma shows what happens when one element of an ordered ring
is not greater or equal than another.

lemma (in ringl) OrdRing ZF_1_L4A: assumes Al: a€R beR
and A2: —(a<b)
shows b < a (-a) < (-b) a#b

proof -

317



from A1 A2 have I:
group3(R,A,r)
r {is total on} R
a€R beR (a,b) ¢r
using OrdRing_ZF_1_L4 by auto
then have (b,a) € r by (rule group3.0OrderedGroup_ZF_1_L8)
then show b < a by simp
from I have (GroupInv(R,A)(a),GroupInv(R,A) (b)) € r
by (rule group3.0rderedGroup_ZF_1_L8)
then show (-a) < (-b) by simp
from I show a#b by (rule group3.0OrderedGroup_ZF_1_L8)
qed

A special case of OrdRing_ZF_1_L4A when one of the constants is 0. This is
useful for many proofs by cases.

corollary (in ringl) ord_ring_split2: assumes Al: acR
shows a<0 VvV (0<a A a#0)
proof -
{ from A1 have I: acR O€¢R
using Ring_ZF_1_L2 by auto
moreover assume A2: —(a<0)
ultimately have 0<a by (rule OrdRing_ZF_1_L4A)
moreover from I A2 have a#0 by (rule OrdRing ZF_1_L4A)
ultimately have 0<a A a#0 by simp}
then show thesis by auto
qed

Taking minus on both sides reverses an inequality.

lemma (in ringl) OrdRing ZF_1_L4B: assumes a<b
shows (-b) < (-a)
using assms OrdRing ZF_1_L4 group3.0OrderedGroup_ZF_1_L5
by simp

The next lemma just expands the condition that requires the set of non-
negative elements to be closed with respect to multiplication. These are
properties of totally ordered groups.

lemma (in ringl) OrdRing ZF_1_L5:
assumes 0<a 0<b
shows 0 < ab
using pos_mult_closed assms OrdRing ZF_1_L4 group3.0rderedGroup_ZF_1_L2
IsOpClosed_def by simp

Double nonnegative is nonnegative.

lemma (in ringl) OrdRing ZF_1_L5A: assumes Al: 0<a
shows 0<2-a
using assms OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L5G
OrdRing_ZF_1_L3 Ring_ZF_1_L3 by simp
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A sufficient (somewhat redundant) condition for a structure to be an ordered
ring. It says that a commutative ring that is a totally ordered group with
respect to the additive operation such that set of nonnegative elements is
closed under multiplication, is an ordered ring.

lemma OrdRing ZF_1_L6:
assumes
IsAring(R,A,M)
M {is commutative on} R
Nonnegative(R,A,r) {is closed under} M
IsAnOrdGroup(R,A,r)
r {is total on} R
shows IsAnOrdRing(R,A,M,r)
using assms IsAnOrdGroup_def Order_ZF_1_L3 IsAnOrdRing_def
by simp

a <biff a—b<0. This is a fact from OrderedGroup.thy, where it is stated
in multiplicative notation.

lemma (in ringl) OrdRing ZF_1_L7:
assumes acR beR
shows a<b +— a-b < 0
using assms OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L9
by simp

Negative times positive is negative.

lemma (in ringl) OrdRing ZF_1_L8:
assumes Al: a<0 and A2: 0<b
shows ab < 0
proof -
from A1 A2 have T1: acR b&eR ab € R
using OrdRing ZF_1_L3 Ring ZF_1_L4 by auto
from A1 A2 have 0<(-a)-b
using OrdRing ZF_1_L4 group3.0rderedGroup_ZF_1_L5A OrdRing ZF_1_L5
by simp
with T1 show ab < 0
using Ring ZF_1_L7 OrdRing ZF_1_L4 group3.0rderedGroup_ZF_1_L5AA
by simp
qed

We can multiply both sides of an inequality by a nonnegative ring element.
This property is sometimes (not here) used to define ordered rings.

lemma (in ringl) OrdRing ZF_1_L9:
assumes Al: a<b and A2: 0<c
shows
a-c < b-c
ca < cb
proof -
from A1 A2 have T1i:
ac€R bER ceR ac € R bwc € R
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using OrdRing_ZF_1_L3 Ring ZF_1_L4 by auto
with A1 A2 have (a-b):c < 0

using OrdRing ZF_1_L7 OrdRing ZF_1_L8 by simp
with T1 show a-c < b-c

using Ring_ZF_1_L8 OrdRing_ZF_1_L7 by simp
with mult_commut T1 show c-a < cb

using IsCommutative_def by simp

qed

A special case of OrdRing_ZF_1_L9: we can multiply an inequality by a posi-
tive ring element.

lemma (in ringl) OrdRing ZF_1_L9A:
assumes Al: a<b and A2: c€R,
shows
a-c < b-c
ca < cb
proof -
from A2 have 0 < c using PositiveSet_def
by simp
with Al show ac < bc ca < cb
using OrdRing ZF_1_L9 by auto
qed

A square is nonnegative.

lemma (in ringl) OrdRing ZF_1_L10:
assumes Al: acR shows 0<(a?)
proof -
{ assume 0<a
then have 0<(a?) using OrdRing ZF_1_L5 by simp}
moreover
{ assume —(0<a)
with A1 have 0<((-a)?)
using OrdRing ZF_1_L4 group3.0rderedGroup_ZF_1_L8A
OrdRing_ZF_1_L5 by simp
with A1 have 0<(a?) using Ring_ZF_1_L14 by simp }
ultimately show thesis by blast
qed

1 is nonnegative.

corollary (in ringl) ordring one_is_nonneg: shows 0 < 1
proof -
have 0 < (12) using Ring_ZF_1_L2 OrdRing_ZF_1_L10
by simp
then show 0 < 1 using Ring_ZF_1_L2 Ring ZF_1_L3
by simp
qed

In nontrivial rings one is positive.

lemma (in ringl) ordring one_is_pos: assumes 0#1
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shows 1 € Ry
using assms Ring ZF_1_L2 ordring_one_is_nonneg PositiveSet_def
by auto

Nonnegative is not negative. Property of ordered groups.

lemma (in ringl) OrdRing ZF_1_L11: assumes 0<a
shows —(a<0 A a#0)
using assms OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L5AB
by simp

A negative element cannot be a square.

lemma (in ringl) OrdRing ZF_1_L12:
assumes Al: a<0 a#0
shows —(3beR. a = (b?))
proof -
{ assume JbeR. a = (b?)
with A1 have False using OrdRing ZF_1_L10 OrdRing ZF_1_L11
by auto
} then show thesis by auto
qed

If a <b, then 0 <b—a.

lemma (in ringl) OrdRing ZF_1_L13: assumes a<b
shows 0 < b-a
using assms OrdRing ZF_1_L4 group3.0rderedGroup_ZF_1_L9D
by simp

If a < b, then 0 < b — a.

lemma (in ringl) OrdRing ZF_1_L14: assumes a<b a#b
shows
0 < b-a 0 # b-a
b-a ¢ R+
using assms OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L9E
by auto

If the difference is nonnegative, then a < b.

lemma (in ringl) OrdRing ZF_1_L15:
assumes acR beR and 0 < b-a
shows a<b
using assms OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L9F
by simp

A nonnegative number is does not decrease when multiplied by a number
greater or equal 1.
lemma (in ringl) OrdRing ZF_1_L16:
assumes Al: 0<a and A2: 1<b
shows a<a-b
proof -
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from A1 A2 have T: a€R beR ab € R
using OrdRing ZF_1_L3 Ring ZF_1_L4 by auto

from A1 A2 have 0 < a-(b-1)
using OrdRing_ZF_1_L13 OrdRing ZF_1_L5 by simp

with T show a<ab
using Ring_ZF_1_L8 Ring_ZF_1_L2 Ring_ZF_1_L3 OrdRing_ZF_1_L15
by simp

qed

We can multiply the right hand side of an inequality between nonnegative
ring elements by an element greater or equal 1.

lemma (in ringl) OrdRing ZF_1_L17:

assumes Al: 0<a and A2: a<b and A3: 1<c

shows a<b-c
proof -

from A1 A2 have 0<b by (rule ring_ord_transitive)

with A3 have b<b.-c using OrdRing_ZF_1_L16

by simp

with A2 show a<b-c by (rule ring_ord_transitive)

qed

Strict order is preserved by translations.

lemma (in ringl) ring_strict_ord_trans_inv:
assumes a<b and c€R
shows
atc < b+c
cta < c+b
using assms OrdRing_ZF_1_L4 group3.group_strict_ord_transl_inv
by auto

We can put an element on the other side of a strict inequality, changing its
sign.
lemma (in ringl) OrdRing ZF_1_L18:

assumes a€R beR and a-b < ¢

shows a < c+b

using assms OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L12B
by simp

We can add the sides of two inequalities, the first of them strict, and we get
a strict inequality. Property of ordered groups.

lemma (in ringl) OrdRing ZF_1_L19:
assumes a<b and c<d
shows a+c < b+d
using assms OrdRing ZF_1_L4 group3.0rderedGroup_ZF_1_L12C
by simp

We can add the sides of two inequalities, the second of them strict and we
get a strict inequality. Property of ordered groups.
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lemma (in ringl) OrdRing_ZF_1_L20:
assumes a<b and c<d
shows a+c < b+d
using assms OrdRing_ ZF_1_L4 group3.0rderedGroup_ZF_1_L12D
by simp

31.2 Absolute value for ordered rings

Absolute value is defined for ordered groups as a function that is the identity
on the nonnegative set and the negative of the element (the inverse in the
multiplicative notation) on the rest. In this section we consider properties
of absolute value related to multiplication in ordered rings.

Absolute value of a product is the product of absolute values: the case when
both elements of the ring are nonnegative.

lemma (in ringl) OrdRing ZF_2_L1:
assumes 0<a 0<b
shows |a-b| = |al-Ibl
using assms OrdRing ZF_1_L5 OrdRing ZF_1_L4
group3.0rderedGroup_ZF_1_L2 group3.0rderedGroup_ZF_3_L2
by simp

The absolue value of an element and its negative are the same.

lemma (in ringl) OrdRing ZF_2_L2: assumes acR
shows |-al = |al
using assms OrdRing ZF_1_L4 group3.0rderedGroup_ZF_3_L7A by simp

The next lemma states that |a - (=b)| = |[(—a) - b] = |(—a) - (=b)| = |a - b|.

lemma (in ringl) OrdRing ZF_2_L3:
assumes acR beR

shows

| (-a)-bl = |abl|
la-(-b) | = |aDbl
[(-a)-(-b)| = |aDbl

using assms Ring ZF_1_L4 Ring ZF_1_L7 Ring ZF_1_L7A
OrdRing_ZF_2_L2 by auto

This lemma allows to prove theorems for the case of positive and negative
elements of the ring separately.

lemma (in ringl) OrdRing ZF_2_L4: assumes acR and —(0<a)
shows 0 < (-a) O0#a
using assms OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L8A
by auto

Absolute value of a product is the product of absolute values.

lemma (in ringl) OrdRing ZF_2_L5:
assumes Al: acR beR
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shows |a-b| = |al-|b]

proof -
{ assume A2: 0<a have |a'bl = |al-|b]l
proof -
{ assume 0<b
with A2 have labl = |al-|b]
using OrdRing_ZF_2_L1 by simp }
moreover
{ assume —(0<b)
with A1 A2 have |a:(-b)| = l|al-|-D]
using OrdRing_ZF_2_L4 OrdRing_ZF_2_L1 by simp
with A1 have labl = |al-|b]

using OrdRing_ZF_2_L2 OrdRing ZF_2_L3 by simp }
ultimately show thesis by blast
ged }
moreover
{ assume —(0<a)
with A1 have A3: 0 < (-a)
using OrdRing ZF_2_L4 by simp

have |abl = |al-|Dbl|
proof -
{ assume 0<b
with A3 have |(-a)-bl = |-al-|bl
using OrdRing_ZF_2_L1 by simp
with A1 have |a-b| = |al-|b]
using OrdRing ZF_2_L2 OrdRing_ZF_2_L3 by simp }
moreover
{ assume —(0<b)
with A1 A3 have |(-a)-(-b)| = |-al-|-Dbl
using OrdRing_ZF_2_L4 OrdRing ZF_2_L1 by simp
with A1 have |a-b| = |al-|b]

using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp }
ultimately show thesis by blast
qed }
ultimately show thesis by blast
qed

Triangle inequality. Property of linearly ordered abelian groups.

lemma (in ringl) ord_ring_triangle_ineq: assumes acR beR
shows |a+b| < |al+|b]
using assms OrdRing ZF_1_L4 group3.0rdGroup_triangle_ineq
by simp

Ifa<candb<e¢ thena+b<2-c

lemma (in ringl) OrdRing ZF_2_L6:
assumes a<c b<c shows at+b < 2-c
using assms OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L5B
OrdRing_ZF_1_L3 Ring_ZF_1_L3 by simp
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31.3 Positivity in ordered rings
This section is about properties of the set of positive elements R, .

The set of positive elements is closed under ring addition. This is a property
of ordered groups, we just reference a theorem from OrderedGroup_ZF theory
in the proof.

lemma (in ringl) OrdRing ZF_3_L1: shows R, {is closed under} A
using OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L13
by simp

Every element of a ring can be either in the postitive set, equal to zero or its
opposite (the additive inverse) is in the positive set. This is a property of
ordered groups, we just reference a theorem from OrderedGroup_ZF theory.

lemma (in ringl) OrdRing ZF_3_L2: assumes acR
shows Exactly_1_of_3_holds (a=0, acRy, (-a) € Ry)
using assms OrdRing ZF_1_L4 group3.0rdGroup_decomp
by simp

If a ring element a # 0, and it is not positive, then —a is positive.

lemma (in ringl) OrdRing_ZF_3_L2A: assumes ac€R a#0 a ¢ R,
shows (-a) € R4
using assms OrdRing_ZF_1_L4 group3.0rdGroup_cases
by simp

R, is closed under multiplication iff the ring has no zero divisors.

lemma (in ringl) OrdRing ZF_3_L3:
shows (R; {is closed under} M)<+— HasNoZeroDivs(R,A,M)
proof
assume Al: HasNoZeroDivs(R,A,M)
{ fix a b assume a€R; beR,
then have 0<a a#0 0<b b#0
using PositiveSet_def by auto
with A1 have ab € Ry
using OrdRing ZF_1_L5 Ring_ZF_1_L2 OrdRing ZF_1_L3 Ring_ ZF_1_L12
OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L2A
by simp
} then show R; {is closed under} M using IsOpClosed_def
by simp
next assume A2: R, {is closed under} M
{ fix a b assume A3: a€R beR and a#0 b#0
with A2 have |ab| € R4
using OrdRing ZF_1_L14 group3.0rderedGroup_ZF_3_L12 IsOpClosed_def
OrdRing_ZF_2_L5 by simp
with A3 have ab # 0
using PositiveSet_def Ring ZF_1_L4
OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_3_L2A
by auto
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} then show HasNoZeroDivs(R,A,M) using HasNoZeroDivs_def
by auto
qed

Another (in addition to OrdRing_ZF_1_L6 sufficient condition that defines
order in an ordered ring starting from the positive set.

theorem (in ring0) ring ord_by_positive_set:
assumes
Al: M {is commutative on} R and
A2: PCR P {is closed under} A 0 ¢ P and
A3: VaeR. a#0 — (a€P) Xor ((-a) € P) and
A4: P {is closed under} M and
A5: r = OrderFromPosSet(R,A,P)
shows
IsAnOrdGroup(R,A,r)
IsAnOrdRing(R,A,M,r)
r {is total on} R
PositiveSet(R,A,r)
Nonnegative(R,A,r)
HasNoZeroDivs (R,A,M)
proof -
from A2 A3 A5 show
I: IsAnOrdGroup(R,A,r) r {is total on} R and
II: PositiveSet(R,A,r) = P and
III: Nonnegative(R,A,r) = P U {0}
using Ring ZF_1_L1 groupO.Group_ord_by_positive_set
by auto
from A2 A4 IIT have Nonnegative(R,A,r) {is closed under} M
using Ring_ZF_1_L16 by simp
with ringAssum Al I show IsAnOrdRing(R,A,M,r)
using OrdRing_ZF_1_L6 by simp
with A4 II show HasNoZeroDivs(R,A,M)
using OrdRing ZF_1_L2 ringl.OrdRing ZF_3_L3
by auto
qed

I
o

P U {0}

Nontrivial ordered rings are infinite. More precisely we assume that the
neutral element of the additive operation is not equal to the multiplicative
neutral element and show that the the set of positive elements of the ring is
not a finite subset of the ring and the ring is not a finite subset of itself.
theorem (in ringl) ord_ring_infinite: assumes 0#1

shows

R, ¢ Fin(R)

R ¢ Fin(R)

using assms Ring_ZF_1_L17 OrdRing_ZF_1_L4 group3.Linord_group_infinite

by auto

If every element of a nontrivial ordered ring can be dominated by an element
from B, then we B is not bounded and not finite.
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lemma (in ringl) OrdRing_ ZF_3_L4:
assumes 0#1 and VacR. dbeB. a<b
shows
—IsBoundedAbove(B,r)
B ¢ Fin(R)
using assms Ring_ZF_1_L17 OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_2_L2A
by auto

If m is greater or equal the multiplicative unit, then the set {m-n:n € R}
is infinite (unless the ring is trivial).

lemma (in ringl) OrdRing ZF_3_L5: assumes Al: 0#1 and A2: 1<m
shows
{mx. x€R;} ¢ Fin(R)
{m-x. x€R} ¢ Fin(R)
{(-m)-x. x€R} ¢ Fin(R)
proof -
from A2 have T: meR using OrdRing ZF_1_L3 by simp
from A2 have 0<1 1<m
using ordring_one_is_nonneg by auto
then have I: 0<m by (rule ring_ord_transitive)
let B = {mx. x€R;}
{ fix a assume A3: acR
then have a<0 Vv (0<a A a#0)
using ord_ring_split2 by simp
moreover
{ assume A4: a<0
from A1 have m'1 € B using ordring_one_is_pos
by auto
with T have meB using Ring_ZF_1_L3 by simp
moreover from A4 I have a<m by (rule ring_ord_transitive)
ultimately have 3beB. a<b by blast }
moreover
{ assume A4: 0<a A a#0
with A3 have m-a € B using PositiveSet_def
by auto
moreover
from A2 A4 have l-a < m-a using OrdRing ZF_1_L9
by simp
with A3 have a < ma using Ring ZF_1_L3
by simp
ultimately have 3beB. a<b by auto }
ultimately have dbeB. a<b by auto
} then have VacR. JbeB. a<b
by simp
with A1 show B ¢ Fin(R) using OrdRing ZF_3_L4
by simp
moreover have B C {mx. x€R}
using PositiveSet_def by auto
ultimately show {m-x. x€R} ¢ Fin(R) using Fin_subset
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by auto
with T show {(-m)-x. x€R} ¢ Fin(R) using Ring ZF_1_L18
by simp
qed

If m is less or equal than the negative of multiplicative unit, then the set
{m-n:n € R} is infinite (unless the ring is trivial).

lemma (in ringl) OrdRing ZF_3_L6: assumes Al: 0#1 and A2: m < -1
shows {mx. x€R} ¢ Fin(R)
proof -
from A2 have (-(-1)) < -m
using OrdRing ZF_1_L4B by simp
with A1 have {(-m)-x. x€R} ¢ Fin(R)
using Ring_ZF_1_L2 Ring_ZF_1_L3 OrdRing_ZF_3_L5
by simp
with A2 show {m'x. x€R} ¢ Fin(R)
using OrdRing ZF_1_L3 Ring ZF_1_L18 by simp
qed

All elements greater or equal than an element of Ry belong to R,. Property
of ordered groups.

lemma (in ringl) OrdRing ZF_3_L7: assumes Al: a € Ry and A2: a<b
shows b € Ry
proof -
from A1 A2 have
group3(R,A,r)
a € PositiveSet(R,A,r)
(a,b) € r
using OrdRing ZF_1_L4 by auto
then have b € PositiveSet(R,A,r)
by (rule group3.0rderedGroup_ZF_1_L19)
then show b € R, by simp
qed

A special case of OrdRing_ZF_3_L7: a ring element greater or equal than 1 is
positive.

corollary (in ringl) OrdRing_ZF_3_L8: assumes Al: 0#1 and A2: 1<a
shows a € Ry
proof -
from A1 A2 have 1 € Ry 1<a
using ordring_one_is_pos by auto
then show a € Ry by (rule OrdRing_ZF_3_L7)
qed

Adding a positive element to a strictly increases a. Property of ordered
groups.

lemma (in ringl) OrdRing ZF_3_L9: assumes Al: a€R beR,
shows a < a+b a # a+b
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using assms OrdRing_ZF_1_L4 group3.0rderedGroup_ZF_1_L22
by auto

A special case of OrdRing_ZF_3_L9: in nontrivial rings adding one to a in-
creases a.

corollary (in ringl) OrdRing_ZF_3_L10: assumes Al: 0#1 and A2: acR
shows a < a+l a # a+l
using assms ordring_one_is_pos OrdRing_ZF_3_L9
by auto

If a is not greater than b, then it is strictly less than b+ 1.

lemma (in ringl) OrdRing ZF_3_L11: assumes Al: 0#1 and A2: a<b
shows a< b+l
proof -
from A1 A2 have I: b < b+l
using OrdRing_ZF_1_L3 OrdRing_ZF_3_L10 by auto
with A2 show a< b+l by (rule ring_strict_ord_transit)
qed

For any ring element a the greater of a and 1 is a positive element that is
greater or equal than m. If we add 1 to it we get a positive element that is
strictly greater than m. This holds in nontrivial rings.

lemma (in ringl) OrdRing ZF_3_L12: assumes Al: 0#1 and A2: acR
shows
a < Greater0f(r,1,a)
Greater0f(r,1,a) € R4
Greater0f(r,1,a) + 1 € Ry
a < Greater0f(r,1,a) + 1 a # GreaterOf(r,l,a) + 1
proof -
from linord have r {is total on} R using IsLinOrder_def
by simp
moreover from A2 have 1 € R acR
using Ring_ZF_1_L2 by auto
ultimately have
1 < Greater0f(r,1,a) and
I: a < Greater0f(r,1,a)
using Order_ZF_3_L2 by auto
with A1 show
a < Greater0f(r,1,a) and
Greater0Of(r,1,a) € Ry
using OrdRing_ZF_3_L8 by auto
with Al show GreaterOf(r,1,a) + 1 € Ry
using ordring_one_is_pos OrdRing_ZF_3_L1 IsOpClosed_def
by simp
from A1 I show
a < Greater0f(r,1l,a) + 1 a # Greater0f(r,1l,a) + 1
using OrdRing ZF_3_L11 by auto
qed
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We can multiply strict inequality by a positive element.

lemma (in ringl) OrdRing ZF_3_L13:
assumes Al: HasNoZeroDivs(R,A,M) and
A2: a<b and A3: ceRy
shows
a-c < b-c
ca < cb
proof -
from A2 A3 have T: acR beR ceR c#0
using OrdRing_ZF_1_L3 PositiveSet_def by auto
from A2 A3 have a.c < b.c using OrdRing_ZF_1_L9A
by simp
moreover from A1 A2 T have a.c # b.c
using Ring ZF_1_L12A by auto
ultimately show a-c < b.c by simp
moreover from mult_commut T have a.c = c-a and b.c = cb
using IsCommutative_def by auto
ultimately show c-a < c-b by simp
qed

A sufficient condition for an element to be in the set of positive ring elements.

lemma (in ringl) OrdRing ZF_3_L14: assumes 0<a and a#0
shows a € Ry
using assms OrdRing_ZF_1_L3 PositiveSet_def
by auto

If a ring has no zero divisors, the square of a nonzero element is positive.

lemma (in ringl) OrdRing ZF_3_L15:
assumes HasNoZeroDivs(R,A,M) and a€R a#0
shows 0 < a? a2 £ 0 a2€RJr
using assms OrdRing_ZF_1_L10 Ring_ZF_1_L12 OrdRing_ZF_3_L14
by auto

In rings with no zero divisors we can (strictly) increase a positive element
by multiplying it by an element that is greater than 1.

lemma (in ringl) OrdRing ZF_3_L16:
assumes HasNoZeroDivs(R,A,M) and a € Ry and 1<b 1#b
shows a<ab a # ab
using assms PositiveSet_def OrdRing ZF_1_L16 OrdRing_ZF_1_L3
Ring ZF_1_L12C by auto

If the right hand side of an inequality is positive we can multiply it by a
number that is greater than one.
lemma (in ringl) OrdRing ZF_3_L17:
assumes Al: HasNoZeroDivs(R,A,M) and A2: beR, and
A3: a<b and A4: 1<c
shows a<b-c
proof -
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from A1 A2 A4 have b < bc
using OrdRing ZF_3_L16 by auto
with A3 show a<b-c by (rule ring_strict_ord_transit)
qed

We can multiply a right hand side of an inequality between positive numbers
by a number that is greater than one.

lemma (in ringl) OrdRing ZF_3_L18:
assumes Al: HasNoZeroDivs(R,A,M) and A2: a € R; and
A3: a<b and A4: 1<c
shows a<b-c
proof -
from A2 A3 have b € Ry using OrdRing ZF_3_L7
by blast
with A1 A3 A4 show a<b-c
using OrdRing_ZF_3_L17 by simp
qed

In ordered rings with no zero divisors if at least one of a, b is not zero, then
0 < a® + b2, in particular a® + b # 0.

lemma (in ringl) OrdRing ZF_3_L19:
assumes Al: HasNoZeroDivs(R,A,M) and A2: acR beR and
A3: a #0 VDb #0
shows 0 < a? + b?
proof -
{ assume a # 0
with A1 A2 have 0 < a2 a%2 # 0
using OrdRing_ZF_3_L15 by auto
then have 0 < a? by auto
moreover from A2 have 0 < b?
using OrdRing ZF_1_L10 by simp
ultimately have 0 + 0 < a? + b?
using OrdRing_ZF_1_L19 by simp
then have 0 < a? + b?
using Ring_ZF_1_L2 Ring ZF_1_L3 by simp }
moreover
{ assume A4: a = 0
then have a? + b? = 0 + b?
using Ring_ZF_1_L2 Ring_ZF_1_L6 by simp
also from A2 have ... = b?
using Ring_ZF_1_L4 Ring_ZF_1_L3 by simp
finally have a? + b? = b2 by simp
moreover
from A3 A4 have b # 0 by simp
with A1 A2 have 0 < b% and b% # 0
using OrdRing_ZF_3_L15 by auto
hence 0 < b? by auto
ultimately have 0 < a%? + b? by simp }
ultimately show 0 < a’? + b?

331



by auto
qed

end
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32 Field ZF.thy

theory Field_ZF imports Ring_ZF
begin

This theory covers basic facts about fields.

32.1 Definition and basic properties
In this section we define what is a field and list the basic properties of fields.

Field is a notrivial commutative ring such that all non-zero elements have an
inverse. We define the notion of being a field as a statement about three sets.
The first set, denoted K is the carrier of the field. The second set, denoted A
represents the additive operation on X (recall that in ZF set theory functions
are sets). The third set M represents the multiplicative operation on K.

definition
IsAfield(K,A,M) =
(IsAring(K,A,M) A (M {is commutative on} K) A
TheNeutralElement (K,A) # TheNeutralElement (K,M) A
(Va€K. a#TheNeutralElement (K,A) —
(3bek. M(a,b) = TheNeutralElement (K,M))))

The field0 context extends the ring0O context adding field-related assump-
tions and notation related to the multiplicative inverse.
locale field0 = ring0 K A M for K A M +

assumes mult_commute: M {is commutative on} K

assumes not_triv: 0 # 1

assumes inv_exists: Va€K. a#0 — (IbeK. ab = 1)

fixes non_zero (Kp)
defines non_zero_def [simp]: Ko = K-{0}

fixes inv (_7! [96] 97)
defines inv_def [simp]: a~! = GroupInv(Ky,restrict(M,KyxKg)) (a)
The next lemma assures us that we are talking fields in the field0 context.

lemma (in field0) Field_ZF_1_L1: shows IsAfield(X,A,M)
using ringAssum mult_commute not_triv inv_exists IsAfield_def
by simp

We can use theorems proven in the field0 context whenever we talk about
a field.

lemma field_fieldO: assumes IsAfield(K,A,M)
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shows fieldO(K,A,M)
using assms IsAfield_def fieldO_axioms.intro ring0O_def fieldO_def
by simp

Let’s have an explicit statement that the multiplication in fields is commu-
tative.

lemma (in field0) field_mult_comm: assumes a€K bekK
shows a'b = b-a
using mult_commute assms IsCommutative_def by simp

Fields do not have zero divisors.

lemma (in field0O) field_has_no_zero_divs: shows HasNoZeroDivs(K,A,M)
proof -
{ fix 2 b assume Al: acKk beK and A2: ab = 0 and A3: b#0
from inv_exists A1 A3 obtain ¢ where I: ceK and II: bc =1
by auto
from A2 have ab-c = 0-c by simp
with A1 I have a-(bc) =0
using Ring ZF_1_L11 Ring_ZF_1_L6 by simp
with A1 II have a=0 using Ring_ZF_1_L3 by simp }
then have VacK.VbeK. ab = 0 — a=0 V b=0 by auto
then show thesis using HasNoZeroDivs_def by auto
qed

K (the set of nonzero field elements is closed with respect to multiplication.

lemma (in field0) Field_ZF_1_L2:
shows Ky {is closed under} M
using Ring ZF_1_L4 field_has_no_zero_divs Ring ZF_1_L12
IsOpClosed_def by auto

Any nonzero element has a right inverse that is nonzero.

lemma (in field0) Field_ZF_1_L3: assumes Al: a€cK
shows db€Ky. ab =1
proof -
from inv_exists Al obtain b where beK and ab =1
by auto
with not_triv A1l show IbecKy. ab =1
using Ring_ZF_1_L6 by auto
qed

If we remove zero, the field with multiplication becomes a group and we can
use all theorems proven in group0 context.

theorem (in field0) Field_ZF_1_L4: shows
IsAgroup (Ko, restrict (M,KoxKp))
group0 (Ko ,restrict (M,KoxKp))
1 = TheNeutralElement (Kg,restrict (M,KgXxKgp))
proof-
let f = restrict(M,KqoxKg)
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have
M {is associative on} K
Ko € K Ky {is closed under} M
using Field_ZF_1_L1 IsAfield_def IsAring_def IsAgroup_def
IsAmonoid_def Field_ZF_1_L2 by auto
then have f {is associative on} K,
using func_ZF_4_L3 by simp
moreover
from not_triv have
I: 1€Kg A (Va€Ky. f(l,a) = a A f(a,1) = a)
using Ring_ZF_1_L2 Ring_ZF_1_L3 by auto
then have Jne€Kq. VacKq. f(n,a) = a A f(a,n) = a
by blast
ultimately have II: IsAmonoid(Kp,f) using IsAmonoid_def
by simp
then have monoid0(K(,f) using monoidO_def by simp
moreover note I
ultimately show 1 = TheNeutralElement (Xy,f)
by (rule monoid0.groupO_1_L4)
then have Va€K;.3beK,. f(a,b) = TheNeutralElement (Xy,f)
using Field_ZF_1_L3 by auto
with II show IsAgroup(Xo,f) by (rule definition_of_group)
then show groupO0(Xy,f) using groupO_def by simp
qed

The inverse of a nonzero field element is nonzero.

lemma (in field0) Field_ZF_1_L5: assumes Al: acK a#0
shows a=! € Ky (@2 €K a'tekK al#0
proof -
from A1 have a € Ky by simp
then show a~! € Ky using Field_ZF_1_L4 group0.inverse_in_group
by auto
then show (a )2 c Ky a ' €K al#0
using Field_ZF_1_L2 IsOpClosed_def by auto
qed

The inverse is really the inverse.

lemma (in field0) Field _ZF_1_L6: assumes Al: a€K a#0
shows a:a™! =1 ala=1
proof -
let f = restrict(M,KgxKg)
from A1 have
group0 (Ko, f)
a € Ko
using Field_ZF_1_L4 by auto
then have
f(a,GroupInv(Xy, f)(a)) = TheNeutralElement (Kg,f) A
f(GroupInv(Kp,f) (a),a) = TheNeutralElement (Ky, f)
by (rule groupO.group0O_2_L6)
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with A1 show aa™! =1 alta-=1
using Field_ZF_1_L5 Field_ZF_1_L4 by auto
qed

A lemma with two field elements and cancelling.

lemma (in field0) Field _ZF_1_L7: assumes a€K beK b#0
shows
abb~ !l =a
ab ™ lb =a
using assms Field_ZF_1_L5 Ring_ ZF_1_L11 Field_ZF_1_L6 Ring ZF_1_L3
by auto

32.2 Equations and identities

This section deals with more specialized identities that are true in fields.

a/(a?) = a.

lemma (in field0) Field_ZF_2_L1: assumes Al: ac€K a#0

shows a-(a=1)2? = a~!
proof -
have a-(a!)? = a-(a~!'-a™!) by simp
also from A1 have ... = (a:a™!)-a7!
using Field_ZF_1_L5 Ring_ ZF_1_L11
by simp
also from A1 have ... = a=!
using Field_ZF_1_L6 Field_ZF_1_L5 Ring ZF_1_L3
by simp
finally show a-(a=!)? = a=! by simp
qed

If we multiply two different numbers by a nonzero number, the results will
be different.

lemma (in field0) Field_ZF_2_L2:
assumes ack beK ceK a#b c#0
shows a.c™! # b.c™!
using assms field_has_no_zero_divs Field_ZF_1_L5 Ring ZF_1_L12B
by simp

We can put a nonzero factor on the other side of non-identity (is this the
best way to call it?) changing it to the inverse.

lemma (in field0) Field_ZF_2_L3:
assumes Al: acK beK Db#0 ceK and A2: ab # c
shows a # cb~!
proof -
from A1 A2 have abb ! # cb!
using Ring ZF_1_L4 Field_ZF_2_L2 by simp
with Al show a # c-b~! using Field_ZF_1_L7
by simp
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qed

If if the inverse of b is different than a, then the inverse of a is different than
b.

lemma (in field0) Field_ZF_2_L4:
assumes ack a#0 and b~! # a
shows a=! # b
using assms Field_ZF_1_L4 groupO.groupO_2_L11B
by simp

An identity with two field elements, one and an inverse.

lemma (in field0) Field_ZF_2_L5:
assumes a€K beK b#0
shows (1 + ab)b™! = a + b~!
using assms Ring_ZF_1_L4 Field_ZF_1_L5 Ring_ZF_1_L2 ring_oper_distr

Field_ZF_1_L7 Ring_ZF_1_L3 by simp

An identity with three field elements, inverse and cancelling.

lemma (in field0) Field_ZF_2_L6: assumes Al: a€K beK b#0 c€K
shows a-b-(cb™!) = ac
proof -
from A1 have T: ab € K b~! € K
using Ring ZF_1_14 Field_ZF_1_L5 by auto
with mult_commute Al have ab-(cb™!) = ab-(b~'-c)
using IsCommutative_def by simp
moreover
from A1 T have ab € K b ! € K c€kK
by auto
then have a-bb~!'-c = ab-(b~!-c)
by (rule Ring_ZF_1_L11)
ultimately have ab-(c:b™!) = a-b-b~!.c by simp
with A1 show ab-(cb™!) = ac
using Field_ZF_1_L7 by simp
qed

32.3 1/0=0

InZFif f: X - Y and x ¢ X we have f(z) = (. Since () (the empty set)
in ZF is the same as zero of natural numbers we can claim that 1/0 = 0
in certain sense. In this section we prove a theorem that makes makes it
explicit.

The next locale extends the £ieldo locale to introduce notation for division
operation.

locale fieldd = fieldO +
fixes division
defines division_def[simp]: division = {(p,fst(p)-snd(p)!). p€KxKo}
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fixes fdiv (infixl / 95)
defines fdiv_def [simpl: x/y = division(x,y)

Division is a function on K x Ky with values in K.

lemma (in fieldd) div_fun: shows division: KxKy; — K
proof -
have Vp € KxKy. fst(p)-snd(p)~!' € K
proof
fix p assume p € KxKg
hence fst(p) € K and snd(p) € Ky by auto
then show fst(p)-snd(p)~! € K using Ring_ZF_1_L4 Field_ZF_1_L5 by
auto
qed
then have {(p,fst(p)-snd(p)~!). p€KxKo}: KxKy — K
by (rule ZF_fun_from_total)
thus thesis by simp
qed

So, really 1/0 = 0. The essential lemma is apply_0 from standard Isabelle’s
func. thy.

theorem (in fieldd) one_over_zero: shows 1/0 = 0
proof-
have domain(division) = KxKy using div_fun funci_1_L1
by simp
hence (1,0) ¢ domain(division) by auto
then show thesis using apply_0 by simp
qed

end
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33 OrderedField ZF.thy

theory OrderedField_ZF imports OrderedRing ZF Field_ZF
begin

This theory covers basic facts about ordered fiels.

33.1 Definition and basic properties
Here we define ordered fields and proove their basic properties.

Ordered field is a notrivial ordered ring such that all non-zero elements have
an inverse. We define the notion of being a ordered field as a statement about
four sets. The first set, denoted K is the carrier of the field. The second set,
denoted A represents the additive operation on X (recall that in ZF set theory
functions are sets). The third set M represents the multiplicative operation
on K. The fourth set r is the order relation on K.

definition
IsAnOrdField(K,A,M,r) = (IsAnOrdRing(K,A,M,r) A
(M {is commutative on} K) A
TheNeutralElement (K,A) # TheNeutralElement (K,M) A
(Va€K. a#TheNeutralElement (K,A) —
(3beK. M{a,b) = TheNeutralElement (X,M))))

The next context (locale) defines notation used for ordered fields. We do
that by extending the notation defined in the ringl context that is used for
oredered rings and adding some assumptions to make sure we are talking
about ordered fields in this context. We should rename the carrier from R
used in the ringl context to K, more appriopriate for fields. Theoretically
the Isar locale facility supports such renaming, but we experienced diffculties
using some lemmas from ring1 locale after renaming.

locale fieldl = ringl +
assumes mult_commute: M {is commutative on} R
assumes not_triv: 0 # 1
assumes inv_exists: Va€R. a#0 — (dbeR. ab = 1)

fixes non_zero (Rg)
defines non_zero_def [simp]: Ry = R-{0}

fixes inv (_~! [96] 97)

defines inv_def[simp]l: a~!

= GroupInv(Rg,restrict(M,RyxRg)) ()

The next lemma assures us that we are talking fields in the field1l context.
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lemma (in fieldl) OrdField_ZF_1_L1: shows IsAnOrdField(R,A,M,r)
using OrdRing ZF_1_L1 mult_commute not_triv inv_exists IsAnOrdField_def
by simp

Ordered field is a field, of course.

lemma OrdField_ZF_1_L1A: assumes IsAnOrdField(K,A,M,r)
shows IsAfield(X,A,M)
using assms IsAnOrdField_def IsAnOrdRing_def IsAfield_def
by simp

Theorems proven in field0 (about fields) context are valid in the field1i
context (about ordered fields).

lemma (in fieldl) OrdField_ZF_1_L1B: shows fieldO(R,A,M)
using OrdField_ZF_1_L1 OrdField_ZF_1_L1A field_fieldO
by simp

We can use theorems proven in the fieldl context whenever we talk about
an ordered field.

lemma OrdField_ZF_1_L2: assumes IsAnOrdField(K,A,M,r)
shows fieldl1(X,A,M,r)
using assms IsAnOrdField_def OrdRing_ZF_1_L2 ringl_def
IsAnOrdField_def fieldl_axioms_def fieldl_def
by auto

In ordered rings the existence of a right inverse for all positive elements
implies the existence of an inverse for all non zero elements.

lemma (in ringl) OrdField_ZF_1_L3:
assumes Al: Va€R;. dbeR. ab = 1 and A2: ceR c#0
shows dbeR. cb =1
proof -
{ assume c€Ry
with A1 have IbeR. ¢b = 1 by simp }
moreover
{ assume c¢R,
with A2 have (-c) € Ry
using OrdRing_ZF_3_L2A by simp
with A1 obtain b where beR and (-c)b =1
by auto
with A2 have (-b) € R c-(-b) =1
using Ring ZF_1_L3 Ring ZF_1_L7 by auto
then have JbeR. cb = 1 by auto }
ultimately show thesis by blast
qed

Ordered fields are easier to deal with, because it is sufficient to show the
existence of an inverse for the set of positive elements.

lemma (in ringl) OrdField_ZF_1_L4:
assumes 0 # 1 and M {is commutative on} R
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and VacR;. JbeR. ab =1

shows IsAnOrdField(R,A,M,r)

using assms OrdRing ZF_1_L1 OrdField_ZF_1_L3 IsAnOrdField_def
by simp

The set of positive field elements is closed under multiplication.

lemma (in fieldl) OrdField_ZF_1_L5: shows Ry {is closed under} M
using OrdField_ZF_1_L1B field0O.field_has_no_zero_divs OrdRing_ZF_3_L3
by simp

The set of positive field elements is closed under multiplication: the explicit
version.

lemma (in fieldl) pos_mul_closed:
assumes Al: 0 <a 0<bD
shows 0 < ab
proof -
from A1 have a € R and b € Ry
using OrdRing_ZF_3_L14 by auto
then show 0 < ab
using OrdField_ZF_1_L5 IsOpClosed_def PositiveSet_def
by simp
qed

In fields square of a nonzero element is positive.

lemma (in fieldl) OrdField_ZF_1_L6: assumes acR a#0
shows a? € R,
using assms OrdField_ZF_1_L1B field0O.field_has_no_zero_divs
OrdRing_ZF_3_L15 by simp

The next lemma restates the fact Field_ZF that out notation for the field
inverse means what it is supposed to mean.

lemma (in fieldl) OrdField_ZF_1_L7: assumes a€R a#0
shows a:-(a™!) =1 (aHDa=1
using assms OrdField_ZF_1_L1B field0.Field_ZF_1_L6
by auto

A simple lemma about multiplication and cancelling of a positive field ele-
ment.

lemma (in fieldl) OrdField_ZF_1_LT7A:
assumes Al: acR b € Ry

shows
abb ! = a
ablb = a
proof -
from A1 have beR b#0 using PositiveSet_def
by auto

with A1 show abb! =a and ab lb =a
using OrdField_ZF_1_L1B field0.Field_ZF_1_L7
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by auto
qed

Some properties of the inverse of a positive element.

lemma (in fieldl) OrdField_ZF_1_L8: assumes Al: a € R4
shows a=! € Ry a(@®) =1 (@ bHa-=1
proof -
from Al have I: a€R a##0 using PositiveSet_def
by auto
with A1 have a-(a=1)? € Ry
using OrdField_ZF_1_L1B field0.Field_ZF_1_L5 OrdField_ZF_1_L6
OrdField_ZF_1_L5 IsOpClosed_def by simp
with I show a=! € R,
using OrdField_ZF_1_L1B field0.Field_ZF_2_L1
by simp
from I show a(a7!) =1 (aDa=1
using OrdField_ZF_1_L7 by auto
qed

If @ < b, then (b— a)~! is positive.

lemma (in fieldl) OrdField_ZF_1_L9: assumes a<b
shows (b-a)~! € Ry
using assms OrdRing ZF_1_L14 OrdField_ZF_1_L8
by simp

In ordered fields if at least one of a,b is not zero, then a® + b > 0, in
particular a? 4 b? # 0 and exists the (multiplicative) inverse of a? 4 b2

lemma (in fieldl) OrdField_ZF_1_L10:
assumes Al: acR beR and A2: a # 0V b # 0
shows 0 < a2 + b> and JccR. (a% + b¥)c =1
proof -
from A1 A2 show 0 < a? + b?
using OrdField_ZF_1_L1B field0O.field_has_no_zero_divs
OrdRing_ZF_3_L19 by simp
then have
(a2 + p)"! € R and (a2 + b?)-(a®? + b))t =1
using OrdRing ZF_1_L3 PositiveSet_def OrdField_ZF_1_L38
by auto
then show JccR. (a? + b%).c = 1 by auto
qed

33.2 Inequalities
In this section we develop tools to deal inequalities in fields.

We can multiply strict inequality by a positive element.

lemma (in fieldl) OrdField_ZF_2_L1:
assumes a<b and c€R;
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shows a-c < b-c

using assms OrdField_ZF_1_L1B field0.field_has_no_zero_divs
OrdRing_ZF_3_L13

by simp

A special case of OrdField_ZF_2_L1 when we multiply an inverse by an ele-
ment.

lemma (in fieldl) OrdField_ZF_2_L2:
assumes Al: acR, and A2: a=! < b
shows 1 < b-a
proof -
from A1 A2 have (a~!)-a < ba
using OrdField_ZF_2_L1 by simp
with Al show 1 < b-a
using OrdField_ZF_1_L8 by simp
qed

We can multiply an inequality by the inverse of a positive element.

lemma (in fieldl) OrdField_ZF_2_L3:
assumes a<b and c€R; shows a-(c™1) < b-(c™hH
using assms OrdField_ZF_1_L8 OrdRing ZF_1_L9A
by simp

We can multiply a strict inequality by a positive element or its inverse.

lemma (in fieldl) OrdField_ZF_2_L4:
assumes a<b and c€R,
shows
a-c < b-c
cca < cb
ac™! < bc!
using assms OrdField_ZF_1_L1B field0O.field_has_no_zero_divs
OrdField_ZF_1_L8 OrdRing_ZF_3_L13 by auto

We can put a positive factor on the other side of an inequality, changing it
to its inverse.

lemma (in fieldl) OrdField_ZF_2_L5:
assumes Al: a€R beR; and A2: ab < c
shows a < cb!
proof -
from A1 A2 have abb ! < cb~!
using OrdField_ZF_2_L3 by simp
with A1 show a < cb~! using OrdField_ZF_1_L7A
by simp
qed

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with a product initially on the right hand side.

lemma (in fieldl) OrdField_ZF_2_L5A:
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assumes Al: b€R c€R; and A2: a < bc
shows ac™! < b
proof -
from A1 A2 have a-c* < b-c.c™
using OrdField_ZF_2_L3 by simp
with A1 show a.c™! < b using OrdField_ZF_1_L7A
by simp
qed

1 1

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with a product initially on the left hand side.

lemma (in fieldl) OrdField_ZF_2_L6:
assumes Al: ac€R beR; and A2: ab < ¢
shows a < c-b~!
proof -
from A1 A2 have abb~! < cb™!
using OrdField_ZF_2_L4 by simp
with Al show a < c-b~! using OrdField_ZF_1_L7A
by simp
qed

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with a product initially on the right hand side.

lemma (in fieldl) OrdField_ZF_2_L6A:
assumes Al: beR ceR; and A2: a < bc
shows a-c™! < b
proof -
from A1 A2 have a-c™! < b-c.c™!
using OrdField_ZF_2_L4 by simp
with A1 show a.c™! < b using OrdField_ZF_1_L7A
by simp
qed

Sometimes we can reverse an inequality by taking inverse on both sides.

lemma (in fieldl) OrdField_ZF_2_L7:
assumes Al: acR; and A2: a=! < b
shows b1 < a
proof -
from A1 have a=! € R, using OrdField_ZF_1_L8
by simp
with A2 have b € R; using OrdRing_ ZF_3_L7
by blast
then have T: b € R, b~ ! € R, using OrdField_ZF_1_L8
by auto
with A1 A2 have b 'a™'a < b !ba
using OrdRing_ZF_1_L9A by simp
moreover
from A1 A2 T have

344



bl € R acR a#0 beR b#0
using PositiveSet_def OrdRing ZF_1_L3 by auto
then have b=!a=!a = b~! and b !ba =a
using OrdField_ZF_1_L1B field0.Field_ZF_1_L7
field0.Field_ZF_1_L6 Ring_ZF_1_L3
by auto
ultimately show b~! < a by simp
qed

Sometimes we can reverse a strict inequality by taking inverse on both sides.

lemma (in fieldl) OrdField_ZF_2_L8:
assumes Al: acR, and A2: a=! < b
shows b~! < a
proof -
from A1 A2 have a=! € Ry a ! <b
using OrdField_ZF_1_L8 by auto
then have b € R, using OrdRing_ ZF_3_L7
by blast
then have beR b#0 using PositiveSet_def by auto
with A2 have b~! # a
using OrdField_ZF_1_L1B field0.Field_ZF_2_L4
by simp
with A1 A2 show b™! < a
using OrdField_ZF_2_L7 by simp
qed

A technical lemma about solving a strict inequality with three field elements
and inverse of a difference.

lemma (in fieldl) OrdField_ZF_2_L9:
assumes Al: a<b and A2: (b-a)~! < ¢
shows 1 + a-c < bc
proof -
from A1 A2 have (b-a)~! € R4 (b-a)~! < ¢
using OrdField_ZF_1_L9 by auto
then have T1: ¢ € Ry using OrdRing ZF_3_L7 by blast
with A1 A2 have T2:
acR beR cE€R c#0 c ! €R
using OrdRing_ZF_1_L3 OrdField_ZF_1_L8 PositiveSet_def
by auto
with A1 A2 have ¢! + a < b-a + a
using OrdRing ZF_1_L14 OrdField_ZF_2_L8 ring_strict_ord_trans_inv
by simp
with T1 T2 have (c™! + a)-c < bc
using Ring_ ZF_2_L1A OrdField_ZF_2_L1 by simp
with T1 T2 show 1 + a.c < b-c
using ring_oper_distr OrdField_ZF_1_L8
by simp
qed
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33.3 Definition of real numbers

The only purpose of this section is to define what does it mean to be a model
of real numbers.

We define model of real numbers as any quadruple of sets (K, A, M, r) such
that (K, A, M,r) is an ordered field and the order relation r is complete,
that is every set that is nonempty and bounded above in this relation has a
supremum.

definition
IsAmodelOfReals(K,A,M,r) = IsAnOrdField(XK,A,M,r) A (r {is completel})

end
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34 Int ZF.thy

theory Int_ZF_IML imports OrderedGroup_ZF_1 Finite_ZF_1 Int_ZF Nat_ZF_IML
begin

This theory file is an interface between the old-style Isabelle (ZF logic)
material on integers and the IsarMathLib project. Here we redefine the
meta-level operations on integers (addition and multiplication) to convert
them to ZF-functions and show that integers form a commutative group with
respect to addition and commutative monoid with respect to multiplication.
Similarly, we redefine the order on integers as a relation, that is a subset of
Z x Z. We show that a subset of intergers is bounded iff it is finite. As
we are forced to use standard Isabelle notation with all these dollar signs,
sharps etc. to denote ”type coercions” (?) the notation is often ugly and
difficult to read.

34.1 Addition and multiplication as ZF-functions.

In this section we provide definitions of addition and multiplication as sub-
sets of (Zx Z)x Z. We use the (higher order) relation defined in the standard
Int theory to define a subset of Z x Z that constitutes the ZF order relation
corresponding to it. We define the set of positive integers using the notion
of positive set from the OrderedGroup_zZF theory.

Definition of addition of integers as a binary operation on int. Recall that
in standard Isabelle/ZF int is the set of integers and the sum of integers is
denoted by prependig + with a dollar sign.

definition
IntegerAddition = { ( x,c¢) € (intxint)xint. fst(x) $+ snd(x) = c}

Definition of multiplication of integers as a binary operation on int. In
standard Isabelle/ZF product of integers is denoted by prepending the dollar
sign to x.

definition
IntegerMultiplication =
{ ( x,¢) € (intxint)xint. fst(x) $x snd(x) = c}

Definition of natural order on integers as a relation on int. In the standard
Isabelle/ZF the inequality relation on integers is denoted < prepended with
the dollar sign.

definition
IntegerOrder = {p € intxint. fst(p) $< snd(p)}

This defines the set of positive integers.

definition
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PositiveIntegers = PositiveSet(int,IntegerAddition,IntegerOrder)

IntegerAddition and IntegerMultiplication are functions on int x int.

lemma Int_ZF_1_L1: shows
IntegerAddition : intxint — int
IntegerMultiplication : intxint — int
proof -
have
{{ x,c) € (intxint) xint. fst(x) $+ snd(x) = c} € intxint—int
{( x,c) € (intxint)xint. fst(x) $x snd(x) = c} € intxint—int
using funcl_1_L11A by auto
then show IntegerAddition : intXxint — int
IntegerMultiplication : intXint — int
using IntegerAddition_def IntegerMultiplication_def by auto
qed

The next context (locale) defines notation used for integers. We define 0 to
denote the neutral element of addition, 1 as the unit of the multiplicative
monoid. We introduce notation m<n for integers and write m..n to denote
the integer interval with endpoints in m and n. abs(m) means the absolute
value of m. This is a function defined in OrderedGroup that assigns x to
itself if x is positive and assigns the opposite of x if z < 0. Unforunately we
cannot use the |-| notation as in the OrderedGroup theory as this notation has
been hogged by the standard Isabelle’s Int theory. The notation -A where A
is a subset of integers means the set {—m : m € A}. The symbol maxf (£,M)
denotes tha maximum of function f over the set A. We also introduce a
similar notation for the minimum.

locale int0 =

fixes ints (Z)
defines ints_def [simp]l: Z = int

fixes ia (infixl + 69)
defines ia_def [simpl: a+b = IntegerAddition( a,b)

fixes iminus (- _ 72)
defines rminus_def [simp]l: -a = GroupInv(Z,IntegerAddition) (a)

fixes isub (infixl - 69)
defines isub_def [simp]l: a-b = a+ (- b)

fixes imult (infixl - 70)
defines imult_def [simpl: a-b = IntegerMultiplication( a,b)

fixes setneg (- _ 72)
defines setneg_def [simp]l: -A = GroupInv(Z,IntegerAddition) (A)

fixes izero (0)
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defines izero_def [simp]: O = TheNeutralElement(Z,IntegerAddition)

fixes ione (1)
defines ione_def [simp]: 1 = TheNeutralElement(Z,IntegerMultiplication)

fixes itwo (2)

defines itwo_def [simp]: 2 1+1

fixes ithree (3)
defines ithree_def [simp]: 3 = 2+1

fixes nonnegative (Z™)
defines nonnegative_def [simp]:
Z" = Nonnegative(Z,IntegerAddition,IntegerOrder)

fixes positive (Zy)
defines positive_def [simp]:
Z, = PositiveSet(Z,IntegerAddition,IntegerOrder)

fixes abs
defines abs_def [simp]:
abs(m) = AbsoluteValue(Z,IntegerAddition,IntegerOrder) (m)

fixes lesseq (infix < 60)
defines lesseq_def [simpl: m < n = (m,n) € IntegerOrder

fixes interval (infix .. 70)
defines interval_def [simp]: m..n = Interval(IntegerOrder,m,n)
fixes maxf

defines maxf_def [simp]: maxf(f,A) = Maximum(IntegerOrder,f(A))

fixes minf
defines minf_def [simp]: minf(f,A) = Minimum(IntegerOrder,f (A))

IntegerAddition adds integers and IntegerMultiplication multiplies integers.

This states that the ZF functions IntegerAddition and IntegerMultiplication

give the same results as the higher-order equivalents defined in the standard

Int theory.

lemma (in int0) Int_ZF_1_L2: assumes Al: a € Z b e Z
shows
atb = a $+ b
ab=a$x b

proof -

let x = ( a,b)
let c = a $+b
let d = a $x b
from A1 have
( x,¢) € {{ x,¢) € (ZXZ)XZ. fst(x) $+ snd(x) = c}
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( x,d) € {( x,d) € (ZXZ)xZ. fst(x) $x snd(x) = d}
by auto
then show atb = a $+ b ab =a $x b
using IntegerAddition_def IntegerMultiplication_def
Int_ZF_1_L1 apply_iff by auto
qed

Integer addition and multiplication are associative.

lemma (in int0) Int_ZF_1_L3:
assumes x€Z yeZ zeZ
shows x+y+z = x+(y+z) =xyz = x-(y-2)
using assms Int_ZF_1_L2 zadd_assoc zmult_assoc by auto

Integer addition and multiplication are commutative.

lemma (in int0) Int_ZF_1_14:
assumes x€Z yeZ
shows x+y = y+x xy = y'x
using assms Int_ZF_1_L2 zadd_commute zmult_commute
by auto

Zero is neutral for addition and one for multiplication.

lemma (in int0) Int_ZF_1_L5: assumes Al:x€Z
shows ($# 0) + x = x A x + ($# 0) = x
B# Dx=x A x@G# 1) =x
proof -
from A1 show ($# 0) + x = x A x + ($# 0) = x
using Int_ZF_1_L2 zadd_int0 Int_ZF_1_L4 by simp
from A1 have ($# 1)x = x
using Int_ZF_1_L2 zmult_intl by simp
with Al show ($# 1)x = x A x($# 1) = x
using Int_ZF_1_L4 by simp
qed

Zero is neutral for addition and one for multiplication.

lemma (in int0) Int_ZF_1_L6: shows ($# 0)eZ A
(VxeZ. ($# 0)+x = x A x+($# 0) = x)
$# 1DeZ A
(VxeZ. ($# 1) x =x AN x($# 1) = x)
using Int_ZF_1_L5 by auto

Integers with addition and integers with multiplication form monoids.

theorem (in int0) Int_ZF_1_T1: shows
IsAmonoid(Z,IntegerAddition)
IsAmonoid(Z,IntegerMultiplication)
proof -
have
JeeZ. VxeZ. e+tx = x N\ xte = X
Je€Z. VxeZ. ex = x N\ xe

]
o]
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using intO0.Int_ZF_1_L6 by auto
then show IsAmonoid(Z,IntegerAddition)
IsAmonoid(Z,IntegerMultiplication) using
IsAmonoid_def IsAssociative_def Int_ZF_1_L1 Int_ZF_1_L3
by auto
qed

Zero is the neutral element of the integers with addition and one is the
neutral element of the integers with multiplication.

lemma (in intO0) Int_ZF_1_18: shows ($# 0) =0 ($# 1) =1
proof -
have monoid0(Z,IntegerAddition)
using Int_ZF_1_T1 monoidO_def by simp
moreover have
$# 0)eZ A
(Vx€Z. IntegerAddition($# 0,x) = x A
IntegerAddition(x ,$# 0) = x)
using Int_ZF_1_L6 by auto
ultimately have ($# 0) = TheNeutralElement(Z,IntegerAddition)
by (rule monoid0.groupO_1_L4)
then show ($# 0) = 0 by simp
have monoid0(int,IntegerMultiplication)
using Int_ZF_1_T1 monoidO_def by simp
moreover have ($# 1) € int A
(Vx€int. IntegerMultiplication($# 1, x) = x A
IntegerMultiplication(x ,$# 1) = x)
using Int_ZF_1_L6 by auto
ultimately have
($# 1) = TheNeutralElement (int,IntegerMultiplication)
by (rule monoid0.groupO_1_L4)
then show ($# 1) = 1 by simp
qed

0 and 1, as defined in int0O context, are integers.

lemma (in int0) Int_ZF_1_1L8A: shows 0 € Z 1 € Z
proof -

have ($# 0) € Z ($# 1) € Z by auto

then show 0 € Z 1 € Z using Int_ZF_1_L8 by auto
qed

Zero is not one.

lemma (in intO) int_zero_not_one: shows 0 # 1
proof -

have ($# 0) # ($# 1) by simp

then show 0 # 1 using Int_ZF_1_18 by simp
qed

The set of integers is not empty, of course.

lemma (in int0) int_not_empty: shows Z # 0
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using Int_ZF_1_L8A by auto

The set of integers has more than just zero in it.

lemma (in intO) int_not_trivial: shows Z # {0}
using Int_ZF_1_L8A int_zero_not_one by blast

Each integer has an inverse (in the addition sense).

lemma (in int0) Int_ZF_1_L9: assumes Al: g € Z
shows 3 beZ. g+b = 0
proof -
from Al have g+ $-g = 0
using Int_ZF_1_L2 Int_ZF_1_L8 by simp
thus thesis by auto
qed

Integers with addition form an abelian group. This also shows that we can
apply all theorems proven in the proof contexts (locales) that require the
assumpion that some pair of sets form a group like locale groupo.

theorem Int_ZF_1_T2: shows
IsAgroup(int,IntegerAddition)
IntegerAddition {is commutative on} int
groupO(int,IntegerAddition)
using intO0.Int_ZF_1_T1 int0.Int_ZF_1_L9 IsAgroup_def
groupO_def int0.Int_ZF_1_L4 IsCommutative_def by auto

What is the additive group inverse in the group of integers?

lemma (in int0) Int_ZF_1_L9A: assumes Al: meZ
shows $-m = -m
proof -
from A1 have m€int $-m € int IntegerAddition( m,$-m) =
TheNeutralElement (int,IntegerAddition)
using zminus_type Int_ZF_1_L2 Int_ZF_1_L8 by auto
then have $-m = GroupInv(int,IntegerAddition) (m)
using Int_ZF_1_T2 group0.group0_2_L9 by blast
then show thesis by simp
qed

Subtracting integers corresponds to adding the negative.

lemma (in int0) Int_ZF_1_L10: assumes Al: meZ neZ
shows m-n = m $+ $-n
using assms Int_ZF_1_T2 groupO.inverse_in_group Int_ZF_1_L9A Int_ZF_1_L2
by simp
Negative of zero is zero.
lemma (in int0) Int_ZF_1_L11: shows (-0) = 0
using Int_ZF_1_T2 group0.group_inv_of_one by simp

A trivial calculation lemma that allows to subtract and add one.
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lemma Int_ZF_1_L12:
assumes meint shows m $- $#1 $+ $#1 =m
using assms eq_zdiff_iff by auto

A trivial calculation lemma that allows to subtract and add one, version
with ZF-operation.

lemma (in int0) Int_ZF_1_L13: assumes mcZ
shows (m $- $#1) + 1 = m

using assms Int_ZF_1_L8A Int_ZF_1_ L2 Int_ZF_1_18 Int_ZF_1_L12
by simp

Adding or subtracing one changes integers.

lemma (in int0) Int_ZF_1_L14: assumes Al: mcZ
shows

m+l # m
m-1 # m
proof -
{ assume m+l = m
with A1 have
group0(Z ,IntegerAddition)
neZ 1€Z
IntegerAddition(m,1) = m
using Int_ZF_1_T2 Int_ZF_1_L8A by auto
then have 1 = TheNeutralElement(Z,IntegerAddition)
by (rule group0.group0O_2_L7)
then have False using int_zero_not_one by simp
} then show I: m+l # m by auto
{ from A1l have m - 1 + 1 =n
using Int_ZF_1_L8A Int_ZF_1_T2 group0.inv_cancel_two
by simp
moreover assume m-1 = m
ultimately have m + 1 = m by simp
with I have False by simp

} then show m-1 # m by auto
qed

If the difference is zero, the integers are equal.

lemma (in int0) Int_ZF_1_L15:
assumes Al: meZ neZ and A2: m-n = 0
shows m=n
proof -
let G = Z
let £ = IntegerAddition
from A1 A2 have
group0(G, f)
meG neaG
f(m, GroupInv(G, f)(n)) = TheNeutralElement(G, f)
using Int_ZF_1_T2 by auto
then show m=n by (rule groupO.group0_2_L11A)
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qed

34.2 Integers as an ordered group

In this section we define order on integers as a relation, that is a subset of
Z x Z and show that integers form an ordered group.

The next lemma interprets the order definition one way.

lemma (in int0) Int_ZF_2_L1:
assumes Al: meZ neZ and A2: m $< n
shows m < n

proof -
from A1 A2 have ( m,n) € {x€ZxZ. fst(x) $< snd(x)}
by simp
then show thesis using IntegerOrder_def by simp
qed

The next lemma interprets the definition the other way.

lemma (in int0) Int_ZF_2_L1A: assumes Al: m < n
shows m $< n meZ necZ
proof -
from A1 have ( m,n) € {peZxZ. fst(p) $< snd(p)}
using IntegerOrder_def by simp
thus m $< n meZ neZ by auto
qed

Integer order is a relation on integers.

lemma Int_ZF_2_L1B: shows IntegerOrder C intXxint
proof
fix x assume x€IntegerOrder
then have x € {pcintxint. fst(p) $< snd(p)}
using IntegerOrder_def by simp
then show x€intxint by simp
qed

The way we define the notion of being bounded below, its sufficient for the
relation to be on integers for all bounded below sets to be subsets of integers.

lemma (in int0) Int_ZF_2_L1C:
assumes Al: IsBoundedBelow(A,IntegerOrder)
shows ACZ
proof -
from A1 have
IntegerOrder C ZxZ
IsBoundedBelow (A, IntegerOrder)
using Int_ZF_2_L1B by auto
then show ACZ by (rule Order_ZF_3_L1B)
qged
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The order on integers is reflexive.

lemma (in int0) int_ord_is_refl: shows refl(Z,IntegerOrder)
using Int_ZF_2_L1 zle_refl refl_def by auto

The essential condition to show antisymmetry of the order on integers.

lemma (in int0) Int_ZF_2_L3:

assumes Al: m < n n <m

shows m=n
proof -

from A1 have m $< n n $< m meZ neZ

using Int_ZF_2_L1A by auto

then show m=n using zle_anti_sym by auto

qed

The order on integers is antisymmetric.

lemma (in int0) Int_ZF_2_L4: shows antisym(IntegerOrder)
proof -
have Vmn. m <n An<m— m=n
using Int_ZF_2_L3 by auto
then show thesis using imp_conj antisym_def by simp
qed

The essential condition to show that the order on integers is transitive.

lemma Int_ZF_2_L5:
assumes Al: (m,n) € IntegerOrder (n,k) € IntegerOrder
shows (m,k) € IntegerOrder
proof -
from A1 have Tl1: m $< n n $< k and T2: m€int k€int
using intO0.Int_ZF_2_L1A by auto
from T1 have m $< k by (rule zle_trans)
with T2 show thesis using int0.Int_ZF_2_L1 by simp
qed

The order on integers is transitive. This version is stated in the int0 context
using notation for integers.

lemma (in int0) Int_order_transitive:
assumes Al: m<n n<k
shows m<k
proof -
from A1 have ( m,n) € IntegerOrder ( n,k) € IntegerOrder
by auto
then have ( m,k) € IntegerOrder by (rule Int_ZF_2_L5)
then show m<k by simp
qed

The order on integers is transitive.

lemma Int_ZF_2_L6: shows trans(IntegerOrder)
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proof -
have V m n k.
(m, n) € IntegerOrder A (n, k) € IntegerOrder —
(m, k) € IntegerOrder
using Int_ZF_2_L5 by blast
then show thesis by (rule Foll_L2)
qed

The order on integers is a partial order.

lemma Int_ZF_2_L7: shows IsPartOrder(int,IntegerOrder)
using int0.int_ord_is_refl intO0.Int_ZF_2_L4
Int_ZF_2_L6 IsPartOrder_def by simp

The essential condition to show that the order on integers is preserved by
translations.

lemma (in intO) int_ord_transl_inv:
assumes Al: k € Z and A2: m < n
shows m+k < n+k k+m< k+n
proof -
from A2 have m $< n and meZ ne”Z
using Int_ZF_2_L1A by auto
with Al show mt+k < n+k k+m< k+n
using zadd_right_cancel_zle zadd_left_cancel_zle
Int_ZF_1_L2 Int_ZF_1_L1 apply_funtype
Int_ZF_1_L2 Int_ZF_2_L1 Int_ZF_1_L2 by auto
qed

Integers form a linearly ordered group. We can apply all theorems proven
in group3 context to integers.

theorem (in int0) Int_ZF_2_T1: shows
IsAnOrdGroup(Z,IntegerAddition, IntegerOrder)
IntegerOrder {is total on} Z
group3(Z ,IntegerAddition, IntegerOrder)
IsLinOrder(Z,IntegerOrder)
proof -
have VkeZ. Vmn. m < n —
m+k < nt+tk A k+m< k+n
using int_ord_transl_inv by simp
then show T1: IsAnOrdGroup(Z,IntegerAddition,IntegerOrder) using
Int_ZF_1_T2 Int_ZF_2_L1B Int_ZF_2_L7 IsAnOrdGroup_def
by simp
then show group3(Z,IntegerAddition,IntegerOrder)
using group3_def by simp
have VneZ. VmeZ. n<m V m<n
using zle_linear Int_ZF_2_L1 by auto
then show IntegerOrder {is total on} Z
using IsTotal_def by simp
with T1 show IsLinOrder(Z,IntegerOrder)
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using IsAnOrdGroup_def IsPartOrder_def IsLinOrder_def by simp
qed

If a pair (i,m) belongs to the order relation on integers and ¢ # m, then
1 < m in the sense of defined in the standard Isabelle’s Int.thy.

lemma (in int0) Int_ZF_2_L9: assumes Al: i < m and A2: i#m
shows i $< m
proof -
from Al have i $< m i€Z meZ
using Int_ZF_2_L1A by auto
with A2 show i $< m using zle_def by simp
qed

This shows how Isabelle’s $< operator translates to IsarMathLib notation.

lemma (in int0) Int_ZF_2_L9AA: assumes Al: meZ neZ
and A2: m $< n
shows m<n m # n
using assms zle_def Int_ZF_2_L1 by auto

A small technical lemma about putting one on the other side of an inequality.

lemma (in int0) Int_ZF_2_L9A:
assumes Al: k€Z and A2: m < k $- ($# 1)
shows m+1 < k
proof -
from A2 have m+1 < (k $- ($# 1)) + 1
using Int_ZF_1_L8A int_ord_transl_inv by simp
with A1 show m+1l < k
using Int_ZF_1_L13 by simp
qed

We can put any integer on the other side of an inequality reversing its sign.

lemma (in int0) Int_ZF_2_1L9B: assumes i€Z mneZ keZ
shows i+m < k <+— i < k-m
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L9A
by simp

A special case of Int_ZF_2_L9B with weaker assumptions.

lemma (in int0) Int_ZF_2_L9C:
assumes i€Z meZ and i-m < k
shows i < k+m
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L9B
by simp

Taking (higher order) minus on both sides of inequality reverses it.

lemma (in int0) Int_ZF_2_L10: assumes k < i
shows
(-1) < (-k)
$-i < $-k
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using assms Int_ZF_2_L1A Int_ZF_1_L9A Int_ZF_2_T1
group3.0rderedGroup_ZF_1_L5 by auto

Taking minus on both sides of inequality reverses it, version with a negative
on one side.

lemma (in int0) Int_ZF_2_L10AA: assumes ncZ mn<(-n)
shows n<(-m)
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L5AD
by simp

We can cancel the same element on on both sides of an inequality, a version
with minus on both sides.

lemma (in int0) Int_ZF_2_L10AB:
assumes mecZ neZ keZ and m-n < m-k
shows k<n
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L5AF
by simp

If an integer is nonpositive, then its opposite is nonnegative.

lemma (in int0) Int_ZF_2_L10A: assumes k < 0
shows 0<(-k)
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L5A by simp

If the opposite of an integers is nonnegative, then the integer is nonpositive.

lemma (in int0) Int_ZF_2_L10B:
assumes keZ and 0<(-k)
shows k<0
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L5AA by simp

Adding one to an integer corresponds to taking a successor for a natural
number.

lemma (in int0) Int_ZF_2_L11:
shows i $+ $# n $+ ($# 1) = i $+ $# succ(n)
proof -
have $# succ(n) = $#1 $+ $# n using int_succ_int_1 by blast
then have i $+ $# succ(n) = i $+ ($# n $+ $#1)
using zadd_commute by simp
then show thesis using zadd_assoc by simp
qed

Adding a natural number increases integers.

lemma (in int0) Int_ZF_2_L12: assumes Al: i€Z and A2: n€nat
shows i < i $+ $#n
proof -
{ assume n = 0
with A1 have i < i $+ $#n using zadd_intO int_ord_is_refl refl_def

by simp }
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moreover
{ assume n#0
with A2 obtain k where keénat n = succ(k)
using Nat_ZF_1_L3 by auto
with A1 have i < i $+ $#n
using zless_succ_zadd zless_imp_zle Int_ZF_2_L1 by simp }
ultimately show thesis by blast
qed

Adding one increases integers.

lemma (in int0) Int_ZF_2_L12A: assumes Al: j<k
shows j < k $+ $#1 j < k+l
proof -
from A1 have T1:jeZ keZ j $< k
using Int_ZF_2_L1A by auto
moreover from T1 have k $< k $+ $#1 using Int_ZF_2_L12 Int_ZF_2_L1A
by simp
ultimately have j $< k $+ $#1 using zle_trans by fast
with T1 show j < k $+ $#1 using Int_ZF_2_L1 by simp
with T1 have j< k+$#1
using Int_ZF_1_L2 by simp
then show j < k+1 using Int_ZF_1_L8 by simp
qed

Adding one increases integers, yet one more version.

lemma (in int0) Int_ZF_2_L12B: assumes Al: mcZ shows m < m+1l
using assms int_ord_is_refl refl_def Int_ZF_2_L12A by simp

If K+ 1= m+ n, where n is a non-zero natural number, then m < k.

lemma (in int0) Int_ZF_2_L13:
assumes Al: k€Z meZ and A2: né€nat
and A3: k $+ ($# 1) = m $+ $# succ(n)
shows m < k
proof -
from Al have k€Z m $+ $# n € Z by auto
moreover from assms have k $+ $# 1 = m $+ $# n $+ $#1
using Int_ZF_2_L11 by simp
ultimately have k = m $+ $# n using zadd_right_cancel by simp
with A1 A2 show thesis using Int_ZF_2_L12 by simp
qed

The absolute value of an integer is an integer.

lemma (in intO) Int_ZF_2_L14: assumes Al: meZ
shows abs(m) € Z
proof -
have AbsoluteValue(Z,IntegerAddition,IntegerOrder) : Z—Z
using Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L1 by simp
with Al show thesis using apply_funtype by simp
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qed

If two integers are nonnegative, then the opposite of one is less or equal than
the other and the sum is also nonnegative.

lemma (in int0) Int_ZF_2_L14A:
assumes 0<m 0<n
shows
((m) <n
0<m+n
using assms Int_ZF_2_T1
group3.0rderedGroup_ZF_1_L5AC group3.0rderedGroup_ZF_1_L12
by auto

We can increase components in an estimate.

lemma (in int0) Int_ZF_2_L15:
assumes b<b; c<c; and a<b+c
shows a<bi+c;
proof -
from assms have group3(Z,IntegerAddition,IntegerOrder)
(a,IntegerAddition( b,c)) € IntegerOrder
(b,b1) € IntegerOrder (c,c;) € IntegerOrder
using Int_ZF_2_T1 by auto
then have (a,IntegerAddition( bj,c;)) € IntegerOrder
by (rule group3.0rderedGroup_ZF_1_L5E)
thus thesis by simp
qed

We can add or subtract the sides of two inequalities.

lemma (in intO) int_ineq_add_sides:
assumes a<b and c<d
shows
atc < b+d
a-d < b-c
using assms Int_ZF_2_T1
group3.0rderedGroup_ZF_1_L5B group3.0rderedGroup_ZF_1_L5I
by auto

We can increase the second component in an estimate.

lemma (in int0) Int_ZF_2_L15A:
assumes beZ and a<b+c and A3: c<c;
shows a<b+c;
proof -
from assms have
group3(Z ,IntegerAddition, IntegerOrder)
be”Z
(a,IntegerAddition( b,c)) € IntegerOrder
(c,c1) € IntegerOrder
using Int_ZF_2_T1 by auto
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then have (a,IntegerAddition( b,c;)) € IntegerOrder
by (rule group3.0rderedGroup_ZF_1_L5D)
thus thesis by simp
qed

If we increase the second component in a sum of three integers, the whole
sum inceases.

lemma (in int0) Int_ZF_2_L15C:
assumes Al: mcZ neZ and A2: k < L
shows m+k+n < m+L+n
proof -
let P = IntegerAddition
from assms have
group3(int,P,IntegerOrder)
m € int n € int
(k,L) € IntegerOrder
using Int_ZF_2_T1 by auto
then have (P(P( m,k),n), P(P( m,L),n) ) € IntegerOrder
by (rule group3.0rderedGroup_ZF_1_L10)
then show mt+k+n < m+L+n by simp
qed

We don’t decrease an integer by adding a nonnegative one.

lemma (in int0) Int_ZF_2_L15D:
assumes 0<n meZ
shows m < n+m
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L5F
by simp

Some inequalities about the sum of two integers and its absolute value.

lemma (in int0) Int_ZF_2_L15E:
assumes meZ neZ
shows
m+n < abs(m)+abs(n)
m-n < abs(m)+abs(n)
(-m)+n < abs(m)+abs(n)
(-m)-n < abs(m)+abs(n)
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L6A
by auto

We can add a nonnegative integer to the right hand side of an inequality.

lemma (in int0) Int_ZF_2_L15F: assumes m<k and 0<n
shows m < k+n m < n+k
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L5G
by auto

Triangle inequality for integers.

lemma (in int0) Int_triangle_ineq:
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assumes meZ neZ

shows abs (m+n) <abs(m)+abs(n)

using assms Int_ZF_1_T2 Int_ZF_2_T1 group3.0rdGroup_triangle_ineq
by simp

Taking absolute value does not change nonnegative integers.

lemma (in int0) Int_ZF_2_L16:
assumes 0<m shows meZ%t and abs(m) = m
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L2
group3.0rderedGroup_ZF_3_L2 by auto

0<1,s0|l] =1

lemma (in int0) Int_ZF_2_L16A: shows 0<1 and abs(l) =1
proof -
have ($# 0) € Z ($# 1) Z by auto
then have 0<0 and Ti: 1€Z
using Int_ZF_1_L8 int_ord_is_refl refl_def by auto
then have 0<0+1 using Int_ZF_2_L12A by simp
with T1 show 0<1 using Int_ZF_1_T2 groupO.group0_2_L2

by simp
then show abs(1l) = 1 using Int_ZF_2_L16 by simp
qed
1<2.
lemma (in int0) Int_ZF_2_L16B: shows 1<2
proof -

have ($# 1)€ Z by simp
then show 1<2
using Int_ZF_1_L8 int_ord_is_refl refl_def Int_ZF_2_L12A
by simp
qed

Integers greater or equal one are greater or equal zero.

lemma (in int0) Int_ZF_2_L16C:
assumes Al: 1<a shows
0<a a#0
2 a+l
1 a+l
0 atl
proof -
from A1 have 0<1 and 1<a
using Int_ZF_2_L16A by auto
then show 0<a by (rule Int_order_transitive)
have I: 0<1 using Int_ZF_2_L16A by simp
have 1<2 using Int_ZF_2_L16B by simp
moreover from Al show 2 < a+l
using Int_ZF_1_L8A int_ord_transl_inv by simp
ultimately show 1 < a+1 by (rule Int_order_transitive)

VANIVANIVAN
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with I show 0 < a+1 by (rule Int_order_transitive)
from A1 show a#0 using
Int_ZF_2_L16A Int_ZF_2_L3 int_zero_not_one by auto
qed

Absolute value is the same for an integer and its opposite.

lemma (in int0) Int_ZF_2_L17:
assumes meZ shows abs(-m) = abs(m)
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L7A by simp

The absolute value of zero is zero.

lemma (in int0) Int_ZF_2_L18: shows abs(0) = 0
using Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L2A by simp

A different version of the triangle inequality.

lemma (in int0) Int_triangle_ineql:
assumes Al: meZ neZ
shows
abs(m-n) < abs(n)+abs(m)
abs(m-n) < abs(m)+abs(n)
proof -
have $-n € Z by simp
with A1 have abs(m-n) < abs(m)+abs(-n)
using Int_ZF_1_L9A Int_triangle_ineq by simp
with A1 show
abs(m-n) < abs(n)+abs(m)
abs(m-n) < abs(m)+abs(n)
using Int_ZF_2_L17 Int_ZF_2_L14 Int_ZF_1_T2 IsCommutative_def
by auto
qed

Another version of the triangle inequality.

lemma (in int0) Int_triangle_ineq2:
assumes meZ neZ
and abs(m-n) < k
shows
abs(m) < abs(n)+k
m-k < n
m < n+k
n-k < m
using assms Int_ZF_1_T2 Int_ZF_2_T1
group3.0rderedGroup_ZF_3_L7D group3.0rderedGroup_ZF_3_L7E
by auto

Triangle inequality with three integers. We could use OrdGroup_triangle_ineq3,
but since simp cannot translate the notation directly, it is simpler to reprove
it for integers.

lemma (in intO) Int_triangle_ineq3:
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assumes Al: meZ neZ keZ
shows abs(m+n+k) < abs(m)+abs(n)+abs(k)
proof -
from A1 have T: m+n € Z abs(k) € Z
using Int_ZF_1_T2 groupO.group_op_closed Int_ZF_2_L14
by auto
with A1 have abs(m+n+k) < abs(m+n) + abs(k)
using Int_triangle_ineq by simp
moreover from A1 T have
abs(m+n) + abs(k) < abs(m) + abs(n) + abs(k)
using Int_triangle_ineq int_ord_transl_inv by simp
ultimately show thesis by (rule Int_order_transitive)
qed

The next lemma shows what happens when one integers is not greater or
equal than another.
lemma (in int0) Int_ZF_2_L19:

assumes Al: meZ neZ and A2: —(n<m)
shows m<n (-n) < (-m) m#n

proof -
from A1 A2 show m<n using Int_ZF_2_T1 IsTotal_def
by auto
then show (-n) < (-m) using Int_ZF_2_L10
by simp
from A1 have n < n using int_ord_is_refl refl_def
by simp
with A2 show m#n by auto
qed

If one integer is greater or equal and not equal to another, then it is not
smaller or equal.

lemma (in int0) Int_ZF_2_L19AA: assumes Al: m<n and A2: m#n
shows —(n<m)
proof -
from A1 A2 have
group3(Z, IntegerAddition, IntegerOrder)
(m,n) € IntegerOrder
m#n
using Int_ZF_2_T1 by auto
then have (n,m) ¢ IntegerOrder
by (rule group3.0rderedGroup_ZF_1_L8AA)
thus - (n<m) by simp
qed

The next lemma allows to prove theorems for the case of positive and neg-
ative integers separately.

lemma (in int0) Int_ZF_2_L19A: assumes Al: meZ and A2: —(0<m)
shows m<0 0 < (-m) n#0
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proof -
from Al have T: 0 € Z
using Int_ZF_1_T2 groupO.group0_2_L2 by auto
with A1l A2 show m<0 using Int_ZF_2_L19 by blast
from A1 T A2 show m#0 by (rule Int_ZF_2_L19)
from A1 T A2 have (-0)<(-m) by (rule Int_ZF_2_L19)
then show 0 < (-m)
using Int_ZF_1_T2 groupO.group_inv_of_one by simp
qed

We can prove a theorem about integers by proving that it holds for m = 0,
m E€Z, and —m €Z,.

lemma (in int0) Int_ZF_2_L19B:
assumes m€Z and Q(0) and VneZ,. Q(n) and VneZ, . Q(-n)
shows Q(m)

proof -
let G =Z
let P = IntegerAddition
let r = IntegerOrder
let b = m

from assms have
group3(G, P, r)
r {is total on} G
beaG
Q(TheNeutralElement (G, P))
VacPositiveSet(G, P, r). Q(a)
VacPositiveSet (G, P, r). Q(GroupInv(G, P)(a))
using Int_ZF_2_T1 by auto
then show Q(b) by (rule group3.0OrderedGroup_ZF_1_L18)
qed

An integer is not greater than its absolute value.

lemma (in int0) Int_ZF_2_L19C: assumes Al: meZ
shows
m < abs(m)
(-m) < abs(m)
using assms Int_ZF_2_T1
group3.0rderedGroup_ZF_3_L5 group3.0rderedGroup_ZF_3_L6
by auto

|m —n|=|n—mj|.
lemma (in int0) Int_ZF_2_120: assumes meZ neZ

shows abs(m-n) = abs(n-m)

using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L7B by simp
We can add the sides of inequalities with absolute values.

lemma (in int0) Int_ZF_2_L21:
assumes Al: meZ neZ
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and A2: abs(m) < k abs(n) <1

shows

abs(m+n) < k + 1

abs(m-n) < k + 1

using assms Int_ZF_1_T2 Int_ZF_2_T1
group3.0rderedGroup_ZF_3_L7C group3d.0rderedGroup_ZF_3_L7CA

by auto

Absolute value is nonnegative.

lemma (in int0) int_abs_nonneg: assumes Al: meZ
shows abs(m) € ZT 0 < abs(m)
proof -
have AbsoluteValue(Z,IntegerAddition,IntegerOrder) : Z—Z"
using Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L3C by simp
with A1 show abs(m) € Z' using apply_funtype
by simp
then show 0 < abs(m)
using Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L2 by simp
qed

If an nonnegative integer is less or equal than another, then so is its absolute
value.

lemma (in int0) Int_ZF_2_L23:
assumes 0<m m<k
shows abs(m) < k
using assms Int_ZF_2_L16 by simp

34.3 Induction on integers.

In this section we show some induction lemmas for integers. The basic tools
are the induction on natural numbers and the fact that integers can be
written as a sum of a smaller integer and a natural number.

An integer can be written a a sum of a smaller integer and a natural number.

lemma (in int0) Int_ZF_3_L2: assumes Al: i < m
shows dn€nat. m = i $+ $# n
proof -
let n =0
{ assume A2: i=nm
from A1 A2 have n € nat m = i $+ $# n
using Int_ZF_2_L1A zadd_intO_right by auto
hence In€nat. m = i $+ $# n by blast }
moreover
{ assume A3: i#m
with A1l have i $< m i€Z meZ
using Int_ZF_2_L9 Int_ZF_2_L1A by auto
then obtain k where D1: kénat m = i $+ $# succ(k)
using zless_imp_succ_zadd_lemma by auto
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let n = succ(k)
from D1 have n€nat m = i $+ $# n by auto
hence In€nat. m = i $+ $# n by simp }
ultimately show thesis by blast
qed

Induction for integers, the induction step.

lemma (in int0) Int_ZF_3_L6: assumes Al: icZ
and A2: Vm. i<m A Q(m) — Q(m $+ ($# 1))
shows Vkénat. Q(i $+ ($# k)) — QUi $+ ($# succ(k)))
proof
fix k¥ assume A3: kénat show Q(i $+ $# k) — Q(i $+ $# succ(k))
proof
assume A4d: Q(i $+ $# k)
from A1 A3 have i< i $+ ($# k) using Int_ZF_2_L12
by simp
with A4 A2 have Q(i $+ ($# k) $+ ($# 1)) by simp
then show Q(i $+ ($# succ(k))) using Int_ZF_2_L11 by simp
qed
qed

Induction on integers, version with higher-order increment function.

lemma (in int0) Int_ZF_3_L7:
assumes Al: i<k and A2: Q(i)
and A3: Vm. i<m A Q(m) — Q(m $+ ($# 1))
shows Q(k)
proof -
from A1 obtain n where D1: n€nat and D2: k = i $+ $# n
using Int_ZF_3_L2 by auto
from A1l have T1: i€Z using Int_ZF_2_L1A by simp
note ‘n€nat
moreover from Al A2 have Q(i $+ $#0)
using Int_ZF_2_L1A zadd_intO by simp
moreover from T1 A3 have
Vkenat. Qi $+ ($# k)) — Qi $+ ($# succ(k)))
by (rule Int_ZF_3_L6)
ultimately have Q(i $+ ($# n)) by (rule ind_on_nat)
with D2 show Q(k) by simp
qed

Induction on integer, implication between two forms of the induction step.

lemma (in int0) Int_ZF_3_L7A: assumes
Al: Vm. i<m A Q(m) — Q(m+1)
shows Vm. i<m A Q(m) — Q(m $+ ($# 1))
proof -
{ fix m assume i<m A Q(m)
with A1 have T1: meZ Q(m+l) using Int_ZF_2_L1A by auto
then have m+1 = m+($# 1) using Int_ZF_1_L8 by simp
with T1 have Q(m $+ ($# 1)) using Int_ZF_1_L2
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by simp
} then show thesis by simp
qed

Induction on integers, version with ZF increment function.

theorem (in int0) Induction_on_int:

assumes Al: i<k and A2: Q(i)

and A3: Vm. i<m A Q(m) — Q(m+1)

shows Q(k)
proof -

from A3 have Vm. i<m A Q(m) — Q(m $+ ($# 1))

by (rule Int_ZF_3_L7A)

with A1 A2 show thesis by (rule Int_ZF_3_L7)

qed

Another form of induction on integers. This rewrites the basic theorem
Int_ZF_3_L7 substituting P(—k) for Q(k).

lemma (in int0) Int_ZF_3_L7B: assumes Al: i<k and A2: P($-i)
and A3: Vm. i<m A P($-m) — P($-(m $+ ($# 1)))
shows P($-k)

proof -
from A1 A2 A3 show P($-k) by (rule Int_ZF_3_L7)

qed

Another induction on integers. This rewrites Int_ZF_3_L7 substituting —k
for k and —i for 1.

lemma (in int0) Int_ZF_3_L8: assumes Al: k<i and A2: P(i)

and A3: Vm. $-i<m A P($-m) — P($-(m $+ ($# 1))

shows P (k)
proof -

from A1 have T1: $-i<$-k using Int_ZF_2_L10 by simp

from A1 A2 have T2: P($- $- i) using Int_ZF_2_L1A zminus_zminus

by simp

from T1 T2 A3 have P($-($-k)) by (rule Int_ZF_3_L7)

with Al show P(k) using Int_ZF_2_L1A zminus_zminus by simp
qed

An implication between two forms of induction steps.

lemma (in int0) Int_ZF_3_L9: assumes Al: icZ
and A2: Vn. n<i A P(n) — P(n $+ $-($#1))
shows Vm. $-i<m A P($-m) — P($-(m $+ ($# 1)))
proof
fix m show $-i<m A P($-m) — P($-(m $+ ($# 1)))
proof
assume A3: $- i < m A P($- m)
then have $- i < m by simp
then have $-m < $- ($- i) by (rule Int_ZF_2_L10)
with A1 A2 A3 show P($-(m $+ ($# 1)))
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using zminus_zminus zminus_zadd_distrib by simp
qed
qed

Backwards induction on integers, version with higher-order decrement func-
tion.

lemma (in int0) Int_ZF_3_L9A: assumes Al: k<i and A2: P(i)
and A3: Vn. n<i A P(n) —P( $+ $-($#1))
shows P (k)
proof -
from A1 have T1: i€Z using Int_ZF_2_L1A by simp
from T1 A3 have T2: Vm. $-i<m A P($-m) — P($-(m $+ ($# 1)))
by (rule Int_ZF_3_L9)
from A1 A2 T2 show P(k) by (rule Int_ZF_3_L8)
qed

Induction on integers, implication between two forms of the induction step.

lemma (in int0) Int_ZF_3_L10: assumes
Al: Vn. n<i A P(n) — P(-1)
shows Vn. n<i A P(n) — P(n $+ $-($#1))
proof -
{ fix n assume n<i A P(n)
with A1 have T1: neZ P(n-1) using Int_ZF_2_L1A by auto
then have n-1 = n-($# 1) using Int_ZF_1_L8 by simp
with T1 have P(n $+ $-($#1)) using Int_ZF_1_L10 by simp
} then show thesis by simp
qed

Backwards induction on integers.

theorem (in int0) Back_induct_on_int:
assumes Al: k<i and A2: P(i)
and A3: Vn. n<i A P(n) — P(n-1)
shows P (k)
proof -
from A3 have Vn. n<i A P(n) — P(n $+ $-($#1))
by (rule Int_ZF_3_L10)
with A1 A2 show P(k) by (rule Int_ZF_3_L9A)
qed

34.4 Bounded vs. finite subsets of integers

The goal of this section is to establish that a subset of integers is bounded
is and only is it is finite. The fact that all finite sets are bounded is already
shown for all linearly ordered groups in OrderedGroups_ZF.thy. To show the
other implication we show that all intervals starting at O are finite and then
use a result from OrderedGroups_ZF.thy.

There are no integers between k£ and k + 1.
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lemma (in int0) Int_ZF_4_L1:
assumes Al: k€Z meZ nenat and A2: k $+ $#1 = m $+ $#n
shows m = k $+ $#1 Vv m < k
proof -
{ assume n=0
with A1 A2 have m = k $+ $#1 Vv m < k
using zadd_intO by simp }
moreover
{ assume n#0
with A1 obtain j where D1: j€nat n = succ(j)
using Nat_ZF_1_L3 by auto
with A1 A2 D1 have m = k $+ $#1 Vm < k
using Int_ZF_2_L13 by simp }
ultimately show thesis by blast
qed

A trivial calculation lemma that allows to subtract and add one.

lemma Int_ZF_4_L1A:
assumes meint shows m $- $#1 $+ $#1 =m
using assms eq_zdiff_iff by auto

There are no integers between k£ and k + 1, another formulation.

lemma (in int0) Int_ZF_4_L1B: assumes Al1: m < L
shows
m=LVntl <L
m=LVm<L-1
proof -
let k = L $- $#1
from A1 have T1: meZ LeZ L = k $+ $#1
using Int_ZF_2_L1A Int_ZF_4_L1A by auto
moreover from Al obtain n where D1: n€nat L =m $+ $# n
using Int_ZF_3_L2 by auto
ultimately have m = L Vv m < k
using Int_ZF_4_L1 by simp
with T1 showm =L V m+l <L
using Int_ZF_2_L9A by auto
with T1 showm =L v m < L-1
using Int_ZF_1_L8A Int_ZF_2_L9B by simp
qed

Ifjem.k+1,then jem.norj=~k+1.

lemma (in int0) Int_ZF_4_L2: assumes Al: keZ
and A2: j € m..(k $+ $#1)
shows j € m..k V j € {k $+ $#1}
proof -
from A2 have T1: m<j j<(k $+ $#1) using Order_ZF_2_L1A
by auto
then have T2: meZ je€Z using Int_ZF_2_L1A by auto
from T1 obtain n where ncnat k $+ $#1 = j $+ $# n
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using Int_ZF_3_L2 by auto
with A1 T1 T2 have @<j A j < k) V j € {k $+ $#1}
using Int_ZF_4_L1 by auto
then show thesis using Order_ZF_2_L1B by auto
qed

Extending an integer interval by one is the same as adding the new endpoint.

lemma (in int0) Int_ZF_4_L3: assumes Al: m< k
shows m..(k $+ $#1) = m..k U {k $+ $#1}
proof
from A1 have T1: meZ keZ using Int_ZF_2_L1A by auto
then show m .. (k $+ $# 1) Cm .. k¥ U {k $+ $# 1}
using Int_ZF_4_L2 by auto
from T1 have m< m using Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L3
by simp
with T1 A1 havem .. Xk Cm .. (k $+ $# 1)
using Int_ZF_2_L12 Int_ZF_2_L6 Order_ZF_2_L3 by simp
with T1 Al show m..k U {k $+ $#1} C m..(k $+ $#1)
using Int_ZF_2_L12A int_ord_is_refl Order_ZF_2_L2 by auto
qed

Integer intervals are finite - induction step.

lemma (in int0) Int_ZF_4_L4:
assumes Al: i<m and A2: i..m € Fin(Z)
shows i..(m $+ $#1) € Fin(Z)
using assms Int_ZF_4_L3 by simp

Integer intervals are finite.

lemma (in int0) Int_ZF_4_L5: assumes Al: i€Z keZ
shows i..k € Fin(Z)
proof -
{ assume A2: i<k
moreover from Al have i..i € Fin(Z)
using int_ord_is_refl Int_ZF_2_L4 Order_ZF_2_L4 by simp
moreover from A2 have
Vm. i<m A i..m € Fin(Z) — i..(m $+ $#1) € Fin(Z)
using Int_ZF_4_L4 by simp
ultimately have i..k € Fin(Z) by (rule Int_ZF_3_L7) }
moreover
{ assume - i < k
then have i..k € Fin(Z) using Int_ZF_2_L6 Order_ZF_2_L5
by simp }
ultimately show thesis by blast
qed

Bounded integer sets are finite.

lemma (in int0) Int_ZF_4_L6: assumes Al: IsBounded(A,IntegerOrder)
shows A € Fin(Z)
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proof -
have T1: Vm € Nonnegative(Z,IntegerAddition,IntegerQOrder) .
$#0..m € Fin(Z)
proof
fix m assume m € Nonnegative(Z,IntegerAddition,IntegerOrder)
then have meZ using Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L4E
by auto
then show $#0..m € Fin(Z) using Int_ZF_4_L5 by simp
qed
have group3(Z,IntegerAddition,IntegerQOrder)
using Int_ZF_2_T1 by simp
moreover from T1 have Vm € Nonnegative(Z,IntegerAddition,IntegerQOrder) .
Interval (IntegerOrder,TheNeutralElement (Z,IntegerAddition) ,m)
€ Fin(Z) using Int_ZF_1_L8 by simp
moreover note Al
ultimately show A € Fin(Z) by (rule group3.0rderedGroup_ZF_2_T1)
qed

A subset of integers is bounded iff it is finite.

theorem (in int0) Int_bounded_iff_fin:
shows IsBounded(A,IntegerOrder)<— A€Fin(Z)
using Int_ZF_4_L6 Int_ZF_2_T1 group3.ord_group_fin_bounded
by blast

The image of an interval by any integer function is finite, hence bounded.

lemma (in int0) Int_ZF_4_L8:
assumes Al: i€Z keZ and A2: f:Z—-7Z
shows
f(i..k) € Fin(Z)
IsBounded (f(i..k),IntegerOrder)
using assms Int_ZF_4_L5 Finitel _L6A Int_bounded_iff_fin
by auto

If for every integer we can find one in A that is greater or equal, then A is
is not bounded above, hence infinite.
lemma (in int0) Int_ZF_4_L9: assumes Al: VmeZ. JkeA. m<k

shows
—IsBoundedAbove (A, IntegerOrder)

A ¢ Fin(Z)
proof -
have Z # {0}

using Int_ZF_1_L8A int_zero_not_one by blast
with Al show
—IsBoundedAbove (A, IntegerOrder)
A ¢ Fin(Z)
using Int_ZF_2_T1 group3.0rderedGroup_ZF_2_L2A
by auto
qed
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35 Int ZF _1.thy

theory Int_ZF_1 imports Int_ZF_IML OrderedRing_ZF
begin

This theory file considers the set of integers as an ordered ring.

35.1 Integers as a ring
In this section we show that integers form a commutative ring.

The next lemma provides the condition to show that addition is distributive
with respect to multiplication.

lemma (in int0) Int_ZF_1_1_L1: assumes Al: acZ beZ ceZ
shows
a-(btc) = ab + ac
(b+c)-a = b-a + c-a
using assms Int_ZF_1_L2 zadd_zmult_distrib zadd_zmult_distrib2
by auto

Integers form a commutative ring, hence we can use theorems proven in
ring0 context (locale).

lemma (in int0) Int_ZF_1_1_L2: shows
IsAring(Z ,IntegerAddition,IntegerMultiplication)
IntegerMultiplication {is commutative on} Z
ring0(Z,IntegerAddition, IntegerMultiplication)
proof -
have VacZ .VbeZ .VceZ.
a-(b+tc) = ab + a:c A (b*c)-a = ba + ca
using Int_ZF_1_1_L1 by simp
then have IsDistributive(Z,IntegerAddition,IntegerMultiplication)
using IsDistributive_def by simp
then show IsAring(Z,IntegerAddition,IntegerMultiplication)
ring0(Z,IntegerAddition, IntegerMultiplication)
using Int_ZF_1_T1 Int_ZF_1_T2 IsAring_def ring0O_def
by auto
have VacZ .VbeZ. a-b = b-a using Int_ZF_1_L4 by simp
then show IntegerMultiplication {is commutative on} Z
using IsCommutative_def by simp
qed

Zero and one are integers.

lemma (in int0O) int_zero_one_are_int: shows 0cZ 1¢Z
using Int_ZF_1_1_L2 ring0.Ring ZF_1_L2 by auto

Negative of zero is zero.

lemma (in int0) int_zero_one_are_intA: shows (-0) = 0
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using Int_ZF_1_T2 groupO.group_inv_of_one by simp

Properties with one integer.

lemma (in int0) Int_ZF_1_1_L4: assumes Al: a € Z
shows

proof -
from A1 show
at0 = a O+a = a a-l = a
l.a =a a-a =0 a-0 = a
(-a) € Z 2a=a+ta (-(-a)) =a
using Int_ZF_1_1_L2 ring0.Ring ZF_1_L3 by auto
from A1 show 0-a =0 a0 =20
using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L6 by auto
qed

Properties that require two integers.

lemma (in int0) Int_ZF_1_1_L5: assumes acZ beZ
shows
atb € Z
a-b € Z
ab e ”Z
atb = b+a
ab = ba
(-b)-a = (-a)-b
(-(atb)) = (-a)-b
(-(a-b)) = ((-a)+b)
(-a)b = -(a'b)
a-(-b) = -(a'b)
(-a)-(-b) = ab
using assms Int_ZF_1_1_L2 ring0.Ring ZF_1_L4 ringO.Ring ZF_1_L9

ring0.Ring_ZF_1_L7 ringO.Ring ZF_1_L7A Int_ZF_1_L4 by auto

2 and 3 are integers.

lemma (in int0) int_two_three_are_int: shows 2 € Z 3 € Z
using int_zero_one_are_int Int_ZF_1_1_L5 by auto

Another property with two integers.

lemma (in int0) Int_ZF_1_1_L5B:
assumes acZ beZ
shows a-(-b) = a+b
using assms Int_ZF_1_1_L2 ring0.Ring ZF_1_L9
by simp
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Properties that require three integers.

lemma (in int0) Int_ZF_1_1_L6: assumes acZ beZ ceZ
shows
a-(b+c) = a-b-c
a-(b-c) = a-b+c
a-(b-c) = ab - ac
(b-c)-a = b-a - ca
using assms Int_ZF_1_1_L2 ring0.Ring ZF_1_L10 ringO.Ring ZF_1_L8
by auto

One more property with three integers.

lemma (in int0) Int_ZF_1_1_L6A: assumes acZ beZ ceZ
shows a+(b-c) = at+b-c
using assms Int_ZF_1_1_L2 ring0.Ring ZF_1_L10A by simp

Associativity of addition and multiplication.

lemma (in int0) Int_ZF_1_1_L7: assumes acZ beZ ceZ
shows
atb+c = a+(b+c)
ab-c = a-(b-c)
using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L11 by auto

35.2 Rearrangement lemmas

In this section we collect lemmas about identities related to rearranging the
terms in expresssions

A formula with a positive integer.

lemma (in int0) Int_ZF_1_2_L1: assumes 0<a
shows abs(a)+1 = abs(a+1)
using assms Int_ZF_2_L16 Int_ZF_2_L12A by simp

A formula with two integers, one positive.

lemma (in int0) Int_ZF_1_2_L2: assumes Al: acZ and A2: 0<b
shows a+(abs(b)+1)-a = (abs(b+1)+1)-a
proof -
from A2 have abs(b+l) € Z
using Int_ZF_2_L12A Int_ZF_2_L1A Int_ZF_2_L14 by blast
with A1 A2 show thesis
using Int_ZF_1_2 L1 Int_ZF_1_1_L2 ring0.Ring ZF_2_L1
by simp
qed

A couple of formulae about canceling opposite integers.

lemma (in int0) Int_ZF_1_2_L3: assumes Al: acZ beZ
shows
atb-a = b
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a+(b-a)

atb-b = a

a-b+b = a

(ra)+(atb) = b

a+(b-a) = b

(-b)+(a+b) = a

a-(b+a) = -b

a-(atb) = -b

a-(a-b) = b

a-b-a = -b

a-b - (atb) = (-b)-Db

using assms Int_ZF_1_T2 groupO.group0_4_L6A groupO.inv_cancel_two
group0.group0_2_L16A groupO.group0_4_L6AA groupO.group0_4_L6AB
group0.group0_4_L6F group0.group0_4_L6AC by auto

I
o

Subtracting one does not increase integers. This may be moved to a theory
about ordered rings one day.

lemma (in int0) Int_ZF_1_2_L3A: assumes Al: a<b
shows a-1 < b
proof -
from A1 have b+1-1 = b
using Int_ZF_2_L1A int_zero_one_are_int Int_ZF_1_2_L3 by simp
moreover from Al have a-1 < b+1-1
using Int_ZF_2_L12A int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv
by simp
ultimately show a-1 < b by simp
qed

Subtracting one does not increase integers, special case.

lemma (in int0) Int_ZF_1_2_L3AA:
assumes Al: acZ shows
a-1 <a
a-1 # a
—(a<a-1)
—-(a+l <a)
—-(1+a <a)
proof -
from A1l have a<a using int_ord_is_refl refl_def
by simp
then show a-1 <a using Int_ZF_1_2_L3A
by simp
moreover from Al show a-1 # a using Int_ZF_1_1L14 by simp
ultimately show I: —(a<a-1) using Int_ZF_2_L19AA
by blast
with A1 show —(a+l <a)
using int_zero_one_are_int Int_ZF_2_L9B by simp
with A1 show —(1+a <a)
using int_zero_one_are_int Int_ZF_1_1_L5 by simp
qed
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A formula with a nonpositive integer.

lemma (in int0) Int_ZF_1_2_L4: assumes a<0
shows abs(a)+1 = abs(a-1)
using assms int_zero_one_are_int Int_ZF_1_2_L3A Int_ZF_2_T1

group3.0rderedGroup_ZF_3_L3A Int_ZF_2_L1A
int_zero_one_are_int Int_ZF_1_1_L5 by simp

A formula with two integers, one negative.

lemma (in int0) Int_ZF_1_2_L5: assumes Al: acZ and A2: b<0
shows a+(abs(b)+1)-a = (abs(b-1)+1)-a
proof -
from A2 have abs(b-1) € Z
using int_zero_one_are_int Int_ZF_1_2 L3A Int_ZF_2_L1A Int_ZF_2_L14

by blast
with A1 A2 show thesis
using Int_ZF_1_2_L4 Int_ZF_1_1_L2 ring0.Ring ZF_2_L1
by simp
qed

A rearrangement with four integers.

lemma (in int0) Int_ZF_1_2_L6:
assumes Al: acZ beZ ceZ deZ
shows
a-(b-1)-c = (d-b-c)-(d-a-c)
proof -
from A1 have T1:
(d-bc) € Z d-a € Z (-(bc)) € Z
using Int_ZF_1_1_1L5 Int_ZF_1_1_L4 by auto
with A1 have
(d-b-c)-(d-a-c) = (-(b-c))+atc
using Int_ZF_1_1 16 Int_ZF_1_2_L3 by simp
also from A1 T1 have (-(b-c))+a+c = a-(b-1)-c
using int_zero_one_are_int Int_ZF_1_1_16 Int_ZF_1_1_14 Int_ZF_1_1_L5
by simp
finally show thesis by simp
qed

Some other rearrangements with two integers.

lemma (in int0) Int_ZF_1_2_L7: assumes acZ becZ

shows

ab = (a-1)-b+b
a-(b+1) = ab+a
(b+1)-a = b-ata
(b+1)-a = at+b-a

using assms Int_ZF_1_1_L1 Int_ZF_1_1_L5 int_zero_one_are_int

Int_ZF_1_1_16 Int_ZF_1_1_14 Int_ZF_1_T2 groupO.inv_cancel_two
by auto
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Another rearrangement with two integers.

lemma (in int0) Int_ZF_1_2_L8:
assumes Al: a€Z beZ
shows a+1+(b+1) = b+a+2
using assms int_zero_one_are_int Int_ZF_1_T2 groupO.group0_4_L38
by simp

A couple of rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L9:
assumes acZ beZ ce”Z
shows
(a-b)+(b-c) = a-c
(a-b)-(a-c) = c-b
a+(b+(c-a-b)) = ¢
(-a)-b+c = c-a-b
(-b)-a+c = c-a-b
(-((-a)+b+c)) = a-b-c
atb+c-a = b+c
a+b-(a+c) = b-c
using assms Int_ZF_1_T2
group0.group0_4_L4B group0.group0_4_L6D groupO.group0_4_L4D
group0.group0_4_L6B group0.group0_4_L6E
by auto

Another couple of rearrangements with three integers.

lemma (in int0) Int_ZF_1_2_L9A:
assumes Al: acZ beZ ce”Z
shows (-(a-b-c)) = c+b-a
proof -
from A1 have T:
ab € Z (-(a-b)) € Z (-b) € Z using
Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto
with A1 have (-(a-b-c)) = ¢ - ((-b)+a)
using Int_ZF_1_1_L5 by simp

also from A1 T have ... = c+b-a
using Int_ZF_1_1_16 Int_ZF_1_1_L5B
by simp
finally show (-(a-b-c)) = c+b-a
by simp
qed

Another rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L10:
assumes Al: acZ beZ ceZ
shows (a+1)b + (c+1)-b = (c+a+2)b
proof -
from A1 have a+l € Z c+1 € Z
using int_zero_one_are_int Int_ZF_1_1_L5 by auto
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with A1 have
(at1)b + (c+1)-b = (a+l+(c+1))b
using Int_ZF_1_1_L1 by simp
also from Al have ... = (c+a+2)b
using Int_ZF_1_2_L8 by simp
finally show thesis by simp
qed

A technical rearrangement involing inequalities with absolute value.

lemma (in int0) Int_ZF_1_2_L10A:
assumes Al: acZ beZ c€Z el
and A2: abs(ab-c) < d abs(b-a-e) < f
shows abs(c-e) < f+d
proof -
from A1 A2 have T1i:
deZ f€Z ab € Z ab-c € Z ba-e € Z
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
with A2 have
abs((b-a-e)-(ab-c)) < f +d
using Int_ZF_2_L21 by simp
with A1 T1 show abs(c-e) < f+d
using Int_ZF_1_1_L5 Int_ZF_1_2_L9 by simp
qed

Some arithmetics.

lemma (in int0) Int_ZF_1_2_L11: assumes Al: acZ
shows
a+l+2 = a+3
a=2a-a
proof -
from A1 show a+1+2 = a+3
using int_zero_one_are_int int_two_three_are_int Int_ZF_1_T2 groupO.group0_4_L4C
by simp
from Al show a = 2.a - a
using int_zero_one_are_int Int_ZF_1_1_L1 Int_ZF_1_1_14 Int_ZF_1_T2
groupO.inv_cancel_two
by simp
qed

A simple rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L12:
assumes acZ beZ ceZ
shows
(b-c)-a = ab - ac
using assms Int_ZF_1_1 16 Int_ZF_1_1_L5 by simp

A big rearrangement with five integers.

lemma (in int0) Int_ZF_1_2_L13:
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assumes Al: acZ beZ ceZ deZ xeZ
shows (x+(a-x+b)+c)-d = d-(a+l)-x + (b-d+c-d)
proof -

from A1 have T1i:
ax € Z (atl)x € Z
(atl)x + b e Z
using Int_ZF_1_1_L5 int_zero_one_are_int by auto

with A1 have (x+(a-x+b)+c)-d = ((a+l)-x + b)-d + c-d
using Int_ZF_1_1_L7 Int_ZF_1_2_L7 Int_ZF_1_1_L1
by simp

also from A1 T1 have ... = (a+1)xd + b - d + cd
using Int_ZF_1_1_L1 by simp

finally have (x+(a-x+b)+c)-d = (a+l)-xd + bd + cd
by simp

moreover from A1 T1 have (a+1l)-x-d = d-(a+l)-x
using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_1_1_L7 by simp

ultimately have (x+(a:x+b)+c)-d = d-(a+1)-x + b-d + c-d
by simp

moreover from A1 T1 have
d(atl)x € Z bd € Z cd e ”Z
using int_zero_one_are_int Int_ZF_1_1_L5 by auto

ultimately show thesis using Int_ZF_1_1_L7 by simp
qed

Rerrangement about adding linear functions.

lemma (in int0) Int_ZF_1_2_L14:
assumes acZ beZ ceZ dcZ xeZ
shows (ax + b) + (cx + d) = (a+tc)x + (b+d)

using assms Int_ZF_1_1_L2 ring0.Ring ZF_2_L3 by simp

A rearrangement with four integers. Again we have to use the generic set
notation to use a theorem proven in different context.

lemma (in int0) Int_ZF_1_2_L15: assumes Al: acZ beZ ceZ deZ
and A2: a = b-c-d
shows
d = b-a-c
d = (-a)+b-c
b = at+d+c
proof -
let G = int
let £ = IntegerAddition
from A1 A2 have I:
group0(G, f) £ {is commutative on} G
aceG beGceG d4dea
a = £f(f(b,GroupInv(G, f)(c)),GroupInv(G, f)(d))
using Int_ZF_1_T2 by auto
then have
d = £(f(b,GroupInv(G, f)(a)),GroupInv(G,f) (c))
by (rule groupO.group0O_4_L9)
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then show d = b-a-c by simp

from I have d = f£{f(GroupInv(G, f)(a),b), GroupInv(G, f)(c))
by (rule groupO.group0O_4_L9)

thus d = (-a)+b-c
by simp

from I have b = f(f(a, d),c)
by (rule groupO.group0_4_L9)

thus b = atd+c by simp

qed

A rearrangement with four integers. Property of groups.

lemma (in int0) Int_ZF_1_2_L16:
assumes acZ beZ ccZ deZ
shows a+(b-c)+d = a+b+d-c

using assms Int_ZF_1_T2 groupO.group0_4_L8 by simp

Some rearrangements with three integers. Properties of groups.

lemma (in int0) Int_ZF_1_2_L17:
assumes Al: acZ beZ ceZ
shows
atb-c+(c-b) = a
at(btc)-c = atb
proof -
let G = int
let £ = IntegerAddition
from A1 have I:
group0(G, f)
ac€cG beGeceg
using Int_ZF_1_T2 by auto
then have
f(f(f(a,b),GroupInv(G, f)(c)),f(c,GroupInv(G, f)(b))) = a
by (rule groupO.groupO_2_L14A)
thus a+b-c+(c-b) = a by simp
from I have
f(f(a,f(b,c)),GroupInv(G, £)(c)) = f(a,b)
by (rule groupO.groupO_2_L14A)
thus a+(b+tc)-c = a+b by simp
qed

Another rearrangement with three integers. Property of abelian groups.

lemma (in int0) Int_ZF_1_2_L18:
assumes Al: acZ beZ ce”Z
shows a+b-c+(c-a) = b
proof -
let G = int
let £ = IntegerAddition
from A1 have
group0(G, f) £ {is commutative on} G
aeG beGcecedd
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using Int_ZF_1_T2 by auto
then have
f(f(f(a,b),GroupInv(G, £f)(c)),f(c,GroupInv(G, f)(a))) = b
by (rule groupO.groupO_4_L6D)
thus atb-c+(c-a) = b by simp
qed

35.3 Integers as an ordered ring

We already know from Int_zF that integers with addition form a linearly
ordered group. To show that integers form an ordered ring we need the fact
that the set of nonnegative integers is closed under multiplication.

We start with the property that a product of nonnegative integers is non-
negative. The proof is by induction and the next lemma is the induction
step.

lemma (in int0) Int_ZF_1_3_L1: assumes Al: 0<a 0<b
and A3: 0 < ab
shows 0 < a-(b+1)
proof -
from A1 A3 have 0+0 < a-b+a
using int_ineq_add_sides by simp
with A1 show 0 < a-(b+1)
using int_zero_one_are_int Int_ZF_1_1_L4 Int_ZF_2_L1A Int_ZF_1_2_L7

by simp
qed

Product of nonnegative integers is nonnegative.

lemma (in int0) Int_ZF_1_3_L2: assumes Al: 0<a 0<b
shows 0<a-b
proof -
from A1 have 0<b by simp
moreover from A1l have 0 < a-0 using
Int_ZF_2_L1A Int_ZF_1_1_L4 int_zero_one_are_int int_ord_is_refl refl_def
by simp
moreover from A1 have
Vm. 0<m A 0<am — 0 < a-(m+1)
using Int_ZF_1_3_L1 by simp

ultimately show 0<a:b by (rule Induction_on_int)
qed

The set of nonnegative integers is closed under multiplication.

lemma (in int0) Int_ZF_1_3_L2A: shows

Z" {is closed under} IntegerMultiplication
proof -

{ fix a b assume acZt beZ*

then have ab €Z*t
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using Int_ZF_1_3_L2 Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L2
by simp
} then have VacZ't.VbeZ'.ab €Z" by simp
then show thesis using IsOpClosed_def by simp
qed

Integers form an ordered ring. All theorems proven in the ringl context are
valid in int0 context.

theorem (in int0) Int_ZF_1_3_T1: shows
IsAnOrdRing(Z,IntegerAddition,IntegerMultiplication, IntegerOrder)
ringl(Z,IntegerAddition, IntegerMultiplication,IntegerOrder)
using Int_ZF_1_1 L2 Int_ZF_2_L1B Int_ZF_1_3_L2A Int_ZF_2_T1

OrdRing_ZF_1_L6 OrdRing ZF_1_L2 by auto

Product of integers that are greater that one is greater than one. The proof
is by induction and the next step is the induction step.

lemma (in int0) Int_ZF_1_3_L3_indstep:
assumes Al: 1<a 1<b
and A2: 1 < ab
shows 1 < a-(b+1)
proof -
from A1 A2 have 1<2 and 2 < a-(b+1)

using Int_ZF_2_L1A int_ineq_add_sides Int_ZF_2_L16B Int_ZF_1_2_L7

by auto
then show 1 < a-(b+1l) by (rule Int_order_transitive)
qed

Product of integers that are greater that one is greater than one.

lemma (in int0) Int_ZF_1_3_L3:
assumes Al: 1<a 1<b
shows 1 < a'b
proof -
from A1 have 1<b 1<a-l
using Int_ZF_2_L1A Int_ZF_1_1_14 by auto
moreover from A1 have
Vm. 1<m A 1 < am — 1 < a-(m+1)
using Int_ZF_1_3_L3_indstep by simp
ultimately show 1 < ab by (rule Induction_on_int)
qed

la - (=b)| = |(—a) - b] = |(—a) - (=b)| = |a-b| This is a property of ordered
rings..

lemma (in int0) Int_ZF_1_3_L4: assumes acZ beZ
shows
abs((-a)-b) abs (a-b)
abs(a-(-b)) = abs(a'b)
abs((-a)-(-b)) = abs(a'b)
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using assms Int_ZF_1_1_L5 Int_ZF_2_L17 by auto

Absolute value of a product is the product of absolute values. Property of
ordered rings.

lemma (in int0) Int_ZF_1_3_L5:
assumes Al: acZ beZ
shows abs(a-b) = abs(a)-abs(b)

using assms Int_ZF_1_3_T1 ringl.OrdRing_ZF_2_L5 by simp

Double nonnegative is nonnegative. Property of ordered rings.

lemma (in int0) Int_ZF_1_3_L5A: assumes 0<a
shows 0<2-a
using assms Int_ZF_1_3_T1 ringl.OrdRing ZF_1_L5A by simp

The next lemma shows what happens when one integer is not greater or
equal than another.

lemma (in int0) Int_ZF_1_3_L6:
assumes Al: acZ beZ
shows —(b<a) +— a+l < b
proof
assume A3: —(b<a)
with A1 have a<b by (rule Int_ZF_2_L19)
then have a =b VvV a+l < b
using Int_ZF_4_L1B by simp
moreover from A1 A3 have a#b by (rule Int_ZF_2_L19)
ultimately show a+l < b by simp
next assume A4: a+l < b
{ assume b<a
with A4 have a+l < a by (rule Int_order_transitive)
moreover from Al have a < a+l
using Int_ZF_2_L12B by simp
ultimately have a+l = a
by (rule Int_ZF_2_L3)
with A1 have False using Int_ZF_1_L14 by simp
} then show —(b<a) by auto
qed

Another form of stating that there are no integers between integers m and
m + 1.
corollary (in intO) no_int_between: assumes Al: acZ beZ

shows b<a V a+l < b
using A1 Int_ZF_1_3_L6 by auto

Another way of saying what it means that one integer is not greater or equal
than another.

corollary (in int0) Int_ZF_1_3_L6A:

assumes Al: acZ beZ and A2: —(b<a)
shows a < b-1
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proof -
from A1 A2 have a+1 - 1 < b -1
using Int_ZF_1_3_L6 int_zero_one_are_int Int_ZF_1_1_L4
int_ord_transl_inv by simp
with A1 show a < b-1
using int_zero_one_are_int Int_ZF_1_2_L3
by simp
qed

Yet another form of stating that there are nointegers between m and m + 1.

lemma (in int0) no_int_betweenl:
assumes Al: a<b and A2: a#b
shows
atl < b
a < b-1
proof -
from A1 have T: a€Z beZ using Int_ZF_2_L1A
by auto
{ assume b<a
with A1 have a=b by (rule Int_ZF_2_L3)
with A2 have False by simp }
then have —(b<a) by auto
with T show
atl < b
a < b-1
using no_int_between Int_ZF_1_3_L6A by auto
qed

We can decompose proofs into three cases: a =b, a < b—1bor a > b+ 1b.

lemma (in int0) Int_ZF_1_3_L6B: assumes Al: acZ beZ
shows a=b V (a < b-1) V (b+l1l <a)
proof -
from A1 have a=b V (a<b A a#b) V (b<a A b#a)
using Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L31
by simp
then show thesis using no_int_betweenl
by auto

qed

A special case of Int_ZF_1_3_L6B when b = 0. This allows to split the proofs
incasesa < —1,a=0and a > 1.

corollary (in int0) Int_ZF_1_3_L6C: assumes Al: acZ
shows a=0 Vv (a < -1) V (1<a)
proof -
from A1 have a=0 Vv (a < 0 -1) VvV (0 +1 <a)
using int_zero_one_are_int Int_ZF_1_3_L6B by simp
then show thesis using Int_ZF_1_1_L4 int_zero_one_are_int
by simp
qed
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An integer is not less or equal zero iff it is greater or equal one.

lemma (in int0) Int_ZF_1_3_L7: assumes acZ
shows —(a<0) «+—— 1 < a
using assms int_zero_one_are_int Int_ZF_1_3_L6 Int_ZF_1_1_14

by simp

Product of positive integers is positive.

lemma (in int0) Int_ZF_1_3_L8:
assumes acZ beZ
and —(a<0) —(b<0)
shows —((a'b) < 0)
using assms Int_ZF_1_3_L7 Int_ZF_1_3_L3 Int_ZF_1_1_L5 Int_ZF_1_3_L7
by simp

If a - b is nonnegative and b is positive, then a is nonnegative. Proof by
contradiction.

lemma (in int0) Int_ZF_1_3_L9:
assumes Al: acZ beZ
and A2: —(b<0) and A3: ab < 0
shows a<0
proof -
{ assume —(a<0)
with A1 A2 have —((a'b) < 0) using Int_ZF_1_3_L8
by simp
} with A3 show a<0 by auto
qed

One integer is less or equal another iff the difference is nonpositive.

lemma (in int0) Int_ZF_1_3_L10:
assumes acZ beZ
shows a<b +— a-b < 0
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L9
by simp

Some conclusions from the fact that one integer is less or equal than another.

lemma (in int0) Int_ZF_1_3_L10A: assumes a<b
shows 0 < b-a
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L12A
by simp

We can simplify out a positive element on both sides of an inequality.

lemma (in int0) Int_ineq_simpl_positive:
assumes Al: acZ beZ ce”Z
and A2: ac < b-c and A4d: —(c<0)
shows a < b
proof -
from A1 A4 have a-b € Z c€Z —(c<0)
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using Int_ZF_1_1_L5 by auto
moreover from Al A2 have (a-b)c < 0
using Int_ZF_1_1_L5 Int_ZF_1_3_L10 Int_ZF_1_1_L6
by simp
ultimately have a-b < 0 by (rule Int_ZF_1_3_L9)
with A1 show a < b using Int_ZF_1_3_L10 by simp

qed

A technical lemma about conclusion from an inequality between absolute
values. This is a property of ordered rings.

lemma (in int0) Int_ZF_1_3_L11:
assumes Al: acZ beZ
and A2: —(abs(a) < abs(b))
shows —(abs(a) < 0)
proof -
{ assume abs(a) < 0
moreover from Al have 0 < abs(a) using int_abs_nonneg
by simp
ultimately have abs(a) = 0 by (rule Int_ZF_2_L3)
with A1 A2 have False using int_abs_nonneg by simp
} then show —(abs(a) < 0) by auto
qed

Negative times positive is negative. This a property of ordered rings.

lemma (in int0) Int_ZF_1_3_L12:
assumes a<0 and 0<b
shows ab < 0
using assms Int_ZF_1_3_T1 ringl.OrdRing ZF_1_L8

by simp

We can multiply an inequality by a nonnegative number. This is a property
of ordered rings.

lemma (in int0) Int_ZF_1_3_L13:
assumes Al: a<b and A2: 0<c
shows
a-c < bc
ca < cb
using assms Int_ZF_1_3_T1 ringl.OrdRing ZF_1_L9 by auto

A technical lemma about decreasing a factor in an inequality.

lemma (in int0) Int_ZF_1_3_L13A:
assumes 1<a and b<c and (a+l)-c < d
shows (a+1)b < d
proof -
from assms have
(a+1)b < (a+l)-c
(a+tl)c < d
using Int_ZF_2_L16C Int_ZF_1_3_L13 by auto
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then show (a+1)b < d by (rule Int_order_transitive)
qed

We can multiply an inequality by a positive number. This is a property of
ordered rings.

lemma (in int0) Int_ZF_1_3_L13B:

assumes Al: a<b and A2: ceZ.

shows
a-c < b-c
ca < cb
proof -
let R = Z
let A = IntegerAddition
let M = IntegerMultiplication

let r = IntegerOrder
from A1 A2 have
ringl(R, A, M, r)
(a,b) € r
c € PositiveSet(R, A, 1)
using Int_ZF_1_3_T1 by auto
then show
a-c < b-c
c.a < cb
using ringl.OrdRing ZF_1_L9A by auto
qed

A rearrangement with four integers and absolute value.

lemma (in int0) Int_ZF_1_3_L14:
assumes Al: acZ beZ ceZ deZ
shows abs(a-b)+(abs(a)+c)-d = (d+abs(b))-abs(a)+c-d
proof -
from A1 have T1:
abs(a) € Z abs(b) € Z
abs(a)-abs(b) € Z
abs(a)d € Z
cd € Z
abs(b)+d € Z
using Int_ZF_2_L14 Int_ZF_1_1_L5 by auto
with A1 have abs(a-b)+(abs(a)+c)-d = abs(a)-(abs(b)+d)+c-d
using Int_ZF_1_3_L5 Int_ZF_1_1_L1 Int_ZF_1_1_L7 by simp

with A1 T1 show thesis using Int_ZF_1_1_L5 by simp
qged

A technical lemma about what happens when one absolute value is not
greater or equal than another.

lemma (in int0) Int_ZF_1_3_L15: assumes Al: meZ neZ

and A2: —(abs(m) < abs(n))
shows n < abs(m) mn#0
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proof -
from A1 have T1: n < abs(n)
using Int_ZF_2_L19C by simp
from A1 have abs(n) € Z abs(m) € Z
using Int_ZF_2_L14 by auto
moreover note A2
ultimately have abs(n) < abs(m)
by (rule Int_ZF_2_L19)
with T1 show n < abs(m) by (rule Int_order_transitive)
from A1 A2 show m#0 using Int_ZF_2_L18 int_abs_nonneg by auto
qed

Negative of a nonnegative is nonpositive.

lemma (in int0) Int_ZF_1_3_L16: assumes Al: 0 < m
shows (-m) < 0
proof -
from Al have (-m) < (-0)
using Int_ZF_2_L10 by simp
then show (-m) < 0 using Int_ZF_1_L11
by simp
qed

Some statements about intervals centered at 0.

lemma (in int0) Int_ZF_1_3_L17: assumes Al: meZ
shows
(-abs(m)) < abs(m)
(-abs(m))..abs(m) # 0
proof -
from A1 have (-abs(m)) < 0 0 < abs(m)
using int_abs_nonneg Int_ZF_1_3_L16 by auto
then show (-abs(m)) < abs(m) by (rule Int_order_transitive)
then have abs(m) € (-abs(m))..abs(m)
using int_ord_is_refl Int_ZF_2_L1A Order_ZF_2_L2 by simp
thus (-abs(m))..abs(m) # 0 by auto
qed

The greater of two integers is indeed greater than both, and the smaller one
is smaller that both.

lemma (in int0) Int_ZF_1_3_L18: assumes Al: meZ neZ
shows
m < GreaterOf (IntegerOrder,m,n)
n < Greater0f (IntegerOrder,m,n)
SmallerOf (IntegerOrder,m,n) < m
SmallerOf (IntegerOrder,m,n) < n
using assms Int_ZF_2_T1 Order_ZF_3_L2 by auto

If |m| < n, then m € —n..n.

lemma (in int0) Int_ZF_1_3_L19:
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assumes Al: mcZ and A2: abs(m) < n

shows

((n) <m m<n

m € (-n)..n

0<n

using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L8
group3.0rderedGroup_ZF_3_L8A Order_ZF_2_L1

by auto

A slight generalization of the above lemma.

lemma (in int0) Int_ZF_1_3_L19A:
assumes Al: meZ and A2: abs(m) < n and A3: 0<k
shows (-(n+k)) < m
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L8B

by simp

Sets of integers that have absolute value bounded are bounded.

lemma (in int0) Int_ZF_1_3_L20:
assumes Al: VxeX. b(x) € Z A abs(b(x)) <L
shows IsBounded({b(x). x€X},IntegerOrder)
proof -
let G = Z
let P = IntegerAddition
let r = IntegerOrder
from A1 have
group3(G, P, r)
r {is total on} G
Vx€X. b(x) € G A (AbsoluteValue(G, P, r) b(x), L) € r
using Int_ZF_2_T1 by auto
then show IsBounded({b(x). x€X},IntegerOrder)
by (rule group3.0rderedGroup_ZF_3_L9A)
qed

If a set is bounded, then the absolute values of the elements of that set are
bounded.

lemma (in intO0) Int_ZF_1_3_L20A: assumes IsBounded(A,IntegerOrder)
shows dL. VacA. abs(a) < L
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L10A
by simp

Absolute vaues of integers from a finite image of integers are bounded by an
integer.

assumes Al: {b(x). x€Z} € Fin(Z)

shows JLeZ. VxeZ. abs(b(x)) < L

using assms int_not_empty Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L11A
by simp

lemma (in int0) Int_ZF_1_3_L20AA:
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If absolute values of values of some integer function are bounded, then the
image a set from the domain is a bounded set.

lemma (in int0) Int_ZF_1_3_L20B:

assumes f:X—7Z and ACX and VxcA. abs(f(x)) < L
shows IsBounded(f(A),IntegerOrder)

proof -
let G = Z
let P = IntegerAddition

let r = IntegerOrder
from assms have
group3(G, P, r)
r {is total on} G
f:X—=G
ACX
Vx€A. (AbsoluteValue(G, P, r)(f(x)), L) € r
using Int_ZF_2_T1 by auto
then show IsBounded(f(A), 1)
by (rule group3.0rderedGroup_ZF_3_L9B)
qed

A special case of the previous lemma for a function from integers to integers.

assumes f:Z—7Z and VmeZ. abs(f(m)) < L
shows f(Z) € Fin(Z)
proof -
from assms have f:Z—~Z Z C Z VmeZ. abs(f(m)) < L
by auto
then have IsBounded(f(Z),IntegerOrder)
by (rule Int_ZF_1_3_L20B)
then show f(Z) € Fin(Z) using Int_bounded_iff_fin
by simp
qed

corollary (in int0O) Int_ZF_1_3_L20C:

A triangle inequality with three integers. Property of linearly ordered abelian
groups.

lemma (in intO) int_triangle_ineq3:
assumes Al: acZ beZ ce”Z
shows abs(a-b-c) < abs(a) + abs(b) + abs(c)
proof -
from Al have T: a-b € Z abs(c) € Z
using Int_ZF_1_1_L5 Int_ZF_2_L14 by auto
with A1 have abs(a-b-c) < abs(a-b) + abs(c)
using Int_triangle_ineql by simp
moreover from Al T have
abs(a-b) + abs(c) < abs(a) + abs(b) + abs(c)
using Int_triangle_ineql int_ord_transl_inv by simp
ultimately show thesis by (rule Int_order_transitive)
qed
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If a <cand b<c¢ then a +b<2-c. Property of ordered rings.
lemma (in int0) Int_ZF_1_3_L21:

assumes Al: a<c b<c shows at+b < 2-c
using assms Int_ZF_1_3_T1 ringl.OrdRing_ZF_2_L6 by simp

If an integer a is between b and b+ ¢, then |b — a| < ¢. Property of ordered
groups.

lemma (in int0) Int_ZF_1_3_L22:
assumes a<b and c€Z and b< c+a
shows abs(b-a) < ¢
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L8C
by simp

An application of the triangle inequality with four integers. Property of
linearly ordered abelian groups.

lemma (in int0) Int_ZF_1_3_L22A:
assumes a€Z beZ ceZ deZ
shows abs(a-c) < abs(a+b) + abs(c+d) + abs(b-d)
using assms Int_ZF_1_T2 Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L7F

by simp

If an integer a is between b and b+ ¢, then |b — a| < ¢. Property of ordered
groups. A version of Int_ZF_1_3_L22 with sligtly different assumptions.

lemma (in int0) Int_ZF_1_3_L23:
assumes Al: a<b and A2: c€Z and A3: b< a+c
shows abs(b-a) < c¢
proof -
from A1 have a € Z
using Int_ZF_2_L1A by simp
with A2 A3 have b< c+a
using Int_ZF_1_1_L5 by simp
with A1 A2 show abs(b-a) < c
using Int_ZF_1_3_L22 by simp
qed

35.4 Maximum and minimum of a set of integers

In this section we provide some sufficient conditions for integer subsets to
have extrema (maxima and minima).

Finite nonempty subsets of integers attain maxima and minima.

theorem (in int0) Int_fin_have_max_min:
assumes Al: A € Fin(Z) and A2: A#0
shows
HasAmaximum(IntegerOrder,A)
HasAminimum(IntegerOrder,A)
Maximum(IntegerOrder,A) € A
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Minimum(IntegerOrder,A) € A
VxeA. x < Maximum(IntegerOrder,A)
Vx€A. Minimum(IntegerOrder,A) < x
Maximum(IntegerOrder,A) € Z
Minimum(IntegerOrder,A) € Z
proof -
from A1 have
A=0 V HasAmaximum(IntegerOrder,A) and
A=0 V HasAminimum(IntegerOrder,A)
using Int_ZF_2_T1 Int_ZF_2_L6 Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B
by auto
with A2 show
HasAmaximum(IntegerOrder,A)
HasAminimum(IntegerOrder,A)
by auto
from A1 A2 show
Maximum(IntegerOrder,A) € A
Minimum(IntegerOrder,A) € A
Vx€A. x < Maximum(IntegerOrder,A)
Vx€A. Minimum(IntegerOrder,A) < x
using Int_ZF_2_T1 Finite_ZF_1_T2 by auto
moreover from Al have ACZ using FinD by simp
ultimately show
Maximum(IntegerOrder,A) € Z
Minimum(IntegerOrder,A) € Z
by auto
qed

Bounded nonempty integer subsets attain maximum and minimum.

theorem (in int0) Int_bounded_have_max_min:
assumes IsBounded(A,IntegerOrder) and A#0
shows
HasAmaximum(IntegerOrder,A)
HasAminimum(IntegerOrder,A)
Maximum(IntegerOrder,A) € A
Minimum(IntegerOrder,A) € A
VxeA. x < Maximum(IntegerOrder,A)
Vx€A. Minimum(IntegerOrder,A) < x
Maximum(IntegerOrder,A) € Z
Minimum(IntegerOrder,A) € Z
using assms Int_fin_have_max_min Int_bounded_iff_fin
by auto

Nonempty set of integers that is bounded below attains its minimum.

theorem (in int0) int_bounded_below_has_min:
assumes Al: IsBoundedBelow(A,IntegerOrder) and A2: A#0
shows
HasAminimum(IntegerOrder,A)
Minimum(IntegerOrder,A) € A
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Vx€A. Minimum(IntegerOrder,A) < x
proof -
from A1 A2 have
IntegerOrder {is total on} Z
trans(IntegerOrder)
IntegerOrder C ZxZ
VA. IsBounded(A,IntegerOrder) A A#0 — HasAminimum(IntegerOrder,A)
A#0 IsBoundedBelow(A,IntegerOrder)
using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Int_bounded_have_max_min
by auto
then show HasAminimum(IntegerOrder,A)
by (rule Order_ZF_4_L11)
then show
Minimum(IntegerOrder,A) € A
Vx€A. Minimum(IntegerOrder,A) < x
using Int_ZF_2_L4 Order_ZF_4_L4 by auto
qed

Nonempty set of integers that is bounded above attains its maximum.

theorem (in int0) int_bounded_above_has_max:
assumes Al: IsBoundedAbove(A,IntegerOrder) and A2: A#0
shows
HasAmaximum(IntegerOrder,A)
Maximum(IntegerOrder,A) € A
Maximum(IntegerOrder,A) € Z
VxeA. x < Maximum(IntegerOrder,A)
proof -
from A1 A2 have
IntegerOrder {is total on} Z
trans (IntegerOrder) and
I: IntegerOrder C ZxZ and
VA. IsBounded(A,IntegerOrder) A A#0 — HasAmaximum(IntegerOrder,A)
A0 IsBoundedAbove(A,IntegerOrder)
using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Int_bounded_have_max_min
by auto
then show HasAmaximum(IntegerOrder,A)
by (rule Order_ZF_4_L11A)
then show
II: Maximum(IntegerOrder,A) € A and
Vx€A. x < Maximum(IntegerOrder,A)
using Int_ZF_2_14 Order_ZF_4_L3 by auto
from I Al have A C Z by (rule Order_ZF_3_L1A)
with IT show Maximum(IntegerOrder,A) € Z by auto
qed

A set defined by separation over a bounded set attains its maximum and
minimum.

lemma (in int0) Int_ZF_1_4_L1:
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assumes Al: IsBounded(A,IntegerOrder) and A2: A#0
and A3: VqeZ. F(q) € Z
and A4: K = {F(q). q € A}
shows
HasAmaximum(IntegerOrder,K)
HasAminimum(IntegerOrder,K)
Maximum(IntegerOrder,K) € K
Minimum(IntegerOrder,K) € K
Maximum(IntegerOrder,K) € Z
Minimum(IntegerOrder,K) € Z
VqeA. F(q) < Maximum(IntegerOrder,K)
Vq€A. Minimum(IntegerOrder,K) < F(q)
IsBounded (K, IntegerOrder)
proof -
from A1 have A € Fin(Z) using Int_bounded_iff_fin
by simp
with A3 have {F(q). q € A} € Fin(Z)
by (rule fin_image_fin)
with A2 A4 have T1: K € Fin(Z) K#0 by auto
then show T2:
HasAmaximum(IntegerOrder,K)
HasAminimum(IntegerOrder,K)
and Maximum(IntegerOrder,K) € K
Minimum(IntegerOrder,K) € K
Maximum(IntegerOrder,K) € Z
Minimum(IntegerOrder,K) € Z
using Int_fin_have_max_min by auto
{ fix q assume q€A
with A4 have F(q) € K by auto
with T1 have
F(q) < Maximum(IntegerOrder,K)
Minimum(IntegerOrder,K) < F(q)
using Int_fin_have_max_min by auto
} then show
VqeA. F(q) < Maximum(IntegerOrder,K)
Vq€A. Minimum(IntegerOrder,K) < F(q)
by auto
from T2 show IsBounded(K,IntegerQOrder)
using Order_ZF_4_L7 Order_ZF_4_L8A IsBounded_def
by simp
qed

A three element set has a maximume and minimum.

lemma (in int0) Int_ZF_1_4_L1A: assumes Al: acZ beZ ceZ
shows
Maximum(IntegerOrder,{a,b,c}) € Z
a < Maximum(IntegerOrder,{a,b,c})
b Maximum(IntegerOrder,{a,b,c})

<
¢ < Maximum(IntegerOrder,{a,b,c})
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using assms Int_ZF_2_T1 Finite_ZF_1_L2A by auto

Integer functions attain maxima and minima over intervals.

lemma (in int0) Int_ZF_1_4_L2:
assumes Al: f:Z—7Z and A2: a<b
shows
maxf(f,a..b) € Z
Vec € a..b. f(c)
Jdc € a..b. £(c)
minf(f,a..b) € Z
Vc € a..b. minf(f,a..b) < f(c)
dc € a..b. f(c) = minf(f,a..b)
proof -
from A2 have T: acZ beZ a..b C Z
using Int_ZF_2_L1A Int_ZF_2_L1B Order_ZF_2_L6
by auto
with A1 A2 have
Maximum(IntegerOrder,f(a..b)) € f(a..b)
Vxef(a..b). x < Maximum(IntegerOrder,f(a..b))
Maximum(IntegerOrder,f(a..b)) € Z
Minimum(IntegerOrder,f(a..b)) € f(a..b)
Vxef(a..b). Minimum(IntegerOrder,f(a..b)) < x
Minimum(IntegerOrder,f(a..b)) € Z
using Int_ZF_4_L8 Int_ZF_2_T1 group3.0rderedGroup_ZF_2_L6
Int_fin_have_max_min by auto
with A1 T show
maxf(f,a..b) € Z
Vc € a..b. f(c)
dc € a..b. f(c)
minf(f,a..b) € Z
Vc € a..b. minf(f,a..b) < f(c)
dc € a..b. £f(c) = minf(f,a..b)
using func_imagedef by auto
qed

< maxf(f,a..b)
= maxf (f,a..b)

< maxf(f,a..b)
= maxf (f,a..b)

35.5 The set of nonnegative integers

The set of nonnegative integers looks like the set of natural numbers. We
explore that in this section. We also rephrase some lemmas about the set of
positive integers known from the theory of oredered grups.

The set of positive integers is closed under addition.

lemma (in int0) pos_int_closed_add:
shows Z, {is closed under} IntegerAddition
using Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L13 by simp

Text expended version of the fact that the set of positive integers is closed
under addition

397



lemma (in int0) pos_int_closed_add_unfolded:
assumes acZ, beZ, shows a+tb € Z,
using assms pos_int_closed_add IsOpClosed_def
by simp

Z1 is bounded below.

lemma (in int0) Int_ZF_1_5_L1: shows
IsBoundedBelow(Z™",IntegerOrder)
IsBoundedBelow(Z, ,IntegerOrder)

using Nonnegative_def PositiveSet_def IsBoundedBelow_def by auto

Subsets of Z*t are bounded below.

lemma (in int0) Int_ZF_1_5_L1A: assumes A C Z*

shows IsBoundedBelow(A,IntegerOrder)
using assms Int_ZF_1_5_L1 Order_ZF_3_L12 by blast

Subsets of Z are bounded below.

lemma (in intO0) Int_ZF_1_5_L1B: assumes Al: A C Z,
shows IsBoundedBelow(A,IntegerOrder)
using A1 Int_ZF_1_5_L1 Order_ZF_3_L12 by blast

Every nonempty subset of positive integers has a mimimum.

lemma (in int0) Int_ZF_1_5_L1C: assumes A C Z, and A # 0
shows
HasAminimum(IntegerOrder,A)
Minimum(IntegerOrder,A) € A
Vx€A. Minimum(IntegerOrder,A) < x
using assms Int_ZF_1_5_L1B int_bounded_below_has_min by auto

Infinite subsets of ZT do not have a maximum - If A C Z then for every
integer we can find one in the set that is not smaller.

lemma (in int0) Int_ZF_1_5_L2:
assumes Al: A C Z* and A2: A ¢ Fin(Z) and A3: DeZ
shows dneA. D<n
proof -
{ assume VnecA. —(D<n)
moreover from A1 A3 have DeZ Vn€A. neZ
using Nonnegative_def by auto
ultimately have VneA. n<D
using Int_ZF_2_L19 by blast
hence VneA. (n,D) € IntegerOrder by simp
then have IsBoundedAbove(A,IntegerOrder)
by (rule Order_ZF_3_L10)
with A1 have IsBounded(A,IntegerOrder)
using Int_ZF_1_5_L1A IsBounded_def by simp
with A2 have False using Int_bounded_iff_fin by auto
} thus thesis by auto
qed
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Infinite subsets of Z; do not have a maximum - If A C Z, then for every
integer we can find one in the set that is not smaller. This is very similar to
Int_ZF_1_5_L2, except we have Z, instead of Z* here.

lemma (in int0) Int_ZF_1_5_L2A:
assumes Al: A C Z, and A2: A ¢ Fin(Z) and A3: DeZ
shows dneA. D<n
proof -
{ assume VneA. —(D<n)
moreover from A1 A3 have DeZ VneA. neZ
using PositiveSet_def by auto
ultimately have VneA. n<D
using Int_ZF_2_L19 by blast
hence VneA. (n,D) € IntegerOrder by simp
then have IsBoundedAbove(A,IntegerOrder)
by (rule Order_ZF_3_L10)
with A1 have IsBounded(A,IntegerOrder)
using Int_ZF_1_5_L1B IsBounded_def by simp
with A2 have False using Int_bounded_iff_fin by auto
} thus thesis by auto
qed

An integer is either positive, zero, or its opposite is postitive.

lemma (in int0) Int_decomp: assumes meZ
shows Exactly_1_of_3_holds (m=0,meZ,,(-m)€Z,)
using assms Int_ZF_2_T1 group3.0rdGroup_decomp
by simp

An integer is zero, positive, or it’s inverse is positive.

lemma (in int0) int_decomp_cases: assumes meZ
shows m=0 V meZ, V (-m) € Z,
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L14
by simp

An integer is in the positive set iff it is greater or equal one.

lemma (in int0) Int_ZF_1_5_L3: shows meZ, <— 1<m
proof
assume meZ, then have 0<m mn#0
using PositiveSet_def by auto
then have 0+1 < m
using Int_ZF_4_L1B by auto
then show 1<m
using int_zero_one_are_int Int_ZF_1_T2 groupO.group0_2_L2
by simp
next assume 1<m
then have meZ 0<m n#0
using Int_ZF_2_L1A Int_ZF_2_L16C by auto
then show meZ, using PositiveSet_def by auto
qed
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The set of positive integers is closed under multiplication. The unfolded
form.

lemma (in intO) pos_int_closed_mul_unfold:
assumes acZ, beZ,
shows ab € Z_
using assms Int_ZF_1_5_L3 Int_ZF_1_3_L3 by simp

The set of positive integers is closed under multiplication.

lemma (in int0) pos_int_closed_mul: shows
Z, {is closed under} IntegerMultiplication
using pos_int_closed_mul_unfold IsOpClosed_def
by simp

It is an overkill to prove that the ring of integers has no zero divisors this
way, but why not?
lemma (in int0) int_has_no_zero_divs:

shows HasNoZeroDivs(Z,IntegerAddition,IntegerMultiplication)

using pos_int_closed_mul Int_ZF_1_3_T1 ringl.OrdRing ZF_3_L3

by simp

Nonnegative integers are positive ones plus zero.

using Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L24 by simp

lemma (in int0) Int_ZF_1_5_L3A: shows Z* = Z, U {0}

We can make a function smaller than any constant on a given interval of
positive integers by adding another constant.

lemma (in intO) Int_ZF_1_5_L4:
assumes Al: f:Z—7Z and A2: KeZ NeZ
shows 3CeZ. VneZ,. K < f(n) + C — N<n
proof -
from A2 have N<1 Vv 2<N
using int_zero_one_are_int no_int_between
by simp
moreover
{ assume A3: N<1
let C=0
have C € Z using int_zero_one_are_int
by simp
moreover
{ fix n assume neZ,
then have 1 < n using Int_ZF_1_5_L3
by simp
with A3 have N<n by (rule Int_order_transitive)
} then have VneZ,. K < f(n) + C — N<n
by auto
ultimately have 3C€Z. VneZ,. K < f(n) + C — N<n
by auto }
moreover
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{let C =K -1 - maxf(f,1..Q-1))
assume 2<N
then have 2-1 < N-1
using int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv
by simp
then have I: 1 < N-1
using int_zero_one_are_int Int_ZF_1_2_L3 by simp
with A1 A2 have T:
maxf(f,1..(N-1)) €¢ Z K-1 € Z Ce€ Z
using Int_ZF_1_4_12 Int_ZF_1_1_L5 int_zero_one_are_int
by auto
moreover
{ fix n assume A4: neZ,
{ assume A5: K < f(n) + C and —~(N<n)
with A2 A4 have n < N-1
using PositiveSet_def Int_ZF_1_3_L6A by simp
with A4 have n € 1..(N-1)
using Int_ZF_1_5_L3 Interval_def by auto
with A1 I T have f(n)+C < maxf(f,1..(N-1)) + C
using Int_ZF_1_4_L2 int_ord_transl_inv by simp
with T have f(n)+C < K-1
using Int_ZF_1_2_L3 by simp
with A5 have K < K-1
by (rule Int_order_transitive)
with A2 have False using Int_ZF_1_2_L3AA by simp
} then have K < f(n) + C — N<n

by auto
} then have VneZ,. K < f(n) + C — N<n
by simp
ultimately have 3C€Z. VneZ,. K < f(n) + C — N<n
by auto }
ultimately show thesis by auto
qed

Absolute value is identity on positive integers.

lemma (in int0) Int_ZF_1_5_L4A:
assumes acZ, shows abs(a) = a
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_3_L2B
by simp

One and two are in Z,.

lemma (in int0) int_one_two_are_pos: shows 1 € Z, 2 € Z,
using int_zero_one_are_int int_ord_is_refl refl_def Int_ZF_1_5_L3
Int_ZF_2_L16B by auto

The image of Z, by a function defined on integers is not empty.

lemma (in int0) Int_ZF_1_5_L5: assumes Al: f : Z—X
shows f(Z,) # 0
proof -
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have Z, C Z using PositiveSet_def by auto
with Al show f(Z,) # 0
using int_one_two_are_pos func_imagedef by auto
qed
If n is positive, then n — 1 is nonnegative.

lemma (in int0) Int_ZF_1_5_L6: assumes Al: n € Z,

shows

0 < n-1

0 € 0..(n-1)

0..(n-1) C Z
proof -

from A1 have 1 < n (-1) € Z
using Int_ZF_1_5_L3 int_zero_one_are_int Int_ZF_1_1_14
by auto

then have 1-1 < n-1
using int_ord_transl_inv by simp

then show 0 < n-1
using int_zero_one_are_int Int_ZF_1_1_L4 by simp

then show 0 € 0..(n-1)
using int_zero_one_are_int int_ord_is_refl refl_def Order_ZF_2_L1B
by simp

show 0..(n-1) C Z
using Int_ZF_2_L1B Order_ZF_2_L6 by simp

qed

Intgers greater than one in Z, belong to Z,. This is a property of ordered
groups and follows from OrderedGroup_ZF_1_L19, but Isabelle’s simplifier has
problems using that result directly, so we reprove it specifically for integers.

lemma (in int0) Int_ZF_1_5_L7: assumes a € Z, and a<b
shows b € Z,
proof-
from assms have 1<a a<b
using Int_ZF_1_5_L3 by auto
then have 1<b by (rule Int_order_transitive)
then show b € Z, using Int_ZF_1_5_L3 by simp
qed

Adding a positive integer increases integers.

lemma (in int0) Int_ZF_1_5_L7A: assumes acZ b € Z.

shows a < a+b a # atb at+b € Z
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L22
by auto

For any integer m the greater of m and 1 is a positive integer that is greater
or equal than m. If we add 1 to it we get a positive integer that is strictly
greater than m.

lemma (in int0) Int_ZF_1_5_L7B: assumes acZ
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shows

a < Greater0f (IntegerOrder,1,a)

GreaterOf (IntegerOrder,1,a) € Z,

GreaterOf (IntegerOrder,1,a) + 1 € Z,

a < GreaterOf (IntegerOrder,1l,a) + 1

a # GreaterOf (IntegerOrder,1l,a) + 1

using assms int_zero_not_one Int_ZF_1_3_T1 ringl.OrdRing ZF_3_L12
by auto

The opposite of an element of Z, cannot belong to Z.

lemma (in int0) Int_ZF_1_5_L8: assumes a € Z,
shows (-a) ¢ Z,
using assms Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L20
by simp

For every integer there is one in Z, that is greater or equal.

lemma (in int0) Int_ZF_1_5_1L9: assumes acZ
shows dbeZ,. a<b
using assms int_not_trivial Int_ZF_2_T1 group3.0rderedGroup_ZF_1_L23
by simp

A theorem about odd extensions. Recall from OrdereGroup_ZzF.thy that the
odd extension of an integer function f defined on Z, is the odd function on
Z equal to f on Z. . First we show that the odd extension is defined on Z.

lemma (in int0) Int_ZF_1_5_L10: assumes f : Z, —Z
shows 0ddExtension(Z,IntegerAddition,IntegerOrder,f) : Z—Z
using assms Int_ZF_2_T1 group3.odd_ext_props by simp

On Z,, the odd extension of f is the same as f.

lemma (in int0) Int_ZF_1_5_L11: assumes f : Z,—7Z and a € Z, and
g = 0ddExtension(Z,IntegerAddition,IntegerOrder,f)
shows g(a) = f(a)

using assms Int_ZF_2_T1 group3.odd_ext_props by simp

On -Z., the value of the odd extension of f is the negative of f(—a).
lemma (in int0) Int_ZF_1_5_L12:

assumes f : Z,—~7Z and a € (-Z,) and
g = 0ddExtension(Z,IntegerAddition,IntegerOrder,f)
shows g(a) = -(f(-a))

using assms Int_ZF_2_T1 group3.odd_ext_props by simp

0Odd extensions are odd on Z.

lemma (in int0) int_oddext_is_odd:
assumes f : Z,—Z and acZ and
g = 0ddExtension(Z,IntegerAddition,IntegerOrder,f)
shows g(-a) = -(g(a))
using assms Int_ZF_2_T1 group3.oddext_is_odd by simp
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Alternative definition of an odd function.

lemma (in int0) Int_ZF_1_5_L13: assumes Al: f: Z—Z shows

(VaeZ. f(-a) = (-f(a))) +— (VaeZ. (-(f(-a))) = f(a))
using assms Int_ZF_1_T2 groupO.groupO_6_L2 by simp

Another way of expressing the fact that odd extensions are odd.

lemma (in int0) int_oddext_is_odd_alt:
assumes f : Z;—7 and acZ and
g = 0ddExtension(Z,IntegerAddition,IntegerOrder,f)
shows (-g(-a)) = g(a)
using assms Int_ZF_2_T1 group3.oddext_is_odd_alt by simp

35.6 Functions with infinite limits

In this section we consider functions (integer sequences) that have infinite
limits. An integer function has infinite positive limit if it is arbitrarily large
for large enough arguments. Similarly, a function has infinite negative limit
if it is arbitrarily small for small enough arguments. The material in this
come mostly from the section in OrderedGroup_ZF.thy with he same title.
Here we rewrite the theorems from that section in the notation we use for
integers and add some results specific for the ordered group of integers.

If an image of a set by a function with infinite positive limit is bounded
above, then the set itself is bounded above.

lemma (in int0) Int_ZF_1_6_L1: assumes f: Z—Z and
VacZ .3dbeZ, .Vx. b<x — a < f(x) and A C Z and
IsBoundedAbove (f (A) ,IntegerOrder)
shows IsBoundedAbove(A,IntegerOrder)
using assms int_not_trivial Int_ZF_2_T1 group3.0rderedGroup_ZF_7_L1
by simp

If an image of a set defined by separation by a function with infinite positive

limit is bounded above, then the set itself is bounded above.

lemma (in int0) Int_ZF_1_6_L2: assumes Al: X#0 and A2: f: Z—Z and
A3: VaeZ.dveZ .Vx. b<x — a < f(x) and

Ad: VxeX. b(x) € Z AN f(b(x)) < U
shows Ju.VxeX. b(x) < u

proof -
let G =Z
let P = IntegerAddition

let r = IntegerOrder

from A1 A2 A3 A4 have
group3(G, P, r)
r {is total on} G
G # {TheNeutralElement(G, P)}
X£0 f: GG
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Va€cG. IbcPositiveSet(G, P, r). Vy. (b, y) € r — {(a, f(y)) € r
VxeX. b(x) € G A (b)), U) € r
using int_not_trivial Int_ZF_2_T1 by auto
then have Ju. Vxe€X. (b(x), u) € r by (rule group3.0OrderedGroup_ZF_7_L2)
thus thesis by simp
qed

If an image of a set defined by separation by a integer function with infinite
negative limit is bounded below, then the set itself is bounded above. This
is dual to Int_ZF_1_6_L2.

lemma (in int0) Int_ZF_1_6_L3: assumes Al: X#0 and A2: f: Z—Z and
A3: VaeZ.3beZ, Vy. b<y — f(-y) < a and

Ad: VxeX. b(x) €e Z AL < £f(bx))
shows 31.VxeX. 1 < b(x)

proof -
let G =Z
let P = IntegerAddition

let r = IntegerOrder
from A1 A2 A3 A4 have
group3(G, P, r)
r {is total on} G
G # {TheNeutralElement(G, P)}
X#£0 f: GG
VacG. dbcPositiveSet(G, P, r). Vy.
(b, y) € r — (£f(GroupInv(G, P)(y)),a) € r
VxeX. b(x) € G A (L,f(b(x))) € r
using int_not_trivial Int_ZF_2_T1 by auto
then have 31. Vxe€X. (1, b(x)) € r by (rule group3.0rderedGroup_ZF_7_L3)
thus thesis by simp
qed
The next lemma combines Int_ZF_1_6_L2 and Int_ZF_1_6_L3 to show that

if the image of a set defined by separation by a function with infinite limits
is bounded, then the set itself is bounded. The proof again uses directly a
fact from OrderedGroup_ZF.

lemma (in int0) Int_ZF_1_6_L4:
assumes Al: X#0 and A2: f: Z—Z and
A3: YVaeZ.dvbeZ, .Vx. b<x — a < f(x) and
Ad: YaeZ.3beZ Vy. b<y — f(-y) < a and
Ab: VxeX. b(x) € Z N £f(b(x)) < U AL < £(bx)

shows dM.VxeX. abs(b(x)) < M

proof -
let G =Z
let P = IntegerAddition

let r = IntegerOrder
from A1 A2 A3 A4 A5 have
group3(G, P, r)
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r {is total on} G
G # {TheNeutralElement(G, P)}
X£0 f: GG
Va€G. IbcPositiveSet(G, P, r). Vy. (b, y) € r — (a, f(y)) € r
VaeG. dbcPositiveSet(G, P, r). Vy.
(b, y) € r — (£f(GroupInv(G, P)(y)),a) € r
VxeX. b(x) € G A L,f(0d)) € r A (f(b(x)), U) € r
using int_not_trivial Int_ZF_2_T1 by auto

then have IM. Vx€X. (AbsoluteValue(G, P, r) b(x), M) € r
by (rule group3.0rderedGroup_ZF_7_L4)

thus thesis by simp

qed

If a function is larger than some constant for arguments large enough, then
the image of a set that is bounded below is bounded below. This is not true
for ordered groups in general, but only for those for which bounded sets are
finite. This does not require the function to have infinite limit, but such
functions do have this property.

lemma (in int0) Int_ZF_1_6_L5:
assumes Al: f: Z—7Z and A2: NeZ and
A3: Vm. N<m — L < f(m) and
A4: IsBoundedBelow(A,IntegerOrder)
shows IsBoundedBelow(f(A),IntegerOrder)
proof -
from A2 A4 have A = {xcA. x<N} U {x€A. N<x}
using Int_ZF_2_T1 Int_ZF_2_L1C Order_ZF_1_L5
by simp
moreover have
f({xeA. x<N} U {x€A. N<x}) =
f{xeA. x<N} U f{xeA. N<x}
by (rule image_Un)
ultimately have f(A) = f{x€A. x<N} U f{xeA. N<x}
by simp
moreover have IsBoundedBelow(f{x€A. x<N},IntegerOrder)
proof -
let B = {xcA. x<N}
from A4 have B € Fin(Z)
using Order_ZF_3_L16 Int_bounded_iff_fin by auto
with A1 have IsBounded(f(B),IntegerOrder)
using Finitel_L6A Int_bounded_iff_fin by simp
then show IsBoundedBelow(f(B),IntegerQOrder)
using IsBounded_def by simp
qed
moreover have IsBoundedBelow(f{xcA. N<x},IntegerOrder)
proof -
let C = {x€A. N<x}
from A4 have C C Z using Int_ZF_2_L1C by auto
with A1 A3 have Vy € £(C). (L,y) € IntegerOrder
using func_imagedef by simp

406



then show IsBoundedBelow(f(C),IntegerOrder)
by (rule Order_ZF_3_L9)
qed
ultimately show IsBoundedBelow(f(A),IntegerOrder)
using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Order_ZF_3_L6
by simp
qed

A function that has an infinite limit can be made arbitrarily large on positive
integers by adding a constant. This does not actually require the function
to have infinite limit, just to be larger than a constant for arguments large
enough.

lemma (in int0) Int_ZF_1_6_L6: assumes Al: NeZ and
A2: Vm. N<m — L < f(m) and
A3: f: Z—7Z and A4: KeZ
shows dceZ. VneZ,. K < f(n)+c
proof -
have IsBoundedBelow(Z. ,IntegerOrder)
using Int_ZF_1_5_L1 by simp
with A3 A1 A2 have IsBoundedBelow(f(Z.),IntegerOrder)
by (rule Int_ZF_1_6_L5)
with Al obtain 1 where I: Vyef(Z,). 1 <y
using Int_ZF_1_5_L5 IsBoundedBelow_def by auto
let ¢ = K-1
from A3 have f(Z,) # 0 using Int_ZF_1_5_15
by simp
then have Jy. y € £(Z;) by (rule nonempty_has_element)
then obtain y where y € £(Z,) by auto
with A4 T have T: 1 € Z c e Z
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
{ fix n assume A5: neZ,
have Z, C Z using PositiveSet_def by auto
with A3 I T A5 have 1 + ¢ < f(n) + ¢
using func_imagedef int_ord_transl_inv by auto
with I T have 1 + ¢ < f(n) + ¢
using int_ord_transl_inv by simp
with A4 T have K < f(n) + ¢
using Int_ZF_1_2_L3 by simp
} then have VneZ,. K < f(n) + c by simp
with T show thesis by auto
qed

If a function has infinite limit, then we can add such constant such that
minimum of those arguments for which the function (plus the constant) is
larger than another given constant is greater than a third constant. It is not
as complicated as it sounds.

lemma (in int0) Int_ZF_1_6_L7:

assumes Al: f: Z—7Z and A2: KeZ NeZ and
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A3: VaeZ.3dveZ . Vx. b<x — a < f(x)
shows 3Cc€Z. N < Minimum(IntegerOrder,{ncZ,. K < f(n)+C})
proof -
from A1 A2 have 3CeZ. VneZ,. K < f(n) + C — N<n
using Int_ZF_1_5_1L4 by simp
then obtain C where I: CcZ and
II: VneZ,. K < f(n) + C — N<n
by auto
have antisym(IntegerOrder) using Int_ZF_2_L4 by simp
moreover have HasAminimum(IntegerOrder,{ncZ,. K < f(n)+C})
proof -
from A2 A3 I have dneZ,.Vx. n<x — K-C < f(x)
using Int_ZF_1_1_L5 by simp
then obtain n where
neZ,; and Vx. n<x — K-C < f£(x)
by auto
with A2 I have
{neZ,. X < £(@)+C} # 0
heZ,. X < f()+Cy C Z,
using int_ord_is_refl refl_def PositiveSet_def Int_ZF_2_L9C
by auto
then show HasAminimum(IntegerOrder,{n€Z, . K < f(n)+C})
using Int_ZF_1_5_L1C by simp
qed
moreover from II have
Vn € {neZ,. K < £(@)+C}. (N,n) € IntegerOrder
by auto
ultimately have
(N,Minimum(IntegerOrder,{n€Z,. K < f(n)+C})) € IntegerOrder
by (rule Order_ZF_4_L12)
with I show thesis by auto
qed

For any integer m the function k& +— m - k has an infinite limit (or negative
of that). This is why we put some properties of these functions here, even
though they properly belong to a (yet nonexistent) section on homomor-
phisms. The next lemma shows that the set {a -z : € Z} can finite only
if a = 0.

lemma (in int0) Int_ZF_1_6_L8:

assumes Al: acZ and A2: {ax. x€Z} € Fin(Z)
shows a = 0
proof -
from A1 have a=0 VvV (a < -1) V (1<a)
using Int_ZF_1_3_L6C by simp
moreover
{ assume a < -1
then have {ax. x€Z} ¢ Fin(Z)
using int_zero_not_one Int_ZF_1_3_T1 ringl.OrdRing ZF_3_L6
by simp
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with A2 have False by simp }
moreover
{ assume 1<a
then have {ax. x€Z} ¢ Fin(Z)
using int_zero_not_one Int_ZF_1_3_T1 ringl.OrdRing_ZF_3_L5
by simp
with A2 have False by simp }
ultimately show a = 0 by auto
qed

35.7 Miscelaneous

In this section we put some technical lemmas needed in various other places
that are hard to classify.

Suppose we have an integer expression (a meta-function)F' such that F'(p)|p|
is bounded by a linear function of |p|, that is for some integers A, B we have
F(p)|p| < Alp|+ B. We show that F' is then bounded. The proof is easy, we
just divide both sides by |p| and take the limit (just kidding).

lemma (in int0) Int_ZF_1_7_L1:
assumes Al: VqeZ. F(q) € Z and
A2: VqeZ. F(q)-abs(q) < A-abs(q) + B and
A3: AeZ BeZ
shows JL. VpeZ. F(p) < L
proof -
let T (-abs(B)) . .abs(B)
let XK = {F(q). q € I}
let M = Maximum(IntegerOrder,K)
let L = GreaterOf (IntegerOrder,M,A+1)
from A3 A1 have C1:
IsBounded(I,IntegerOrder)
I+#0
VqeZ. F(q) € Z
K={F(q). q € T}
using Order_ZF_3_L11 Int_ZF_1_3_L17 by auto
then have M € Z by (rule Int_ZF_1_4_L1)
with A3 have T1: M < L A+1 < L
using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_1_3_L18
by auto
from C1 have T2: Vqe€I. F(q) < M
by (rule Int_ZF_1_4_L1)
{ fix p assume A4: peZ have F(p) < L
proof -
{ assume abs(p) < abs(B)
with A4 T1 T2 have F(p) <M M < L
using Int_ZF_1_3_L19 by auto
then have F(p) < L by (rule Int_order_transitive) }
moreover
{ assume A5: —(abs(p) < abs(B))
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from A3 A2 A4 have
A-abs(p) € Z F(p)-abs(p) < A-abs(p) + B
using Int_ZF_2_L14 Int_ZF_1_1_L5 by auto
moreover from A3 A4 A5 have B < abs(p)
using Int_ZF_1_3_L15 by simp
ultimately have
F(p)-abs(p) < A-abs(p) + abs(p)
using Int_ZF_2_L15A by blast
with A3 A4 have F(p)-abs(p) < (A+1)-abs(p)
using Int_ZF_2_L14 Int_ZF_1_2_L7 by simp
moreover from A3 A1 A4 A5 have
F(p) € Z A+1 € Z abs(p) € Z
—(abs(p) < 0)
using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_2_L14 Int_ZF_1_3_L11
by auto
ultimately have F(p) < A+l
using Int_ineq_simpl_positive by simp
moreover from T1 have A+1 < L by simp
ultimately have F(p) < L by (rule Int_order_transitive) }
ultimately show thesis by blast
qed
} then have VpeZ. F(p) < L by simp
thus thesis by auto
qed

A lemma about splitting (not really, there is some overlap) the ZxZ into
six subsets (cases). The subsets are as follows: first and third qaudrant, and
second and fourth quadrant farther split by the b = —a line.

lemma (in int0) int_plane_split_in6: assumes acZ beZ
shows
0<a A 0<b V a<0 A b<O0 V
a<0O AO<b A0 < atb V a<0 A 0<b A atbh < 0 V
0<a Ab<OANOD < ath V 0<a Ab<0 A at+tb <0
using assms Int_ZF_2_T1 group3.0rdGroup_6cases by simp

end
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36 IntDiv_ZF IML.thy

theory IntDiv_ZF_IML imports Int_ZF_1 IntDiv_ZF
begin

This theory translates some results form the Isabelle’s IntDiv.thy theory to
the notation used by IsarMathLib.

36.1 Quotient and reminder

For any integers m,n , n > 0 there are unique integers ¢,p such that 0 <
p <nand m =n-q+ p. Number p in this decompsition is usually called m
mod n. Standard Isabelle denotes numbers ¢,p as m zdiv n and m zmod n,
resp., and we will use the same notation.

The next lemma is sometimes called the ” quotient-reminder theorem”.

lemma (in int0) IntDiv_ZF_1_L1: assumes mcZ neZ
shows m = n-(m zdiv n) + (m zmod n)
using assms Int_ZF_1_L2 raw_zmod_zdiv_equality
by simp

If n is greater than 0 then m zmod n is between 0 and n — 1.

lemma (in int0) IntDiv_ZF_1_L2:
assumes Al: meZ and A2: 0<n n#0
shows
0 < m zmod n
m zmod n < n m zmod n # n
m zmod n < n-1
proof -
from A2 have T: n € Z
using Int_ZF_2_L1A by simp
from A2 have #0 $< n using Int_ZF_2_L9 Int_ZF_1_L8
by auto
with T show
0 < m zmod n
m zmod n < n
m zmod n # n
using pos_mod Int_ZF_1_L8 Int_ZF_1_L8A zmod_type
Int_ZF_2_L1 Int_ZF_2_L9AA
by auto
then show m zmod n < n-1
using Int_ZF_4_L1B by auto
qed

(m-k)div k=m.

lemma (in int0) IntDiv_ZF_1_L3:
assumes meZ keZ and k#0
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shows

(mk) zdivk =m

(km) zdiv k = m

using assms zdiv_zmult_selfl zdiv_zmult_self2
Int_ZF_1_L8 Int_ZF_1_L2 by auto

The next lemma essentially translates zdiv_monol from standard Isabelle to
our notation.

lemma (in int0) IntDiv_ZF_1_L4:
assumes Al: m < k and A2: 0<n n#0
shows m zdiv n < k zdiv n
proof -
from A2 have #0 < n #0 #* n
using Int_ZF_1_L8 by auto
with A1 have
m zdiv n $< k zdiv n
m zdivn € Z m zdiv k € Z
using Int_ZF_2_L1A Int_ZF_2_L9 zdiv_monol
by auto
then show (m zdiv n) < (k zdiv n)
using Int_ZF_2_L1 by simp
qed

A quotient-reminder theorem about integers greater than a given product.

lemma (in int0) IntDiv_ZF_1_L5:

assumes Al: n € Z; and A2: n < k and A3: kn < m

shows

m = n-(m zdiv n) + (m zmod n)

m = (m zdiv n)-n + (m zmod n)

(m zmod n) € 0..(n-1)

k < (m zdiv n)

m zdivn € Z,

proof -

from A2 A3 have T:
meZ neZ keZ m zdivn € Z
using Int_ZF_2_L1A by auto

then show m = n-(m zdiv n) + (m zmod n)
using IntDiv_ZF_1_L1 by simp

with T show m = (m zdiv n)n + (m zmod n)
using Int_ZF_1_L4 by simp
from A1 have I: 0<n n#0
using PositiveSet_def by auto

with T show (m zmod n) € 0..(n-1)
using IntDiv_ZF_1_L2 Order_ZF_2_L1
by simp

from A3 I have (kn zdiv n) < (m zdiv n)
using IntDiv_ZF_1_L4 by simp

with I T show k¥ < (m zdiv n)
using IntDiv_ZF_1_L3 by simp
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with A1 A2 show m zdiv n € Z,
using Int_ZF_1_5_L7 by blast
qed

end
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37 Int ZF 2.thy

theory Int_ZF_2 imports func_ZF_1 Int_ZF_1 IntDiv_ZF_IML Group_ZF_3
begin

In this theory file we consider the properties of integers that are needed for
the real numbers construction in Real_ZF series.

37.1 Slopes

In this section we study basic properties of slopes - the integer almost homo-
morphisms. The general definition of an almost homomorphism f on a group
G written in additive notation requires the set {f(m 4+ n) — f(m) — f(n) :
m,n € G} to be finite. In this section we establish a definition that is equiva-
lent for integers: that for all integer m, n we have | f(m+n)—f(m)—f(n)| < L
for some L.

First we extend the standard notation for integers with notation related to
slopes. We define slopes as almost homomorphisms on the additive group
of integers. The set of slopes is denoted S. We also define ”positive” slopes
as those that take infinite number of positive values on positive integers.
We write §(s,m,n) to denote the homomorphism difference of s at m,n (i.e
the expression s(m + n) — s(m) — s(n)). We denote maxf(s) the maximum
absolute value of homomorphism difference of s as m, n range over integers.
If s is a slope, then the set of homomorphism differences is finite and this
maximum exists. In Group_zF_3 we define the equivalence relation on almost
homomorphisms using the notion of a quotient group relation and use ”~"” to
denote it. As here this symbol seems to be hogged by the standard Isabelle,
we will use ”~” instead ”~”. We show in this section that s ~ r iff for some
L we have |s(m) — r(m)| < L for all integer m. The ”+” denotes the first
operation on almost homomorphisms. For slopes this is addition of functions
defined in the natural way. The ”o” symbol denotes the second operation
on almost homomorphisms (see Group_zZF_3 for definition), defined for the
group of integers. In short is the composition of slopes. The ” ~1” symbol
acts as an infix operator that assigns the value min{n € Z, : p < f(n)} to
a pair (of sets) f and p. In application f represents a function defined on
Z, and p is a positive integer. We choose this notation because we use
it to construct the right inverse in the ring of classes of slopes and show
that this ring is in fact a field. To study the homomorphism difference
of the function defined by p — f~!(p) we introduce the symbol ¢ defined
as e(f, (m,n)) = f~1(m +n) — f~1(m) — f~1(n). Of course the intention
is to use the fact that (f, (m,n)) is the homomorphism difference of the
function g defined as g(m) = f~'(m). We also define v(s,m,n) as the
expression §(f, m, —n) + s(0) — §(f,n,—n). This is useful because of the
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identity f(m —n) =~y(m,n)+ f(m)— f(n) that allows to obtain bounds on
the value of a slope at the difference of of two integers. For every integer m
we introduce notation m® defined by m®(n) = m - n. The mapping ¢ — ¢°
embeds integers into S preserving the order, (that is, maps positive integers
into 84 ).

locale intl = int0 +

fixes slopes (S )
defines slopes_def [simp]: & = AlmostHoms(Z,IntegerAddition)

fixes posslopes (S4)
defines posslopes_def[simp]l: S; = {s€S. s(Z;) N Z; ¢ Fin(Z)}

fixes ¢
defines §_def [simp]l: J(s,m,n) = s(m+n)-s(m)-s(n)

fixes maxhomdiff (maxd )
defines maxhomdiff_def [simp]:
maxd(s) = Maximum(IntegerOrder,{abs(d(s,m,n)). { m,n) € ZxZ})

fixes AlEqRel
defines A1EqRel_def [simp]:
AlEqRel = QuotientGroupRel(S,AlHomOpl(Z,IntegerAddition),FinRangeFunctions(Z,Z))

fixes AlEq (infix ~ 68)
defines A1Eq_def[simpl: s ~ r = ( s,r) € AlEqRel

fixes slope_add (infix + 70)
defines slope_add_def[simp]: s + r = AlHomOp1(Z,IntegerAddition){ s,r)

fixes slope_comp (infix o 70)
defines slope_comp_def [simp]l: s o r = AlHomOp2(Z,IntegerAddition)(
S,T)

fixes neg (-_ [90] 91)
defines neg_def [simp]: -s = GroupInv(Z,IntegerAddition) O s

fixes slope_inv (infix ~! 71)

defines slope_inv_def [simp]:

£~ 1(p) = Minimum(IntegerOrder,{n€Z,. p < £(n)})

fixes ¢

defines ¢_def [simp]:

e(f,p) = £ 1 (fst(p)+snd(p)) - £ 1 (fst(p)) - £ ! (snd(p))

fixes v

defines ~y_def [simp]:
v(s,m,n) = §(s,m,-n) - d(s,n,-n) + s(0)

415



fixes intembed (_°)
defines intembed_def [simp]: m® = {(n,mn). ncZ}

We can use theorems proven in the groupl context.

lemma (in intl) Int_ZF_2_1_L1: shows groupl(Z,IntegerAddition)

using Int_ZF_1_T2 groupl_axioms.intro groupl_def by simp

Type information related to the homomorphism difference expression.

lemma (in int1) Int_ZF_2_1_L2: assumes f€S and neZ meZ
shows
m+n € Z
f(m+n) € Z
fm) e Z f) € Z
fm) + £(n) € Z
HomDiff (Z,IntegerAddition,f,( m,n)) € Z
using assms Int_ZF_2_1_L1 groupl.Group_ZF_3_2_L4A
by auto

Type information related to the homomorphism difference expression.

lemma (in int1) Int_ZF_2_1_L2A:
assumes f:Z—Z and neZ neZ
shows
m+n € Z
f(mtn) € Z fm) € Z £ € Z
fm) + f(n) € Z
HomDiff (Z,IntegerAddition,f,( m,n)) € Z
using assms Int_ZF_2_1_L1 groupl.Group_ZF_3_2_L4
by auto

Slopes map integers into integers.

lemma (in int1) Int_ZF_2_1_L2B:
assumes Al: fcS and A2: meZ
shows f(m) € Z
proof -
from A1 have f:Z—7Z using AlmostHoms_def by simp
with A2 show f(m) € Z using apply_funtype by simp

qed

The homomorphism difference in multiplicative notation is defined as the
expression s(m - n) - (s(m) - s(n))~!. The next lemma shows that in the
additive notation used for integers the homomorphism difference is f(m +
n) — f(m) — f(n) which we denote as 6 (f,m,n).

lemma (in int1) Int_ZF_2_1_L3:
assumes f:Z—7Z and meZ neZ
shows HomDiff(Z,IntegerAddition,f,( m,n)) = 0(f,m,n)
using assms Int_ZF_2_1_L2A Int_ZF_1_T2 groupO.group0_4_L4A
HomDiff_def by auto
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The next formula restates the definition of the homomorphism difference to
express the value an almost homomorphism on a sum.

lemma (in int1) Int_ZF_2_1_L3A:
assumes Al: feS and A2: meZ neZ
shows
f(m+n) = f(M+{E @)+ (f,m,n))
proof -
from A1 A2 have
T: f(m)e Z f() € Z 6(f,m,n) € Z and
HomDiff (Z,IntegerAddition,f,( m,n)) = 6(f,m,n)
using Int_ZF_2_1_L2 AlmostHoms_def Int_ZF_2_1_L3 by auto
with A1 A2 show f(m+n) = f(m)+(f(n)+J(f,m,n))
using Int_ZF_2_1_L3 Int_ZF_1_L3
Int_ZF_2_1_L1 groupl.Group_ZF_3_4_L1
by simp
qed

The homomorphism difference of any integer function is integer.

lemma (in inti1) Int_ZF_2_1_L3B:
assumes f:Z—7Z and meZ neZ
shows §(f,m,n) € Z

using assms Int_ZF_2_1_L2A Int_ZF_2_1_L3 by simp

The value of an integer function at a sum expressed in terms of 4.

lemma (in intl) Int_ZF_2_1_L3C: assumes Al: f:Z—7Z and A2: meZ ncZ

shows f(m+n) = §(f,m,n) + £(n) + £(m)
proof -
from A1 A2 have T:
0(f,m,n) € Z f(mn) € Z f(m) €¢ Z f(n) € Z
using Int_ZF_1_1_L5 apply_funtype by auto
then show f(m+n) = §(f,m,n) + £(n) + f(m)
using Int_ZF_1_2_L15 by simp
qed

The next lemma presents two ways the set of homomorphism differences can
be written.

lemma (in int1) Int_ZF_2_1_L4: assumes Al: f:Z—7Z
shows {abs(HomDiff (Z,IntegerAddition,f,x)). x € ZxZ} =
{abs(0(f,m,n)). ( m,n) € ZxZ}
proof -
from A1 have VmeZ. VneZ.
abs (HomDiff (Z,IntegerAddition,f,( m,n))) = abs(d(f,m,n))
using Int_ZF_2_1_L3 by simp

then show thesis by (rule ZF1_1_L4A)
qed

If f maps integers into integers and for all m,n € Z we have |f(m +n) —
f(m) — f(n)| < L for some L, then f is a slope.
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lemma (in int1) Int_ZF_2_1_L5: assumes Al: f:Z—7Z
and A2: VmeZ.VneZ. abs(6(f,m,n)) < L
shows feS
proof -
let Abs = AbsoluteValue(Z,IntegerAddition,IntegerOrder)
have group3(Z,IntegerAddition,IntegerQOrder)
IntegerOrder {is total on} Z
using Int_ZF_2_T1 by auto
moreover from Al A2 have
Vx€ZXZ. HomDiff(Z,IntegerAddition,f,x) € Z A
(Abs (HomDiff (Z,IntegerAddition,f,x)),L ) € IntegerOrder
using Int_ZF_2_1_L2A Int_ZF_2_1_L3 by auto
ultimately have
IsBounded ({HomDiff (Z,IntegerAddition,f,x). x€ZxZ},IntegerOrder)
by (rule group3.0rderedGroup_ZF_3_L9A)
with A1 show f € S using Int_bounded_iff_fin AlmostHoms_def
by simp
qed

The absolute value of homomorphism difference of a slope s does not exceed
maxd (s).

lemma (in intl) Int_ZF_2_1_L7:

assumes Al: s€§ and A2: neZ ne”Z

shows

abs(d(s,m,n)) < maxd(s)

6(s,m,n) € Z maxdé(s) € Z

(-maxd(s)) < 6(s,m,n)

proof -

from A1 A2 show T: 6(s,m,n) € Z
using Int_ZF_2_1_L2 Int_ZF_1_1_L5 by simp

let A = {abs(HomDiff(Z,IntegerAddition,s,x)). X€ZXZ}

let B = {abs(d(s,m,n)). ( m,n) € ZxZ}

let d = abs(§(s,m,n))

have IsLinOrder(Z,IntegerOrder) using Int_ZF_2_T1
by simp

moreover have A € Fin(Z)

proof -
have VkeZ. abs(k) € Z using Int_ZF_2_L14 by simp
moreover from Al have

{HomDiff (Z,IntegerAddition,s,x). x € ZXxZ} € Fin(Z)
using AlmostHoms_def by simp

ultimately show A € Fin(Z) by (rule Finitel_L6C)

qed

moreover have A#0 by auto

ultimately have VkeA. (k,Maximum(IntegerOrder,A)) € IntegerOrder
by (rule Finite_ZF_1_T2)

moreover from Al A2 have d€A using AlmostHoms_def Int_ZF_2_1_L4
by auto

ultimately have d < Maximum(IntegerOrder,A) by auto
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with A1l show d < maxd(s) maxd(s) € Z
using AlmostHoms_def Int_ZF_2_1_L4 Int_ZF_2_L1A
by auto
with T show (-maxd(s)) < d(s,m,n)
using Int_ZF_1_3_L19 by simp
qed

A useful estimate for the value of a slope at 0, plus some type information
for slopes.

lemma (in int1) Int_ZF_2_1_18: assumes Al: seS
shows
abs(s(0)) < maxd(s)
0 < maxé(s)
abs(s(0)) € Z maxd(s) € Z
abs(s(0)) + maxd(s) € Z
proof -
from A1 have s(0) € Z
using int_zero_one_are_int Int_ZF_2_1_L2B by simp
then have I: 0 < abs(s(0))
and abs(6(s,0,0)) = abs(s(0))
using int_abs_nonneg int_zero_one_are_int Int_ZF_1_1_L4
Int_ZF_2_L17 by auto
moreover from Al have abs(§(s,0,0)) < maxd(s)

using int_zero_one_are_int Int_ZF_2_1_L7 by simp
ultimately show II: abs(s(0)) < maxd(s)

by simp
with I show 0<maxi(s) by (rule Int_order_transitive)
with IT show

maxd(s) € Z abs(s(0)) € Z

abs(s(0)) + maxd(s) € Z

using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto

qed

Int Group_zF_3.thy we show that finite range functions valued in an abelian
group form a normal subgroup of almost homomorphisms. This allows to
define the equivalence relation between almost homomorphisms as the re-
lation resulting from dividing by that normal subgroup. Then we show in
Group_ZF_3_4_L12 that if the difference of f and g has finite range (actually
f(n) - g(n)~! as we use multiplicative notation in Group_zF_3.thy), then f
and g are equivalent. The next lemma translates that fact into the notation

used in int1 context.

lemma (in int1) Int_ZF_2_1_L9: assumes Al: sc€S re&S
and A2: VmeZ. abs(s(m)-r(m)) < L
shows s ~ r
proof -
from A1 A2 have
VmeZ. s(m)-r(m) € Z N abs(s(m)-r(m)) < L
using Int_ZF_2_1_L2B Int_ZF_1_1_L5 by simp
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then have
IsBounded({s(n)-r(n). neZ}, IntegerOrder)
by (rule Int_ZF_1_3_L20)
with Al show s ~ r using Int_bounded_iff_fin
Int_ZF_2_1_L1 groupl.Group_ZF_3_4_L12 by simp
qed

A neccessary condition for two slopes to be almost equal. For slopes the
definition postulates the set {f(m) — g(m) : m € Z} to be finite. This
lemma shows that this implies that |f(m) — g(m)| is bounded (by some
integer) as m varies over integers. We also mention here that in this context
s ~ r implies that both s and r are slopes.

lemma (in intl) Int_ZF_2_1_LY9A: assumes s ~ r

shows
JdLeZ. VmeZ. abs(s(m)-r(m)) < L
seS res

using assms Int_ZF_2_1_L1 groupl.Group_ZF_3_4_L11

Int_ZF_1_3_L20AA QuotientGroupRel_def by auto

Let’s recall that the relation of almost equality is an equivalence relation on
the set of slopes.

lemma (in int1) Int_ZF_2_1_L9B: shows
AlEqRel C SxS
equiv(S,AlEqgRel)
using Int_ZF_2_1_L1 groupl.Group_ZF_3_3_L3 by auto

Another version of sufficient condition for two slopes to be almost equal: if
the difference of two slopes is a finite range function, then they are almost
equal.

lemma (in int1) Int_ZF_2_1_L9C: assumes s€S re&S and
s + (-r) € FinRangeFunctions(Z,Z)
shows
s ~r
r~s
using assms Int_ZF_2_1_L1
groupl.Group_ZF_3_2_L13 groupl.Group_ZF_3_4_L12A
by auto

If two slopes are almost equal, then the difference has finite range. This is
the inverse of Int_ZF_2_1_L9C.

lemma (in int1) Int_ZF_2_1_L9D: assumes Al: s ~ r
shows s + (-r) € FinRangeFunctions(Z,Z)
proof -
let G = Z
let £ = IntegerAddition
from A1 have AlHomOpl(G, f)(s,GroupInv(AlmostHoms(G, f),AlHomOp1(G,

£)) (D)
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€ FinRangeFunctions(G, G)
using Int_ZF_2_1_L1 groupl.Group_ZF_3_4_L12B by auto
with Al show s + (-r) € FinRangeFunctions(Z,Z)
using Int_ZF_2_1_L9A Int_ZF_2_1_L1 groupl.Group_ZF_3_2_L13
by simp
qed

What is the value of a composition of slopes?

lemma (in inti1) Int_ZF_2_1_L10:
assumes s€S reS and meZ
shows (sor)(m) = s(r(m)) s(r(m)) € Z

using assms Int_ZF_2_1_L1 groupl.Group_ZF_3_4_L2 by auto

Composition of slopes is a slope.

lemma (in int1) Int_ZF_2_1_L11:
assumes s€S reS
shows sor € §
using assms Int_ZF_2_1_L1 groupl.Group_ZF_3_4_T1 by simp

Negative of a slope is a slope.

lemma (in int1) Int_ZF_2_1_L12: assumes s€S shows -s € §
using assms Int_ZF_1_T2 Int_ZF_2_1_L1 groupl.Group_ZF_3_2_L13
by simp

What is the value of a negative of a slope?

lemma (in int1) Int_ZF_2_1_L12A:

assumes s€$ and meZ shows (-s) (@) = -(s(m))
using assms Int_ZF_2_1_L1 groupl.Group_ZF_3_2_L5
by simp

What are the values of a sum of slopes?

lemma (in intl) Int_ZF_2_1_L12B: assumes s€S reS and meZ
shows (s+r)(m) = s(m) + r(m)
using assms Int_ZF_2_1_L1 groupl.Group_ZF_3_2_L12
by simp

Sum of slopes is a slope.

lemma (in int1) Int_ZF_2_1_L12C: assumes scS recS
shows s+r € S
using assms Int_ZF_2_1_L1 groupl.Group_ZF_3_2_L16
by simp

A simple but useful identity.
lemma (in intl) Int_ZF_2_1_L13:

assumes sc€S and ncZ mneZ
shows s(nm) + (s(m) + d(s,nm,m)) = s((n+l)-m)
using assms Int_ZF_1_1_L5 Int_ZF_2_1_L2B Int_ZF_1_2_19 Int_ZF_1_2_L7

by simp
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Some estimates for the absolute value of a slope at the opposite integer.

lemma (in int1) Int_ZF_2_1_L14: assumes Al: s€S and A2: meZ
shows
s(-m) = s(0) - §(s,m,-m) - s(m)
abs(s(m)+s(-m)) < 2-maxd(s)
abs(s(-m)) < 2maxd(s) + abs(s(m))
s(-m) < abs(s(0)) + maxd(s) - s(m)
proof -
from A1 A2 have T:
(-m) € Z abs(s(m)) € Z s(0) € Z abs(s(0)) € Z
6(s,m,-m) € Z s(m) € Z s(-m) € Z
(-(sm))) € Z s(0) - 6(s,m,-m) € Z
using Int_ZF_1_1_14 Int_ZF_2_1_L2B Int_ZF_2_L14 Int_ZF_2_1_L2

Int_ZF_1_1_L5 int_zero_one_are_int by auto
with A2 show I: s(-m) = s(0) - §(s,m,-m) - s(m)
using Int_ZF_1_1 14 Int_ZF_1_2_L15 by simp
from T have abs(s(0) - 6(s,m,-m)) < abs(s(0)) + abs(d(s,m,-m))
using Int_triangle_ineql by simp
moreover from Al A2 T have abs(s(0)) + abs(d(s,m,-m)) < 2-maxd(s)

using Int_ZF_2_1_L7 Int_ZF_2_1_L8 Int_ZF_1_3_L21 by simp
ultimately have abs(s(0) - 6(s,m,-m)) < 2maxd(s)
by (rule Int_order_transitive)
moreover
from I have s(m) + s(-m) = s(m) + (s(0) - d(s,m,-m) - s(m))
by simp
with T have abs(s(m) + s(-m)) = abs(s(0) - d(s,m,-m))
using Int_ZF_1_2_L3 by simp
ultimately show abs(s(m)+s(-m)) < 2-maxd(s)
by simp
from I have abs(s(-m)) = abs(s(0) - 6(s,m,-m) - s(m))
by simp
with T have
abs(s(-m)) < abs(s(0)) + abs(é(s,m,-m)) + abs(s(m))
using int_triangle_ineq3 by simp
moreover from A1 A2 T have
abs(s(0)) + abs(d(s,m,-m)) + abs(s(m)) < 2maxd(s) + abs(s(m))
using Int_ZF_2_1_L7 Int_ZF_2_1_L8 Int_ZF_1_3_L21 int_ord_transl_inv
by simp
ultimately show abs(s(-m)) < 2-maxd(s) + abs(s(m))
by (rule Int_order_transitive)
from T have s(0) - §(s,m,-m) < abs(s(0)) + abs(d(s,m,-m))
using Int_ZF_2_L15E by simp
moreover from A1 A2 T have
abs(s(0)) + abs(d(s,m,-m)) < abs(s(0)) + maxd(s)
using Int_ZF_2_1_L7 int_ord_transl_inv by simp
ultimately have s(0) - §(s,m,-m) < abs(s(0)) + maxd(s)
by (rule Int_order_transitive)
with T have
s(0) - 6(s,m,-m) - s(m) < abs(s(0)) + maxd(s) - s(m)
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using int_ord_transl_inv by simp
with I show s(-m) < abs(s(0)) + maxd(s) - s(m)
by simp
qed

An identity that expresses the value of an integer function at the opposite
integer in terms of the value of that function at the integer, zero, and the
homomorphism difference. We have a similar identity in Int_zF_2_1_L14,
but over there we assume that f is a slope.

lemma (in int1) Int_ZF_2_1_L14A: assumes Al: f:Z—7Z and A2: meZ
shows f(-m) = (-6(f,m,-m)) + £(0) - f(m)
proof -
from A1 A2 have T:
f(-m) € Z é6(f,m,-m) € Z £(0) €¢ Z f(m) € Z

using Int_ZF_1_1_L4 Int_ZF_1_1_L5 int_zero_one_are_int apply_funtype

by auto
with A2 show f(-m) = (-0(f,m,-m)) + £(0) - £(m)
using Int_ZF_1_1_L4 Int_ZF_1_2_L15 by simp
qed

The next lemma allows to use the expression maxf (£,0..M-1). Recall that
maxf (£,A) is the maximum of (function) f on (the set) A.

lemma (in int1) Int_ZF_2_1_L15:
assumes sc€S and M € Z,
shows
maxf(s,0..(M-1)) € Z
Vn € 0..(M-1). s(n) < maxf(s,0..(M-1))
minf(s,0..(M-1)) € Z
Vn € 0..(M-1). minf(s,0..M-1)) < s(n)
using assms AlmostHoms_def Int_ZF_1_5_L6 Int_ZF_1_4_L2

by auto

A lower estimate for the value of a slope at nM + k.

lemma (in intl) Int_ZF_2_1_L16:
assumes Al: s€S and A2: meZ and A3: M € Z, and A4: k € 0..(M-1)
shows s(mM) + (minf(s,0..(M-1))- maxd(s)) < s(m-M+k)
proof -
from A3 have 0..(M-1) C Z
using Int_ZF_1_5_L6 by simp
with A1 A2 A3 A4 have T: mM € Z ke Z smM € Z
using PositiveSet_def Int_ZF_1_1_L5 Int_ZF_2_1_L2B
by auto
with A1 A3 A4 have
s(mM) + (minf(s,0..(M-1)) - maxd(s)) < s(mM) + (sk) + 6(s,mM,k))
using Int_ZF_2_1_L15 Int_ZF_2_1_L7 int_ineq_add_sides int_ord_transl_inv
by simp
with A1 T show thesis using Int_ZF_2_1_L3A by simp

423



qed

Identity is a slope.

lemma (in intl) Int_ZF_2_1_L17: shows id(Z) € S
using Int_ZF_2_1_L1 groupl.Group_ZF_3_4_L15 by simp

Simple identities about (absolute value of) homomorphism differences.
lemma (in intl) Int_ZF_2_1_L18:

assumes Al: f:Z—7Z and A2: meZ neZ
shows
abs(f(n) + f(m) - f(m+n)) = abs(d(f,m,n))
abs(f(m) + f(n) - f(m+n)) = abs(d(f,m,n))
(-(f(m))) - f(n) + f(m+n) = 6(f,m,n)
(-(f(n))) - £(m) + f(m+n) = 6(f,m,n)
abs((-f(m+n)) + f(m) + f(n)) = abs(d(f,m,n))
proof -
from A1 A2 have T:
f(mn) € Z f(m) € Z f(n) € Z
f(m+tn) - f(m) - f(w) € Z
(-(fm))) € Z
(-f(m+n)) + f(m) + f(n) € Z
using apply_funtype Int_ZF_1_1_14 Int_ZF_1_1_L5 by auto
then have
abs(-(f(m+n) - f(m) - £f(n))) = abs(f(m+n) - f(m) - f(n))
using Int_ZF_2_L17 by simp
moreover from T have
(-(f(mtn) - fm) - £f@))) = £f() + £f(m) - f(mt+n)
using Int_ZF_1_2_L9A by simp
ultimately show abs(f(n) + f(m) - f(m+n)) = abs(6(f,m,n))
by simp
moreover from T have f(n) + f(m) = f(m) + f(n)
using Int_ZF_1_1_L5 by simp
ultimately show abs(f(m) + f(n) - f(m+n)) = abs(d(f,m,n))
by simp
from T show
(-(f(m))) - f(n) + f(m+n) = 6(f,m,n)
(-(f@))) - £(m) + f(m+n) = 6(f,m,n)
using Int_ZF_1_2_L9 by auto
from T have
abs((-f(m+n)) + f(m) + £(n)) =
abs(-((-f(m+n)) + f(m) + £(n)))
using Int_ZF_2_L17 by simp
also from T have
abs(-((-f(m+n)) + £f(m) + f(n))) = abs(d(f,m,n))
using Int_ZF_1_2_L9 by simp
finally show abs((-f(m+n)) + f(m) + f(n)) = abs(d(f,m,n))
by simp
qed

Some identities about the homomorphism difference of odd functions.
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lemma (in int1) Int_ZF_2_1_L19:
assumes Al: f:Z—7Z and A2: VxeZ. (-f(-x)) = f(x)
and A3: meZ neZ
shows
abs(0(f,-m,m+n)) = abs(f(f,m,n))
abs(§(f,-n,m+n)) = abs(d(f,m,n))
6(f,n,-(m+n)) = 6(f,m,n)
6(f,m,-(m+n)) = 6(f,m,n)
abs(§(f,-m,-n)) = abs(§(f,m,n))
proof -
from A1 A2 A3 show
abs (0 (f,-m,m+n)) abs(§(f,m,n))
abs(0(f,-n,m+n)) = abs(6(f,m,n))
using Int_ZF_1_2_L3 Int_ZF_2_1_L18 by auto
from A3 have T: m+n € Z using Int_ZF_1_1_L5 by simp
from A1 A2 have I: VxeZ. f(-x) = (-f(x))
using Int_ZF_1_5_L13 by simp
with A1 A2 A3 T show
6(f,n,-(m+n)) = 6(f,m,n)
6(f,m,-(m+n)) = 6(f,m,n)
using Int_ZF_1_2_L3 Int_ZF_2_1_L18 by auto
from A3 have
abs(§(f,-m,-n)) = abs(f(-(m+n)) - f(-m) - £(-n))
using Int_ZF_1_1_L5 by simp
also from A1 A2 A3 T I have ... = abs(§(f,m,n))
using Int_ZF_2_1_L18 by simp
finally show abs(j(f,-m,-n)) = abs(d(f,m,n)) by simp
qed

Recall that f is a slope iff f(m+n)— f(m)— f(n) is bounded as m,n ranges
over integers. The next lemma is the first step in showing that we only need
to check this condition as m,n ranges over positive intergers. Namely we
show that if the condition holds for positive integers, then it holds if one
integer is positive and the second one is nonnegative.

lemma (in int1) Int_ZF_2_1_L20: assumes Al: f:Z—7Z and
A2: YaeZ,. VbeZ,. abs(6(f,a,b)) < L and
A3: meZ* neZ,
shows
0<L
abs(§(f,m,n)) < L + abs(£f(0))
proof -
from A1 A2 have
6(£f,1,1) € Z and abs(6(f,1,1)) < L
using int_one_two_are_pos PositiveSet_def Int_ZF_2_1_L3B
by auto
then show I: 0 < L using Int_ZF_1_3_L19 by simp
from A1 A3 have T:
ne”Z f(n) € Z £(0) € Z
0(f,m,n) € Z abs(6(f,m,n)) € Z
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using PositiveSet_def int_zero_one_are_int apply_funtype
Nonnegative_def Int_ZF_2_1_L3B Int_ZF_2_L14 by auto
from A3 have m=0 V meZ, using Int_ZF_1_5_L3A by auto
moreover
{ assume m = 0
with T I have abs(§(f,m,n)) < L + abs(£(0))
using Int_ZF_1_1_1L4 Int_ZF_1_2_L3 Int_ZF_2_L17
int_ord_is_refl refl_def Int_ZF_2_L15F by simp }
moreover
{ assume meZ,
with A2 A3 T have abs(§(f,m,n)) < L + abs(f(0))
using int_abs_nonneg Int_ZF_2_L15F by simp }
ultimately show abs(d(f,m,n)) < L + abs(£(0))
by auto
qed

If the slope condition holds for all pairs of integers such that one integer is
positive and the second one is nonnegative, then it holds when both integers
are nonnegative.

lemma (in intl) Int_ZF_2_1_L21: assumes Al: f:Z—7Z and
A2: YVac€Z". VbeZ, . abs(§(f,a,b)) < L and
A3: neZ" meZ™*
shows abs(§(f,m,n)) < L + abs(£(0))
proof -
from A1 A2 have
6(£,1,1) € Z and abs(6(f,1,1)) < L
using int_one_two_are_pos PositiveSet_def Nonnegative_def Int_ZF_2_1_L3B
by auto
then have I: 0 < L using Int_ZF_1_3_L19 by simp
from A1 A3 have T:
mecZ fm) €¢ Z £(0) €¢ Z (-£(0)) € Z
0(f,m,n) € Z abs(d(f,m,n)) € Z
using int_zero_one_are_int apply_funtype Nonnegative_def
Int_ZF_2_1_L3B Int_ZF_2_L14 Int_ZF_1_1_L4 by auto
from A3 have n=0 V neZ, using Int_ZF_1_5_L3A by auto
moreover
{ assume n=0
with T have 6(f,m,n) = -£(0)
using Int_ZF_1_1_L4 by simp
with T have abs(§(f,m,n)) = abs(£(0))
using Int_ZF_2_L17 by simp
with T have abs(§(f,m,n)) < abs(£(0))
using int_ord_is_refl refl_def by simp
with T I have abs(d(f,m,n)) < L + abs(£(0))
using Int_ZF_2_L15F by simp }
moreover
{ assume neZ,
with A2 A3 T have abs(d(f,m,n)) < L + abs(£(0))
using int_abs_nonneg Int_ZF_2_L15F by simp }
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ultimately show abs(d(f,m,n)) < L + abs(£(0))
by auto
qed

If the homomorphism difference is bounded on Z, xZ ., then it is bounded
on Z*xZ~.

lemma (in int1) Int_ZF_2_1_L22: assumes Al: f:Z—7Z and
A2: VaeZ,. VbeZ,. abs(6(f,a,b)) < L
shows IM. VmeZt. VneZt. abs(6(f,m,n)) < M
proof -
from A1 A2 have
VYmeZt . VneZt. abs(§(f,m,n)) < L + abs(£f(0)) + abs(f(0))
using Int_ZF_2_1_L20 Int_ZF_2_1_L21 by simp
then show thesis by auto
qed

For odd functions we can do better than in Int_zF_2_1_L22: if the homomor-
phism difference of f is bounded on Z*xZ™, then it is bounded on ZxZ,
hence f is a slope. Loong prof by splitting the ZxZ into six subsets.

lemma (in int1) Int_ZF_2_1_L23: assumes Al: f:Z—7Z and
A2: VaeZ,. VbeZ,. abs(§(f,a,b)) < L
and A3: VxeZ. (-f(-x)) = £(x)
shows feS
proof -
from A1 A2 have
dM.VacZ*t. VbeZ". abs(§(f,a,b)) < M
by (rule Int_ZF_2_1_122)
then obtain M where I: VmeZ'. VneZ'. abs(6(f,m,n)) < M
by auto
{ fix a b assume A4: acZ beZ
then have
0<a A 0<b VvV a<0 A b<0 V
a<0O AN O<b A0 < at+tb V a<O0 AN 0<b A atb < 0 V
0<a Ab<OANO0O<at+tb V 0<a Ab<0O A a+tb < 0
using int_plane_split_in6 by simp
moreover
{ assume 0<a A 0<b
then have acZ*™ beZ*
using Int_ZF_2_L16 by auto
with I have abs(§(f,a,b)) < M by simp }
moreover
{ assume a<0 A b<0
with I have abs(§(f,-a,-b)) < M
using Int_ZF_2_L10A Int_ZF_2_L16 by simp
with A1 A3 A4 have abs(§(f,a,b)) < M
using Int_ZF_2_1_L19 by simp }
moreover
{ assume a<0 A 0<b A 0 < a+b
with I have abs(§(f,-a,a+b)) < M
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using Int_ZF_2_L10A Int_ZF_2_L16 by simp
with A1 A3 A4 have abs(§(f,a,b)) < M
using Int_ZF_2_1_L19 by simp }
moreover
{ assume a<0 A 0<b A a+b < 0
with I have abs(§(f,b,-(a+b))) < M
using Int_ZF_2_L10A Int_ZF_2_L16 by simp
with A1 A3 A4 have abs(§(f,a,b)) < M
using Int_ZF_2_1_L19 by simp }
moreover
{ assume 0<a A b<0 A 0 < a+b
with I have abs(§(f,-b,a+b)) < M
using Int_ZF_2_L10A Int_ZF_2_L16 by simp
with A1 A3 A4 have abs(§(f,a,b)) < M
using Int_ZF_2_1_L19 by simp }
moreover
{ assume 0<a A b<0 A a+b < 0
with I have abs(§(f,a,-(a+b))) < M
using Int_ZF_2_L10A Int_ZF_2_L16 by simp
with A1 A3 A4 have abs(6(f,a,b)) < M
using Int_ZF_2_1_L19 by simp }
ultimately have abs(§(f,a,b)) < M by auto }
then have VmeZ. VneZ. abs(§(f,m,n)) < M by simp
with Al show f€S by (rule Int_ZF_2_1_L5)
qed

If the homomorphism difference of a function defined on positive integers is
bounded, then the odd extension of this function is a slope.

lemma (in intl) Int_ZF_2_1_L24:
assumes Al: f:Z,—7Z and A2: VacZ,. VbeZ,. abs(i(f,a,b)) <L
shows 0ddExtension(Z,IntegerAddition,IntegerOrder,f) € S
proof -
let g = OddExtension(Z,IntegerAddition,IntegerOrder,f)
from Al have g : Z—~Z
using Int_ZF_1_5_L10 by simp
moreover have VacZ,. VbeZ,. abs(d(g,a,b)) < L
proof -
{ fix a b assume A3: acZ, beZ,
with A1 have abs(d(f,a,b)) = abs(i(g,a,b))
using pos_int_closed_add_unfolded Int_ZF_1_5_L11
by simp
moreover from A2 A3 have abs(d(f,a,b)) < L by simp
ultimately have abs(d(g,a,b)) < L by simp
} then show thesis by simp
qed
moreover from Al have VxeZ. (-g(-x)) = g(x)
using int_oddext_is_odd_alt by simp
ultimately show g € § by (rule Int_ZF_2_1_123)
qed
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Type information related to .

lemma (in int1) Int_ZF_2_1_L25:
assumes Al: f:Z—7Z and A2: meZ neZ

shows

6(f,m,-n) € Z

0(f,n,-n) € Z

(-6(f,n,-n)) € Z

£(0) € Z

y(f,m,n) € Z
proof -

from A1 A2 show Ti:
6(f,m,-n) €¢ Z £(0) €¢ Z
using Int_ZF_1_1_L4 Int_ZF_2_1_L3B int_zero_one_are_int apply_funtype
by auto
from A2 have (-n) € Z
using Int_ZF_1_1_L4 by simp
with A1 A2 show 6(f,n,-n) € Z
using Int_ZF_2_1_L3B by simp
then show (-§(f,n,-n)) € Z
using Int_ZF_1_1_L4 by simp
with T1 show v(f,m,n) € Z
using Int_ZF_1_1_L5 by simp
qed

A couple of formulae involving f(m — n) and ~v(f, m,n).

lemma (in int1) Int_ZF_2_1_L26:

assumes Al: f:Z—Z and A2: meZ neZ

shows

f (m-n) y(f,m,n) + £(m) - f£(n)

f(m-n) = v(f,m,n) + (f(m) - £(n))

f(m-n) + (£(n) - yv(f,m,n)) = £(m)

proof -

from A1 A2 have T:
(-n) ¢ Z 6(f,m,-n) € Z
f(0) e Z f(m) € Z f(n) € Z (-f(n)) € Z
(-6(£,n,-n)) € Z
(-6(f,n,-n)) + £(0) € Z
~(f,m,n) € Z
using Int_ZF_1_1_L4 Int_ZF_2_1_L25 apply_funtype Int_ZF_1_1_L5
by auto

with A1 A2 have f(m-n) =
6(f,m,-n) + ((-§(f,n,-n)) + £(0) - f(n)) + f(m)
using Int_ZF_2_1_L3C Int_ZF_2_1_L14A by simp

with T have f(m-n) =
0(f,m,-n) + ((=6(f,n,-n)) + £(0)) + £(m) - f(n)
using Int_ZF_1_2_L16 by simp

moreover from T have
0(f,m,-n) + ((-6(f,n,-n)) + £(0)) = v(f,m,n)
using Int_ZF_1_1_L7 by simp
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ultimately show I: f(m-n) = y(f,m,n) + f(m) - f(n)
by simp
then have f(m-n) + (f(n) - v(f,m,n)) =
(v(f,m,n) + £(m) - £(@)) + (£(n) - v(f,m,n))
by simp
moreover from T have ... = f(m) using Int_ZF_1_2 _L18
by simp
ultimately show f(m-n) + (f(n) - v(f,m,n)) = £f(w)
by simp
from T have v(f,m,n) € Z f(m) € Z (-f(n)) € Z
by auto
then have
~v(f,m,n) + f(m) + (-f(n)) = ~(f,m,n) + (f(m) + (-f(n)))
by (rule Int_ZF_1_1_L7)
with I show f(m-n) = y(f,m,n) + (f£(m) - £(n)) by simp
qed

A formula expressing the difference between f(m—n—k) and f(m)— f(n)—
f(k) in terms of ~.

lemma (in intl) Int_ZF_2_1_L26A:
assumes Al: f:Z—7Z and A2: meZ neZ keZ
shows
f(m-n-k) - (f(m- £f(n) - £(k)) = y(£,m-n,k) + v(f,m,n)
proof -
from A1 A2 have
T: mn € Z vy(f,m-n,k) € Z £f(m) - £(n) - £(k) € Z and
Ti: v(f,m,n) € Z f(m) - f(n) € Z (-£fk)) € Z
using Int_ZF_1_1 14 Int_ZF_1_1_L5 Int_ZF_2_1_L25 apply_funtype
by auto
from A1 A2 have
f(m-n) - £(k) = v(f,m,n) + (fm) - £(0)) + (-£(k))
using Int_ZF_2_1_126 by simp
also from T1 have ... = v(f,m,n) + (f(m) - f(n) + (-£(&)))
by (rule Int_ZF_1_1_L7)
finally have
f(m-n) - £(k) = v(f,m,n) + (f(m) - £(n) - £(k))
by simp
moreover from A1 A2 T have
f(m-n-k) = ~(f,m-n,k) + (f(@-n)-f(k))
using Int_ZF_2_1_L26 by simp
ultimately have
f(m-n-k) - (fm)- £f(n) - £(k)) =
v, mn,k) + ( y(f,m,n) + (f(m) - £(n) - £(k)))
- (f(m)- £(n) - £(k))
by simp
with T T1 show thesis
using Int_ZF_1_2_L17 by simp
qed
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If s is a slope, then 7(s, m,n) is uniformly bounded.

lemma (in int1) Int_ZF_2_1_L27: assumes Al: s&S
shows JLeZ. VmeZ .VneZ. abs(y(s,m,n)) < L
proof -
let L = maxd(s) + maxd(s) + abs(s(0))
from A1 have T:
maxd(s) € Z abs(s(0)) €¢ Z L c Z
using Int_ZF_2_1_L8 int_zero_one_are_int Int_ZF_2_1_L2B
Int_ZF_2_L14 Int_ZF_1_1_L5 by auto
moreover
{ fix m
fix n
assume A2: mcZ neZ
with A1 have T:
(-n) e Z
6(s,m,-n) € Z
0(s,n,-n) € Z
(-6(s,n,-n)) € Z
s(0) € Z abs(s(0)) € Z
using Int_ZF_1_1_L4 AlmostHoms_def Int_ZF_2_1_L25 Int_ZF_2_L14
by auto
with T have
abs(d(s,m,-n) - d(s,n,-n) + s(0)) <
abs(6(s,m,-n)) + abs(-6(s,n,-n)) + abs(s(0))
using Int_triangle_ineq3 by simp
moreover from A1 A2 T have
abs(§(s,m,-n)) + abs(-d6(s,n,-n)) + abs(s(0)) < L
using Int_ZF_2_1_L7 int_ineq_add_sides int_ord_transl_inv Int_ZF_2_L17
by simp
ultimately have abs(d(s,m,-n) - §(s,n,-n) + s(0)) < L
by (rule Int_order_transitive)
then have abs(y(s,m,n)) < L by simp }
ultimately show JLeZ. VmeZ.VneZ. abs(y(s,m,n))
by auto
qed

IN
-

If s is a slope, then s(m) < s(m — 1) + M, where L does not depend on m.

lemma (in int1) Int_ZF_2_1_L28: assumes Al: s€S
shows IMecZ. VmeZ. s(m) < s(m-1) + M
proof -
from A1 have
dLeZ. VmeZ .VneZ .abs(y(s,m,n)) < L
using Int_ZF_2_1_L27 by simp
then obtain L where T: LeZ and VmeZ.VneZ.abs(y(s,m,n)) < L
using Int_ZF_2_1_L27 by auto
then have I: VmeZ.abs(y(s,m,1)) < L
using int_zero_one_are_int by simp
let M = s(1) + L

from A1 T have M € Z
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using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L5
by simp
moreover
{ fix m assume A2: meZ
with A1 have
Tl: s:Z—Z mneZ 1€Z and
T2: v(s,m,1) € Z s(1) € Z
using int_zero_one_are_int AlmostHoms_def
Int_ZF_2_1_L25 by auto
from A2 T1 have T3: s(m-1) € Z
using Int_ZF_1_1_L5 apply_funtype by simp
from I A2 T2 have
(-v(s,m,1)) < abs(y(s,m,1))
abs(v(s,m,1)) < L
using Int_ZF_2_L19C by auto
then have (-vy(s,m,1)) < L
by (rule Int_order_transitive)
with T2 T3 have
s(m-1) + (s(1) - v(s,m,1)) < s(m-1) + M
using int_ord_transl_inv by simp
moreover from T1 have
s(m-1) + (s(1) - ~v(s,m,1)) = s(m)
by (rule Int_ZF_2_1_L26)
ultimately have s(m) < s(m-1) + M by simp }
ultimately show dMeZ. VmeZ. s(m) < s(m-1) + M
by auto
qed

If s is a slope, then the difference between s(m—n—k) and s(m)—s(n)—s(k)
is uniformly bounded.

lemma (in int1) Int_ZF_2_1_L29: assumes Al: seS
shows
dMeZ. VmeZ .NneZ VkeZ. abs(s(m-n-k) - (s(m)-s(n)-s(k))) <M
proof -
from A1l have JLeZ. VmeZ.VneZ. abs(y(s,m,n)) < L
using Int_ZF_2_1_L27 by simp
then obtain L where I: LeZ and
II: VmeZ.VneZ. abs(y(s,m,n)) < L
by auto
from I have L+L € Z
using Int_ZF_1_1_L5 by simp
moreover
{ fix m n k assume A2: meZ neZ keZ
with A1 have T:
mn € Z ~(s,mn,k) € Z ~(s,m,n) € Z
using Int_ZF_1_1_L5 AlmostHoms_def Int_ZF_2_1_L25
by auto
then have
I: abs(y(s,m—n,k) + v(s,m,n)) < abs(y(s,m-n,k)) + abs(y(s,m,n))
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using Int_triangle_ineq by simp

from II A2 T have
abs(v(s,m-n,k)) < L
abs(y(s,m,n)) < L
by auto

then have abs(v(s,m-n,k)) + abs(y(s,m,n)) < L+L
using int_ineq_add_sides by simp

with I have abs(y(s,m-n,k) + v(s,m,n)) < L+L
by (rule Int_order_transitive)

moreover from A1 A2 have
s(m-n-k) - (s(@- s(n) - sk)) = v(s,m-n,k) + y(s,m,n)
using AlmostHoms_def Int_ZF_2_1_L26A by simp

ultimately have
abs(s(m-n-k) - (s(m)- s(n) - s(k))) < L+L
by simp }

ultimately show thesis by auto
qed

If s is a slope, then we can find integers M, K such that s(m —n — k) <
s(m) — s(n) — s(k) + M and s(m) — s(n) — s(k) + K < s(m —n — k), for all
integer m,n, k.

lemma (in int1) Int_ZF_2_1_L30: assumes Al: s€S
shows
dMeZ. VmeZ .NneZ .VkeZ. s(m-n-k) < s(m)-s(n)-s(k)+M
dKeZ. VmeZ .NneZ .VkeZ. s(m)-s(n)-s(k)+K < s(m-n-k)
proof -
from A1 have
dMeZ. VmeZ .NneZ .VkeZ. abs(s(m-n-k) - (s(m)-s(n)-s(k))) <M
using Int_ZF_2_1_L29 by simp
then obtain M where I: MeZ and II:
VmeZ .VneZ .VkeZ. abs(s(m-n-k) - (s(m)-s(n)-s(k))) <M
by auto
from I have III: (-M) € Z using Int_ZF_1_1_L4 by simp
{ fix m n k assume A2: m€Z neZ keZ
with A1 have s(m-n-k) € Z and s(m)-s(n)-s(k) € Z
using Int_ZF_1_1_L5 Int_ZF_2_1_L2B by auto
moreover from II A2 have
abs(s(m-n-k) - (s(m)-s(n)-s(k))) <M
by simp
ultimately have
s(m-n-k) < s(m)-s(@)-s(k)+M A
s(m)-s(m)-s(k) - M < s(m-n-k)
using Int_triangle_ineq2 by simp
} then have
VmeZ .VneZ .VkeZ. s(m—n-k) < s(m)-s(n)-sk)+M
VmeZ .VneZ .VkeZ. s(m)-s(n)-s(k) - M < s(m-n-k)
by auto
with I III show
dMeZ. VmeZ .NneZ .VkeZ. s(m-n-k) < s(m)-s(n)-s(k)+M
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dKeZ. VmeZ . NneZ NkeZ. s(m)-s(n)-s(k)+K < s(m-n-k)
by auto
qed

By definition functions f, ¢ are almost equal if f — ¢g* is bounded. In the
next lemma we show it is sufficient to check the boundedness on positive
integers.

lemma (in int1) Int_ZF_2_1_L31: assumes Al: s€S reS

and A2: VmeZ,. abs(s(m)-r(m)) < L
shows s ~ r

proof -
let a = abs(s(0) - r(0))
let ¢ = 2maxd(s) + 2maxd(r) + L

let M = Maximum(IntegerOrder,{a,L,c})
from A2 have abs(s(1)-r(1)) < L
using int_one_two_are_pos by simp
then have T: LeZ using Int_ZF_2_L1A by simp
moreover from Al have a € Z
using int_zero_one_are_int Int_ZF_2_1_L2B
Int_ZF_1_1_L5 Int_ZF_2_L14 by simp
moreover from A1 T have c € Z
using Int_ZF_2_1_L8 int_two_three_are_int Int_ZF_1_1_L5
by simp
ultimately have
I: a <Mand
II: L < M and
III: ¢ <M
using Int_ZF_1_4_L1A by auto

{ fix m assume A5: meZ
with A1 have T:
s(m) € Z r(m) € Z sm) -r(m) € Z
s(-m) € Z r(-m) € Z
using Int_ZF_2_1_L2B Int_ZF_1_1_14 Int_ZF_1_1_L5
by auto
from A5 have m=0 V meZ, V (-m) € Z,
using int_decomp_cases by simp
moreover
{ assume n=0
with I have abs(s(m) - r(m)) < M
by simp }
moreover
{ assume meZ,
with A2 II have
abs(s(m)-r(m)) < L and L<M
by auto
then have abs(s(m)-r(m)) <
by (rule Int_order_transitive) }
moreover

M
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{ assume A6: (-m) € Z,
from T have abs(s(m)-r(m)) <
abs(s(m)+s(-m)) + abs(r(m)+r(-m)) + abs(s(-m)-r(-m))
using Int_ZF_1_3_L22A by simp
moreover
from A1 A2 III A5 A6 have
abs(s(m)+s(-m)) + abs(r(m)+r(-m)) + abs(s(-m)-r(-m))
c <M
using Int_ZF_2_1_L14 int_ineq_add_sides by auto
then have
abs(s(m)+s(-m)) + abs(r(m)+r(-m)) + abs(s(-m)-r(-m)) < M
by (rule Int_order_transitive)
ultimately have abs(s(m)-r(m)) < M
by (rule Int_order_transitive) }
ultimately have abs(s(m) - r(m)) < M

IN
o

by auto
} then have VmeZ. abs(s(m)-r(m)) < M
by simp
with Al show s ~ r by (rule Int_ZF_2_1_1L9)

qed

A sufficient condition for an odd slope to be almost equal to identity: If for
all positive integers the value of the slope at m is between m and m plus
some constant independent of m, then the slope is almost identity.

lemma (in intl) Int_ZF_2_1_132: assumes Al: s€§ MeZ
and A2: VmeZ,. m < s(m) A s(m) < m+M
shows s ~ id(Z)
proof -
let r = id(Z)
from A1 have s€§ r € §
using Int_ZF_2_1_L17 by auto
moreover from Al A2 have VmeZ,. abs(s(m)-r(m)) < M
using Int_ZF_1_3_L23 PositiveSet_def id_conv by simp
ultimately show s ~ id(Z) by (rule Int_ZF_2_1_L31)
qed

A lemma about adding a constant to slopes. This is actually proven in
Group_ZF_3_5_L1, in Group_ZF_3.thy here we just refer to that lemma to

show it in notation used for integers. Unfortunately we have to use raw set
notation in the proof.

lemma (in int1) Int_ZF_2_1_L33:
assumes Al: s€S and A2: ceZ and
A3: r = {(m,s(m)+c). meZ}
shows
VmeZ. r(m) = s(m)+c
res
s ~r

proof -
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let G = Z
let £ = IntegerAddition
let AH = AlmostHoms(G, f)
from assms have I:
groupl(G, f)
s € AlmostHoms(G, f)
ceaG
r = {(x, f(s(x), ¢)). x € G}
using Int_ZF_2_1_L1 by auto
then have VxeG. r(x) = £(s(x),c)
by (rule groupl.Group_ZF_3_5_L1)
moreover from I have r € AlmostHoms (G, f)
by (rule groupl.Group_ZF_3_5_L1)
moreover from I have
(s, r) € QuotientGroupRel(AlmostHoms(G, f), AlHomOpl(G, f), FinRangeFunctions(G,

G))
by (rule groupl.Group_ZF_3_5_L1)
ultimately show
VmeZ. r(m) = s(m)+c
res
s ~r
by auto
qed

37.2 Composing slopes

Composition of slopes is not commutative. However, as we show in this
section if f and g are slopes then the range of fog— go f is bounded. This
allows to show that the multiplication of real numbers is commutative.

Two useful estimates.

lemma (in intl) Int_ZF_2_2_L1:

assumes Al: f:Z—7Z and A2: peZ qeZ
shows

abs (f ((p+1)-q)-(p+1)-£(q)) < abs(d(f,p-q,q))+abs(f(p-q)-p-f(q))

abs(f ((p-1)-@)-(p-1)-£(q)) < abs(d(f, (p-1)-q,q))+abs(f(p-q)-p-f(q))
proof -

let R = Z

let A = IntegerAddition

let M = IntegerMultiplication

let T = GroupInv(R, A)

let a = £((p+1)-q)

let b = p

let ¢ = £(q)

let d = £(p-q)

from A1 A2 have T1:
ring0O(R, A, M) a€R beER c€R d4deR
using Int_ZF_1_1_L2 int_zero_one_are_int Int_ZF_1_1_L5 apply_funtype
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by auto
then have
A(a,I(M(A(b, TheNeutralElement(R, M)),c))) =
AA(A(a,I(d)),I(c)),A{d, IT(M(b, c)))
by (rule ring0.Ring_ZF_2_L2)
with A2 have
f((p+1)-@)-(p+1)-£(q) = 6(£,pq,)+(E(p-q)-p-£(q))
using int_zero_one_are_int Int_ZF_1_1_L1 Int_ZF_1_1_L4 by simp
moreover from Al A2 T1 have §(f,p-q,q) € Z f(p-q)-pf(q) € Z
using Int_ZF_1_1_L5 apply_funtype by auto
ultimately show
abs (f ((p+1)-q)-(p+1)-£(q)) < abs(§(f,p-q,q))+abs(f(p-q)-p-£(q))
using Int_triangle_ineq by simp
from A1 A2 have T1:
f((p-1)-q) € Z peZ £(q € Z f£(pq) € Z
using int_zero_one_are_int Int_ZF_1_1_L5 apply_funtype by auto
then have
f((p-1)--(p-1)£(q) = (p--p-f(@))-(f(p-q-f((p-1)-q)-£(q))
by (rule Int_ZF_1_2_L6)
with A2 have f((p-1)-@)-(p-1)-f(q) = (£(p-q)-p-£(q))-6(£, (p-1)-q,q)
using Int_ZF_1_2_L7 by simp
moreover from Al A2 have
f(pq)-pf(q) € Z 6(£f,(p-1)q,q) € Z
using Int_ZF_1_1_L5 int_zero_one_are_int apply_funtype by auto
ultimately show
abs(f ((p-1)-@)-(p-1)-£(q)) < abs(d(f,(p-1)-q,q9))+abs(f(p-q)-p-£(q))
using Int_triangle_ineql by simp
qed

If f is a slope, then |f(p-q) —p- f(q)| < (|p| + 1) maxd(£). The proof is by
induction on p and the next lemma is the induction step for the case when
0<p.

lemma (in intl) Int_ZF_2_2_L2:
assumes Al: feS and A2: 0<p q€Z
and A3: abs(f(p-q)-pf(q)) < (abs(p)+1) -maxd(f)
shows
abs(f ((p+1)-@)-(p+1)-£(q)) < (abs(p+1)+ 1)-maxd(f)
proof -
from A2 have q¢Z pq € Z
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
with A1 have I: abs(i(f,p-q,q)) < maxd(f) by (rule Int_ZF_2_1_L7)
moreover note A3
moreover from Al A2 have
abs (f ((p+1)-q)-(p+1)-£(q)) < abs(§(f,p-q,q))+abs(f(p-q)-p-£(q))
using AlmostHoms_def Int_ZF_2_L1A Int_ZF_2_2_L1 by simp
ultimately have
abs (f ((p+1)-q)-(p+1)-£(q)) < maxd (£f)+(abs(p)+1) -maxd (£f)
by (rule Int_ZF_2_L15)
moreover from I A2 have
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maxd (f)+(abs(p)+1) maxd(f) = (abs(p+1)+ 1)-maxd(f)
using Int_ZF_2_L1A Int_ZF_1_2_L2 by simp
ultimately show
abs (f ((p+1)-q) - (p+1)-f(q@)) < (abs(p+1)+ 1)-maxd (f)
by simp
qed

If f is a slope, then |f(p-q) —p- f(q)| < (|p| + 1)maxé. The proof is by
induction on p and the next lemma is the induction step for the case when
p<0.

lemma (in intl) Int_ZF_2_2_L3:
assumes Al: feS and A2: p<0 q€Z
and A3: abs(f(p-q)-pf(q)) < (abs(p)+1) -maxd(f)
shows abs(f((p-1)-9)-(p-1)-£(q)) < (abs(p-1)+ 1)-maxd(f)
proof -
from A2 have qeZ (p-1)q € Z
using Int_ZF_2_L1A int_zero_one_are_int Int_ZF_1_1_L5 by auto
with A1 have I: abs(i(f, (p-1)-q,9)) < maxd(f) by (rule Int_ZF_2_1_L7)
moreover note A3
moreover from Al A2 have
abs(f ((p-1)-@)-(p-1)-£(q)) < abs(é(f, (p-1)-q,9))+abs(f(p-q)-p-£(q))
using AlmostHoms_def Int_ZF_2_L1A Int_ZF_2_2_L1 by simp
ultimately have
abs (f ((p-1)-@)-(p-1)-£(q)) < maxd(f)+(abs(p)+1)-maxé (£f)
by (rule Int_ZF_2_L15)
with I A2 show thesis using Int_ZF_2_L1A Int_ZF_1_2_L5 by simp
qed

If f is a slope, then |f(p-q) —p- f(¢)| < (|p| + 1) maxd(f). Proof by cases
on 0 < p.

lemma (in int1) Int_ZF_2_2_L4:
assumes Al: feS and A2: peZ qeZ
shows abs(f(p-q)-p-£(q)) < (abs(p)+1)-maxd(f)
proof -
{ assume 0<p
moreover from A1 A2 have abs(f(0-9)-0-f(q)) < (abs(0)+1)-maxd(f)
using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_1L4
Int_ZF_2_1_L8 Int_ZF_2_L18 by simp
moreover from A1 A2 have
Vp. 0<p A abs(f(p-q)-pf(q)) < (abs(p)+1)maxd(f) —
abs(f ((p+1)-@)-(p+1)-£(q)) < (abs(p+1)+ 1)-maxd(f)
using Int_ZF_2_2_L2 by simp
ultimately have abs(f(p-q)-p:£(q)) < (abs(p)+1)-maxd(f)
by (rule Induction_on_int) }
moreover
{ assume —(0<p)
with A2 have p<0 using Int_ZF_2_L19A by simp
moreover from A1 A2 have abs(£(0-9)-0-f(q)) < (abs(0)+1)-maxd(f)
using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_14
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Int_ZF_2_1_1L8 Int_ZF_2_L18 by simp
moreover from A1l A2 have
Vp. p<0 A abs(f(p:q)-p-f(q)) < (abs(p)+1l)maxd(f) —
abs (f ((p-1)-q)-(p-1)-f(q)) < (abs(p-1)+ 1) -maxd(f)
using Int_ZF_2_2_L3 by simp
ultimately have abs(f(p-g)-p-f(q)) < (abs(p)+1) maxd(f)
by (rule Back_induct_on_int) }
ultimately show thesis by blast
qed

The next elegant result is Lemma 7 in the Arthan’s paper [2].

lemma (in intl) Arthan Lem_7:
assumes Al: f€S and A2: peZ qeZ
shows abs(q-f(p)-p-£(q)) < (abs(p)+abs(q)+2) maxj(f)
proof -
from A1 A2 have T:
qf(p)-f(pq) € Z
f(p)-pf(q € Z
f(qp) € Z f(pq) € Z
qf(p) € Z pf(q) € Z
maxd(f) € Z
abs(q) € Z abs(p) € Z
using Int_ZF_1_1_L5 Int_ZF_2_1_L2B Int_ZF_2_1_L7 Int_ZF_2_L14 by auto
moreover have abs(q-f(p)-f(p-q)) < (abs(qg)+1)-maxd(f)
proof -
from A1 A2 have abs(f(qp)-q-f(p)) < (abs(q)+1)-maxd(f)
using Int_ZF_2_2_L4 by simp
with T A2 show thesis
using Int_ZF_2_120 Int_ZF_1_1_L5 by simp
qed
moreover from A1 A2 have abs(f(p-q)-p-f(q)) < (abs(p)+1)maxd(f)
using Int_ZF_2_2_L4 by simp
ultimately have
abs(q-f(p)-f(p-+(E(p--p£(q))) < (abs(q)+1) maxd (f)+(abs(p)+1) maxd(f)
using Int_ZF_2_L21 by simp
with T show thesis using Int_ZF_1_2_L9 int_zero_one_are_int Int_ZF_1_2_L10
by simp
qed

This is Lemma 8 in the Arthan’s paper.

lemma (in int1) Arthan_Lem_8: assumes Al: f&S
shows JA B. AcZ AN BeZ N (VpeZ. abs(f(p)) < A-abs(p)+B)

proof -
let A = maxd(f) + abs(£f(1))
let B = 3:maxd (f)

from Al have AcZ BeZ
using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_2_1_L2B

Int_ZF_2_1_L7 Int_ZF_2_L14 by auto
moreover have VpeZ. abs(f(p)) < A-abs(p)+B
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proof
fix p assume A2: peZ
with A1 have T:
f(p) € Z abs(p) € Z (1) € Z
pf(l) € Z 3€Z mnaxi(f) € Z
using Int_ZF_2_1_L2B Int_ZF_2_L14 int_zero_one_are_int

Int_ZF_1_1_L5 Int_ZF_2_1_L7 by auto
from A1 A2 have
abs(1-f(p)-p-£(1)) < (abs(p)+abs(1l)+2) maxd(f)
using int_zero_one_are_int Arthan_Lem_7 by simp
with T have abs(f(p)) < abs(p-f(1))+(abs(p)+3) maxd(f)
using Int_ZF_2_L16A Int_ZF_1_1_L4 Int_ZF_1_2_L11
Int_triangle_ineq2 by simp
with A2 T show abs(f(p)) < A-abs(p)+B
using Int_ZF_1_3_L14 by simp
qed
ultimately show thesis by auto
qed

If f and g are slopes, then f o g is equivalent (almost equal) to g o f. This
is Theorem 9 in Arthan’s paper [2].

theorem (in int1) Arthan_Th_9: assumes Al: fcS geS$
shows fog ~ gof
proof -
from A1 have
JA B. A€Z N BEZ N (VpeZ. abs(f(p)) < A-abs(p)+B)
3C D. CeZ N DeZ N (VpeZ. abs(g(p)) < C-abs(p)+D)
using Arthan_Lem_8 by auto
then obtain A B C D where D1: AcZ BeZ CeZ DeZ and D2:
VpeZ. abs(f(p)) < A-abs(p)+B
VpeEZ. abs(g(p)) < C-abs(p)+D
by auto
let E = maxd(g)-(A+1) + maxd(£)-(C+1)
let F = (Bmaxd(g) + 2maxd(g)) + (D'maxd(f) + 2:maxd(f))
{ fix p assume A2: peZ
with A1 have T1:
glp) € Z £f(p) € Z abs(p) € Z 2€ Z
f(gp)) € Z g(f(p)) € Z £(glp)) - glf(p)) € Z
pflgP)) € Z pglEp)) € Z
abs(f(g(p))-g(f(p))) € Z
using Int_ZF_2_1_L2B Int_ZF_2_1_L10 Int_ZF_1_1_L5 Int_ZF_2_L14 int_two_three_are_int
by auto
with A1 A2 have
abs ((f(g(p))-g(£(p)))p) <
(abs (p)+abs(f (p))+2) -maxd(g) + (abs(p)+abs(g(p))+2) -maxd(f)
using Arthan Lem_7 Int_ZF_1_2_L10A Int_ZF_1_2_L12 by simp
moreover have
(abs (p)+abs (f (p) ) +2) -maxd(g) + (abs(p)+abs(g(p))+2) maxd(f) <
((maxd (g)- (A+1) + maxd(£)-(C+1)))-abs(p) +
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((Bmaxd(g) + 2maxd(g)) + (Dmaxd(f) + 2maxd(£f)))
proof -

from D2 A2 T1 have
abs(p)+abs (£ (p))+2 < abs(p)+(A-abs(p)+B)+2
abs(p)+abs(g(p))+2 < abs(p)+(C-abs(p)+D)+2
using Int_ZF_2_L15C by auto

with A1 have
(abs(p)+abs (£ (p))+2) -maxd(g) < (abs(p)+(A-abs(p)+B)+2)-maxi(g)
(abs(p)+abs(g(p))+2) maxd (f) < (abs(p)+(C-abs(p)+D)+2) max) (£)
using Int_ZF_2_1_18 Int_ZF_1_3_L13 by auto

moreover from A1 D1 T1 have
(abs (p)+(A-abs(p)+B) +2) maxd(g) =
maxd (g)-(A+1)-abs(p) + (Bmaxd(g) + 2-maxd(g))
(abs(p)+(C-abs(p)+D)+2) maxd (f) =
maxd (£)-(C+1)-abs(p) + (D-maxd(f) + 2-maxd(f))
using Int_ZF_2_1_1L8 Int_ZF_1_2_L13 by auto

ultimately have
(abs(p)+abs (£ (p))+2) -maxd(g) + (abs(p)+abs(g(p))+2) maxd(f) <
(maxd(g)-(A+1)-abs(p) + (B'maxd(g) + 2maxd(g))) +
(maxd (£)-(C+1)-abs(p) + (D-maxd(f) + 2-maxd(£f)))
using int_ineq_add_sides by simp

moreover from A1 A2 D1 have abs(p) € Z
maxd(g)-(A+1) € Z Bmaxd(g) + 2maxd(g) € Z
maxd (f)-(C+1) € Z Dmaxd(f) + 2maxd(f) € Z
using Int_ZF_2_L14 Int_ZF_2_1_L8 int_zero_one_are_int

Int_ZF_1_1_L5 int_two_three_are_int by auto
ultimately show thesis using Int_ZF_1_2_L14 by simp
qed
ultimately have
abs((£(g(p))-g(f(p)))p) < E-abs(p) + F
by (rule Int_order_transitive)
with A2 T1 have
abs(f(g(p))-g(f(p)))-abs(p) < E-abs(p) + F
abs(f(g(p))-g(f(p))) € Z
using Int_ZF_1_3_L5 by auto
} then have
VpeZ. abs(f(g(p))-g(f(p))) € Z
VpeZ. abs(f(g(p))-g(f(p)))-abs(p) < E-abs(p) + F
by auto
moreover from Al D1 have E € Z F € Z
using int_zero_one_are_int int_two_three_are_int Int_ZF_2_1_L8 Int_ZF_1_1_L5
by auto
ultimately have
JL. VpeZ. abs(f(g(p))-g(f(p))) <L
by (rule Int_ZF_1_7_L1)
with Al obtain L where VpeZ. abs((fog) (p)-(gof) (p)) < L
using Int_ZF_2_1_L10 by auto

moreover from Al have fog € § gof € §
using Int_ZF_2_1_L11 by auto
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ultimately show fog ~ gof using Int_ZF_2_1_L9 by auto
qed

end
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38 Int ZF 3.thy

theory Int_ZF_3 imports Int_ZF_2
begin

This theory is a continuation of Int_zZF_2. We consider here the properties
of slopes (almost homomorphisms on integers) that allow to define the order
relation and multiplicative inverse on real numbers. We also prove theorems
that allow to show completeness of the order relation of real numbers we
define in Real_ZF.

38.1 Positive slopes

This section provides background material for defining the order relation on
real numbers.

Positive slopes are functions (of course.)

lemma (in intl) Int_ZF_2_3_L1: assumes Al: f€S, shows f:Z—Z

using assms AlmostHoms_def PositiveSet_def by simp

A small technical lemma to simplify the proof of the next theorem.

lemma (in intl) Int_ZF_2_3_L1A:
assumes Al: f€S; and A2: dn € £(Zy) N Z,. a<n
shows IMeZ,. a < £(M)
proof -
from A1 have £:Z—-7Z Z, C Z
using AlmostHoms_def PositiveSet_def by auto
with A2 show thesis using func_imagedef by auto

qed

The next lemma is Lemma 3 in the Arthan’s paper.

lemma (in int1) Arthan_Lem_3:
assumes Al: fcS, and A2: D € Z,
shows IMeZ . VmeZ,. (m+1)D < f(mM)
proof -
let E = maxf(f) + D
let A =1£(Zy) N Z,
from A1 A2 have I: D<E
using Int_ZF_1_5_L3 Int_ZF_2_1_L8 Int_ZF_2_L1A Int_ZF_2_L15D
by simp
from A1 A2 have A C Z, A ¢ Fin(Z) 2E € Z
using int_two_three_are_int Int_ZF_2_1_L8 PositiveSet_def Int_ZF_1_1_L5
by auto
with A1 have IMeZ,. 2E < £(M)
using Int_ZF_1_5_L2A Int_ZF_2_3_L1A by simp
then obtain M where II: McZ, and III: 2-E < f£(M)
by auto
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{ fix m assume meZ, then have A4: 1<m
using Int_ZF_1_5_L3 by simp
moreover from II III have (1+1) ‘E < f(1-M)
using PositiveSet_def Int_ZF_1_1_L4 by simp
moreover have Vk.
1<k A (k+1)-E < £(k'M) — (k+1+1)-E < £((k+1)-M)
proof -
{ fix k assume A5: 1<k and A6: (k+1)-E < f(k-M)
with Al A2 II have T:
keZ MeZ k+1 € Z EcZ (k+1)E € Z 2E € Z
using Int_ZF_2_L1A PositiveSet_def int_zero_one_are_int
Int_ZF_1_1_L5 Int_ZF_2_1_L8 by auto
from A1 A2 A5 II have
O(f,kM,M) € Z abs(d(f,kM,M)) < maxd(f) 0<D
using Int_ZF_2_L1A PositiveSet_def Int_ZF_1_1_L5
Int_ZF_2_1_L7 Int_ZF_2_L16C by auto
with III A6 have
(k+1)E + (2E - E) < £(kM) + (M) + 6(£,kM,M))
using Int_ZF_1_3_L19A int_ineq_add_sides by simp
with A1 T have (k+1+1)-E < f((k+1)-M)
using Int_ZF_1_1_L1 int_zero_one_are_int Int_ZF_1_1_14

Int_ZF_1_2_L11 Int_ZF_2_1_L13 by simp
} then show thesis by simp
qed
ultimately have (n+1)-E < f(m-M) by (rule Induction_on_int)
with A4 I have (m+1)-D < f(m'M) using Int_ZF_1_3_L13A
by simp
} then have VmeZ,.(m+1)-D < f(mM) by simp
with II show thesis by auto
qed

A special case of Arthan_Lem_3 when D = 1.

corollary (in intl) Arthan_L_3_spec: assumes Al: f € &
shows IMeZ,.VneZ . n+tl < f(n:M)
proof -
have VneZ,. n+l € Z
using PositiveSet_def int_zero_one_are_int Int_ZF_1_1_L5
by simp
then have VneZ,. (n+1)-1 = n+l
using Int_ZF_1_1_14 by simp
moreover from Al have IMeZ,. VneZ,. (n+1)-1 < f(n-M)
using int_one_two_are_pos Arthan_Lem_3 by simp
ultimately show thesis by simp
qed

We know from Group_zF_3.thy that finite range functions are almost homo-
morphisms. Besides reminding that fact for slopes the next lemma shows
that finite range functions do not belong to S, . This is important, because
the projection of the set of finite range functions defines zero in the real
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number construction in Real_ZF_x.thy series, while the projection of S, be-
comes the set of (strictly) positive reals. We don’t want zero to be positive,
do we? The next lemma is a part of Lemma 5 in the Arthan’s paper [2].

lemma (in intl) Int_ZF_2_3_L1B:
assumes Al: f € FinRangeFunctions(Z,Z)
shows fe§ f ¢ S,
proof -
from Al show f&S using Int_ZF_2_1_L1 groupl.Group_ZF_3_3_L1
by auto
have Z, C Z using PositiveSet_def by auto
with A1 have f(Z,) € Fin(Z)
using Finitel L21 by simp
then have f(Z,) N Z, € Fin(Z)
using Fin_subset_lemma by blast
thus f ¢ S, by auto
qed

We want to show that if f is a slope and neither f nor —f are in S, then
f is bounded. The next lemma is the first step towards that goal and shows
that if slope is not in Sy then f(Z,) is bounded above.

shows IsBoundedAbove(f(Z.), IntegerOrder)
proof -
from A1 have f:Z—7Z using AlmostHoms_def by simp
then have f(Z,) C Z using funcl_1_L6 by simp
moreover from Al A2 have f(Z.) N Z. € Fin(Z) by auto
ultimately show thesis using Int_ZF_2_T1 group3.0rderedGroup_ZF_2_L4
by simp
qed

lemma (in intl1) Int_ZF_2_3_L2: assumes Al: f€S§ and A2: f ¢ S,

If fis aslope and —f ¢ Sy, then f(Z,) is bounded below.

lemma (in int1) Int_ZF_2_3_L3: assumes Al: f€S and A2: -f ¢ S,
shows IsBoundedBelow(f(Z.), IntegerOrder)
proof -
from Al have T: f:Z—7Z using AlmostHoms_def by simp
then have (-(£(Z.))) = (-£)(Z,)
using Int_ZF_1_T2 groupO_2_T2 PositiveSet_def funcl_1_L15C
by auto
with A1 A2 T show IsBoundedBelow(f(Z,), IntegerOrder)
using Int_ZF_2_1_L12 Int_ZF_2_3_L2 PositiveSet_def funcl_1_L6
Int_ZF_2_T1 group3.0rderedGroup_ZF_2_L5 by simp
qed

A slope that is bounded on Z, is bounded everywhere.

lemma (in int1) Int_ZF_2_3_L4:
assumes Al: f€S and A2: meZ
and A3: VneZ,. abs(f(n)) < L
shows abs(f (m)) < 2maxd(f) + L
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proof -
from A1 A3 have
0 < abs(f(1)) abs(f(1)) <L
using int_zero_one_are_int Int_ZF_2_1_L2B int_abs_nonneg int_one_two_are_pos

by auto
then have II: O<L by (rule Int_order_transitive)
note A2
moreover have abs(£f(0)) < 2maxd(f) + L
proof -

from A1 have
abs(£f(0)) < maxd(f) O < maxd(f)
and T: maxd(f) € Z
using Int_ZF_2_1_L8 by auto
with II have abs(f(0)) < maxd(f) + maxd(f) + L
using Int_ZF_2_L15F by simp
with T show thesis using Int_ZF_1_1_14 by simp
qed
moreover from Al A3 II have
VneZ,. abs(f(n)) < 2maxi(f) + L
using Int_ZF_2_1_18 Int_ZF_1_3_L5A Int_ZF_2_L15F
by simp
moreover have VneZ,. abs(f(-n)) < 2maxdé(f) + L
proof
fix n assume neZ,
with A1 A3 have
2-maxd(f) € Z
abs(f(-n)) < 2maxd(f) + abs(f(n))
abs(f(n)) < L
using int_two_three_are_int Int_ZF_2_1_L8 Int_ZF_1_1_L5
PositiveSet_def Int_ZF_2_1_L14 by auto
then show abs(f(-n)) < 2maxd(f) + L
using Int_ZF_2_L15A by blast
qed
ultimately show thesis by (rule Int_ZF_2_L19B)
qed

A slope whose image of the set of positive integers is bounded is a finite
range function.

lemma (in intl) Int_ZF_2_3_L4A:
assumes Al: f€S and A2: IsBounded(f(Z,), IntegerOrder)
shows f € FinRangeFunctions(Z,Z)
proof -
have Ti: Z, C Z using PositiveSet_def by auto
from A1 have T2: f:Z—Z using AlmostHoms_def by simp
from A2 obtain L where Vacf(Z,). abs(a) < L
using Int_ZF_1_3_L20A by auto
with T2 T1 have VneZ,. abs(f(n)) < L
by (rule funcl_1_L15B)

with A1 have VmeZ. abs(f(m)) < 2maxd(f) + L
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using Int_ZF_2_3_L4 by simp

with T2 have f(Z) € Fin(Z)
by (rule Int_ZF_1_3_L20C)

with T2 show f € FinRangeFunctions(Z,Z)
using FinRangeFunctions_def by simp

qed

A slope whose image of the set of positive integers is bounded below is a
finite range function or a positive slope.

lemma (in intl) Int_ZF_2_3_L4B:
assumes f&S and IsBoundedBelow(f(Z,), IntegerOrder)
shows f € FinRangeFunctions(Z,Z) V feS,
using assms Int_ZF_2_3_L2 IsBounded_def Int_ZF_2_3_L4A

by auto

If one slope is not greater then another on positive integers, then they are
almost equal or the difference is a positive slope.

lemma (in int1) Int_ZF_2_3_L4C: assumes Al: feS ge$ and
A2: VneZ,. £(n) < g(n)
shows f~g V g + (-f) € &4
proof -
let h = g + (-f)
from A1 have (-f) € § using Int_ZF_2_1_L12

by simp
with A1 have I: h € § using Int_ZF_2_1_L12C

by simp
moreover have IsBoundedBelow(h(Z,), IntegerOrder)
proof -

from I have
h:Z—7Z and Z,CZ using AlmostHoms_def PositiveSet_def
by auto
moreover from Al A2 have VneZ,. (0, h(n)) € IntegerOrder
using Int_ZF_2_1_L2B PositiveSet_def Int_ZF_1_3_L10A
Int_ZF_2_1_112 Int_ZF_2_1_L12B Int_ZF_2_1_L12A
by simp
ultimately show IsBoundedBelow(h(Z.,), IntegerOrder)
by (rule func_ZF_8_L1)
qed
ultimately have h € FinRangeFunctions(Z,Z) V heSy
using Int_ZF_2_3_L4B by simp
with Al show f~g V g + (-f) € &4
using Int_ZF_2_1_L9C by auto

qed

Positive slopes are arbitrarily large for large enough arguments.

lemma (in int1) Int_ZF_2_3_L5:

assumes Al: fcS, and A2: KeZ
shows INeZ,. Vm. N<m — K < f(m)
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proof -
from Al obtain M where I: MeZ, and II: VneZ, . n+l < f(nM)
using Arthan_L_3_spec by auto
let j = GreaterOf (IntegerOrder,M,K - (minf(f,0..(M-1)) - maxd(f)) -
1)
from A1 I have T1:
minf (£,0..(M-1)) - maxd(f) € Z MeZ
using Int_ZF_2_1_L15 Int_ZF_2_1_L18 Int_ZF_1_1_L5 PositiveSet_def
by auto
with A2 I have T2:
K - (minf(f,0..(M-1)) - maxd(f)) € Z
K - (minf(£f,0..(M-1)) - maxd(f)) - 1 € Z
using Int_ZF_1_1_L5 int_zero_one_are_int by auto
with T1 have III: M < j and
K - (minf(£f,0..(M-1)) - maxd(£f)) - 1 < j
using Int_ZF_1_3_L18 by auto
with A2 T1 T2 have
IV: K < j+1 + (minf(£f,0..(M-1)) - maxd(f))
using int_zero_one_are_int Int_ZF_2_L9C by simp
let N = GreaterOf (IntegerOrder,1, j-M)
from T1 III have T3: j € Z jM e Z
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
then have V: N € Z, and VI: jM < N
using int_zero_one_are_int Int_ZF_1_5_L3 Int_ZF_1_3_L18
by auto
{ fix m
let n = m zdiv M
let X = m zmod M
assume N<m
with VI have j-M < m by (rule Int_order_transitive)
with I IIT have
VII: m = n-M+k
j <n and
VIII: n € Z;, k € 0..(M-1)
using IntDiv_ZF_1_L5 by auto
with II have
j+1<n+1 ntl < f(@M
using int_zero_one_are_int int_ord_transl_inv by auto
then have j + 1 < f(aM)
by (rule Int_order_transitive)
with T1 have
j+1 + (minf(£,0..(M-1)) - maxi(£f)) <
f(n-M) + (minf(£,0..(M-1)) - maxd(f))
using int_ord_transl_inv by simp
with IV have K < f(auM) + (minf(f,0..(M-1)) - maxd(f))
by (rule Int_order_transitive)
moreover from A1 I VIII have
f(n-M) + (minf(£f,0..(M-1))- maxd(f)) < f(n-M+k)
using PositiveSet_def Int_ZF_2_1_L16 by simp
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ultimately have K < f(n-M+k)
by (rule Int_order_transitive)
with VII have K < f(m) by simp
} then have Vm. N<m — X < f(m)
by simp
with V show thesis by auto
qed

Positive slopes are arbitrarily small for small enough arguments. Kind of
dual to Int_ZF_2_3_L5.

shows INeZ,. Vm. N<m — f(-m) < K
proof -

from A1 have Ti1: abs(f(0)) + maxd(f) € Z
using Int_ZF_2_1_L8 by auto

with A2 have abs(£f(0)) + maxd(f) - K € Z
using Int_ZF_1_1_L5 by simp

with A1 have
dNeZ,. Vm. N<m — abs(£(0)) + maxd(f) - K < f(m)
using Int_ZF_2_3_L5 by simp

lemma (in intl) Int_ZF_2_3_L5A: assumes Al: feS, and A2: KeZ

then obtain N where I: NeZ, and II:
Vm. N<m — abs(£f(0)) + maxdé(f) - K < £(m)
by auto
{ fix m assume A3: N<m
with A1 have
f(-m) < abs(£f(0)) + maxd(f) - f(m)
using Int_ZF_2_L1A Int_ZF_2_1_L14 by simp
moreover
from II T1 A3 have abs(f(0)) + maxd(f) - f(m) <
(abs(£f(0)) + maxd(f)) -(abs(£f(0)) + maxd(f) - K)
using Int_ZF_2_L10 int_ord_transl_inv by simp
with A2 T1 have abs(£f(0)) + maxd(f) - f(m) < K
using Int_ZF_1_2_L3 by simp
ultimately have f(-m) < K
by (rule Int_order_transitive)
} then have Vm. N<m — f(-m) < X
by simp
with I show thesis by auto
qed

A special case of Int_ZF_2_3_L5 where K = 1.

corollary (in int1) Int_ZF_2_3_L6: assumes f&S,
shows INeZ,. Vm. N<m — f(m) € Z,
using assms int_zero_one_are_int Int_ZF_2_3_L5 Int_ZF_1_5_L3

by simp

A special case of Int_ZF_2_3_L5 where m = N.
corollary (in int1) Int_ZF_2_3_L6A: assumes feS, and KeZ

shows INeZ,. K < £(N)
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proof -
from assms have INeZ,. Vm. N<m — K < f(m)
using Int_ZF_2_3_L5 by simp
then obtain N where I: N € Z; and II: Vm. N<m — XK < f(m)
by auto
then show thesis using PositiveSet_def int_ord_is_refl refl_def
by auto
qed

If values of a slope are not bounded above, then the slope is positive.

lemma (in intl1) Int_ZF_2_3_L7: assumes Al: feS
and A2: VKeZ. dneZ,. K < f(n)
shows f € S,
proof -
{ fix X assume KeZ
with A2 obtain n where ncZ, K < f(n)
by auto
moreover from Al have Z, C Z f:7Z—-7Z
using PositiveSet_def AlmostHoms_def by auto
ultimately have Im € £(Z,). K < m
using funci_1_L15D by auto
} then have VKeZ. dm € £(Z,). X < m by simp
with Al show f € S; using Int_ZF_4_L9 Int_ZF_2_3_L2
by auto
qed

For unbounded slope f either f €S, of —f €8,.

theorem (in intl) Int_ZF_2_3_L8:
assumes Al: feS and A2: f ¢ FinRangeFunctions(Z,Z)
shows (f € §;) Xor ((-f) € &)
proof -
have Ti: Z, C Z using PositiveSet_def by auto
from Al have T2: f:Z—Z using AlmostHoms_def by simp
then have I: f(Z,) C Z using funcl_1_L6 by auto
from A1 A2 have f € S V (-f) € Sy
using Int_ZF_2_3_L2 Int_ZF_2_3_L3 IsBounded_def Int_ZF_2_3_L4A
by blast
moreover have - (f € S, A (-f) € S§3)
proof -
{ assume A3: f € S, and Ad: (-f) € S,
from A3 obtain N1 where
I: N1eZ, and II: Vm. Ni<m — f(m) € Z,
using Int_ZF_2_3_L6 by auto
from A4 obtain N2 where
III: N2eZ, and IV: Vm. N2<m — (-f)(m) € Z.
using Int_ZF_2_3_L6 by auto
let N = GreaterOf (IntegerOrder,N1,N2)
from I III have N1 < N N2 < N
using PositiveSet_def Int_ZF_1_3_L18 by auto
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with A1 IT IV have
f(N) € 2, (-£YMN) € Z, (-£)(N) = -(£(N))
using Int_ZF_2_L1A PositiveSet_def Int_ZF_2_1_L12A
by auto
then have False using Int_ZF_1_5_L8 by simp
} thus thesis by auto
qed
ultimately show (f € S;) Xor ((-f) € S3)
using Xor_def by simp
qed

The sum of positive slopes is a positive slope.

theorem (in intl) sum_of_pos_sls_is_pos_sl:
assumes Al: f € §§ g e S,
shows f+g € S
proof -
{ fix K assume KeZ
with A1 have INeZ,. Vm. N<m — K < f(m)
using Int_ZF_2_3_L5 by simp
then obtain N where I: NeZ, and II: Vm. N<m — K < f(m)
by auto
from A1 have IMeZ,. Vm. M<m — 0 < g(m)
using int_zero_one_are_int Int_ZF_2_3_L5 by simp
then obtain M where III: MeZ, and IV: Vm. M<m — 0 < g(m)
by auto
let L = GreaterOf (IntegerOrder,N,M)
from I IITI have V: L € Z, Z, C Z
using Greater0f_def PositiveSet_def by auto
moreover from A1 V have (f+g) (L) = £(L) + g(L)
using Int_ZF_2_1_L12B by auto
moreover from I II III IV have K < £(L) + g(L)
using PositiveSet_def Int_ZF_1_3_L18 Int_ZF_2_L15F

by simp

ultimately have L € Z, K < (f+g)(L)
by auto

then have dn €Z,. K < (f+g) (n)
by auto

} with A1 show f+g € S,
using Int_ZF_2_1_L12C Int_ZF_2_3_L7 by simp
qed

The composition of positive slopes is a positive slope.

theorem (in intl) comp_of_pos_sls_is_pos_sl:
assumes Al: f € S; g € S,
shows fog € S,
proof -
{ fix K assume KeZ
with A1 have INeZ, . Vm. N<m — K < f(m)
using Int_ZF_2_3_L5 by simp
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then obtain N where NeZ, and I: Vm. N<m — K < f(m)
by auto
with A1 have IMeZ,. N < g(M)
using PositiveSet_def Int_ZF_2_3_L6A by simp
then obtain M where MeZ, N < g(M)
by auto
with A1 I have IMeZ,. K < (fog) (M)
using PositiveSet_def Int_ZF_2_1_L10
by auto

} with A1 show fog € S,
using Int_ZF_2_1_L11 Int_ZF_2_3_L7
by simp
qed

As

lope equivalent to a positive one is positive.

lemma (in int1) Int_ZF_2_3_L9:

assumes Al: f € S; and A2: (f,g) € AlEqRel shows g € Sy
proof -
from A2 have T: g€§ and JLeZ. VmeZ. abs(f(m)-g(m)) < L

{

}

using Int_ZF_2_1_L9A by auto
then obtain L where
I: LeZ and II: VmeZ. abs(f(m)-gm)) < L
by auto
fix K assume A3: KeZ
with I have K+L € Z
using Int_ZF_1_1_L5 by simp
with Al obtain M where III: McZ, and IV: K+L < £(M)
using Int_ZF_2_3_L6A by auto
with A1 A3 I have K < f(M)-L
using PositiveSet_def Int_ZF_2_1_L2B Int_ZF_2_L9B
by simp
moreover from A1 T II III have
fMD-L < g
using PositiveSet_def Int_ZF_2_1_L2B Int_triangle_ineq?2
by simp
ultimately have K < g(M)
by (rule Int_order_transitive)
with IIT have dneZ_ . K < g(n)
by auto
with T show g € S
using Int_ZF_2_3_L7 by simp

qed

The set of positive slopes is saturated with respect to the relation of equiv-
alence of slopes.

lemma (in int1) pos_slopes_saturated: shows IsSaturated(AlEqRel,S;)
proof -
have

equiv(S,A1EqRel)
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AlEqRel € S x S
using Int_ZF_2_1_L9B by auto
moreover have S, C S by auto
moreover have VfeS,. VgeS. (f,g) € AlEqRel — g € Sy
using Int_ZF_2_3_L9 by blast
ultimately show IsSaturated(AlEqRel,S.y)
by (rule EquivClass_3_L3)

qed

A technical lemma involving a projection of the set of positive slopes and a
logical epression with exclusive or.

lemma (in int1) Int_ZF_2_3_L10:
assumes Al: fe§ geS
and A2: R = {AlEqRel{s}. s&eS.}
and A3: (feS;) Xor (gesy)
shows (AlEqRel{f} € R) Xor (AlEqRel{g} € R)
proof -
from A1 A2 A3 have
equiv(S,AlEqRel)
IsSaturated(AlEqRel,S ;)
Sy CS
feS§ ges
R = {AlEqRel{s}. seS;}
(feS4) Xor (gesSy)
using pos_slopes_saturated Int_ZF_2_1_L9B by auto
then show thesis by (rule EquivClass_3_L7)
qed

Identity function is a positive slope.

lemma (in int1) Int_ZF_2_3_L11: shows id(Z) € S
proof -
let £ = id(Z)
{ fix K assume KeZ
then obtain n where T: neZ, and K<n
using Int_ZF_1_5_L9 by auto
moreover from T have f(n) = n
using PositiveSet_def by simp
ultimately have neZ, and K<f(n)
by auto
then have dneZ,. K<f(n) by auto
} then show f € S,
using Int_ZF_2_1_L17 Int_ZF_2_3_L7 by simp
qed

The identity function is not almost equal to any bounded function.

lemma (in int1) Int_ZF_2_3_L12: assumes Al: f € FinRangeFunctions(Z,Z)
shows —(id(Z) ~ f£)

proof -
{ from Al have id(Z) € S
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using Int_ZF_2_3_L11 by simp
moreover assume (id(Z),f) € AlEqRel
ultimately have f € S,
by (rule Int_ZF_2_3_L9)
with A1 have False using Int_ZF_2_3_L1B
by simp
} then show —(id(Z) ~ f) by auto

qed

38.2 Inverting slopes

Not every slope is a 1:1 function. However, we can still invert slopes in the
sense that if f is a slope, then we can find a slope g such that f o g is almost
equal to the identity function. The goal of this this section is to establish
this fact for positive slopes.

If f is a positive slope, then for every positive integer p the set {n € Z; :
p < f(n)} is a nonempty subset of positive integers. Recall that f~!(p) is
the notation for the smallest element of this set.

lemma (in intl) Int_ZF_2_4_L1:
assumes Al: f € S, and A2: peZ, and A3: A = {neZ,. p < f(n)}
shows
A g Z+
A#£0
£71(p) € A
Vmehd. £71(p) < m
proof -
from A3 show I: A C Z, by auto
from A1 A2 have dneZ_ .. p < f(n)
using PositiveSet_def Int_ZF_2_3_L6A by simp
with A3 show II: A # 0 by auto
from A3 I IT show
£71(p) € A
VmeA. f_l(p) <m
using Int_ZF_1_5_L1C by auto
qed

If f is a positive slope and p is a positive integer p, then f~!(p) (defined as
the minimum of the set {n € Z; : p < f(n)} ) is a (well defined) positive
integer.

lemma (in intl) Int_ZF_2_4_L2:
assumes f € S, and peZ,
shows
£ (p) € Z;
p < £ 1)
using assms Int_ZF_2_4_L1 by auto

If f is a positive slope and p is a positive integer such that n < f(p), then

454



f~tn) <p.
lemma (in intl) Int_ZF_2_4_L3:

assumes f € S, and _méZ_+ pPEZ, and m < f(p)
shows f1(m) < p

using assms Int_ZF_2_4_L1 by simp

An upper bound f(f~!(m) — 1) for positive slopes.

lemma (in intl) Int_ZF_2_4_14:
assumes Al: £ € S, and A2: m€Z, and A3: £ '(m)-1 € Z,
shows f(f !(m)-1) < m f(E1@-1) # m
proof -
from A1 A2 have T: £ !(m) € Z using Int_ZF_2_4_L2 PositiveSet_def
by simp
from A1 A3 have f:Z—7Z and f!(m)-1 € Z
using Int_ZF_2_3_L1 PositiveSet_def by auto
with A1 A2 have T1: f(f '(m)-1) € Z neZ
using apply_funtype PositiveSet_def by auto
{ assume m < f(f 1(m)-1)
with A1 A2 A3 have £~ '(m) < £ '(m)-1
by (rule Int_ZF_2_4_L3)
with T have False using Int_ZF_1_2_L3AA
by simp
} then have I: —(m < £(£7'(m)-1)) by auto
with T1 show f(f '(m)-1) < m
by (rule Int_ZF_2_L19)
from T1 I show f(f7'(m)-1) # m
by (rule Int_ZF_2_L19)
qed

The (candidate for) the inverse of a positive slope is nondecreasing.

lemma (in intl) Int_ZF_2_4_L5:
assumes Al: f € S; and A2: meZ, and A3: m<n
shows £~ !(m) < £ !(n)
proof -
from A2 A3 have T: n € Z, using Int_ZF_1_5_L7 by blast
with A1 have n < f(f '(n)) using Int_ZF_2_4_L2
by simp
with A3 have m < f(f '(n)) by (rule Int_order_transitive)
with A1 A2 T show £ '1(m) < £~ 1(n)
using Int_ZF_2_4_L2 Int_ZF_2_4_L3 by simp
qed

If f=1(m) is positive and n is a positive integer, then, then f~'(m +n) — 1
is positive.

lemma (in int1) Int_ZF_2_4_L6:
assumes Al: f € S; and A2: meZ, neZ,; and
A3: fl1(m)-1 € Z,

shows f~!(m+n)-1 € Z,
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proof -
from A1 A2 have £ '(m)-1 < f '(m+n) - 1
using PositiveSet_def Int_ZF_1_5_L7A Int_ZF_2_4_L2
Int_ZF_2_4_L5 int_zero_one_are_int Int_ZF_1_1_L4
int_ord_transl_inv by simp
with A3 show f !(m+n)-1 € Z, using Int_ZF_1_5_L7
by blast
qed

If f is a slope, then f(f~'(m+n)— f~1(m)— f~1(n)) is uniformly bounded
above and below. Will it be the messiest IsarMathLib proof ever? Only time
will tell.

A2: VmeZ,. £ 1(m)-1 € Z,
shows
JUEZ. VmeZ, . VneZ,. £(f 1(mm)-f1@m-£f"1(n)) < U
INEZ. VmeZ, . VneZ,. N < £(f ' (m+n)-£ ' (m)-£ 1 (n))
proof -
from A1 have dLeZ. VreZ. f(r) < f(r-1) + L
using Int_ZF_2_1_1L28 by simp
then obtain L where
I: LeZ and II: VreZ. f(r) < f(r-1) + L
by auto
from A1 have
dMeZ. VreZ NpeZ .NqeZ. f(r-p-q) < £(r)-f(p)-f(q)+M
JKeEZ. VreZ NpeZ NqeZ. £(x)-f(p)-f(q)+K < f(r-p-q)
using Int_ZF_2_1_L30 by auto
then obtain M K where III: MeZ and
IV: VreZ VpeZ NqeZ. f(r-p-q) < £(r)-f(p)-f(q)+M
and
V: KEZ and VI: VreZ .VpeZ . VqeZ. £(r)-f(p)-f(q)+K < f(r-p-q)
by auto
from I III V have
LtMe Z (-L) -L+KeZ
using Int_ZF_1_1_14 Int_ZF_1_1_L5 by auto
moreover
{ fixmn
assume A3: meZ, neZ.
have f(f !(m+n)-f~1(m)-£"1(n)) < L+M A
(-L)-L+K < £ (mtn) - (m) -1 ()
proof -
let r = £~ !(m+n)
let p = £~ 1(m)
let ¢ = £71(n)
from A1 A3 have T1:
pE€EZ, qeZy relZ,
using Int_ZF_2_4_ L2 pos_int_closed_add_unfolded by auto
with A3 have T2:
meZ ne€eZ peZ q€Z rel

lemma (in int1) Int_ZF_2_4_1L7: assumes Al: f € S, and
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using PositiveSet_def by auto
from A2 A3 have T3:
r-1 € Z+ p_l € Z+ q_l S Z+
using pos_int_closed_add_unfolded by auto
from A1 A3 have VII:
m+n < f(r)
m < £(p)
n < £(q)
using Int_ZF_2_4_L2 pos_int_closed_add_unfolded by auto
from A1 A3 T3 have VIII:
f(r-1) m+n
f(p-1) m
f(g-1) < n
using pos_int_closed_add_unfolded Int_ZF_2_4_L4 by auto
have f(r-p-q) < L+M
proof -
from IV T2 have f(r-p-q) < f(r)-f(p)-f(q)+M
by simp
moreover
from I II T2 VIII have
f(r) < f(r-1) + L
f(r-1) + L < m+n+L
using int_ord_transl_inv by auto
then have f(r) < m+n+L
by (rule Int_order_transitive)
with VII have f(r) - £(p) < m+n+L-m
using int_ineq_add_sides by simp
with I T2 VII have f(r) - £(p) - £(q) < n+L-n
using Int_ZF_1_2_L9 int_ineq_add_sides by simp
with I III T2 have £(r) - £(p) - £(g) + M < L+M
using Int_ZF_1_2_L3 int_ord_transl_inv by simp
ultimately show f(r-p-q) < L+M
by (rule Int_order_transitive)
qed
moreover have (-L)-L +K < f(r-p-q)
proof -
from I II T2 VIII have
f(p) < £(p-1) + L
f(p-1) + L < m +L
using int_ord_transl_inv by auto
then have f(p) < m +L
by (rule Int_order_transitive)
with VII have m+n -(m+L) < f(r) - f(p)
using int_ineq_add_sides by simp
with I T2 have n - L < £(r) - £(p)
using Int_ZF_1_2_L9 by simp
moreover
from I II T2 VIII have
f(@) < £(q-1) + L

<
<
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f(g-1) + L < n +L
using int_ord_transl_inv by auto
then have f(q) < n +L
by (rule Int_order_transitive)
ultimately have
n-L- (o+l) < £(r) - £(p) - £(q)
using int_ineq_add_sides by simp
with I V T2 have
(-L)-L +K < f(r) - £(p) - f(q) + K
using Int_ZF_1_2_L3 int_ord_transl_inv by simp
moreover from VI T2 have
f(r) - £(p) - £(q) + K < £(r-p-q)
by simp
ultimately show (-L)-L +K < f(r-p-q)
by (rule Int_order_transitive)
ged
ultimately show
f(r-p-q@) < L+M A
(-L)-L+K < £ '(m+n) -1 (m)-£ 1 (n))
by simp
ged
}
ultimately show
JUEZ. VmeZ,. VneZ,. £(f M(mtn)-f 1(m-£"1(n)) < U
ANEZ. VmeZ, . VneZ,. N < f(f 1(m+n)-f 1 (m)-f~1(n))
by auto
qed

The expression f~'(m+n) — f~1(m) — f~(n) is uniformly bounded for all
pairs (m,n) € Z;xZ,. Recall that in the int1 context (£,x) is defined so

that (f, {m,n)) = f~(m +n) — f~1(m) — f~1(n).

lemma (in int1) Int_ZF_2_4_18: assumes Al: f € S, and
A2: VmeZ,. £ '(m)-1 € Z,
shows M. VxeZ xZ,. abs(e(f,x)) < M
proof -
from A1 A2 have
JUEZ. VmeZ, . VneZ, . £ '(mm)-f ' (m)-f"'(n)) < U
INEZ. YmeZ,. VneZ,. N < £(f ' (m+n)-£ ' (m)-£ ' (n))
using Int_ZF_2_4_L7 by auto
then obtain U N where I:
VmeZ,. VneZ,. £ 1(mtn)-f 1 (m-£"1t () < U
VmeZ,. VneZ,. N < f(f (m+n)-f 1 (m)-£f~1(n))
by auto
have Z,xZ, # 0 using int_one_two_are_pos by auto
moreover from Al have f: Z—Z
using AlmostHoms_def by simp
moreover from A1l have
VacZ.3beZ, . Vx. b<x — a < f(x)
using Int_ZF_2_3_L5 by simp
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moreover from A1l have
VacZ.3beZ, Vy. b<y — f(-y) < a
using Int_ZF_2_3_L5A by simp
moreover have
VXEZ( XZ . e(f,x) € Z N £(e(£,x)) < U AN < f(e(£f,x))
proof -
{ fix x assume A3: x € Z, xXZ,
let m = fst(x)
let n = snd(x)
from A3 have T: m € Z; n € Z, mn+tn € Z,
using pos_int_closed_add_unfolded by auto
with A1 have
flm+n) € Z f'(m) € Z £ '(n) € Z
using Int_ZF_2_4_L2 PositiveSet_def by auto
with I T have
e(f,x) € Z N £(e(£,x)) < U AN < f(e(£f,x))
using Int_ZF_1_1_L5 by auto
} thus thesis by simp
qed
ultimately show JIM.VxeZ_ xZ,. abs(e(f,x)) < M
by (rule Int_ZF_1_6_L4)
qed

The (candidate for) inverse of a positive slope is a (well defined) function
on Z+.

lemma (in int1) Int_ZF_2_4_L9:

assumes Al: f € S, and A2: g = {(p,£71(p)). peZ,}
shows

g : Z+ *)Z_;,_
g : Z+—)Z
proof -

from A1 have
VPEZJ’_ fil(p) S Z+
using Int_ZF_2_4_L2 PositiveSet_def by auto
with A2 show
g: Z,—»Z, and g : Z,—>Z
using ZF_fun_from_total by auto
qed

What are the values of the (candidate for) the inverse of a positive slope?

lemma (in int1) Int_ZF_2_4_L10:
assumes Al: f € S, and A2: g = {(p,£'(p)). p€EZ,} and A3: pcZ,
shows g(p) = £ 1(p)
proof -
from Al A2 have g : Z,—7Z, using Int_ZF_2_4_L9 by simp
with A2 A3 show g(p) = £ !(p) using ZF_fun_from_tot_val by simp

qed
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The (candidate for) the inverse of a positive slope is a slope.

A2: VmeZ,. £7'(m)-1 € Z, and
A3: g = {(p,£71(p)). peZ,}
shows 0ddExtension(Z,IntegerAddition,IntegerOrder,g) € S
proof -
from A1 A2 have JL. VxeZ xZ,. abs(e(f,x)) < L
using Int_ZF_2_4_L8 by simp
then obtain L where I: VxeZ XZ,. abs(e(f,x)) <L
by auto
from Al A3 have g : Z,—Z using Int_ZF_2_4_L9
by simp
moreover have VmeZ,. VneZ,. abs(i(g,m,n)) < L
proof-
{fixmn
assume A4: meZ, neZ.
then have (m,n) € Z,xZ, by simp
with I have abs(e(f,(m,n))) < L by simp
moreover have ¢(f,(m,n)) = £~ !(m+n) - £ 1(m) - £~ !(n)
by simp
moreover from Al A3 A4 have
fl(m+n) = glm+n) £ 1(m) = gm) £ 1(n) = gln)
using pos_int_closed_add_unfolded Int_ZF_2_4_L10 by auto
ultimately have abs(d(g,m,n)) < L by simp
} thus VmeZ,. VneZ,. abs(6(g,m,n)) < L by simp
qed
ultimately show thesis by (rule Int_ZF_2_1_L24)
qed

lemma (in int1) Int_ZF_2_4_L11: assumes Al: f € S, and

Every positive slope that is at least 2 on positive integers almost has an
inverse.

lemma (in intl) Int_ZF_2_4_L12: assumes Al: f € S; and
A2: VmeZ,. £ '(m)-1 € Z,
shows JheS. foh ~ id(Z)
proof -
let g = {(p,£71(p)). peZ,}
let h = OddExtension(Z,IntegerAddition,IntegerOrder,g)
from A1 have
dMeZ. VneZ. f(n) < f(n-1) + M
using Int_ZF_2_1_128 by simp
then obtain M where
I: MeZ and II: VneZ. f(n) < f(n-1) + M
by auto
from A1 A2 have T: h € §
using Int_ZF_2_4_L11 by simp
moreover have foh ~ id(Z)
proof -
from A1 T have foh € S using Int_ZF_2_1_L11

by simp
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moreover note I
moreover
{ fix m assume A3: meZ_
with A1 have f'(m) € Z
using Int_ZF_2_4_L2 PositiveSet_def by simp
with II have f(f7!(m)) < f(f !(m)-1) + M
by simp
moreover from A1 A2 I A3 have f(f !(m)-1) + M < m+M
using Int_ZF_2_4_L4 int_ord_transl_inv by simp
ultimately have f(f !(m)) < m+M
by (rule Int_order_transitive)
moreover from Al A3 have m < £(f !(m))
using Int_ZF_2_4_L2 by simp
moreover from A1 A2 T A3 have f(f '(m)) = (foh) (m)
using Int_ZF_2_4_19 Int_ZF_1_5_L11
Int_ZF_2_4_1L10 PositiveSet_def Int_ZF_2_1_L10
by simp
ultimately have m < (foh) (m) A (foh)(m) < m+M
by simp }
ultimately show foh ~ id(Z) using Int_ZF_2_1_L32
by simp
qed
ultimately show JheS. foh ~ id(Z)
by auto
qed
Int_ZF_2_4_112 is almost what we need, except that it has an assumption

that the values of the slope that we get the inverse for are not smaller than 2
on positive integers. The Arthan’s proof of Theorem 11 has a mistake where
he says "note that for all but finitely many m,n € N p = g(m) and ¢ = g(n)
are both positive”. Of course there may be infinitely many pairs (m,n) such
that p, g are not both positive. This is however easy to workaround: we just
modify the slope by adding a constant so that the slope is large enough on
positive integers and then look for the inverse.

theorem (in intl) pos_slope_has_inv: assumes Al: f € &
shows dge§. f~g A (FheS. goh ~ id(Z))
proof -
from A1 have f: Z—~Z 1€Z 2 € Z
using AlmostHoms_def int_zero_one_are_int int_two_three_are_int
by auto
moreover from Al have
VacZ.3beZ, Vx. b<x — a < f(x)
using Int_ZF_2_3_L5 by simp
ultimately have
JceZ. 2 < Minimum(IntegerOrder,{ncZ,. 1 < f(n)+c})
by (rule Int_ZF_1_6_L7)
then obtain ¢ where I: c€Z and
II: 2 < Minimum(IntegerOrder,{n€Z,. 1 < f(n)+c})
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by auto
let g = {(m,f(m)+c). meZ}
from A1 I have III: ge§ and IV: f~g using Int_ZF_2_1_L33
by auto
from IV have (f,g) € AlEqRel by simp
with A1 have T: g € S; by (rule Int_ZF_2_3_L9)
moreover have VmeZ,. g '(m)-1 € Z,
proof
fix m assume A2: meZ,
from A1 I II have V: 2 < g 1(1)
using Int_ZF_2_1_133 PositiveSet_def by simp
moreover from A2 T have g~ '(1) < g~ !'(m)
using Int_ZF_1_5_L3 int_one_two_are_pos Int_ZF_2_4_L5
by simp
ultimately have 2 < g=!(m)
by (rule Int_order_transitive)
then have 2-1 < g~ 1(m)-1
using int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv
by simp
then show g '(m)-1 € Z,
using int_zero_one_are_int Int_ZF_1_2_L3 Int_ZF_1_5_L3
by simp
qed
ultimately have JheS. goh ~ id(Z)
by (rule Int_ZF_2_4_L12)
with III IV show thesis by auto
qed

38.3 Completeness

In this section we consider properties of slopes that are needed for the proof
of completeness of real numbers constructred in Real_ZF_1.thy. In particular
we consider properties of embedding of integers into the set of slopes by the
mapping m — m® , where m® is defined by m®(n) = m - n.

S

If m is an integer, then m* is a slope whose value is m - n for every integer.

lemma (in intl) Int_ZF_2_5_L1: assumes Al: m € Z
shows
Vn € Z. @) () = mn
n® €8
proof -
from A1 have I: n®:Z—Z
using Int_ZF_1_1_L5 ZF_fun_from_total by simp
then show II: Vn € Z. (n°)(n) = mn using ZF_fun_from_tot_val
by simp
{ fixnk
assume A2: neZ keZ
with A1 have T: mn € Z mk € Z
using Int_ZF_1_1_L5 by auto
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from A1 A2 II T have 6(@”,n,k) = mk - mk
using Int_ZF_1_1_L5 Int_ZF_1_1_L1 Int_ZF_1_2_L3
by simp
also from T have ... = 0 using Int_ZF_1_1_14
by simp
finally have §(m®,n,k) = 0 by simp
then have abs(d(m®,n,k)) < 0
using Int_ZF_2_L18 int_zero_one_are_int int_ord_is_refl refl_def

by simp
} then have VneZ.VkeZ. abs(d(m®,n,k)) < 0
by simp
with I show m® € S by (rule Int_ZF_2_1_L5)

qed

For any slope f there is an integer m such that there is some slope g that
is almost equal to m® and dominates f in the sense that f < g on positive
integers (which implies that either g is almost equal to f or g— f is a positive
slope. This will be used in Real_ZF_1.thy to show that for any real number
there is an integer that (whose real embedding) is greater or equal.

lemma (in intl) Int_ZF_2_5_L2: assumes Al: f € S
shows ImeZ. JgeS. m~g A (f~g V g+(-f) € S.))
proof -
from A1 have
dm k. méZ N keZ N (VpeZ. abs(f(p)) < m-abs(p)+k)
using Arthan _Lem_8 by simp
then obtain m k where I: meZ and II: keZ and
III: VpeZ. abs(£f(p)) < m-abs(p)+k
by auto
let g = {(n,m%(n) +k). ncZ}
from I have IV: m® € S using Int_ZF_2_5_L1 by simp
with II have V: g€S and VI: m®~g using Int_ZF_2_1_L33
by auto
{ fix n assume A2: neZ,
with A1 have f(n) € Z
using Int_ZF_2_1_L2B PositiveSet_def by simp
then have f(n) < abs(f(n)) using Int_ZF_2_L19C
by simp
moreover
from III A2 have abs(f(n)) < mabs(n) + k
using PositiveSet_def by simp
with A2 have abs(f(n)) < mn+k
using Int_ZF_1_5_L4A by simp
ultimately have f(n) < mn+k
by (rule Int_order_transitive)
moreover
from II IV A2 have g(n) = (m%) (n)+k
using Int_ZF_2_1_L33 PositiveSet_def by simp

with I A2 have g(n) = mn+k
using Int_ZF_2_5_L1 PositiveSet_def by simp
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ultimately have f(n) < g(n)
by simp
} then have VneZ,. f(n) < g(n)
by simp
with A1 V have f~g V g + (-f) € &4
using Int_ZF_2_3_L4C by simp

with I V VI show thesis by auto
qed

The negative of an integer embeds in slopes as a negative of the orgiginal
embedding.

lemma (in int1) Int_ZF_2_5_L3: assumes Al: m € Z
shows (-m)° = -(n®)
proof -
from A1 have (-m)°: Z—Z and (-@%)): Z—Z
using Int_ZF_1_1_L4 Int_ZF_2_5_L1 AlmostHoms_def Int_ZF_2_1_L12
by auto
moreover have VneZ. ((-m)%)(n) = (-(m®)) (n)
proof
fix n assume A2: ncZ
with A1 have
((-m*)@ = (-m)=n
(-(@%)) (n) = -(mn)
using Int_ZF_1_1 14 Int_ZF_2_5_L1 Int_ZF_2_1_L12A
by auto
with A1 A2 show ((-m)®) (@) = (-(@%)) (n)
using Int_ZF_1_1_L5 by simp
qed
ultimately show (-m)° = -(m°) using fun_extension_iff
by simp
qed

The sum of embeddings is the embeding of the sum.

lemma (in intl) Int_ZF_2_5_L3A: assumes Al: meZ keZ
shows (m%) + (k%) = ((m+k)*)
proof -
from A1l have T1l: m+k € Z using Int_ZF_1_1_L5
by simp
with A1 have T2:
@) eSS &% €8
(m+k)® € §
) + &%) €S
using Int_ZF_2_5_L1 Int_ZF_2_1_L12C by auto
then have
%) + &%) : Z~Z
(m+k)® : Z—~Z
using AlmostHoms_def by auto
moreover have VneZ. ((m®) + (k%)) (n) = ((m+k)®) (n)
proof
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fix n assume A2: neZ
with A1 T1 T2 have (@%) + (&%))(n) = (mw+k)n
using Int_ZF_2_1_L12B Int_ZF_2_5_L1 Int_ZF_1_1_L1
by simp
also from T1 A2 have ... = ((m+k)®) (n)
using Int_ZF_2_5_L1 by simp
finally show ((m®) + (k%)) (@) = ((m+k)®) (n)
by simp
qed
ultimately show (m%) + (¥°) = ((m+k)?)
using fun_extension_iff by simp
qed

The composition of embeddings is the embeding of the product.
lemma (in intl) Int_ZF_2_5_L3B: assumes Al: meZ keZ

shows (m°) o (k%) = ((mk)*)
proof -
from A1 have T1: mk € Z using Int_ZF_1_1_L5
by simp
with A1 have T2:
@) eS8 &% €S8
mk)® €8
@) o &%) € S
using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto
then have
%) o &%) : Z~Z
xS : Z-Z
using AlmostHoms_def by auto
moreover have VneZ. ((n®) o (k%)) (n) = ((mk)®) (n)
proof
fix n assume A2: neZ
with A1 T2 have
(@) o &)@ = (%) (kn)
using Int_ZF_2_1_L10 Int_ZF_2_5_L1 by simp
moreover
from A1 A2 have kn € Z using Int_ZF_1_1_L5
by simp
with A1 A2 have (n°)(kn) = mkn
using Int_ZF_2_5_L1 Int_ZF_1_1_L7 by simp
ultimately have ((m®) o (k%)) (n) = mkn
by simp
also from T1 A2 have mkn = ((mk)®) (n)
using Int_ZF_2_5_L1 by simp
finally show ((n°®) o (k%)) (@) = ((mk)®)(n)
by simp
qed
ultimately show (@%) o (k¥°) = ((mk)%)
using fun_extension_iff by simp
qed
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FEmbedding integers in slopes preserves order.

lemma (in intl) Int_ZF_2_5_L4: assumes Al: mn<n
shows (m°) ~ (%) Vv @)+(-@%)) € S,
proof -
from A1 have m° € S and n® € S
using Int_ZF_2_L1A Int_ZF_2_5_L1 by auto
moreover from Al have VkeZ, . @) (k) < @) ()
using Int_ZF_1_3_L13B Int_ZF_2_L1A PositiveSet_def Int_ZF_2_5_L1
by simp
ultimately show thesis using Int_ZF_2_3_L4C
by simp
qed

We aim at showing that m +— m?® is an injection modulo the relation of

almost equality. To do that we first show that if m® has finite range, then
m = 0.

lemma (in int1) Int_ZF_2_5_L5:
assumes meZ and m° € FinRangeFunctions(Z,Z)
shows m=0
using assms FinRangeFunctions_def Int_ZF_2_5_L1 AlmostHoms_def

func_imagedef Int_ZF_1_6_L8 by simp

Embeddings of two integers are almost equal only if the integers are equal.

lemma (in intl) Int_ZF_2_5_L6:
assumes Al: meZ keZ and A2: () ~ (k%)
shows m=k
proof -
from A1 have T: m-k € Z using Int_ZF_1_1_L5 by simp
from A1 have (-(k%)) = ((-k)¥)
using Int_ZF_2_5_L3 by simp
then have m® + (-(&x%)) = %) + ((-k)*)
by simp
with A1 have m® + (-(¥%)) = ((m-k)*)
using Int_ZF_1_1_L4 Int_ZF_2_5_L3A by simp
moreover from Al A2 have m® + (-(k%)) € FinRangeFunctions(Z,Z)
using Int_ZF_2_5_L1 Int_ZF_2_1_L9D by simp

ultimately have (m-k)° € FinRangeFunctions(Z,Z)

by simp
with T have m-k = 0 using Int_ZF_2_5_L5
by simp
with Al show m=k by (rule Int_ZF_1_L15)
qed

Embedding of 1 is the identity slope and embedding of zero is a finite range
function.

lemma (in int1) Int_ZF_2_5_L7: shows
1% = id(Z)
0° € FinRangeFunctions(Z,Z)
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proof -
have id(Z) = {(x,x). x€Z}
using id_def by blast
then show 1° = id(Z) using Int_ZF_1_1_L4 by simp
have {0°(n). neZ} = {0O-n. ncZ}
using int_zero_one_are_int Int_ZF_2_5_L1 by simp
also have ... = {0} using Int_ZF_1_1_L4 int_not_empty
by simp
finally have {0°(n). ncZ} = {0} by simp
then have {0°(n). n€Z} € Fin(Z)
using int_zero_one_are_int Finitel L16 by simp
moreover have 0°: Z—Z
using int_zero_one_are_int Int_ZF_2_5_L1 AlmostHoms_def
by simp
ultimately show 0° € FinRangeFunctions(Z,Z)
using Finitel_L19 by simp
qed

A somewhat technical condition for a embedding of an integer to be ”less or
equal” (in the sense apriopriate for slopes) than the composition of a slope
and another integer (embedding).

lemma (in intl) Int_ZF_2_5_L8:
assumes Al: f € S and A2: N € Z M € Z and
A3: VneZ,.. Mn < £(N-n)
shows M% ~ fo(N¥) V (fo(N¥)) + (-(M%)) € Sy
proof -
from A1 A2 have M° € § fo(N°) € S
using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto
moreover from A1 A2 A3 have VneZ,. (M%) (n) < (fo(N9)) (n)
using Int_ZF_2_5_L1 PositiveSet_def Int_ZF_2_1_L10
by simp
ultimately show thesis using Int_ZF_2_3_L4C
by simp
qed

Another technical condition for the composition of a slope and an integer
(embedding) to be "less or equal” (in the sense apriopriate for slopes) than
embedding of another integer.

lemma (in int1) Int_ZF_2_5_L9:
assumes Al: f € S and A2: N € Z M € Z and
A3: VneZ,. £(Nan) < Mn
shows fo(N%) ~ (M%) v (M%) + (-(fo(¥®))) € S,
proof -
from A1 A2 have fo(N°) ¢ S M° € S
using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto
moreover from A1 A2 A3 have VncZ,. (fo(N®))(n) < (M%) (n)
using Int_ZF_2_5_L1 PositiveSet_def Int_ZF_2_1_L10
by simp
ultimately show thesis using Int_ZF_2_3_L4C
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by simp
qed

end
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39 Real ZF.thy

theory Real_ZF imports Int_ZF_IML Ring ZF_1
begin

The goal of the Real_ZF series of theory files is to provide a contruction of
the set of real numbers. There are several ways to construct real numbers.
Most common start from the rational numbers and use Dedekind cuts or
Cauchy sequences. Real_ZF_x.thy series formalizes an alternative approach
that constructs real numbers directly from the group of integers. Our for-
malization is mostly based on [2]. Different variants of this contruction are
also described in [1] and [3]. T recommend to read these papers, but for the
impatient here is a short description: we take a set of maps s : Z — Z such
that the set {s(m +n) — s(m) — s(n)}n,mez is finite (Z means the integers
here). We call these maps slopes. Slopes form a group with the natural
addition (s +7)(n) = s(n) +r(n). The maps such that the set s(Z) is finite
(finite range functions) form a subgroup of slopes. The additive group of
real numbers is defined as the quotient group of slopes by the (sub)group of
finite range functions. The multiplication is defined as the projection of the
composition of slopes into the resulting quotient (coset) space.

39.1 The definition of real numbers

This section contains the construction of the ring of real numbers as classes
of slopes - integer almost homomorphisms. The real definitions are in
Group_ZF_2 theory, here we just specialize the definitions of almost homomor-
phisms, their equivalence and operations to the additive group of integers
from the general case of abelian groups considered in Group_zZF_2.

The set of slopes is defined as the set of almost homomorphisms on the
additive group of integers.

definition
Slopes = AlmostHoms(int,IntegerAddition)

The first operation on slopes (pointwise addition) is a special case of the
first operation on almost homomorphisms.
definition

SlopeOpl = AlHomOpl(int,IntegerAddition)
The second operation on slopes (composition) is a special case of the second
operation on almost homomorphisms.

definition
SlopeOp2 = AlHomOp2(int,IntegerAddition)
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Bounded integer maps are functions from integers to integers that have finite
range. They play a role of zero in the set of real numbers we are constructing.

definition
BoundedIntMaps = FinRangeFunctions(int,int)

Bounded integer maps form a normal subgroup of slopes. The equivalence
relation on slopes is the (group) quotient relation defined by this subgroup.

definition
SlopeEquivalenceRel = QuotientGroupRel (Slopes,SlopeOpl,BoundedIntMaps)

The set of real numbers is the set of equivalence classes of slopes.

definition
RealNumbers = Slopes//SlopeEquivalenceRel

The addition on real numbers is defined as the projection of pointwise ad-
dition of slopes on the quotient. This means that the additive group of real
numbers is the quotient group: the group of slopes (with pointwise addition)
defined by the normal subgroup of bounded integer maps.

definition
RealAddition = ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOpl)

Multiplication is defined as the projection of composition of slopes on the
quotient. The fact that it works is probably the most surprising part of the
construction.

definition
RealMultiplication = ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOp2)

We first show that we can use theorems proven in some proof contexts (lo-
cales). The locale groupl requires assumption that we deal with an abelian
group. The next lemma allows to use all theorems proven in the context
called groupi.

lemma Real_ZF_1_L1: shows groupl(int,IntegerAddition)
using groupl_axioms.intro groupl_def Int_ZF_1_T2 by simp

Real numbers form a ring. This is a special case of the theorem proven in
Ring_ZF_1.thy, where we show the same in general for almost homomor-
phisms rather than slopes.

theorem Real_ZF_1_T1: shows IsAring(RealNumbers,RealAddition,RealMultiplication)
proof -

let AH = AlmostHoms(int,IntegerAddition)

let Opl = AlHomOpl(int,IntegerAddition)

let FR = FinRangeFunctions(int,int)

let Op2 = AlHomOp2(int,IntegerAddition)

let R = QuotientGroupRel (AH,0pl,FR)
let A = ProjFun2(AH,R,0pl)
let M = ProjFun2(AH,R,0p2)
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have IsAring(AH//R,A,M) using Real_ZF_1_L1 groupl.Ring ZF_1_1_T1
by simp
then show thesis using Slopes_def SlopeOp2_def SlopeOpl_def
BoundedIntMaps_def SlopeEquivalenceRel_def RealNumbers_def
RealAddition_def RealMultiplication_def by simp
qed

We can use theorems proven in group0 and groupl contexts applied to the
group of real numbers.

lemma Real_ZF_1_L12: shows
groupO (RealNumbers,RealAddition)
RealAddition {is commutative on} RealNumbers
groupl (RealNumbers,RealAddition)
proof -
have
IsAgroup(RealNumbers,RealAddition)
RealAddition {is commutative on} RealNumbers
using Real_ZF_1_T1 IsAring_def by auto
then show
groupO (RealNumbers,RealAddition)
RealAddition {is commutative on} RealNumbers
groupl (RealNumbers,RealAddition)
using groupl_axioms.intro groupO_def groupl_def
by auto
qed

Let’s define some notation.

locale real0 =

fixes real (R)
defines real_def [simp]l: IR = RealNumbers

fixes ra (infixl + 69)
defines ra_def [simpl: a+ b = RealAddition(a,b)

fixes rminus (- _ 72)
defines rminus_def [simp]:-a = GroupInv(IR,RealAddition) (a)

fixes rsub (infixl - 69)
defines rsub_def [simpl: a-b = a+(-Db)

fixes rm (infixl - 70)
defines rm_def [simpl: ab = RealMultiplication(a,b)

fixes rzero (0)
defines rzero_def [simp]:

0 = TheNeutralElement (RealNumbers,RealAddition)

fixes rone (1)
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defines rone_def [simp]:
1 = TheNeutralElement (RealNumbers,RealMultiplication)

fixes rtwo (2)
defines rtwo_def [simp]: 2 = 1+1

fixes non_zero (IRg)
defines non_zero_def [simp]: Ry = IR-{0}

fixes inv (_7' [90] 91)

defines inv_def [simp]:

a~! = GroupInv(Rg,restrict(RealMultiplication,RgxIRg)) (a)
In realo context all theorems proven in the ring0, context are valid.

lemma (in real0) Real_ZF_1_L3: shows
ring0(IR,RealAddition,RealMultiplication)
using Real_ZF_1_T1 ringO_def ring0.Ring ZF_1_L1
by auto
Lets try out our notation to see that zero and one are real numbers.
lemma (in real0) Real ZF_1_L4: shows 0€lR 1€R
using Real ZF_1_L3 ring0.Ring ZF_1_L2 by auto
The lemma below lists some properties that require one real number to state.

lemma (in realO) Real_ZF_1_L5: assumes Al: aclR

shows

(ra) € R
(-(-a)) = a
at0 = a
O+a = a

al = a
la=a

a-a = 0

a-0 = a

using assms Real ZF_1_L3 ring0.Ring ZF_1_L3 by auto

The lemma below lists some properties that require two real numbers to
state.

lemma (in realO) Real_ZF_1_L6: assumes ac€lR beR
shows
atb € R
a-b € R
ab € R
at+b = b+a
(-a)-b = -(a'b)
a-(-b) = -(a'b)
using assms Real ZF_1_L3 ring0.Ring ZF_1_L4 ring0O.Ring ZF_1_L7
by auto
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Multiplication of reals is associative.

lemma (in realO) Real_ZF_1_L6A: assumes aclR belR ceR
shows a-(b-c) = (ab)-c
using assms Real_ZF_1_L3 ring0.Ring ZF_1_L11
by simp

Addition is distributive with respect to multiplication.

lemma (in realO) Real_ZF_1_L7: assumes aclR belR ceR
shows
a-(btc) = ab + ac
(b+c)-a = b-a + ca
a-(b-c) = ab - ac
(b-c)-a = b-a - ca
using assms Real ZF_1_L3 ring0.ring_oper_distr ring0.Ring ZF_1_L8
by auto

A simple rearrangement with four real numbers.

lemma (in realO) Real_ZF_1_L7A:
assumes ac€lR belR ceR  deR
shows a-b + (c-d) = at+c-b-d
using assms Real ZF_1_L2 groupO.group0_4_L8A by simp

RealAddition is defined as the projection of the first operation on slopes
(that is, slope addition) on the quotient (slopes divided by the ”almost
equal” relation. The next lemma plays with definitions to show that this
is the same as the operation induced on the appriopriate quotient group.
The names AH, Op1 and FR are used in groupl context to denote almost
homomorphisms, the first operation on AH and finite range functions resp.

lemma Real_ZF_1_L8: assumes
AH = AlmostHoms (int,IntegerAddition) and
Opl = AlHomOpl(int,IntegerAddition) and
FR = FinRangeFunctions(int,int)
shows RealAddition = QuotientGroupOp(AH,Op1,FR)
using assms RealAddition_def SlopeEquivalenceRel_def
QuotientGroupOp_def Slopes_def SlopeOpl_def BoundedIntMaps_def
by simp

The symbol 0 in the real0 context is defined as the neutral element of real
addition. The next lemma shows that this is the same as the neutral element
of the appriopriate quotient group.

lemma (in realO) Real_ZF_1_L9: assumes
AH = AlmostHoms(int,IntegerAddition) and
Opl = AlHomOpl(int,IntegerAddition) and
FR = FinRangeFunctions(int,int) and
r = QuotientGroupRel (AH,Op1,FR)
shows
TheNeutralElement (AH//r,QuotientGroupOp (AH,0p1,FR)) = 0
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SlopeEquivalenceRel = r

using assms Slopes_def Real_ZF_1_L8 RealNumbers_def
SlopeEquivalenceRel_def SlopeOpl_def BoundedIntMaps_def

by auto

Zero is the class of any finite range function.

lemma (in real0) Real_ZF_1_L10:
assumes Al: s € Slopes
shows SlopeEquivalenceRel{s} = 0 <— s € BoundedIntMaps
proof -
let AH = AlmostHoms(int,IntegerAddition)
let Opl = AlHomOpl(int,IntegerAddition)
let FR = FinRangeFunctions(int,int)
let r = QuotientGroupRel (AH,0p1,FR)
let e = TheNeutralElement (AH//r,QuotientGroupOp(AH,0p1,FR))
from A1 have
groupl(int,IntegerAddition)
scAH
using Real_ZF_1_L1 Slopes_def
by auto
then have r{s} = e +— s € FR
using groupl.Group_ZF_3_3_L5 by simp
moreover have
r = SlopeEquivalenceRel
e=20
FR = BoundedIntMaps
using SlopeEquivalenceRel_def Slopes_def SlopeOpl_def
BoundedIntMaps_def Real_ZF_1_L9 by auto
ultimately show thesis by simp
qed

We will need a couple of results from Group_zZF_3.thy The first two that
state that the definition of addition and multiplication of real numbers
are consistent, that is the result does not depend on the choice of the
slopes representing the numbers. The second one implies that what we call
SlopeEquivalenceRel is actually an equivalence relation on the set of slopes.
We also show that the neutral element of the multiplicative operation on
reals (in short number 1) is the class of the identity function on integers.

lemma Real_ZF_1_L11: shows
Congruent2(SlopeEquivalenceRel,SlopeOpl)
Congruent2(SlopeEquivalenceRel,SlopeOp2)
SlopeEquivalenceRel C Slopes X Slopes
equiv(Slopes, SlopeEquivalenceRel)
SlopeEquivalenceRel{id(int)} =
TheNeutralElement (RealNumbers,RealMultiplication)
BoundedIntMaps C Slopes

proof -
let G = int
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let £ = IntegerAddition
let AH = AlmostHoms(int,IntegerAddition)
let Opl = AlHomOpl(int,IntegerAddition)
let Op2 = AlHomOp2(int,IntegerAddition)
let FR = FinRangeFunctions(int,int)
let R = QuotientGroupRel (AH,0pl,FR)
have
Congruent2(R,0p1)
Congruent2(R,0p2)
using Real _ZF_1_L1 groupl.Group_ZF_3_4_L13A groupl.Group_ZF_3_3_L4
by auto
then show
Congruent2(SlopeEquivalenceRel,SlopeOpl)
Congruent2(SlopeEquivalenceRel,SlopeQOp2)
using SlopeEquivalenceRel_def SlopeOpl_def Slopes_def
BoundedIntMaps_def SlopeOp2_def by auto
have equiv(AH,R)
using Real_ZF_1_L1 groupl.Group_ZF_3_3_L3 by simp
then show equiv(Slopes,SlopeEquivalenceRel)
using BoundedIntMaps_def SlopeEquivalenceRel_def SlopeOpl_def Slopes_def
by simp
then show SlopeEquivalenceRel C Slopes X Slopes
using equiv_type by simp
have R{id(int)} = TheNeutralElement (AH//R,ProjFun2(AH,R,0p2))
using Real_ZF_1_L1 groupl.Group_ZF_3_4_T2 by simp
then show SlopeEquivalenceRel{id(int)} =
TheNeutralElement (RealNumbers,RealMultiplication)
using Slopes_def RealNumbers_def
SlopeEquivalenceRel_def SlopeOpl_def BoundedIntMaps_def
RealMultiplication_def SlopeOp2_def
by simp
have FR C AH using Real_ZF_1_L1 groupl.Group_ZF_3_3_L1
by simp
then show BoundedIntMaps C Slopes
using BoundedIntMaps_def Slopes_def by simp
qed

A one-side implication of the equivalence from Real_ZF_1_L10: the class of a
bounded integer map is the real zero.

lemma (in real0) Real_ZF_1_L11A: assumes s € BoundedIntMaps
shows SlopeEquivalenceRel{s} = 0
using assms Real_ZF_1_L11 Real_ZF_1_L10 by auto

The next lemma is rephrases the result from Group_zF_3.thy that says that
the negative (the group inverse with respect to real addition) of the class of
a slope is the class of that slope composed with the integer additive group
inverse. The result and proof is not very readable as we use mostly generic
set theory notation with long names here. Real_ZF_1.thy contains the same
statement written in a more readable notation: [—s] = —[s].
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lemma (in real0) Real ZF_1_L12: assumes Al: s € Slopes and
Dr: r = QuotientGroupRel (Slopes,SlopeOlpl,BoundedIntMaps)
shows r{GroupInv(int,IntegerAddition) 0 s} = -(r{s})

proof -
let G = int
let £ = IntegerAddition

let AH = AlmostHoms(int,IntegerAddition)

let Opl = AlHomOpl(int,IntegerAddition)

let FR = FinRangeFunctions(int,int)

let F = ProjFun2(Slopes,r,SlopeOpl)

from A1 Dr have
groupl(G, f)
s € AlmostHoms(G, f)
r = QuotientGroupRel(
AlmostHoms (G, f), AlHomOpl1(G, f), FinRangeFunctions(G, G))
and F = ProjFun2(AlmostHoms(G, f), r, AlHomOp1(G, £f))
using Real ZF_1_L1 Slopes_def SlopeOpl_def BoundedIntMaps_def
by auto

then have
r{GroupInv(G, f) 0 s} =
GroupInv(AlmostHoms(G, f) // r, F)(r {s})
using groupl.Group_ZF_3_3_L6 by simp

with Dr show thesis
using RealNumbers_def Slopes_def SlopeEquivalenceRel_def RealAddition_def
by simp

qed

Two classes are equal iff the slopes that represent them are almost equal.

lemma Real_ZF_1_L13: assumes s € Slopes p € Slopes
and r = SlopeEquivalenceRel
shows r{s} = r{p} «— (s,p) € «r
using assms Real ZF_1_L11 eq_equiv_class equiv_class_eq
by blast

Identity function on integers is a slope. Thislemma concludes the easy part
of the construction that follows from the fact that slope equivalence classes
form a ring. It is easy to see that multiplication of classes of almost homo-
morphisms is not commutative in general. The remaining properties of real
numbers, like commutativity of multiplication and the existence of multi-
plicative inverses have to be proven using properties of the group of integers,
rather that in general setting of abelian groups.

lemma Real_ZF_1_L14: shows id(int) € Slopes
proof -
have id(int) € AlmostHoms(int,IntegerAddition)
using Real_ZF_1_L1 groupl.Group_ZF_3_4_L15
by simp
then show thesis using Slopes_def by simp
qed
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end
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40 Real ZF _1.thy

theory Real_ZF_1 imports Real_ZF Int_ZF_3 OrderedField_ZF

begin

In this theory file we continue the construction of real numbers started in
Real_ZF to a succesful conclusion. We put here those parts of the construc-
tion that can not be done in the general settings of abelian groups and
require integers.

40.1 Definitions and notation

In this section we define notions and notation needed for the rest of the
construction.

We define positive slopes as those that take an infinite number of posititive
values on the positive integers (see Int_ZF_2 for properties of positive slopes).

definition
PositiveSlopes = {s € Slopes.
s(PositiveIntegers) N PositiveIlntegers ¢ Fin(int)}

The order on the set of real numbers is constructed by specifying the set
of positive reals. This set is defined as the projection of the set of positive
slopes.

definition
PositiveReals = {SlopeEquivalenceRel{s}. s € PositiveSlopes}

The order relation on real numbers is constructed from the set of posi-
tive elements in a standard way (see section ”Alternative definitions” in
OrderedGroup_ZF.)

definition
OrderOnReals = OrderFromPosSet (RealNumbers,RealAddition,PositiveReals)

The next locale extends the locale real0 to define notation specific to the
construction of real numbers. The notation follows the one defined in
Int_ZF_2.thy. If m is an integer, then the real number which is the class
of the slope n +— m - n is denoted mf*. For a real number a notation |a]
means the largest integer m such that the real version of it (that is, m®) is
not greater than a. For an integer m and a subset of reals S the expression
I'(S,m) is defined as max{|p®- x| : 2 € S}. This is plays a role in the proof
of completeness of real numbers. We also reuse some notation defined in the
int0 context, like Z, (the set of positive integers) and abs(m) ( the absolute
value of an integer, and some defined in the int1 context, like the addition
( +) and composition (o of slopes.

locale reall = realO +
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fixes AlEq (infix ~ 68)
defines AlEq_def[simpl: s ~ r = (s,r) € SlopeEquivalenceRel

fixes slope_add (infix + 70)
defines slope_add_def [simp]:
s + r = SlopeOpl(s,r)

fixes slope_comp (infix o 71)
defines slope_comp_def[simpl: s o r = SlopeOp2(s,T)

fixes slopes (S)
defines slopes_def[simp]l: S = AlmostHoms(int,IntegerAddition)

fixes posslopes (Si)
defines posslopes_def[simp]l: S; = PositiveSlopes

fixes slope_class ([ _ 1)
defines slope_class_def [simp]: [f] = SlopeEquivalenceRel{f}

fixes slope_neg (-_ [90] 91)
defines slope_neg_def [simp]: -s = GroupInv(int,IntegerAddition) 0 s

fixes lesseqr (infix < 60)
defines lesseqr_def[simpl: a < b = (a,b) € OrderOnReals

fixes sless (infix < 60)
defines sless_def[simp]: a < b = a<b A a#b

fixes positivereals (IR)
defines positivereals_def [simp]: Ry = PositiveSet(IR,RealAddition,OrderOnReals)

fixes intembed (_f [90] 91)

defines intembed_def [simp]:

mnf' = [{(n,IntegerMultiplication(m,n) ). n € int}]

fixes floor (| _ |
defines floor_def [simp]:
|a] = Maximum(IntegerOrder,{m € int. mf* < a})

fixes I'
defines I'_def [simp]: I'(S,p) = Maximum(IntegerOrder,{|px|. x€S})

fixes ia (infixl + 69)
defines ia_def [simp]: a+b

IntegerAddition( a,b)

fixes iminus (- _ 72)
defines iminus_def[simp]: -a = GroupInv(int,IntegerAddition) (a)
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fixes isub (infixl - 69)
defines isub_def[simp]: a-b = a+ (- b)

fixes intpositives (Z4)
defines intpositives_def [simp]:
Z, = PositiveSet(int,IntegerAddition,IntegerOrder)

fixes zlesseq (infix < 60)
defines lesseq_def[simpl: m < n = (m,n) € IntegerOrder

fixes imult (infixl - 70)
defines imult_def[simp]l: ab = IntegerMultiplication( a,b)

fixes izero (0yz)
defines izero_def [simp]: Oz = TheNeutralElement (int,IntegerAddition)

fixes ione (1)
defines ione_def[simp]l: 1z = TheNeutralElement(int,IntegerMultiplication)

fixes itwo (27z)
defines itwo_def [simpl: 2z = 1z+1;4

fixes abs
defines abs_def [simp]:
abs(m) = AbsoluteValue(int,IntegerAddition,IntegerOrder) (m)

fixes ¢
defines §_def[simpl: J(s,m,n) = s(m+n)-s(m)-s(n)

40.2 Multiplication of real numbers

Multiplication of real numbers is defined as a projection of composition of
slopes onto the space of equivalence classes of slopes. Thus, the product of
the real numbers given as classes of slopes s and 7 is defined as the class of
sor. The goal of this section is to show that multiplication defined this way
is commutative.

Let’s recall a theorem from Int_ZF_2.thy that states that if f, g are slopes,
then fog is equivalent to go f. Here we conclude from that that the classes
of fogand go f are the same.

lemma (in reall) Real_ZF_1_1_L2: assumes Al: f € § g€ S
shows [fog] = [gof]
proof -
from A1 have fog ~ gof
using Slopes_def intl.Arthan Th_9 SlopeOpl_def BoundedIntMaps_def
SlopeEquivalenceRel_def SlopeOp2_def by simp
then show thesis using Real_ZF_1_L11 equiv_class_eq
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by simp
qed

Classes of slopes are real numbers.

lemma (in reall) Real ZF_1_1_1L3: assumes Al: f € S
shows [f] € R
proof -
from A1 have [f] € Slopes//SlopeEquivalenceRel
using Slopes_def quotientI by simp
then show [f] € IR using RealNumbers_def by simp
qed

Each real number is a class of a slope.

lemma (in reall) Real_ZF_1_1_L3A: assumes Al: acR
shows 3fcS . a = [f]
proof -
from A1 have a € S§//SlopeEquivalenceRel
using RealNumbers_def Slopes_def by simp
then show thesis using quotient_def
by simp
qed

It is useful to have the definition of addition and multiplication in the reali
context notation.

lemma (in reall) Real_ZF_1_1_L4:
assumes Al: £ € § ge S
shows
[£] + [g] = [f+g]
[f] - [g]l = [fog]
proof -
let r = SlopeEquivalenceRel
have [f]-[g] = ProjFun2(S,r,Slope0p2){[f], [g])
using RealMultiplication_def Slopes_def by simp

also from Al have ... = [fog]
using Real_ZF_1_L11 EquivClass_1_L10 Slopes_def
by simp

finally show [f] - [g] = [fog] by simp
have [f] + [g] = ProjFun2(S,r,SlopeOpl)([£], [g])
using RealAddition_def Slopes_def by simp

also from Al have ... = [f+g]
using Real_ZF_1_L11 EquivClass_1_L10 Slopes_def
by simp
finally show [f] + [g] = [f+g] by simp
qed

The next lemma is essentially the same as Real_ZF_1_L12, but written in the
notation defined in the reall context. It states that if f is a slope, then

—1=1=1]
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lemma (in reall) Real_ZF_1_1_L4A: assumes f € S
shows [-f] = -[f]
using assms Slopes_def SlopeEquivalenceRel_def Real ZF_1_L12
by simp

Subtracting real numbers correspods to adding the opposite slope.

lemma (in reall) Real_ZF_1_1_L4B: assumes Al: f €¢ § g€ S
shows [f] - [g] = [f+(-g)]
proof -
from A1 have [f+(-g)] = [£f] + [-g]
using Slopes_def BoundedIntMaps_def intl.Int_ZF_2_1_L12
Real_ZF_1_1_L4 by simp
with A1 show [f] - [g] = [f+(-g)]
using Real_ZF_1_1_L4A by simp

qed

Multiplication of real numbers is commutative.

theorem (in reall) real_mult_commute: assumes Al: acR beR
shows a'b = b-a
proof -
from A1 have
3fcS . a = [f]
JgesS . b = [g]
using Real_ZF_1_1_L3A by auto
then obtain f g where
feS ge Sand a=[f] b= [g]
by auto
then show ab = b-a
using Real_ZF_1_1_14 Real_ZF_1_1_L2 by simp
qed

Multiplication is commutative on reals.

lemma real_mult_commutative: shows
RealMultiplication {is commutative on} RealNumbers
using reall.real_mult_commute IsCommutative_def
by simp

The neutral element of multiplication of reals (denoted as 1 in the reall
context) is the class of identity function on integers. This is really shown
in Real_ZF_1_L11, here we only rewrite it in the notation used in the reall

context.

lemma (in reall) real_one_cl_identity: shows [id(int)] =1
using Real _ZF_1_L11 by simp

If f is bounded, then its class is the neutral element of additive operation

on reals (denoted as 0 in the reall context).

lemma (in reall) real_zero_cl_bounded_map:
assumes f € BoundedIntMaps shows [f] = 0
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using assms Real ZF_1_L11A by simp

Two real numbers are equal iff the slopes that represent them are almost
equal. This is proven in Real_ZF_1_L13, here we just rewrite it in the notation
used in the reall context.

lemma (in reall) Real _ZF_1_1_L5:
assumes f € § g€ S
shows [f] = [g] «— f ~ g
using assms Slopes_def Real_ZF_1_L13 by simp

If the pair of function belongs to the slope equivalence relation, then their
classes are equal. This is convenient, because we don’t need to assume that
f, g are slopes (follows from the fact that f ~ g).

lemma (in reall) Real_ZF_1_1_L5A: assumes f ~ g
shows [f] = [g]
using assms Real ZF_1_L11 Slopes_def Real ZF_1_1_L5
by auto

Identity function on integers is a slope. This is proven in Real_ZF_1_L13,
here we just rewrite it in the notation used in the reall context.

lemma (in reall) id_on_int_is_slope: shows id(int) € §
using Real_ZF_1_L14 Slopes_def by simp

A result from Int_ZF_2.thy: the identity function on integers is not almost
equal to any bounded function.

lemma (in reall) Real ZF_1_1_L7:
assumes Al: f € BoundedIntMaps
shows —(id(int) ~ f)
using assms Slopes_def SlopeOpl_def BoundedIntMaps_def
SlopeEquivalenceRel_def BoundedIntMaps_def intl.Int_ZF_2_3_L12

by simp

Zero is not one.

lemma (in reall) real_zero_not_one: shows 1#0
proof -
{ assume Al: 1=0
have 3f € §. 0 = [f]
using Real _ZF_1_14 Real_ZF_1_1_L3A by simp
with A1 have
3f € §. [idGnt)] = [f1 A [f]1 = 0
using real_one_cl_identity by auto
then have False using Real_ZF_1_1_L5 Slopes_def
Real_ZF_1_L10 Real_ZF_1_1_L7 id_on_int_is_slope
by auto
} then show 1#0 by auto
qed

Negative of a real number is a real number. Property of groups.
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lemma (in reall) Real_ZF_1_1_L8: assumes aclR shows (-a) ¢ R

using assms Real _ZF_1_L2 groupO.inverse_in_group
by simp

An identity with three real numbers.

lemma (in reall) Real ZF_1_1_L9: assumes acR beR ceR
shows a-(b-c) = acb
using assms real_mult_commutative Real ZF_1_L3 ring0.Ring ZF_2_L4
by simp

40.3 The order on reals

In this section we show that the order relation defined by prescribing the
set of positive reals as the projection of the set of positive slopes makes the
ring of real numbers into an ordered ring. We also collect the facts about
ordered groups and rings that we use in the construction.

Positive slopes are slopes and positive reals are real.

lemma Real _ZF_1_2_L1: shows
PositiveSlopes C Slopes
PositiveReals C RealNumbers
proof -
have PositiveSlopes =
{s € Slopes. s(Positivelntegers) N Positivelntegers ¢ Fin(int)}
using PositiveSlopes_def by simp
then show PositiveSlopes C Slopes by (rule subset_with_property)
then have
{SlopeEquivalenceRel{s}. s &€ PositiveSlopes } C
Slopes//SlopeEquivalenceRel
using EquivClass_1_L1A by simp
then show PositiveReals C RealNumbers
using PositiveReals_def RealNumbers_def by simp
qed

Positive reals are the same as classes of a positive slopes.

lemma (in reall) Real_ZF_1_2_L2:
shows a € PositiveReals +— (IfeS;. a = [f])
proof
assume a € PositiveReals
then have a € {([s]). s € §;} using PositiveReals_def
by simp
then show JfeS,. a = [f] by auto
next assume JfeS,. a = [f]
then have a € {([s]). s € §;} by auto
then show a € PositiveReals using PositiveReals_def
by simp
qed
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Let’s recall from Int_ZF_2.thy that the sum and composition of positive

slopes is a positive slope.

lemma (in reall) Real_ZF_1_2_L3:

assumes feS; gesy

shows

f+g € S+

fog € Sy

using assms Slopes_def PositiveSlopes_def PositiveIntegers_def
SlopeOpl_def intl.sum_of_pos_sls_is_pos_sl
SlopeOp2_def intl.comp_of_pos_sls_is_pos_sl

by auto

Bounded integer maps are not positive slopes.

lemma (in reall) Real ZF_1_2_L5:
assumes f € BoundedIntMaps
shows f ¢ S
using assms BoundedIntMaps_def Slopes_def PositiveSlopes_def
PositivelIntegers_def intl.Int_ZF_2_3_L1B by simp

The set of positive reals is closed under addition and multiplication.
(the neutral element of addition) is not a positive number.

lemma (in reall) Real ZF_1_2_L6: shows
PositiveReals {is closed under} RealAddition
PositiveReals {is closed under} RealMultiplication
0 ¢ PositiveReals
proof -
{ fix a fix b
assume a € PositiveReals and b € PositiveReals
then obtain f g where
I: feS; ge St and
II: a = [f] b= [g]
using Real_ZF_1_2_L2 by auto
then have f € § g € S using Real_ZF_1_2_L1 Slopes_def
by auto
with I II have
a+b € PositiveReals A a'b € PositiveReals
using Real ZF_1_1_14 Real ZF_1_2 L3 Real _ZF_1_2_12
by auto
} then show
PositiveReals {is closed under} RealAddition
PositiveReals {is closed under} RealMultiplication
using IsOpClosed_def
by auto
{ assume 0 € PositiveReals
then obtain f where f € §; and 0 = [f]
using Real_ZF_1_2_L2 by auto

then have False

Zero

using Real_ZF_1_2_L1 Slopes_def Real_ZF_1_L10 Real_ZF_1_2_L5
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by auto
} then show 0 ¢ PositiveReals by auto
qed

If a class of a slope f is not zero, then either f is a positive slope or —f is
a positive slope. The real proof is in Int_ZF_2.thy.

lemma (in reall) Real ZF_1_2_L7:
assumes Al: f € S and A2: [f] # O
shows (f € §;) Xor ((-f) € S§3)
using assms Slopes_def SlopeEquivalenceRel_def BoundedIntMaps_def
PositiveSlopes_def PositivelIntegers_def

Real_ZF_1_L10 intl.Int_ZF_2_3_L8 by simp

The next lemma rephrases Int_ZF_2_3_L10 in the notation used in reall
context.

lemma (in reall) Real_ZF_1_2_L8:
assumes Al: £ € § ge S
and A2: (f € S1) Xor (g € S3)
shows ([f] € PositiveReals) Xor ([g] € PositiveReals)
using assms PositiveReals_def SlopeEquivalenceRel_def Slopes_def
SlopeOpl_def BoundedIntMaps_def PositiveSlopes_def Positivelntegers_def
int1.Int_ZF_2_3_L10 by simp

The trichotomy law for the (potential) order on reals: if a # 0, then either
a is positive or —a is potitive.

lemma (in reall) Real_ZF_1_2_L9:
assumes Al: aclR and A2: a#0
shows (a € PositiveReals) Xor ((-a) € PositiveReals)
proof -
from A1 obtain f where I: f € § a = [f]
using Real_ZF_1_1_L3A by auto
with A2 have ([f] € PositiveReals) Xor ([-f] € PositiveReals)
using Slopes_def BoundedIntMaps_def intl.Int_ZF_2_1_L12
Real_ZF_1_2_L7 Real_ZF_1_2_L8 by simp
with I show (a € PositiveReals) Xor ((-a) € PositiveReals)
using Real_ZF_1_1_L4A by simp

qed

Finally we are ready to prove that real numbers form an ordered ring with
no zero divisors.

theorem reals_are_ord_ring: shows
IsAnOrdRing(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
OrderOnReals {is total on} RealNumbers
PositiveSet (RealNumbers,RealAddition,OrderOnReals) = PositiveReals
HasNoZeroDivs (RealNumbers,RealAddition,RealMultiplication)

proof -
let R = RealNumbers
let A = RealAddition

486



let M = RealMultiplication
let P = PositiveReals
let r = OrderOnReals
let z = TheNeutralElement (R, A)
have I:
ringO(R, A, M)
M {is commutative on} R
PCR
P {is closed under} A
TheNeutralElement (R, A) ¢ P
VacR. a # z — (a € P) Xor (GroupInv(R, A)(a) € P)
P {is closed under} M
r = OrderFromPosSet(R, A, P)
using realO.Real_ZF_1_L3 real_mult_commutative Real ZF_1_2_L1
reall.Real_ZF_1_2_L6 reall.Real_ZF_1_2_L9 OrderOnReals_def
by auto
then show IsAnOrdRing(R, A, M, r)
by (rule ring0.ring_ord_by_positive_set)
from I show r {is total on} R
by (rule ring0.ring_ord_by_positive_set)
from I show PositiveSet(R,A,r) =P
by (rule ring0.ring_ord_by_positive_set)
from I show HasNoZeroDivs(R,A,M)
by (rule ring0.ring_ord_by_positive_set)
qed

All theorems proven in the ringl (about ordered rings), group3 (about or-
dered groups) and groupl (about groups) contexts are valid as applied to
ordered real numbers with addition and (real) order.

lemma Real_ZF_1_2_L10: shows
ringl (RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
IsAnOrdGroup (RealNumbers,RealAddition,OrderOnReals)
group3(RealNumbers,RealAddition,OrderOnReals)
OrderOnReals {is total on} RealNumbers
proof -
show ringl(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
using reals_are_ord_ring OrdRing_ZF_1_L2 by simp
then show
IsAnOrdGroup (RealNumbers,RealAddition,OrderOnReals)
group3(RealNumbers,RealAddition,OrderOnReals)
OrderOnReals {is total on} RealNumbers
using ringl.OrdRing_ZF_1_L4 by auto
qed

If a =0 or b— a is positive, then a is less or equal b.

lemma (in reall) Real_ZF_1_2_L11: assumes Al: aclR belR and
A3: a=b V b-a € PositiveReals
shows a<b
using assms reals_are_ord_ring Real ZF_1_2_L10
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group3.0rderedGroup_ZF_1_L30 by simp

A sufficient condition for two classes to be in the real order.

lemma (in reall) Real ZF_1_2_L12: assumes Al: f € § g € § and
A2: fg vV (g + (-£)) € Sy
shows [f] < [g]
proof -
from A1 A2 have [f] = [g] V [gl-[f] € PositiveReals
using Real _ZF_1_1_L5A Real ZF_1_2_ L2 Real _ZF_1_1_L4B
by auto
with Al show [f] < [g] using Real_ZF_1_1_L3 Real ZF_1_2_L11
by simp
qed

Taking negative on both sides reverses the inequality, a case with an inverse
on one side. Property of ordered groups.

lemma (in reall) Real_ZF_1_2_L13:
assumes Al: aclR and A2: (-a) < b
shows (-b) < a
using assms Real ZF_1_2_L10 group3.0rderedGroup_ZF_1_L5AG

by simp

Real order is antisymmetric.

lemma (in reall) real_ord_antisym:
assumes Al: a<b b<a shows a=b
proof -
from A1 have
group3(RealNumbers,RealAddition,OrderOnReals)
(a,b) € OrderOnReals (b,a) € OrderOnReals
using Real_ZF_1_2_L10 by auto

then show a=b by (rule group3.group_order_antisym)
qed

Real order is transitive.

lemma (in reall) real_ord_transitive: assumes Al: a<b b<c
shows a<c
proof -
from A1 have
group3(RealNumbers,RealAddition,OrderOnReals)
(a,b) € OrderOnReals (b,c) € OrderOnReals
using Real_ZF_1_2_L10 by auto
then have (a,c) € OrderOnReals
by (rule group3.Group_order_transitive)
then show a<c by simp
qed

We can multiply both sides of an inequality by a nonnegative real number.

lemma (in reall) Real_ZF_1_2_L14:
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assumes a<b and 0<c

shows

a-c < b-c

ca < cb

using assms Real_ZF_1_2_L10 ringl.OrdRing_ZF_1_L9
by auto

A special case of Real_ZF_1_2_L14: we can multiply an inequality by a real
number.

lemma (in reall) Real_ZF_1_2_L14A:
assumes Al: a<b and A2: ccR;
shows c-a < c¢cb
using assms Real ZF_1_2_L10 ringl.OrdRing ZF_1_L9A

by simp

In the reall context notation a < b implies that a and b are real numbers.

lemma (in reall) Real_ZF_1_2_L15: assumes a<b shows aclR belR

using assms Real_ZF_1_2_L10 group3.0rderedGroup_ZF_1_L4
by auto

a < b implies that 0 < b — a.

lemma (in reall) Real_ZF_1_2_L16: assumes a<b
shows 0 < b-a
using assms Real ZF_1_2_L10 group3.0rderedGroup_ZF_1_L12A
by simp

A sum of nonnegative elements is nonnegative.

lemma (in reall) Real_ZF_1_2_L17: assumes 0<a 0<b
shows 0 < a+b
using assms Real ZF_1_2_L10 group3.0OrderedGroup_ZF_1_L12
by simp

We can add sides of two inequalities

lemma (in reall) Real_ZF_1_2_L18: assumes a<b c<d
shows a+c < b+d
using assms Real_ZF_1_2_L10 group3.0rderedGroup_ZF_1_L5B
by simp

The order on real is reflexive.

lemma (in reall) real_ord_refl: assumes aclR shows a<a
using assms Real _ZF_1_2_L10 group3.0OrderedGroup_ZF_1_L3
by simp

We can add a real number to both sides of an inequality.

lemma (in reall) add_num_to_ineq: assumes a<b and ceR
shows a+c < b+c
using assms Real_ZF_1_2_L10 IsAnOrdGroup_def by simp
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We can put a number on the other side of an inequality, changing its sign.

lemma (in reall) Real_ZF_1_2_L19:
assumes aclR beR and ¢ < a+b
shows c-b < a
using assms Real_ZF_1_2_L10 group3.0rderedGroup_ZF_1_L9C
by simp

What happens when one real number is not greater or equal than another?

lemma (in reall) Real_ZF_1_2_L20: assumes aclR belR and —(a<b)
shows b < a
proof -
from assms have I:
group3 (IR ,RealAddition,OrderOnReals)
OrderOnReals {is total on} R
a€cR beR —({a,b) € OrderOnReals)
using Real_ZF_1_2_L10 by auto
then have (b,a) € OrderOnReals
by (rule group3.0rderedGroup_ZF_1_L8)
then have b < a by simp
moreover from I have a#b by (rule group3.0rderedGroup_ZF_1_L8)
ultimately show b < a by auto
qed

We can put a number on the other side of an inequality, changing its sign,
version with a minus.

lemma (in reall) Real_ZF_1_2_L21:
assumes aclR beR and ¢ < a-b
shows c+b < a
using assms Real_ZF_1_2_L10 group3.0rderedGroup_ZF_1_L5J
by simp

The order on reals is a relation on reals.

lemma (in reall) Real_ZF_1_2_L22: shows OrderOnReals C RxR
using Real_ZF_1_2_L10 IsAnOrdGroup_def
by simp

A set that is bounded above in the sense defined by order on reals is a subset
of real numbers.

lemma (in reall) Real_ZF_1_2_L23:
assumes Al: IsBoundedAbove(A,OrderOnReals)
shows A C R
using Al Real ZF_1_2_ 122 Order_ZF_3_L1A

by blast

Properties of the maximum of three real numbers.

lemma (in reall) Real_ZF_1_2_L24:
assumes Al: aclR belR ceR
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shows
Maximum(OrderOnReals,{a,b,c}) € {a,b,c}
Maximum(OrderOnReals,{a,b,c}) € R
a < Maximum(OrderOnReals,{a,b,c})
b < Maximum(OrderOnReals,{a,b,c})
c Maximum (OrderOnReals,{a,b,c})
proof -
have IsLinOrder (IR,0OrderOnReals)
using Real _ZF_1_2_L10 group3.group_ord_total_is_lin
by simp
with A1 show
Maximum(OrderOnReals,{a,b,c}) € {a,b,c}
Maximum(OrderOnReals,{a,b,c}) € R
a < Maximum(OrderOnReals,{a,b,c})
b < Maximum(OrderOnReals,{a,b,c})
¢ < Maximum(OrderOnReals,{a,b,c})
using Finite_ZF_1_L2A by auto
qed

IN

A form of transitivity for the order on reals.

lemma (in reall) real_strict_ord_transit:
assumes Al: a<b and A2: b<c
shows a<c
proof -
from A1 A2 have I:
group3(IR,RealAddition,OrderOnReals)
(a,b) € OrderOnReals (b,c) € OrderOnReals A b#c
using Real_ZF_1_2_L10 by auto
then have (a,c) € OrderOnReals A a#c by (rule group3.group_strict_ord_transit)
then show a<c by simp
qed

We can multiply a right hand side of an inequality between positive real
numbers by a number that is greater than one.

lemma (in reall) Real_ZF_1_2_L25:
assumes b € R, and a<b and 1<c
shows a<b-c
using assms reals_are_ord_ring Real ZF_1_2_L10 ringl.OrdRing_ ZF_3_L17
by simp

We can move a real number to the other side of a strict inequality, changing
its sign.
lemma (in reall) Real_ZF_1_2_L26:

assumes a€cR belR and a-b < ¢

shows a < c+b

using assms Real_ZF_1_2_L10 group3.0rderedGroup_ZF_1_L12B

by simp

Real order is translation invariant.

491



lemma (in reall) real_ord_transl_inv:
assumes a<b and celR
shows c+a < c+b
using assms Real_ZF_1_2_L10 IsAnOrdGroup_def
by simp

It is convenient to have the transitivity of the order on integers in the nota-
tion specific to reall context. This may be confusing for the presentation
readers: even though < and < are printed in the same way, they are different
symbols in the source. In the reall context the former denotes inequality
between integers, and the latter denotes inequality between real numbers
(classes of slopes). The next lemma is about transitivity of the order rela-
tion on integers.

lemma (in reall) int_order_transitive:
assumes Al: a<b b<c
shows a<c
proof -
from A1 have
(a,b) € IntegerOrder and (b,c) € IntegerOrder
by auto
then have (a,c) € IntegerOrder
by (rule Int_ZF_2_L5)
then show a<c by simp
qed

A property of nonempty subsets of real numbers that don’t have a maximum:
for any element we can find one that is (strictly) greater.

lemma (in reall) Real_ZF_1_2_L27:
assumes ACIR and —HasAmaximum(OrderOnReals,A) and x€A
shows JycA. x<y
using assms Real_ZF_1_2_L10 group3.0rderedGroup_ZF_2_L2B
by simp

The next lemma shows what happens when one real number is not greater
or equal than another.

lemma (in reall) Real_ZF_1_2_L28:
assumes aclR belR and —(a<b)
shows b<a
proof -
from assms have
group3 (IR ,RealAddition,OrderOnReals)
OrderOnReals {is total on} R
acR beR (a,b) ¢ OrderOnReals
using Real_ZF_1_2_L10 by auto
then have (b,a) € OrderOnReals A b#a
by (rule group3.0rderedGroup_ZF_1_L8)
then show b<a by simp

qed
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If a real number is less than another, then the second one can not be less or
equal that the first.

lemma (in reall) Real ZF_1_2_L29:
assumes a<b shows —(b<a)
proof -
from assms have
group3 (IR ,RealAddition,OrderOnReals)
(a,b) € OrderOnReals a#b
using Real_ZF_1_2_L10 by auto
then have (b,a) ¢ OrderOnReals
by (rule group3.0rderedGroup_ZF_1_L8AA)
then show —(b<a) by simp
qed

40.4 Inverting reals

In this section we tackle the issue of existence of (multiplicative) inverses
of real numbers and show that real numbers form an ordered field. We
also restate here some facts specific to ordered fields that we need for the
construction. The actual proofs of most of these facts can be found in
Field_ZF.thy and OrderedField_ZF.thy

We rewrite the theorem from Int_zF_2.thy that shows that for every positive
slope we can find one that is almost equal and has an inverse.

lemma (in reall) pos_slopes_have_inv: assumes f € S,
shows JgeS§. f~g A (FheS. goh ~ id(int))
using assms PositiveSlopes_def Slopes_def PositiveIntegers_def
intl.pos_slope_has_inv SlopeOpl_def SlopeOp2_def
BoundedIntMaps_def SlopeEquivalenceRel_def
by simp

The set of real numbers we are constructing is an ordered field.

theorem (in reall) reals_are_ord_field: shows
IsAnOrdField(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)

proof -
let R = RealNumbers
let A = RealAddition
let M = RealMultiplication
let r = OrderOnReals

have ring1(R,A,M,r) and 0 # 1
using reals_are_ord_ring OrdRing_ZF_1_L2 real_zero_not_one
by auto
moreover have M {is commutative on} R
using real_mult_commutative by simp
moreover have
VacPositiveSet(R,A,r). dbeR. ab =1
proof
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fix a assume a € PositiveSet(R,A,r)
then obtain f where I: f€S; and II: a = [f]
using reals_are_ord_ring Real _ZF_1_2_L2
by auto
then have Jge§. f~g A (FheS. goh ~ id(int))
using pos_slopes_have_inv by simp
then obtain g where
III: ge$ and IV: f~g and V: JheS. goh ~ id(int)
by auto
from V obtain h where VII: heS and VIII: goh ~ id(int)
by auto
from I III IV have [f] = [g]
using Real_ZF_1_2_L1 Slopes_def Real _ZF_1_1_L5
by auto
with II III VII VIII have a-[h] =1
using Real _ZF_1_1_L4 Real_ZF_1_1_L5A real_one_cl_identity

by simp
with VII show dbeR. ab = 1 using Real _ZF_1_1_L3
by auto
qed
ultimately show thesis using ringl.0rdField_ZF_1_L4
by simp

qed
Reals form a field.

lemma reals_are_field:
shows IsAfield(RealNumbers,RealAddition,RealMultiplication)
using reall.reals_are_ord_field OrdField_ZF_1_L1A
by simp

Theorem proven in field0 and field1l contexts are valid as applied to real
numbers.

lemma field_cntxts_ok: shows
fieldO(RealNumbers,RealAddition,RealMultiplication)
fieldl(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
using reals_are_field reall.reals_are_ord_field
field_field0 OrdField_ZF_1_L2 by auto

If a is positive, then o' is also positive.

lemma (in reall) Real ZF_1_3_L1: assumes a € R,
shows a=! ¢ Ry a!eR
using assms field_cntxts_ok fieldl.0rdField_ZF_1_L8 PositiveSet_def
by auto

A technical fact about multiplying strict inequality by the inverse of one of
the sides.

lemma (in reall) Real_ZF_1_3_L2:
assumes a € R; and a=! < b
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shows 1 < b-a
using assms field_cntxts_ok fieldl.0OrdField_ZF_2_L2
by simp

If @ is smaller than b, then (b —a)~! is positive.

lemma (in reall) Real_ZF_1_3_L3: assumes a<b
shows (b-a)~! € Ry
using assms field_cntxts_ok fieldl.0rdField_ZF_1_L9
by simp

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse.

lemma (in reall) Real _ZF_1_3_L4:
assumes Al: aclR bclR; and A2: ab < ¢
shows a < cb™!
using assms field_cntxts_ok fieldl.0rdField_ZF_2_L6
by simp

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with the product initially on the right hand side.

lemma (in reall) Real_ZF_1_3_L4A:
assumes Al: beR ceR; and A2: a < bc
shows a-c™! < b
using assms field_cntxts_ok fieldl.0rdField_ZF_2_L6A

by simp

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with the product initially on the right hand side.

lemma (in reall) Real_ZF_1_3_L4B:
assumes Al: b€lR c€R; and A2: a < bc
shows a-c™! < b
using assms field_cntxts_ok fieldl.0rdField_ZF_2_L5A
by simp

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with the product initially on the left hand side.

lemma (in reall) Real ZF_1_3_L4C:
assumes Al: acR beR; and A2: ab < c
shows a < cb !
using assms field_cntxts_ok fieldl.0rdField_ZF_2_L5

by simp

A technical lemma about solving a strict inequality with three real numbers
and inverse of a difference.

lemma (in reall) Real_ZF_1_3_L5:

assumes a<b and (b-a)~! < ¢
shows 1 + a.c < b-c
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using assms field_cntxts_ok fieldl.0rdField_ZF_2_L9
by simp

We can multiply an inequality by the inverse of a positive number.

lemma (in reall) Real_ZF_1_3_L6:
assumes a<b and cc€R,; shows ac! < pc!
using assms field_cntxts_ok fieldl.0rdField_ZF_2_L3

by simp

We can multiply a strict inequality by a positive number or its inverse.

lemma (in reall) Real_ZF_1_3_L7:

assumes a<b and ccR; shows

a-c < b-c

cca < cb

ac™! < bct

using assms field_cntxts_ok fieldl.0rdField_ZF_2_L4
by auto

An identity with three real numbers, inverse and cancelling.

lemma (in reall) Real ZF_1_3_L8: assumesaclR beclR b#0 ceR
shows ab-(cb™!) = ac
using assms field_cntxts_ok field0.Field_ZF_2_L6
by simp

40.5 Completeness

This goal of this section is to show that the order on real numbers is com-
plete, that is every subset of reals that is bounded above has a smallest
upper bound.

If m is an integer, then m® is a real number. Recall that in reall context m?
denotes the class of the slope n — m - n.

lemma (in reall) real_int_is_real: assumes m € int
shows n® € R
using assms intl.Int_ZF_2_5_L1 Real_ZF_1_1_L3 by simp

The negative of the real embedding of an integer is the embedding of the
negative of the integer.

lemma (in reall) Real_ZF_1_4_L1: assumes m € int
shows (-m)® = -(m®)
using assms intl.Int_ZF_2_5_13 intl.Int_ZF_2_5_L1 Real ZF_1_1_L4A
by simp

The embedding of sum of integers is the sum of embeddings.

lemma (in reall) Real_ZF_1_4_L1A: assumes m € int k € int

shows mf* + kft = ((m+k) %)
using assms intl.Int_ZF_2_5_L1 SlopeOpl_def intl.Int_ZF_2_5_L3A
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Real ZF_1_1_14 by simp

The embedding of a difference of integers is the difference of embeddings.

lemma (in reall) Real_ZF_1_4_L1B: assumes Al: m € int k € int
shows m? - k® = (m-k)7
proof -
from A1 have (-k) € int using int0.Int_ZF_1_1_14
by simp
with A1 have (m-k)¥® = n® + (-k)F
using Real_ZF_1_4_L1A by simp
with A1 show m? - k% = (m-k)F
using Real_ZF_1_4_L1 by simp
qed

The embedding of the product of integers is the product of embeddings.

lemma (in reall) Real_ZF_1_4_L1C: assumes m € int k € int
shows m - k' = (mk)?
using assms intl.Int_ZF_2_5_L1 SlopeOp2_def intl.Int_ZF_2_5_L3B
Real_ZF_1_1_1L4 by simp

For any real numbers there is an integer whose real version is greater or
equal.

lemma (in reall) Real_ZF_1_4_L2: assumes Al: acR
shows Jmcint. a < nf
proof -
from A1l obtain f where I: f€S and II: a = [f]
using Real_ZF_1_1_L3A by auto
then have dmeint. Jges.
{(n,mn) . n € int} ~ g A (f~g V (g + (-f)) € S;)
using intl.Int_ZF_2_5_L2 Slopes_def SlopeOpl_def
BoundedIntMaps_def SlopeEquivalenceRel_def
PositivelIntegers_def PositiveSlopes_def
by simp
then obtain m g where III: m€int and IV: ge€$ and
{(n,mn) . n € int} ~ g A (f~g V (g + (-f)) € S1)
by auto
then have m® = [g] and f ~ g V (g + (-f)) € S,
using Real_ZF_1_1_L5A by auto
with I II IV have a < nf using Real_ZF_1_2_L12
by simp
with III show Jmecint. a < mf by auto
qed

For any real numbers there is an integer whose real version (embedding) is
less or equal.

lemma (in reall) Real_ZF_1_4_L3: assumes Al: acR
shows {m € int. mf < a} # 0
proof -
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from A1 have (-a) € R using Real ZF_1_1_L8
by simp
then obtain m where I: m€int and II: (-a) < m®
using Real _ZF_1_4_L2 by auto
let k¥ = GroupInv(int,IntegerAddition) (m