Katana: A Userland Toolchain-Oriented
Hotpatching System

James Oakley

22 June 2010

Contents

[1__Introduction|

2 Other Systems|

3 What Katana Doesl

[4 What Katana Does Not Do (Yet)|

5 What Katana May Never Do|

6 How to Use Katanal
[6.1 Preparing a Package for Patching Support|
6.1.1 Source Code Practicesl
[6.1.2 Compilation/Linking|

6.3 To Apply a Patch|.
6.4 To Viewa Patchl,

7 Patch Object Format|

8 Patch Generation Processl

9 Patch Application Process|

10 Roadmap

[I1 Credits and Licensing] 6

1 Introduction

Katana aims to provide a hot-patching system for userland. Further it aims
to work with existing toolchains and formats so as to be easy to use and
to hopefully pave the way for incorporating patching as a standard part
of the toolchain. Because of this aim, Katana operates at the object level
rather than requiring any access to the source code itself. This has the added
bonus of making it, in theory, language agnostic (although no work has been
done to test it with anything besides programs written in C). A diagram of
software lifecycle with hotpatching is shown below

Development Patch Creation
rel v
obj |
Gompﬂca — Gsscmb@ —J> (Linkcr] — (Patch)4—
Generator
b texecohj— updated
(\) .
objects
(Core) --- @yn. Lina -« (Loader) and programs
) in-mem
| Runtime exec obj) patch
obj
P
Runtime Patcher (PO)
with /
Patching l e
exec obj

patch
(PO)

l in-mem
exec obj

et cetera

This document is intended to provide a users guide to Katana, insight
into its inner workings, and discussion of its flaws and plans for the future. As
the software is not complete, making use of Katana without understanding
the inner workings and technical shortcomings is not recommended. Nev-
ertheless, the only sections of this document necessary for “Users’ Guide”
purposes are ['What Katana Does”] 'What Katana Does Not Do (Yet)”] and
most importantly [fHow to Use Katana’|

This document is a work in progress. It is not a polished guide yet.

2 Other Systems

There are other hotpatching systems in existence. The curious are invited
to explore Ginseng and Polus. Both of these systems parse the source code,
which adds significant complexity to them and results in significant program-
mer annotation of the code to give hints to the systems. Ginseng uses com-
plicated type-wrappers when patching variables which does not fit cleanly
with existing executables and has some impact on the performance of the
software. Ginseng is considerably more mature than Katana, however. Nei-
ther system is production ready, but Ginseng is probably closer than Katana
at the moment.

The system most like Katana in many ways is KSplice, and the curious
reader is definitely invited to investigate. KSplice patches the kernel and not
userland, does not attempt to patch variables, and creates patches as kernel
modules rather than working towards a general ELF-based patch format.

3 What Katana Does

e Runs on x86 and x86-64
e Generates patches for simple programs

e Applies simple patches

4 What Katana Does Not Do (Yet)

e Patch any major programs: it has not yet been demonstrated on any-
thing more than toy examples

e Provide any method to handle opaque data it cannot patch (void*,
situations where which action a user would prefer is unclear, etc)

e Patch previously patched processes

e Provide robust operation

e Run on any architectures other than x86 and x86-64
e Tested on any operating system besides GNU /Linux

e Allow for calls in patched code to previously unused functions

e Work for programs which actually make use of some of the large code
model features of the x86-64 ABI.

e And much more

See for more things which are not complete

5 What Katana May Never Do

e Work on any binary formats besides ELF

6 How to Use Katana

Katana is intended to be used in two stages. The first stage generates a patch
object from two different versions of an treee. By an object tree, we mean
the set of object files (.0 files) and the executable binary they comprise.
Katana works completely at the object level, so the source code itself is
not strictly required, although all objects must be compiled with debugging
information. This step may be done by the software vendor. In the second
stage, the patch is applied to a running process. The original source trees
are not necessary during patch application, as the patch object contains all
information necessary to patch the in-memory process at the object level. It
is also possible to view the contents of a patch object in a human-readable
way for the purposes of sanity-checking, determining what changes the patch
makes, etc.

6.1 Preparing a Package for Patching Support

Katana aims to be much less invasive than other hot-patching system and
require minimal work to be used with any project. It does, however, have
some requirements.

6.1.1 Source Code Practices

Katana does not look at the source code, therefore unlike several other hot-
patching systems, it does not require any annotation in the source code.
There are, however, some best practices to follow.

e Avoid the use of void* at least for global variables (since Katana does
not currently patch local variables, preferring to wait until any func-
tions using changed variables are no longer on the stack). Since it is
typeless and opaque, it is very hard to analyze and patch.

e Avoid unnamed types. i.e., instead of typedef struct {...} Foo;
use typedef struct Foo_ {...} Foo;.

e Avoid accessing structure members by offsets instead of by the member
names. As long as you keep all the code where you do this up to date,
it should not be a problem, but katana cannot detect when you do this.

6.1.2 Compilation/Linking
Required CFLAGS:

-8
Recommended CFLAGS:
o -ffunction-sections
o -fdata-sections
Recommended LDFLAGS:

e —cmit-relocs

6.2 To Generate a Patch

Let the location of your project be /project. You must have two versions of
your software available: the version identical to the running software which
must be hotpatched, call it v0, and the version to which you wish to hotpatch
the running software, call it v1. Let foo be the name of your program. Then
/project/v0/foo must exist and /project/v0 must also contain (possibly in
subdirectories) all of the object files which contributed to /project/v0/foo.
The source code itself is immaterial, as Katana does not parse it. Similarly,
/project/v1/foo must exist and /project/v1 contain all of the object files
contributing to /project/v1/foo. Katana is then invoked as
katana -g [-o OUTPUT_FILE] /project/v0 /project/vl foo
or more formally
katana -g [-o OUTUT_FILE] OLD_OBJECTS_DIR NEW_OBJECTS_DIR EXECUTABLE_NAME
If -o OUTPUT_FILE is not specified, the output file will be OLD_0BJECTS_DIR/EXECUTABLE_NAME.po

6.3 To Apply a Patch

The process to be patched is running with a pid of PID. It can be patched
from its current version to a more recent version by the Patch Object (PO)
file PATCH. Katana is then invoked as

katana -p [-s] PATCH PID

If all goes well, the patcher will run, print out some status messages, and
leave your program in better state than it found it. The optional -s flag tells
Katana to stop the target program after patching it and detaching from it.
This is mostly of use for debugging Katana.

6.4 To View a Patch

One of the goals of Katana and its Patch Object (PO) format is to increase
the transparency of patches: a user about to apply a patch should know
what it will do. This goal is not yet fully realized, but it is possible to view
some information about a patch with

katana -1 PATCH

6.5 See Also

the katana manpage (once it’s written, which it is not yet)

7 Patch Object Format

This section of the document is not yet written. It will provide a description
and specification of the PO format used by Katana

8 Patch Generation Process

This section of the document is not yet written. It will provide a description
of the internal process that Katana uses to generate a patch. Understanding
it is not necessary for using Katana.

9 Patch Application Process

This section of the document is not yet written. It will provide a description
of the internal process that Katana uses to apply a patch. Understanding it
is not necessary for using Katana.

10 Roadmap

This section is highly incomplete. Future goals include
e Better interaction with the heap and dynamically allocated variables
e Better interaction with void*
e More efficient use of .rodata
e Patching already patched processes
e Patch composition

e Patch safety checking: make sure a patch actually corresponds to the
process it’s being applied to

e Storing warnings from generation inside a patch

11 Credits and Licensing

Katana is under development at Dartmouth College and Copyright 2010
Dartmouth College. It may be distributed under the terms of the GNU
General Public License with attribution to Dartmouth College as specified
in the file COPYING distributed with Katana. This document is Copyright
2010 Dartmouth College and may be distributed under the terms of the
GNU Free Documentation License as found in the file FDL which should
have been distributed with this documentation. If it was not, it may be
found at http://www.gnu.org/licenses/fdl.txt.

Katana is being written by James Oakley and was designed by Sergey
Bratus, Ashwin Ramaswamy, James Oakley, Michael Locasto, and Sean
Smith.

http://www.gnu.org/licenses/fdl.txt

	Introduction
	Other Systems
	What Katana Does
	What Katana Does Not Do (Yet)
	What Katana May Never Do
	How to Use Katana
	Preparing a Package for Patching Support
	Source Code Practices
	Compilation/Linking

	To Generate a Patch
	To Apply a Patch
	To View a Patch
	See Also

	Patch Object Format
	Patch Generation Process
	Patch Application Process
	Roadmap
	Credits and Licensing

