
StoreBackup 3.3-rc2

http://storebackup.org

August 11, 2012

1 Super Quick Start

StoreBackup is a very space efficient disk-to-disk backup suite for GNU/Linux and other unixoide systems.
Additional details and help are provided in later sections of this document.
In these brief quick start steps we make certain simplifying assumptions. If you are OK with that, then
proceed as follows:

1. Download the source from http://download.savannah.gnu.org/releases/storebackup/

2. Unpack it (using tar -jxvf) into /opt (it will make the folder /opt/storeBackup.)1

3. Create symbolic links. In a terminal, run these 2 commands (the 2nd line ends with: space,dot):

cd /usr/local/bin

ln -s /opt/storeBackup/bin/* .

4. Run your first backup with this command (substituting your actual username in the command):2

storeBackup.pl --sourceDir /home/your_username --backupDir /tmp/my_master_backup

This may take a while. Open a second shell and see what happens in the backup directory. You
have now backed up your home directory to /tmp/my master backup.

For more details, please continue reading; especially see installation, section 2 and storeBackup.pl, sec-
tion 6.2. If the above steps gave you any challenges, don’t worry. This document will cover everything
from storeBackup installation to NFS server settings in much more detail.

See storeBackup’s Top Features on the next page

1You need root permissions to install storeBackup at /opt/storeBackup and to follow the next steps. You can also
unpack and run storeBackup from a place where you do not have root permissions. If you start storeBackup without root
permissions, it will run with the permissions you have at that moment.

2If you install storeBackup from the Debian or Ubuntu repository via the packet manager, all programs will come without
the “.pl” at the end, so instead of storeBackup.pl you have to call storeBackup.

1

http://storebackup.org
http://download.savannah.gnu.org/releases/storebackup/

1.1 storeBackup’s Top Features

• restore easily – even without storeBackup! The most important aspect of a backup tool is easy
restoring from a transparent (native) storage format.

• copies / compresses files to another disk and generates backups with time stamps while saving space
through recognizing files with identical contents (e.g., renamed, copied) which are hardlinked (so
each backup is totally complete, independent and autonomous)

• detects identical files in different, independent backups (eg. of different computers)

• splits big image files (from e.g., TrueCrypt, mbox, Xen, KVM, VMware, etc.) or complete devices
into small pieces and saves only differences to existing backups, thereby saving space and time

• sophisticated including and excluding possibilities for files and directories

• supports isolated incremental backups (e.g., when travelling with a laptop) and later integration in
master backup

• supports time shifted replication of backups to additional other disks / locations, even for complex
schemes

• Supports checking of backups via md5 sums

• fast backups even over slow or high latency network connections

• an entire suite of backup-related tools

1.2 Why should you back up your files?

Simple answer. Two reasons:

1. To restore the last state after e.g., a hardware or software crash.

2. To recover old versions of a file or folder because it was deleted / destroyed unnoticed (e.g., by a
software bug) or you discover later it was deleted by mistake.

New releases are announced at http://freshmeat.net/projects/storebackup. Please subscribe to get recent
information.

If you have any hints, comments or questions, send an email to hjclaes at web.de

StoreBackup is licensed under the terms of the GPL-v3 or any later version.

Heinz-Josef Claes with support of contributors, August 11, 2012

2

http://freshmeat.net/projects/storebackup

Contents

1 Super Quick Start 1
1.1 storeBackup’s Top Features . 2
1.2 Why should you back up your files? . 2

2 Installation 4

3 Getting Started 5

4 What’s new? 5
4.1 What’s new in storeBackup version 3.3 . 6

5 The Idea behind it 6
5.1 abstract . 6
5.2 Another Backup Tool? / Roots of storeBackup . 7
5.3 What would be an ideal Backup Tool? . 7
5.4 How storeBackup works . 8

5.4.1 Illustration . 8
5.4.2 Reducing Disk Space . 9
5.4.3 Performance . 10
5.4.4 Example of a Run . 12

6 Components / Programs to use 14
6.1 Supported Platforms and Tips . 14
6.2 storeBackup.pl . 15

6.2.1 storeBackup.pl Options . 17
6.3 storeBackupUpdateBackup.pl . 27
6.4 storeBackupRecover.pl . 29
6.5 storeBackupVersion.pl . 30
6.6 storeBackupSearch.pl . 30
6.7 storeBackupSetupIsolatedMode.pl . 31
6.8 storeBackupMergeIsolatedBackup.pl . 32
6.9 storeBackupls.pl . 33
6.10 storeBackupDel.pl . 35
6.11 storeBackupMount.pl . 36
6.12 storeBackupCheckBackup.pl . 37
6.13 storeBackupCheckSource.pl . 38
6.14 storeBackup du.pl . 38
6.15 storeBackupConvertBackup.pl . 38
6.16 linkToDirs.pl . 39
6.17 llt . 40
6.18 multitail.pl . 40

7 General concepts 41
7.1 configuration file and command line . 41
7.2 Deletion of old Backups . 43
7.3 Defining rules . 44

7.3.1 How to define if a file should be compressed . 46
7.4 Saving Image Files / raw Devices / Blocked Files . 48
7.5 using option lateLinks . 51
7.6 isolated mode / offline backups . 54

7.6.1 You can use isolated backup in the following way: 54
7.6.2 setting up isolated mode . 55

7.7 replication of backups . 57
7.7.1 Quick start using storeBackup’s Replication Wizard 58
7.7.2 Why copying backups is not a substitute for replication functionality 60
7.7.3 Basic concepts to know before using storeBackup’s replication 62

3

7.7.4 Understanding storeBackup’s Replication Wizard via an example 64
7.7.5 A simple replication example without the Replication Wizard 66
7.7.6 How storeBackup’s replication works . 68

7.8 special files generated and used by storeBackup . 70
7.9 configuring NFS . 71
7.10 what’s an inode . 72
7.11 Statistical Output of storeBackup.pl . 73
7.12 Monitoring . 74
7.13 Limitations . 74

8 How to use storeBackup (Examples) 75
8.1 Some Information in the Beginning . 75
8.2 Example 1, very simple backup . 76
8.3 Example 2, backup of multiple directories . 77
8.4 Example 3, make a big backup once a week, a small every day 77
8.5 Example 4, backup from different machines, share data . 78
8.6 Example 5, different keepTimes for some directories . 79
8.7 Example 6, using lateLinks . 79

9 FAQ, Frequently asked Questions 80

10 Contributors 83

11 Change Log 83

12 License 99

2 Installation

You should read The Idea behind it (abstract), see section 5.1, as well as Supported Platforms and Tips,
see section 6.1, to see if storeBackup fits to your needs.

Installation is straightforward.
Download the archive from http://download.savannah.gnu.org/releases/storebackup/ and go to a direc-
tory where you want to unpack it:
If you are not sure where to unpack it, allow me to suggest /opt. (You need root permissions to write at
/opt.) If you chose /opt, then in the example below path is equal to /opt.

$ cd path

$ tar jxvf pathToArchive/storeBackup-3.3.tar.bz2

This will create a directory storeBackup where you will find four sub directories: bin, lib, man, and doc.
If you do not want to type the whole path every time to start storeBackup.pl (or any of the programs in
bin), there are two easy choices.

One choice is to set your $PATH variable:

$ cd storeBackup/bin

$ export PATH=‘pwd‘:$PATH

(The quotes around the pwd must be back quotes, ascii code 96; some pdf readers will render them as
them as normal quotes in this document!)
Also set $PATH in your .bashrc or whatever shell you are using.

The second choice is to make symbolic links from a place where $PATH is already set. If e.g., your $PATH
also points to /usr/local/bin (and you have write permissions), you can do:

cd /usr/local/bin

ln -s path/storeBackup/bin/* .

Don’t use hard links for that. StoreBackup will not find it’s libraries if you do so.

4

http://download.savannah.gnu.org/releases/storebackup/

If you want to have access to the man pages via the man command, you should set MANPATH:

$ cd storeBackup/man

$ export MANPATH=‘pwd‘:$MANPATH

Naturally, you have to change the path after cd depending on your location in the filesystem.
Also, you should set MANPATH in your .bashrc or whatever shell you are using.

Please have a look into the file README.1ST which is located in the doc folder.

3 Getting Started

Let’s make your first backup.
Let’s imagine, you want to backup your home directory to /tmp/my master backup. (If your home directory
is too big to do this, choose a small directory inside your home directory.)
Go into your home directory and type:

$ mkdir /tmp/my_master_backup

$ cd

$ storeBackup.pl --sourceDir . --backupDir /tmp/my_master_backup

If storeBackup.pl is not in your path, you will get an error message from the shell and need to set $PATH

or type the full path to storeBackup.pl.3

Depending on how much data is in your home directory, this can take a while, because storeBackup.pl
will compress your files. It will use all cores of your system for this. Because of these compressions, the
first backup is very slow.
After the backup is finished, create a new file, copy a file and rename a file and or directory and start a
second run:

$ cd

$ storeBackup.pl --sourceDir . --backupDir /tmp/my_master_backup

You will see, it’s much faster now.

Go to /tmp/my master backup. We call this location your “master backup” for consistency with the rest
of the documentation. In there you will see a directory called default. This is called a series because
this directory will hold a series of backups for your computer. You can easily change the default series
name from ”default” to the name of your computer. This is easily accomplished with the storeBackup
configuration file (explained later).
Inside of the default directory you will see two sub directories whose names reflect the date and time of
the two backups you just completed. Go into these directories (use two shells, one for each) and look at
the files with the command:
$ ls -li

Option “i” tells ls to show the inode number, which you can see in the very left column. Check, that
files with the same content (especially the ones you copied, renamed, moved and the ones in renamed
directories) refer to the same inode – so the file exists only once on disk thanks to storeBackup’s efficient
technology.

If you used storeBackup in Versions prior to 2.0 and simply made a backup with

storeBackup.pl -s sourceDir -t targetDir # !!! old syntax !!!

and now want to continue making backups with version 2.0 or above, use

storeBackup.pl -s sourceDir --backupDir targetDir -S .

Where the parameters of sourceDir and targetDir are the same in both versions.

4 What’s new?

For a list of all changes see ChangeLog, section 11. This chapter will just list a summary of new Features.

3see installation, section 2 if you do not know what this means

5

4.1 What’s new in storeBackup version 3.3

compression: Prior to this version, you could specify files not to compress by defining a list of file
suffixes (extensions) that would never be compressed. You could also set a minimal size of files
so that files below that size would not be compressed. If you do not change anything about this
in your configuration file, the behavior stays the same. But now, you can also define a list of file
suffixes always to compress in addition to the prior options which let you define a list of file suffixes
not to compress , plus a minimal file size. For files not fitting in these categories storeBackup.pl will
make an estimation if compression might reduce the file size. Naturally, you can also define your
own rules with this functionality. See section 7.3.1, “How to define if a file should be compressed”
for detailed information.

isolated mode: If you are traveling, for example, with a laptop and no connection to you backup, you
now can store delta backups (relative to your “big” local backup) on a small media device (e.g.,
memory stick) and integrate these backups later into your central one. See section 7.6, “isolated
mode / offline backups” for detailed information.

replication of backups: Allows you to set up the replication of your backup to other disks / locations.
This can be used to make continuous copies of your backup. See section 7.7, “replication of
backups” for detailed information.

linkToDirs.pl: Allows you to copy / hard link backups to other ones. It’s like running cp -a but hard
linking all identical files to selectable directories. It can be used also to support the replication of
backups in special situations. If you have small backups you want to copy to onto another disk,
this might be the right tool for you also. See section 6.16, linkToDirs.pl for detailed information.

storeBackupCheckSource.pl: The tool is intended to find files in the source that might have changed
over time without the users interaction or knowledge, for example by bit rot. See section 6.13,
storeBackupCheckSource.pl for detailed information.

5 The Idea behind it

5.1 abstract

StoreBackup is a disk-to-disk backup tool for GNU/Linux. It also runs on other Unix-like machines. You
can directly browse through the backed-up files (locally or via NFS, Samba, SSH4 or almost any other
network file system). This gives the users the ability to restore files easily and quickly. The user only has
to copy (and optionally uncompress) to restore the files. There is also a tool for easily restoring (sub)
trees for the administrator. Every single backup from a specific time can be deleted without affecting the
other existing backups.
StoreBackup recognizes files by their content rather than just by their name or location. It can recognize
when files have been copied, renamed or moved. If the file is identical, but differs by name or location,
storeBackup has an efficient way (hardlinks) to include that file in the current backup without copying
it again. When a user reorganizes their photo collection or music collection, most backup software must
transfer all those files over the network and store them again in the backup location, wasting time and
space. StoreBackup will simply hardlink to the identical content that is already stored in the backup
location, saving a lot of time and space.
StoreBackup can split big image files (e.g., from virtual machines) in little pieces and needs only the
space for changes in these splits. Restoring these parts to the full image is also possible easily with simple
tools: cat or possibly bzcat (or whatever you used for compression). Naturally, storeBackup delivers a
tool to restore everything easier. You can also split devices or partitions (like /dev/sdb1) in the same
way.
StoreBackup offers itself to the general user who does not necessarily own a tape backup but a second
hard drive or another computer. It offers itself to the users in the professional environment for extremely
fast and comfortable access to their backups, also to save on the costs of tapes as well as administrative
expenses.

4see FAQ4 for details about making a backup via SSH

6

StoreBackup is a command line tool. You can start it via cron automatically. You normally don’t want
a graphical surface on a server and most important: If your machine crashed, you probably do not have
a running gui.
Storage on hard drives, memory sticks or similar devices offers itself as an alternative or additional
resource to data backup on tapes. StoreBackup performs well, saves storage capacity, and increases
administrative flexibility:

• Directories, including their tree structure, may be copied to another location
(e.g. /home −→ /var/bkup/2003.12.13 02.04.26). Permissions to the files remain, enabling users to
access the backup directly. The most important aspect of a backup tool is easy and safe restoring.

• The content of each file being backed up is compared with the existing backup to make sure there
is only one backup for each file. That means files with the same content exist physically only once
in the backup.

• Identical files are hard linked and appear in the backup in the same locations as in the original.

• You can exclude files from the backup by excluding whole directories or by specifying rules depending
on regular expressions, file size, groups, users and other criteria.

• Backed up files will be compressed, unless they are marked ’exclude’. Compression may also be
excluded entirely or may be the result of a file based analysis of storeBackup itself.

• Image files or mass storage devices, where only parts change from backup to backup can be evaluated
for differences. In the backup, you will only need the space for the changed blocks (which can be
compressed).

• Backup series, generated independently (e.g. from different machines) may refer through hard
links to shared files. Full or partial backups may be executed with this method, always under the
condition that files with the same content may exist only once in the backup.

• The final result of running storeBackup is always a full backup. These can be automatically deleted
with easy or high sophisticated deletion rules.

• StoreBackup supports a lot of other options. They are described in this document.

5.2 Another Backup Tool? / Roots of storeBackup

Possibly, there are thousands of backup programs. So, why another one? The reason arose from my
activities as a consultant. The entire week I was moving around and I had no way to secure my data
during the week at home. All I had was a 250MB ZIP drive connected to the parallel port of my laptop.
The backup on the ZIP drive did not give me a lot of storage space and I had to live with a low bandwidth
(about 200KB/s) and high latency. In contradiction to that I wanted fast, simple access to my data - I
did not like the usual options of full, differential and incremental backups (e.g. with tar or dump): on
one hand it is usually too cumbersome to retrieve one of the versions, on the other hand it is not possible
to delete an old backup at will, this has to be planned carefully at the generation of the backup.
It was my goal to be able to backup quickly during my work and find my files quickly and without hassle.
So, at the end of 1999 the first version of storeBackup was created. It was, however, not suitable for large
environments. It was not performing well enough, did not scale sufficiently and was not able do deal with
nasty file names (e.g. ’\n’ in a name).
Based on that experience with the first version I wrote a new one which was published a little bit less
than a year later under the GPL. In the meantime the number of users had grown - from home user
applications, securing of (mail) directories at ISPs, small and medium sized companies or hospitals as
well as universities and for general archiving.

5.3 What would be an ideal Backup Tool?

The most important aspect of a backup is that you are not only able to restore but to do this easily.
The following reflects backups of files, not databases.
The ideal backup tool would create every day a complete copy of the entire data system (including the
applicable access rights) on another data system with minimal effort for the administrator and maximal

7

comfort for the user. The computer and hard disk systems to make this possible should be in a distant,
secure building, of course. With the help of a file system browser the user could search and access the
data and copy data directly back. The backup would be usable directly and restoring possible without
problems or special learnings. Dealing with backups would become something normal - since the route
over the administration would in general be unnecessary.
The process described here has a “small” disadvantage: it needs a lot of hard drive space and it is quite
slow because each time the total amount of data needs to be copied.

5.4 How storeBackup works

StoreBackup tries to accomplish the “ideal backup” and to solve the two problems: storage space and
performance.
You can run it on a machine to store your backups to a local drive (or temporarily connected drive) or
to a network mount (e.g., nfs, sshfs, cifs). This is the most efficient way. But you can also read the data
from a machine which offers its data e.g., via cifs or nfs.

5.4.1 Illustration

storeBackup is a disk-to-disk backup tool for GNU/Linux based on hard links. Have a look at the picture:

sourceDir backup 1 backup 2 backup 3

backup from
computer 1

sourceDir backup 1 backup 2

backup from
computer 2

series = computer1

series = computer2

hard links to an inode

backupDir = /mybackup

Imagine you have two computers you want to backup onto one file server via NFS 5. (Even if you only
want to backup on an external disk (e.g., usb or e-sata), you should also read the following to understand
the basic parameters.)
The default values of all storeBackup options are designed in a way that you can use storeBackup with
only two options: - -sourceDir and - -backupDir. (The shortforms of these two options are -s and -b.)
Everything else works with acceptable default values. The way you can define soureDir is very flexible 6

First, you have to define a “backupDir” directory, where all your backups will reside. This is called the
master backup repository. Let’s say, this is /my master backup. To separate your different backups from
multiple computers, you will make a separate directory for each; in the illustration, it’s computer1 and
computer2.

5See section 7.9 how to configure NFS properly – you must have write access to the directory where you want to save
your backup. If you are root, you should have root permissions on this mounted directory.

6If you want to backup more than one top-level directory tree at a time, you should have a look at option followLinks
in section 6.2.

8

In storeBackup terminology, computer1 is a series and computer2 is a series. The term ”series” is used
because e.g. computer1 will contain a set of sequential backups (i.e., a series) that belong to computer1.
These are shown as backup 1, backup 2 and backup 3 in the illustration.
You will identify these directories each as a “series” in storeBackup’s configuration file. The full path
to these directories is /my master backup/computer1 and /my master backup/computer2. In each “series”
directory you will generate a series of backups for the sourceDir on the computer associated with that
series. You will see that it is all organized very logically and the organization is natural and easy to
follow.
storeBackup will find all files that already exist in your backup repository (“my master backup”) with the
same content (either within a single backup or across multiple backups, or even across multiple backups
for multiple computers!).
storeBackup will hard link all these files to only one inode (see section 7.10). Changing names or paths
of the files does not present a problem, because storeBackup can tell if files are the same based on the
content. In the picture above, you see that in backup 3 of computer 1 the location of the file has moved
(perhaps also renamed), or in backup 2 of computer 2 the file has been copied. StoreBackup will recognize
this and always links to the same inode.
storeBackup supports multiple series of backups (e.g., daily or weekly backups) from different sources
(e.g., different servers or workstations). As mentioned, the default name for a series is default. However,
if you plan to back up multiple computers, each series should be configured with a name that describes
the computer (e.g., the source) using the - -series option (short form -S) on the command line or simply
”series” in the config file. See storeBackup.pl, section 6.2.
The next few sections will go into further details about the details of how storeBackup works.

5.4.2 Reducing Disk Space

Saving files as a whole

The first measure to decrease the necessary hard drive storage space would be the compression of data
– if that makes sense. storeBackup allows the use of any compression algorithm as an external program.
The default is bzip2.
Looking at the stored data closely, it is apparent that from backup to backup relatively few files change
– which is the reason for incremental backups. We also find that many files with the same content may
be found in a backup because users copy files or a version administration program (like cvs) is active.
In addition, files or directory structures are re-named by users, in incremental backups they are again
(unnecessarily) secured. The solution to this is to check the backup for files with the same content
(possibly compressed) and to refer to those. Within storeBackup, a hard link is used for referencing.
With this trick of adding hard links, which were already created in existing backup files, each file is
present in each backup although it exists physically on the hard drive only once. Copying and renaming
of files or directories takes only the storage space of the hard links – nearly nothing.
Most likely not only one computer needs to be secured but a number of them. They often have a high
proportion of identical files, especially with directories like /etc, /usr or /home. Obviously, there should
be only one copy of identical files stored on the backup drive. To mount all directories from the backup
server and to backup all computers in one sweep would be the most simple solution. This way duplicate
files get detected and hard linked. However, this procedure has the disadvantage that all machines to
be secured have to be available for the backup time. That procedure can in many cases not be feasible,
for example, if notebooks shall be backed up using storeBackup. Specifically with notebooks we can
find a high overlap rate of files since users create local copies. In such cases or if servers are backed up
independently from one another, and the available hard drive space shall be utilized optimally through
hard links, storeBackup is able to hard link files in independent backups (meaning: independent from
each other, possibly from different machines).

Splitting files into parts: blocked files

The method of compressing and hard linking files works pretty well for “normal” files like office, config-
uration, program code and all other type of small files.
It more or less fails for big image files where only parts are changed. Such a file with e.g., 3 GB has only
a few megabytes of changes, but the method described above would copy or compress the whole 3 GB
into the backup, which is neither space nor time efficient. To solve this problem, storeBackup can handle

9

such files in a special way.
In the configuration file you can specify which should be handled as “blocked files”. For these blocked
files, a directory instead of a plain file is created in the backup. (The name of the directory is identical to
the original file name.) The affected file from the source is not stored as a whole in the backup – instead
it is stored as (small) numbered blocks in the created directory. These blocks can be compressed.
In the next backup (after something has changed in the original file,) storeBackup checks which of these
blocks have changed and only copies / compresses that blocks. For the now missing unchanged blocks
a hard link is generated to the fitting blocks in the old backup(s). This md5 sum based comparison is
also done with other blocked files, so if you duplicate a VM for different use, storeBackup will find the
identical blocks. It will also find identical blocks within one blocked file. (This happens when unused
areas in an image are blanked or massively when saving sparse files.)
As a result the needed space is reduced dramatically (compared with copying / compressing the whole
file) and it is still possible to restore the contents of the original file without a running storeBackup which
is the philosophy of storebackup (restoring is the most important part of a backup) and might be useful
in e.g., 10 years. (Who knows what’s happening then!?)

Deleting Backups

For the deletion of files storeBackup offers a set of options. It is a great advantage for deletion when each
backup is a full backup, those may be deleted indiscriminately. Unlike with traditional backups, there is
no need to consider if an incremental backup is depending on previous backups.
The options permit the deletion or saving of backups on specific workdays, first or last existing backup
of the week/month or year. It can be assured that a set of a minimum number of backups remains. This
is especially useful if backups are not generated on a regular basis. It is possible to keep the last backups
of a laptop until the end of a four week vacation even though the period to keep it is set to three weeks.
Furthermore it is possible to define the maximal number of backups. There are more options to resolve
the existence of conflicts between contradictory rules (by using common sense).

5.4.3 Performance

The procedure described above assumes that an existing backup is being checked for identical files prior
to a new backup of a file. This applies to files in the previous backup as well as to the newly created one.
Of course it does not make much sense to directly compare every file to be backed up with the previous
backup. So, the md5 sums of the previous backup are being compared with the md5 sum of the file to
be backed up with the utilization of the hash table.
Computing the md5 sum is fast, but in case of a large amount of data it is still not fast enough. For this
reason storeBackup checks initially if the file was not altered since the last backup (path + file name,
ctime, mtime and size are the same). If that is the case, the md5 sum of the last backup is being adopted
and the hard link set. If the initial check shows a difference, the md5 sum is being computed and a
check takes place to see if another file with the same md5 sum exists. (The comparison with a number of
backup series uses an expanded but similarly efficient process). For this approach only a few md5 sums
need to be calculated for a backup. If you want to tune storeBackup, especially if you save via NFS,
there are two things you can do:

• tune NFS (see section 7.9)

• use the lateLinks option of storeBackup, and possibly delete your old backups independent from
the backup process.
Using storeBackup with lateLinks is like using an asynchronous client / server application or to be
more precisely like using multiple batches on (normally) multiple machines:

– Checking the source directory to know what has changed and to be compressed and save the
changed data to the backup directory on the backup server. The missing directories and hard
links in the backup are stored in a protocol file.

– Take this information and restore a “normal” fully linked backup.

– Delete old backups depending on the rules for the deletion.

10

The follwing performance measurements only show the direct backup time (without calling storeBack-
upUpdateBackup.pl (if necessary)7). They have been done with a beta version of storeBackup 2.0.
Some background information to the following numbers: The backup was run on an Athlon X2, 2.3 GHz,
4 GB RAM. The NFS server was an Athlon XP, 1.84 GHz, 1.5 GB RAM. The network was running
with 100 MBit/s, storeBackup was used with standard parameters. The units of the measurements are
in hours:minutes:seconds or minutes:seconds. The size of sourceDir was 12GB, the size of the backup
done with storeBackup was 9.2 GB. The backups were done with 4769 directories and 38499 files. Store-
Backup.pl linked 5038 files internally which means these were duplicates. The source for the data were
my files and the “Desktop” from my Windows XP Laptop, so “real” data.
The first table shows the time for copying the data to the nfs server with standard programs. The nfs
server is mounted with option async8, which is a performance optimization and not the standard config-
uration.
command duration size of backup
cp -a 28:46 12 GB
tar jcf 01:58:20 9.4 GB
tar cf 21:06 12 GB

All is like it was to expect: tar with compression is much slower than the other ones; and cp is slower
than tar, because it has to create lots of files. There is one astonishing number: The size of the backup
file of tar jcf ist 9.4 GB, while the resulting size of the backup with storeBackup.pl is only 9.2 GB.
We see the reason for this in the internal linked 5038 files – the duplicates are stored only once with
storeBackup.

We do not see the effect of comparing the contents in this benchmark again, but it makes a lot of dif-
ferences in performance and especially used disk space. If the time stamp of a file is changed, then
traditional backup software will store this file in an incremental backup – storeBackup will only create a
hard link.

Now let’s run storeBackup.pl on the same contents. The nfs server is still mounted with option async.
There are no changes in the source directory between the first to the second or third backup.

storeBackup 1.19, Standard 2.0, Standard 2.0, lateLinks mount with async

1. backup 49:51 100% 49:20 99% 31:14 63%
2. backup 02:45 100% 02:25 88% 00:42 25% file system read cache empty
3. backup 01:51 100% 01:54 100% 00:26 23% file system read cache filled

We can see the following:

• The first run of storeBackup.pl is faster than tar jcf (tar with compression.) It’s easy to understand
why: storeBackup.pl uses both cores of the machine, while the compression with tar uses only one.
But if you look a little bit deeper to the number, you see that storeBackup.pl needs less than
half the time (42%) of tar with compression. It naturally additionally calculates all md5 sums
and has to perform the overhead of creating thousands of files (look at the difference between cp

and tar cf above). The effect of reducing the time for copying more than 50% comes from two
effects: storeBackup.pl does not compress all files (depending on their suffix, e.g., .bz2 files are not
compressed again) and it recognizes files with the same content and sets just a hard link (also the
reason for 9.2 instead of 9.4 GB).

• The second backup was done with a new mount of the source directory, so the read cache for it
was not filled. You can see some improvement between version 1.19 and 2.0 because of better
parallelization reading the data in storeBackup itself.
You see no difference in the third run between version 1.19 and 2.0, because reading the source
directory entries is now in the file system cache, which means that the blocking factor is now the
speed of the nfs server – and that’s the same in both runs.

• With option lateLinks, you can see an improvement by a factor of 4. The time you see depends
massively on the time needed for reading the source directory (plus reading the information from
the previous backup, which is always the same).

Now let’s do the same with an nfs mount without “tricks” like configuring async:

7This is only necessary if you use storeBackup.pl with option lateLinks. The necessary time for running storeBackupUp-
dateBackup.pl can be seen in the next section 5.4.4.

8see configuring nfs, section 7.9

11

command duration size of backup
cp -a 37:51 12 GB
tar jcf 02:02:01 9.4 GB
tar cf 25:05 12 GB

storeBackup 1.19, Standard 2.0, Standard 2.0, lateLinks mount with sync

1. backup 53:35 100% 49:20 100% 38:53 63%
2. backup 05:36 100% 05:24 96% 00:43 13% file system read cache empty
3. backup 05:10 100% 04:54 95% 00:27 9% file system read cache filled

We can see the following:

• Everything is more or less slower, because of higher latency due to the synchronous communication
with the nfs server. If only one file is written (like with tar), the difference to the backups with
async is smaller, if many files are written, it’s bigger.

• We see that the difference between sync and async using lateLinks is very small and the reason is
simple. Only a few files are written over nfs, so the latency only has a small impact on the overall
time for the backup. This results in the fact, that the backup with lateLinks and a very fast source
directory (cache) is now 10 times faster.

• Because the latency is not important for making a backup, I mounted this file server over a vpn9 over
the Internet. This means very high latency and a bandwidth of about 20KByte/s from the nfs server
and 50KByte/s to the nfs server (seen on a network monitoring tool). With same same boundary
conditions as before (mounted with async, source directory file system in cache, no changes) I got
a speed up with lateLinks (compared with non-lateLinks backup) by a factor of 70 .
So if your changed or new files are not too big compared with the available bandwidth, you can also
use storeBackup (with lateLinks) for making a backup over a vpn on high latency lines.10 Naturally
you should not choose option lateCompress in such a case. Another advantage with lateLinks in
such cases is, that parallelization works much better, because reading unchanged data in the source
directory nearly needs no action on the NFS mount.

Conclusion: If you mount with nfs, you can make it really fast using option lateLinks. See section 7.5
how to configure it.

Using “blocked files” also improves performance a lot because only a small percentage of an image file
has to be copied or compressed. See the description about using blocked files (see section 7.4) for the
influence of this option to performance and space needed.

5.4.4 Example of a Run

Here you can see the statistical output of a big backup I ran on my laptop and saved to an NFS server.
(I’m running this backup including OS once or twice a week and a smaller one every day, similar to the
description of example 3, section 8.4.) I had to backup more than 500,000 entries:

STATISTIC 2008.09.08 23:40:17 3961 [sec] | user| system

STATISTIC 2008.09.08 23:40:17 3961 -------+----------+----------

STATISTIC 2008.09.08 23:40:17 3961 process| 386.30| 166.27

STATISTIC 2008.09.08 23:40:17 3961 childs | 209.02| 116.96

STATISTIC 2008.09.08 23:40:17 3961 -------+----------+----------

STATISTIC 2008.09.08 23:40:17 3961 sum | 595.32| 283.23 => 878.55 (14m39s)

STATISTIC 2008.09.08 23:40:17 3961 directories = 43498

STATISTIC 2008.09.08 23:40:17 3961 files = 482516

STATISTIC 2008.09.08 23:40:17 3961 symbolic links = 12024

STATISTIC 2008.09.08 23:40:17 3961 late links = 462267

STATISTIC 2008.09.08 23:40:17 3961 named pipes = 3

STATISTIC 2008.09.08 23:40:17 3961 sockets = 48

STATISTIC 2008.09.08 23:40:17 3961 block devices = 0

STATISTIC 2008.09.08 23:40:17 3961 character devices = 0

STATISTIC 2008.09.08 23:40:17 3961 new internal linked files = 178

STATISTIC 2008.09.08 23:40:17 3961 old linked files = 462089

9The vpn software was openvpn, the connection was tunneled trough several firewalls.
10You also can exclude too big files with option exceptRule of storeBackup.pl from the backup and save them later when

you have access to a better line.

12

STATISTIC 2008.09.08 23:40:17 3961 unchanged files = 0

STATISTIC 2008.09.08 23:40:17 3961 copied files = 2896

STATISTIC 2008.09.08 23:40:17 3961 compressed files = 5204

STATISTIC 2008.09.08 23:40:17 3961 excluded files because rule = 78

STATISTIC 2008.09.08 23:40:17 3961 included files because rule = 0

STATISTIC 2008.09.08 23:40:17 3961 max size of copy queue = 22

STATISTIC 2008.09.08 23:40:17 3961 max size of compression queue = 361

STATISTIC 2008.09.08 23:40:17 3961 calculaed md5 sums = 50606

STATISTIC 2008.09.08 23:40:17 3961 forks total = 9176

STATISTIC 2008.09.08 23:40:17 3961 forks md5 = 3957

STATISTIC 2008.09.08 23:40:17 3961 forks copy = 12

STATISTIC 2008.09.08 23:40:17 3961 forks bzip2 = 5204

STATISTIC 2008.09.08 23:40:17 3961 sum of source = 10G (10965625851)

STATISTIC 2008.09.08 23:40:17 3961 sum of target all = 10.0G (10731903808)

STATISTIC 2008.09.08 23:40:17 3961 sum of target all = 97.87%

STATISTIC 2008.09.08 23:40:17 3961 sum of target new = 109M (114598007)

STATISTIC 2008.09.08 23:40:17 3961 sum of target new = 1.05%

STATISTIC 2008.09.08 23:40:17 3961 sum of md5ed files = 744M (779727492)

STATISTIC 2008.09.08 23:40:17 3961 sum of md5ed files = 7.11%

STATISTIC 2008.09.08 23:40:17 3961 sum internal linked (copy) = 32k (32472)

STATISTIC 2008.09.08 23:40:17 3961 sum internal linked (compr) = 6.2M (6543998)

STATISTIC 2008.09.08 23:40:17 3961 sum old linked (copy) = 3.3G (3515951642)

STATISTIC 2008.09.08 23:40:17 3961 sum old linked (compr) = 6.6G (7094777689)

STATISTIC 2008.09.08 23:40:17 3961 sum unchanged (copy) = 0.0 (0)

STATISTIC 2008.09.08 23:40:17 3961 sum unchanged (compr) = 0.0 (0)

STATISTIC 2008.09.08 23:40:17 3961 sum new (copy) = 11M (11090534)

STATISTIC 2008.09.08 23:40:17 3961 sum new (compr) = 99M (103507473)

STATISTIC 2008.09.08 23:40:17 3961 sum new (compr), orig size = 321M (336637589)

STATISTIC 2008.09.08 23:40:17 3961 sum new / orig = 32.96%

STATISTIC 2008.09.08 23:40:17 3961 size of md5CheckSum file = 16M (16271962)

STATISTIC 2008.09.08 23:40:17 3961 size of temporary db files = 0.0 (0)

STATISTIC 2008.09.08 23:40:17 3961 precommand duration = 1s

STATISTIC 2008.09.08 23:40:17 3961 deleted old backups = 0

STATISTIC 2008.09.08 23:40:17 3961 deleted directories = 0

STATISTIC 2008.09.08 23:40:17 3961 deleted files = 0

STATISTIC 2008.09.08 23:40:17 3961 (only) removed links = 0

STATISTIC 2008.09.08 23:40:17 3961 freed space in old directories = 0.0 (0)

STATISTIC 2008.09.08 23:40:17 3961 add. used space in files = 125M (130869969)

STATISTIC 2008.09.08 23:40:17 3961 backup duration = 27m3s

STATISTIC 2008.09.08 23:40:17 3961 over all files/sec (real time) = 297.30

STATISTIC 2008.09.08 23:40:17 3961 over all files/sec (CPU time) = 549.22

STATISTIC 2008.09.08 23:40:17 3961 CPU usage = 54.13%

It took about 27 minutes to run the backup.
But look at the number of calculated md5 sums: 50,606. This is the number of files, a “normal” backup
(which does not examine the contents) would have saved because a time stamp has changed or they have
moved (I didn’t move files around, the changes were mainly from OS updates.). StoreBackup calculates
the md5 sums and recognises that only 8,100 files (copied + compressd files) have changed.
So only 16% of the files which normally whould have been saved had to be stored. Over the time, this
makes a big differnce in the space you need for your backups. And naturally, the files in the backup are
compressed (if reasonable).

Because the backup ran with option lateLinks, I later had to run (via cron) storeBackupUpdateBackup.pl
to set all the links etc.:

INFO 2008.09.09 02:17:52 13323 updating </disk1/store-backup/fschjc-gentoo-all/2008.09.08_23.13.14>

INFO 2008.09.09 02:17:52 13323 phase 1: mkdir, symlink and compressing files

STATISTIC 2008.09.09 02:18:18 13323 created 43498 directories

STATISTIC 2008.09.09 02:18:18 13323 created 12024 symbolic links

STATISTIC 2008.09.09 02:18:18 13323 compressed 0 files

STATISTIC 2008.09.09 02:18:18 13323 used 0.0 instead of 0.0 (0 <- 0)

INFO 2008.09.09 02:18:18 13323 phase 2: setting hard links

STATISTIC 2008.09.09 02:27:55 13323 linked 462267 files

INFO 2008.09.09 02:27:55 13323 phase 3: setting file permissions

STATISTIC 2008.09.09 02:31:05 13323 set permissions for 482442 files

INFO 2008.09.09 02:31:05 13323 phase 4: setting directory permissions

STATISTIC 2008.09.09 02:31:47 13323 set permissions for 43498 directories

It took about 14 minutes to “complete” the backup for 500,000 entries.

13

6 Components / Programs to use

storeBackup.pl performs the backup, is able to generate a configuration file for itself
storeBackupUpdateBackup.pl If you choose the option ’lateLinks’ in storeBackup.pl, it will not

directly perform all the necessary hard links and is therefore much
faster, especially when storing via nfs. This program will check all
your dependencies and generate the hard links. As a result, your
backup will have the same structure as calling storeBackup.pl with-
out ’lateLinks’. This program is also used to perform replication of
backups.

storeBackupRecover.pl Recovers files or (sub) trees from the backup. Uncompresses, restores
all permissions and re-creates hard links like they were in the source.

storeBackupVersion.pl Analyse the versions of backed up files.
storeBackupSearch.pl Search with various criteria (rules) in the backup(s)
st...upSsetupIsolatedMode.pl Copies meta data to external media for backup eg. when traveling
st...upMergeIsolatedBackup.pl Merges backups on local media to central master backup
storeBackupCheckBackup.pl Checks Integrity of all files in the backup by recalculating the md5

sum off all files and comparing them with stored ones
storeBackupCheckSource.pl Checks Integrity of all unchanged files in the source directory bye

recalculating the md5 sum off all files and comparing them with
stored ones

storeBackupls.pl Lists backed up directories (versions) with additional information
(week day, age of backup)

storeBackupDel.pl Delete old backups using the same rules as in storeBackup.pl. This
can be used to delete backups asynchronously. It can read the con-
figuration file of storeBackup.pl

storeBackupMount.pl You can use this program if you want to make a backup via nfs.
It pings the server, mounts file system(s), calls storeBackup.pl and
umounts the file system(s). It writes a log file and has a detailed
error handling.

storeBackup du.pl Evaluates the disk usage in one or more backup directories.
storeBackupConvertBackup.pl Convert (very) old backups to new format. Only use this if store-

Backup.pl tells you to do.
linkToDirs copy / link directories to other ones
llt Shows atime, ctime and mtime of files.
multitail.pl Allows you to show (multiple) log files. You can also write multiple

log files to one. It’s more robust than ‘tail -f‘.

st...up is an abbreviation of storeBackup.

You can get a description of the options by calling the programs above with option ’-h’.

6.1 Supported Platforms and Tips

The storeBackup tools have been reported to run on GNU/Linux, FreeBSD, Solaris and AIX. They should
be able to run on all Unix platforms. Perl was used as the programming language, so you need a working
perl implementation for starting one of the programs described above.
StoreBackup is developed and tested on GNU/Linux. For all programs, you will get a short help message
if you call it with option -h.

StoreBackup stores its data on a local filesystem – or something that looks like a local filesystem. You
can store to any filesystem (or virtual filesystem) that supports hard link and the type of data you want
to save (e.g., symbolic links or special files like named pipes if you want to save them). The following
examples show some of the possibilites. (If you write to remote filesystems, you can speed up things by
using option lateLinks, see section 7.5.)

ext4 is the actually (2012) fastest filesystem for Linux. It’s well supported by the kernel and will be
available for the foreseeable future.

14

ext2 You can use this filesystem, but there are several reasons not to do so: file system checks may last
“forever” and it doesn’t support hashes for filenames, which means access to the many small files
generated from “blocked files” is slow.

reiserfs is the actually most space efficient filesystem for Linux because of tail packing. Space in
filesystems is organized in blocks. The block size is typically 4kB, so as an average you will not
be able to use around 2kB for each file. If you have a lot of files (esp. when using blocked files
with compression and therefore undefined blocked file length) you will lose a high percentage of
your space. With tail packing, these not filled last blocks of the files are packed together by the
filesystem. Reiserfs is slower than ext4. It’s well supported by the kernel and will be available for
the foreseeable future.

vfat This fossil filesystem doesn’t support hard links or differentiation of files written in uppercase and
lowercase letters (try to store a file with filename fileA and one with filea into the same directory).
You cannot store your backups with storeBackup on such a filesystem. Naturally, you can save data
from such a filesystem using storeBackup.

ntfs First of all, you can store your backups on an nfts filesystem. But ownership and permissions will
not be available in the backup. Especially if you use ntfs on an external disk or memory stick this
might not be an issue. Read the “important note” at item “CIFS” below in this list!

NFS The Network File System allows you to store your backups transparently over the network (see
configuring NFS, section 7.9). Naturally, you can also read your data via NFS if you do not want
to run storeBackup natively on the system to save (e.g., for very old Unix system where you do not
have a running perl 5).

CIFS It’s possible to store your data on a CIFS (Samba) share. Beside beeing a little bit slower than
NFS it does not support a multi user mount. So all your data will be stored with ownership of
one user only. If your environment is a multi user environment where each use should have direct
access to his backup data only, this type of storage is not sufficient for you. If each user is allowed
to see all data in the backup or if an administrator does the restore, it’s no problem to use e.g., a
samba server (which is often the only available storage on small NAS boxes) to store your backups.
Naturally, you also read data from a CIFS share, but you have to consider that CIFS only can be
mounted on a user basis. It’s not a transparent network file system like NFS.
Important note: If you restore your data with storeBackupRecover.pl you will get correct permis-
sions and ownerships back. StoreBackupRecover.pl doesn’t care in any way about the permissions
of the files in the backup. The meta information (including hard links in the source) is taken from
the meta data files storeBackup.pl stores. BUT if you use storeBackup.pl with option lateLinks

and if you can run storeBackupUpdateBackup.pl locally on your Samba file server, you will get all
permissions in the backup directory like in the source directory.

sshfs A short description how to configure sshfs is placed in FAQ 4. Read the comments about CIFS in
the item above for a description of possible restrictions.

6.2 storeBackup.pl

This is the basic program to make a backup. Beside a lot of options, there are two modes you can use:

1. Directly making a backup and do all the necessary copying, compressing, linking, permission settings
etc. If you are not familiar with storeBackup, you should start with this mode.

2. Only do the absolutely necessary (deltas) and left the rest to storeBackupUpdateBackup.pl which
you have to run later. This is a kind of client / server mode.

NAME

storeBackup.pl - fancy compressing managing checksumming hard-linking cp

-ua

DESCRIPTION

This program copies trees to another location. Every file copied is

potentially compressed (see --exceptSuffix). The backups after the first

backup will compare the files with an md5 checksum with the last stored

15

http://www.samba.org/

version. If they are equal, it will only make an hard link to it. It

will also check mtime, ctime and size to recognize idential files in

older backups very fast. It can also backup big image files fast and

efficiently on a per block basis (data deduplication).

You can overwrite options in the configuration file on the command line.

SYNOPSIS

storeBackup.pl --help

or

storeBackup.pl -g configFile

or

storeBackup.pl [-f configFile] [-s sourceDir]

[-b backupDirectory] [-S series] [--print]

[-T tmpdir] [-L lockFile] [--unlockBeforeDel]

[--exceptDirs dir1] [--contExceptDirsErr]

[--includeDirs dir1]

[--exceptRule rule] [--includeRule rule]

[--exceptTypes types] [--cpIsGnu] [--linkSymlinks]

[--precommand job] [--postcommand job]

[--followLinks depth] [--highLatency]

[--ignorePerms] [--lateLinks [--lateCompress]]

[--checkBlocksSuffix suffix] [--checkBlocksMinSize size]

[--checkBlocksBS] [--checkBlocksCompr check|yes|no]

[--checkBlocksParallel] [--queueBlock]

[--checkBlocksRule0 rule [--checkBlocksBS0 size]

[--checkBlocksCompr0 key] [--checkBlocksRead0 filter]

[--checkBlocksParallel0]]

[--checkBlocksRule1 rule [--checkBlocksBS1 size]

[--checkBlocksCompr1 key] [--checkBlocksRead1 filter]

[--checkBlocksParallel1]]

[--checkBlocksRule2 rule [--checkBlocksBS2 size]

[--checkBlocksCompr2 kdey] [--checkBlocksRead2 filter]

[--checkBlocksParallel2]]

[--checkBlocksRule3 rule [--checkBlocksBS3 size]

[--checkBlocksCompr3 key] [--checkBlocksRead3 filter]

[--checkBlocksParallel3]]

[--checkBlocksRule4 rule [--checkBlocksBS4 size]

[--checkBlocksCompr4 key] [--checkBlocksRead4 filter]

[--checkBlocksParallel4]]

[--checkDevices0 list [--checkDevicesDir0]

[--checkDevicesBS0] [checkDevicesCompr0 key]

[--checkDevicesParallel0]]

[--checkDevices1 list [--checkDevicesDir1]

[--checkDevicesBS1] [checkDevicesCompr1 key]

[--checkDevicesParallel1]]

[--checkDevices2 list [--checkDevicesDir2]

[--checkDevicesBS2] [checkDevicesCompr2 key]

[--checkDevicesParallel2]]

[--checkDevices3 list [--checkDevicesDir3]

[--checkDevicesBS3] [checkDevicesCompr3 key]

[--checkDevicesParallel3]]

[--checkDevices4 list [--checkDevicesDir4]

[--checkDevicesBS4] [checkDevicesCompr4 key]

[--checkDevicesParallel1]]

[--saveRAM] [-c compress] [-u uncompress] [-p postfix]

[--noCompress number] [--queueCompress number]

[--noCopy number] [--queueCopy number]

[--withUserGroupStat] [--userGroupStatFile filename]

[--exceptSuffix suffixes] [--addExceptSuffix suffixes]

[--compressSuffix] [--minCompressSize size] [--comprRule]

[--doNotCompressMD5File] [--chmodMD5File] [-v]

[-d level][--progressReport number] [--printDepth]

[--ignoreReadError]

16

[--suppressWarning key] [--linkToRecent name]

[--doNotDelete] [--deleteNotFinishedDirs]

[--resetAtime] [--keepAll timePeriod] [--keepWeekday entry]

[[--keepFirstOfYear] [--keepLastOfYear]

[--keepFirstOfMonth] [--keepLastOfMonth]

[--firstDayOfWeek day] [--keepFirstOfWeek]

[--keepLastOfWeek] [--keepDuplicate] [--keepMinNumber]

[--keepMaxNumber]

| [--keepRelative]]

[-l logFile

[--plusLogStdout] [--suppressTime] [-m maxFilelen]

[[-n noOfOldFiles] | [--saveLogs]]

[--compressWith compressprog]]

[--logInBackupDir [--compressLogInBackupDir]

[--logInBackupDirFileName logFile]]

[otherBackupSeries ...]

You have to set at least two options: --sourceDir and --backupDir. It doesn’t matter if you set them on
the command line, in the configuration file or mixed.

Options which can be used only on command line. There is always a long option (like --file) and
sometimes also a shortcut (-f).

--help Generate a long help message with a short description of all options.

--generate / -g Generate a template for a configuration file. After generation, you can edit it with the
editor of your choice. It is recommended to use the configuration file if you want to configure more
than a simple backup.

--print Print the options used (from command line and from the configuration file) and stop after
printing the options. In case of difficult quoting (especially on the command line) this gives you
the chance to see what’s really used in the program.

--file / -f Name of the configuration file you want to use when calling storeBackup.pl for a backup
run.

6.2.1 storeBackup.pl Options

The following options can be used on the command line and in the configuration file (see section 7.1).
There is a long option for the command line (like --sourceDir), sometimes also a shortcut for the command
line (like -s) and the name of the term used in the configuration file (like sourceDir).

--sourceDir / -s / sourceDir The path to the directory you want to backup. You can only backup
one directory with storeBackup.pl. If you want to backup more than one directory, you can use
--includeDir, --excludeDir or the recommended option better --followLinks (see below).

--backupDir / -b / backupDir The repository, where all your master backups are stored. This is often
referred to as the master backup repository in this document. You may have additional copies
of your master backups in other locations (created via storeBackup’s replication feature) but you
normally run this program on the master backup repository. If you have one series of backups (e.g.,
from one computer), this parameter value will normally be the directory where your backups are.
In this case, set the following option (series) to “.”. Example:
backupDir = /backup

series = .
Then you will see your backups directly in /backup:
$ ls -l /backup

drwxr-xr-x 14 root root 528 Aug 24 21:33 2008.08.22 02.18.43

drwxr-xr-x 14 root root 528 Aug 24 21:33 2008.08.23 02.01.11

drwxr-xr-x 14 root root 528 Aug 24 21:33 2008.08.24 02.03.51

drwxr-xr-x 14 root root 528 Aug 24 21:33 2008.08.24 13.04.55

If you have different series of backups in your repository, you normally will create sub directories

17

for each different backup series (perhaps from different computers) and configure series to these
directory names. Let’s assume, you have three different computers to backup, “bob”, “joe” and
“bill”. Then you can create three different directories:
$ ls -l /backup

drwxr-xr-x 2 root root 40 Aug 25 17:02 bill

drwxr-xr-x 2 root root 40 Aug 25 17:02 bob

drwxr-xr-x 2 root root 40 Aug 25 17:02 joe

Below these directories, you will find the individual backups for “bill”, “bob” and “joe”. Eg. for
“bill” you will set:
backupDir = /backup

series = bill

Then you will see your backup in /backup/bill:
$ ls -l /backup

drwxr-xr-x 11 root root 432 Aug 24 21:33 2008.08.20 02.18.25

drwxr-xr-x 11 root root 432 Aug 24 21:33 2008.08.21 02.11.53

drwxr-xr-x 11 root root 432 Aug 24 21:33 2008.08.22 02.36.18

drwxr-xr-x 11 root root 432 Aug 24 21:33 2008.08.23 02.17.18

drwxr-xr-x 11 root root 432 Aug 24 21:33 2008.08.24 02.15.45

drwxr-xr-x 11 root root 432 Aug 24 21:33 2008.08.24 13.17.21

--series / -S / series see option backupDir above.
The default value for series is “default”. To rename an existing series do the following:

• Run storeBackupUpdateBackup.pl so no unresolved lateLinks (see option lateLinks below)
exists.

• Rename the directory below the directory specified with option backupDir to whatever name
you want.

• Configure this option (series to the name of the directory you have chosen in the step before.

--tmpDir / -T /tmpDir Directory for temporary files, the default value is picked from the environment
variable $tmpdir. If it does not exist, /tmp is set as the default value.

--lockFile / -L / lockFile storeBackup.pl uses a lock file to avoid it running multiple times. The
default name of the lock file is /tmp/storeBackup.lock.

--unlockBeforeDel / unlockBeforeDel Remove the lock file before deleting old backups. Default is to
delete the lock file after removing old backups. This “shortens” the time for a backup from some
perspective.

--exceptDirs / -e / exceptDirs You can specify a list of directories to be excluded from the backup. It
must be a relative path from the point specified with option sourceDir. You can also use wildcards.
To give an example, if all your users reside below sourceDir /home and you want to avoid to backup
the directory tmp in each home directory, you can say:
exceptDirs = home/*/tmp

For interpreting the wildcards, storeBackup.pl uses a shell. So if the resulting list of directories is
too long (about 4K), then this will not work any more. Then you should use option exceptRule

(see below).
If you want to specify a list of directories, in the configuration file simply write:
exceptDirs = home/*/tmp ’otherdir/temp’

On the command line, simply repeat the option:
-e ’home/*/tmp’ -e ’otherdir/tmp’

Here, quoting home/*/tmp is important to avoid the expansion of the term by the shell.

--contExceptDirsErr / contExceptDirsErr storeBackup.pl will continue to backup even if one or more
directories specified with exceptDirs does not exist. Default is to print and error message and stop.

--includeDirs / -i / includeDirs If this option is set, then only files which are in the directories speci-
fied here are backed up. StoreBackup.pl will only include files which are not in the exceptDirs and
in the includeDirs.
This option can be used in the way as described for exceptDirs.

18

--exceptRule / exceptRule If this rule matches, the affected file is excluded from the backup. The rules
are executed on regular files. You can read more about rules in section 7.3.

--includeRule / includeRule If a definition for this option exists then only files which match this rule
are backup up. StoreBackup.pl will back up files which are not excluded by the backup and match
the includeRule. You can read more about rules in section 7.3.

--writeExcludeLog / writeExcludeLog This option tells storeBackup.pl to write a file with the names of
files which have been excluded because of rules. The file will be stored in the top level of the actual
backup with the name .storeBackup.notSaved.bz2. It’s compressed with bzip2.

--exceptTypes / exceptTypes Do not save the files of the specified type. StoreBackup.pl knows:
S — file is a socket
b — file is a block special file
c — file is a character special file
f — file is a plain file
p — file is a named pipe
l — file is a symbolic link
Sbc can only be stored if you have gnu-cp in your path and activate the “gnucp´´ option (see below).
If you specify
exceptTypes = Sbc

then files of these types will not be stored in the backup and no warning will be generated. This
rule is evaluated before “exceptRule” and “includeRule”. If you want to exclude some file types in
general, use this option (it’s faster and easier to use).

--cpIsGnu / cpIsGnu If you choose this option, you will be able to backup (and restore) file of type Sbc

(see above). For restauring with storeBackupRecover.pl, you also need gnu-cp. If you are using a
linux system, your cp will be gnu cp.

--linkSymlinks / linkSymlinks If you store your backups on a file system which supports hard links to
symbolic links, you should activate this option. GNU/Linux does support this feature. Default is
not to hard link symbolic links.

--precommand / precommand You can define one command (or script) to be executed before storeBackup.pl
starts the backup. It will only start after the lock file is checked. If the return value of this command
/ script is != 0, then storeBackup.pl will stop immediately. The output of this command to stdin
is printed as a warning to the storeBackup.pl log file, the output to stderr is printed as an error.
The cli parameter to this option is parsed like a line in the configuration file and normally has to
be quoted. This means, you can use parameters, eg.:
precommand = /backup/pre.sh param1 param2

is the same as:
--precommand ’/backup/pre.sh param1 param2’

--postcommand / postcommand This command is executed after finishing the backup, but before starting
the deletion of old backups. StoreBackup.pl reports, if the exit status is != 0.
The cli parameter to this option is parsed like a line in the configuration file, see option “precom-
mand”.

--followLinks / followLinks If you want to backup more than one directory, you should use this option.
For instance, if you want to backup /boot, /etc and /home/tom, then you should do (as root)
something similar to:

mkdir /backup

cd /backup

ln -s /boot boot

ln -s /etc etc

ln -s /home/tom home_tom

ln -s . backup

storeBackup.pl -g stbu.conf

Then you should configure your backup by editing file stbu.conf. Configure (among others):

19

sourceDir = /backup

followLinks = 1

This will tell storeBackup.pl to take the fist level of symbolic links below /backup like directories.
With “ln -s . backup” you will get a sub directory inside of your backup which exactly reflects
/backup.
“followLinks” configures storeBackup.pl to treat n levels of directories or symbolic links as directo-
ries. Simply by adding or deleting a symbolic link to your backup directory, you can add or remove
any directory in your file system to /backup from your backup.

--highLatency Use this option if you are running storeBackup on line with a very high latency, like a vpn
over the internet. This option will use more parallelisation at the cost of more cpu needed. If you
use this option, then if will be a good idea to use --lateLinks and probably --lateCompress.
Don’t use this option for regular backups to a another local disk or to nfs mounts on the local
network.

--ignorePerms / ignorePerms With this option, files in the backup will not necessarily have the same
permissions and owners as the original ones. This speeds up the backup. Recovery with storeBack-
upRecover.pl will restore the permissions and owners correctly. There are several possibilities to
improve performance, see section 5.4.3.

--lateLinks / lateLinks This option will reduce your direct backup time at the cost of a second process
you have to run later. For a local backup onto another disk, you will see an improvement of 30–50%.
If you write a backup over NFS, you will see an improvement by a factor of 5 to 10. This value can
vary depending on how many new files you have to backup and how fast your network is. Saving
over a vpn over the Internet I measured an improvement with lateLinks by a factor of 70.
If you want to use “lateLinks” you have to read section 7.5.

--lateCompress / lateCompress This option can only be used if “lateLinks” is set. Compression of files
≥ “minCompressSize” will be done later when starting storeBackupUpdateBackup.pl. See also
section 7.5.

--checkBlocksSuffix The configuration is similar to exceptSuffix, a list of suffixes which are checked for
a match, e.g., \.vdmk for VMware images. They simply mean that the last part of the file name
must be similar to what you define here.
The next options described here are only used if checkBlocksSuffix is set.
See blocked files (section 7.4) for more information about the options with “block” in their name.

--checkBlocksMinSize Only files with this minimum size will the treated as blocked files. You can use
the same shortcuts as described in defining rules, see section 7.3, e.g., 50M means 50 megabytes.
The default value is 100M.

--checkBlocksBS Defines the block size in which the files which matches have to be split by storeBackup.pl.
The format is equal to checkBlocksMinSize. The default value is 1M. The minimal value is 10k.

--checkBlocksParallel Read the files specified here in parallel to the files not specified in checkBlocksSuf-
fix. This normally only makes sense if the files specified here are small or if the are on a separate
device.
Default is no, which means not to parallelize.

--checkBlocksCompr Defines if the blocks are compressed. Possible values are yes, no or check; the default
value is no.
This option only affects files selected with checkBlocksSuffix. If you set this option to check,
every block is checked for compression (or not), see How to define if a file should be compressed
(section 7.3.1).

--checkBlocksRulei The ith rule specifying files to treat as blocked files in the backup. You can define 5
rules, beginning from checkBlocksRule0 to checkBlocksRule4.
See blocked files (section 7.4) for more information about the options with “block” in their name.

--checkBlocksBSi The corresponding block size for the blocks in the backup. The default value is 1
megabyte (1M). The minimal value is 10k.

20

--checkBlocksCompri Defines if the blocks are compressed. Possible values are yes, no or check; the default
value is no.
This option only affects files selected with checkBlocksSuffix. If you set this option to check,
every block is checked for compression (or not), see How to define if a file should be compressed
(section 7.3.1).

--checkBlocksReadi Defines a filter for reading the specified file in sourceDir, e.g., gunzip or gzip -d.
This option is useful if you have to save an already compressed image file. (Using the “blocked file”
feature of storeBackup with already compressed files compressed as a whole does not make sense.)

--checkBlocksParalleli Read the files specified hier in parallel to the files not specified in checkBlock-
sRulei or checkDevicesi . This normally only makes sense if the files specified here are small or if
the are on a separate device.
Default is no, which means not to parallelize.
You have to know, that files and devices specified in checkBlocksRulei or checkDevicesi are never
parallelized.

--checkDevicesi List of devices (e.g., /dev/sdd2 /dev/sde1) to backup.

--checkDevicesDiri Directory where the devices are stored in the backup (relative path). The image
file will be restored in that directory also if you restore the backup with storeBackupRecover.pl (if
you use default options). Into this directory storeBackup will create a subdirectory which name is
generated from the parameters of checkDevices, e.g., /dev/sdc will result in dev sdc.

--checkDevicesBSi Defines the block size in which the devices specified have to be split by storeBackup.pl.
The format is equal to checkBlocksMinSize. The default value is 1M. The minimal value is 10k.

--checkDevicesCompri Defines if the blocks are compressed. Possible values are yes, no or check; the
default value is no.
If you set this option to check, every block is checked for compression (or not), see How to define
if a file should be compressed (section 7.3.1).

--checkDevicesParalleli Read the devices specified hier in parallel to the files not specified in check-
BlocksRulei or checkDevicesi . This normally only makes sense if the files specified here are small
or if the are on a separate device.
Default is no, which means not to parallelize.
You have to know, that files and devices specified in checkBlocksRulei or checkDevicesi are never
parallelized.

--saveRAM / saveRAM Use this option if storeBackup.pl runs on a system with very low memory configu-
ration. You will then see some dbm files in “tmpDir”. This will slow down storeBackup.pl a little
bit, so do this only if you run into problems without it. On modern computers, it should only be
necessary to use this option if you backup millions of files.

--compress / -c / compress The command, storeBackup.pl uses for compression. Default is bzip2.
The cli parameter to this option is parsed like a line in the configuration file and normally has to
be quoted on the command line. This means, you can use parameters, eg.:
compress = gzip -9

which is similar to:
--compress ’gzip -9’

--uncompress / -u / uncompress The command storeBackup.pl uses for uncompressing the files in the
backup with storeBackupRecover.pl. Default is “bzip2 -d”. It must fit to the parameter of option
“compress”.
The cli parameter to this option is parsed like a line in the configuration file and normally has to
be quoted on the command line. This means, you can use parameters, eg.:
uncompress = gzip -d

which is similar to:
--uncompress ’gzip -d’

--postfix / -p /postfix The postfix storeBackup.pl will use for compressed files. This should fit to
option compress. Default is .bz2.

21

--noCompress / noCompress Maximal number of parallel compression operations. With GNU/Linux, the
default value is chosen automatically as the number of cores plus 1.

--queueCompress / queueCompress Maximal length of a queue to store files before they are compressed.
Default value is 1000.

--noCopy / noCopy Maximal number of parallel copy operations. The default value is 1.

--queueCopy / queueCopy Maximal length of a queue to store files before they are copied. Default value
is 1000.

--withUserGroupStat / withUserGroupStat Write statistics about used space in sourceDir by user and
groups in the log file.

--userGroupStatFile / userGroupStatFile Write statistics about used space in sourceDir by user and
groups in this file. The file will be overridden each time.

--exceptSuffix / exceptSuffix Do not compress files with these suffixes. On the command line, you can
repeat this option multiple times. The default value is:

exceptSuffix = ’\.zip’ ’\.bz2’ ’\.gz’ ’\.tgz’ ’\.jpg’ ’\.gif’ ’\.tiff’

’\.tif’ ’\.mpeg’ ’\.mpg’ ’\.mp3’ ’\.ogg’ ’\.gpg’ ’\.png’

You should use a backslash (\) to mask the dot. If you do not do so, the dot is interpreted as any
character.
If you do not want to compress any file, you can use:
exceptSuffix = .*

--addExceptSuffix / addExceptSuffix If you only want to add suffixes to the above, use this option. On
the command line, you can repeat this option multiple times. See the examples above (option
exeptSuffix) how to use it in the configuration file.

--compressSuffix / compressSuffix List of suffixes of files to be compressed (in exceptSuffix format).
If you enter this value, then a rule will be generated depending on exceptSuffix, addExceptSuffix,
minCompressSize and a special rule-function to theck if a compression of the files not affected by the
suffix based criteria will be done or not. Easy examples and detailed explanations are presented in
How to define if a file should be compressed (section 7.3.1).

--minCompressSize / minCompressSize Files with a size smaller than this value will not be compressed.
The default value is 1024.
If you change this value from one backup to the next (eg. you make the fist backup with the default
value and the second with 512), then this change affects only files which have a new content. Files
with a content which exists already in the backup will be linked to the ones in the old backup. (So
in the example a (new) file with 600 bytes will not be compressed in the second backup if there
already were a file with the same content in the first backup.)

--comprRule / comprRule You can use this rule as an alternative to options exceptSuffix, minCompressSize,
addExceptSuffix and compressSuffix. If this rule is set, the just mentioned options are ignored (this
means, that no rule is generated from these options). See defining rules (section 7.3) to understand
how to configure rules. You can e.g., define a rule that the data of serveral uses will not be com-
pressed for easier restore by the users themself.

--doNotCompressMD5File / doNotCompressMD5File StoreBackup.pl stores information about each file in
the backup in the top level directory of each backup in a file called .md5CheckSums. It normally is
compressed with bzip2. Using this option avoids this compression. Use this, if your computer is
very slow and has only one core. It will speed up things a little bit.

--chmodMD5File Everybody who wants to use storeBackupRecover.pl needs to be able to read the file
.md5CheckSums (see option above). Default permission on this file is 0600, which means only the one
who generated the backup has access to it. With this option you can give access to other people.
If you do so, this can be a kind of a security hole: for all files .md5CheckSums stores md5sum, times,
uid, gid, mode (and some other information).
Direct access to files in the backup is independent of this option.

22

--verbose / -v / verbose Generate verbose messages.

--debug / -d / debug Generates debug messages:
0 — no debug messages (default)
1 — some debug messages
2 — many debug messages
This option is especially helpful in combination with options exceptRule and includeRule

--resetAtime / resetAtime Restores the access time in the backups (same as in source), but changes
ctime (creation time). Normally, you will not use this option.

--doNotDelete / doNotDelete Do all checks what backups should be deleted, but don’t delete anything.
This option is useful in combination with storeBackupDel.pl which can read the configuration file
of storeBackup.pl. StoreBackupDel.pl can delete old backups later asynchronously.
For understanding the rules what file should be deleted, see the “keep∗” options below.

--deleteNotFinishedDirs / deleteNotFinishedDirs Delete backups which have not been finished and are
therefore not complete. StoreBackup.pl or storeBackupDel.pl will only delete unfinished backups if
option “doNotDelete” is set to “no” (the default value) or is unset . If “doNotDelete” is set to ”yes”,
nothing is deleted. ”Backups which have not been finished” are those for which option lateLinks
was used, but for which storeBackupUpdate.pl was not run yet.

--keepAll / keepAll Keep all backups of a series for the specified amount of time. This is like a default
value for all days in option keepWeekday (see below). Deletion of old backups is done after the
actual backup is finished or with storeBackupDel.pl. The time range has to be specified in format
“dhms”, eg. “10d2h” means 10 days and 2 hours. To do so is useful if you want to specify 10 days,
because if you define this exactly, then checking a few minutes or seconds before or later can result
in 9 days. StoreBackups internal calculation is in seconds.
The default value is “30d”.

--keepWeekday / keepWeekday This option overwrites the settings of option keepAll for special days of the
week. Mon,Wed:40d5m Sat:60d10m means:

• keep backups from Monday and Wednesday 40 days + 5 minutes

• keep backups from Saturday 60 days + 10 minutes

• keep backups from the rest of the weekdays like specified via option keepAll.

You can also use the “archive flag” which means not to delete the affected directories because option
“keepMaxNumber” hits. Mon,Wed:a40d5m Sat:60d10m means:

• keep backups from Monday and Wednesday 40 days + 5 minutes + archive
If you have more than “keepMaxNumber” backups, then Monday and Wednesday backups
falling in this category will not be deleted.

• keep backups from Saturday 60 days + 10 minutes
If you have more than “keepMaxNumber” backups, then Saturday Backups falling in this
category will be deleted.

• keep backups from the rest of the weekdays like specified via option keepAll. If you have more
than “keepMaxNumber” backups, then they will be deleted if they are falling in this category.

On the command line, the parameter to this option is parsed like a line in the configuration file and
therefore normally has to be quoted on the command line.

--keepFirstOfYear / keepFirstOfYear Do not delete the first existing backup of a year. The format is a
time period (see option keepAll) with a possible “archive flag”.

--keepLastOfYear / keepLastOfYear Do not delete the last existing backup of a year. The format is a
time period (see option keepAll) with a possible “archive flag”.

--keepFirstOfMonth / keepFirstOfMonth Do not delete the first existing backup of a month. The format
is a time period (see option keepAll) with a possible “archive flag”.

23

--keepLastOfMonth / keepLastOfMonth Do not delete the last existing backup of a month. The format is
a time period (see option keepAll) with a possible “archive flag”.

--firstDayOfWeek / firstDayOfWeek Sets the first day of the week for the calculations depending on
options keepFirstOfWeek and keepLastOfWeek.
Default value is “Sun”.

--keepFirstOfWeek / keepFirstOfWeek Do not delete the first existing backup of a week. The format is a
time period (see option keepAll) with a possible “archive flag”.

--keepLastOfWeek / keepLastOfWeek Do not delete the last existing backup of a week. The format is a
time period (see option keepAll) with a possible “archive flag”.

--keepDuplicate / keepDuplicate Keep multiple backups of one day up to the specified value. If it’s
older than specified here, delete all except the oldest backup of that day. Usage of the “archive”
flag is not possible. The format is like described for option keepAll.
The default value is “7d”.

--keepMinNumber / keepMinNumber Keep that minimum of backups. Multiple backups of one day are
counted as one backup.
The default value is “10”.

--keepMaxNumber / keepMaxNumber Try to keep only that maximum number of backups. If you have more
backups than specified here, the following sequence of deletion will happen:

• Delete all duplicates of a day, beginning with the oldest ones, except the last of every day.

• If this is not enough, delete the rest of the backups beginning with oldest, but never a backup
with the “archive flag” or the last backup. See option keepWeekday for explanations of the
“archive flag”.

--keepRelative / -R / keepRelative This is a alternative deletion scheme. If this option is set, all other
keep∗ options are ignored. On the command line, the parameter to this option is parsed like a line
in the configuration file and normally has to be quoted on the command line.
This backup deletion scheme allows you to specify the relative age of the backups you would like
to have rather then the period over which a backup should be kept.
Imagine that you always want to have the following backups available:

• 1 backup from yesterday

• 1 backup from last week

• 1 backup from last month

• 1 backup from 3 months ago

Note that this is most likely not what you really want to have, because it simply means that you
have to do daily backups and have to keep every backup for exactly 3 months. Otherwise you
wouldn’t always have a backup that is of exactly the requested age.
What you really want to have is therefore probably something like this:

• 1 backup of age 1 hour to 24 hours / 1 day

• 1 backup of age 1 day to 7 days

• 1 backup of age 14 days to 31 days

• 1 backup of age 80 days to 100 days

This is now a very common backup strategy, but you would have difficulty to achieve this with the
usual keepFirstOf∗ options, especially if you don’t do backups with perfect regularity. However,
you can implement it very easily using keepRelative. All you need to write is:
keepRelative = 1h 1d 7d 14d 31d 80d 100d

i.e. you list all the intervals for which you want to have backups. storeBackup will delete backups
in such a way that you come as close as possible (if you don’t do backups often enough, there is of
course nothing that storeBackup can do) to your requested backup scheme.

24

Note that this may mean that storeBackup keeps more backups that you think it has to, i.e. it
may keep two backups in the same period. In this case storeBackup “looks into the future” and
determines that both backups will later be necessary in order to have a backups for all periods.
This is also the reason why in the above example you have somehow implicitly specified the period
7 days to 14 days, although you didn’t really want to have a backup in this period – in order to
have backups in the next period (14 days to 31 days) you always need to have a backup in the
period 7 days to 14 days as well. Therefore the syntax doesn’t allow you to exclude some periods.
Finally you should be aware that storeBackup shifts all the intervals if it cannot find a recent enough
backup: if your first intervals is from 10 days to 20 days, but your most recent backup is actually 25
days old, all subsequent periods will be extended by 5 days. This ensures that if you haven’t made
any backups over a large period, this period is not taken into account for your backup scheme. To
give an example why this is useful: if you wanted to have backups 1, 3, 7 and 10 days old and then
went on vacation for 14 days, it is pretty unlikely that you want all your backups deleted when you
come back, hence storeBackup ignores these 14 days and keeps the backups appropriately longer.

--progressReport / -P / progressReport Print a progress report after the specified number of files.

--printDepth / -D / printDepth Print depth of actually read directories during the backup.

--ignoreReadError / ignoreReadError Setting this option lets storeBackup.pl ignore read errors in the
source directory – not readable directories do not cause storeBackup.pl to stop processing. This
option was implemented for reading shares from a windows server which sometimes generated such
faults.
Normally, you should not use this option.

--suppressWarning / suppressWarning Suppresses (unwanted) warnings that would normally be written
to the log (and/or standard output). This is an advanced option. For normal use of storeBackup,
you can ignore this option. In some situations, an advanced user may not want to see certain
warnings. This option allows the user to turn those warnings off. This feature is only available
for certain non-critical warnings: missing excluded directories, files changed during backup, and
creation of the ‘default’ series. 11

• Using the crSeries key suppresses the warning that storeBackup had to create a directory for
the ‘default’ series.

• Using the fileChange key suppresses any warning when storeBackup notices that a file has
changed since the current backup began.

• Using suppressWarning with the excDir key suppresses the warning that an excluded directory
does not exist.

• Using the hashCollision key suppresses the warning that storeBackup found a possible md5
hash collision.

• Using the fileNameWIthLineFeed key suppresses the warning if a filename contains a line feed.

--linkToRecent After a successful backup, a symbolic link to most recent backup of this series (that’s
the backup just done) is created with the name specified by this option. If an older symbolic link
exists, it will be deleted. If you change the name of this symbolic link in the configuration, the old
link will not be removed – you have to delete it manually.

11The logic behind the suppressWarning option is that repeated non-critical warnings can cause the user to ignore most
warnings in general. Here is an example of how you could benefit from this option. Say you have defined a list of directories
to exclude from the backup such as temporary directories. Sometimes you limit your list of included directories also. If
you limit the included directories in such a way that the excluded directories are not part of the backup, storeBackup
would normally generate a warning for every such “missing” excluded directory. However, you may choose to leave the
excluded directories defined in the configuration file because when you expand your included directory list you do not
want to risk forgetting to again define the excluded directories. But you also do not want the warnings because too many
non-critical warnings might prevent you from seeing an important warning. In that situation, you can use this option. It
means that when altering your included directories list, you only have to make one change (includeDirs) rather than two
changes (includeDirs and exceptDirs). However, there is a situation where using this option to suppress warnings of missing
excluded directories could have a negative consequence. Say you have an excluded temporary directory named testing

that you do not want to back up. Say you rename testing to app1 testing (but you still don’t want it backed up. If you
do not update your storeBackup config file, and if app1 testing is under an included directory, it will now be backed up.
However, if you have not suppressed this class of warning, storeBackup will alert you that testing (the previously excluded
directory name) cannot be found. That will probably remind you of your change and let you update your configuration.
So use this option with caution. If you are not sure whether you should use it, you probably should not.

25

--logFile / -l / logFile Name of the log file. Default is stdout.

--plusLogStdout / plusLogStdout If option logFile is set, here you can configure storeBackup.pl to also
print the log messages to stdout.

--supressTime / supressTime Suppress the output of the actual time in the log file.

--maxFilelen / -m / maxFilelen Maximal size of a log file. After reaching this size, the log file will be
rotated (see option noOfOldFiles) or compressed (see option saveLogs).

--noOfOldFiles / -n / noOfOldFiles Number of old rotated log files, default is 5. With default values,
it will look like this:

$ ls -l /tmp/storebackup.log*

-rw------- 1 hjc root 328815 30. Aug 12:12 /tmp/storebackup.log

-rw------- 1 root root 1000087 27. Aug 21:18 /tmp/storebackup.log.1

-rw------- 1 root root 1000038 20. Aug 19:02 /tmp/storebackup.log.2

-rw------- 1 root root 1000094 11. Aug 18:51 /tmp/storebackup.log.3

-rw------- 1 root root 1000147 11. Aug 18:49 /tmp/storebackup.log.4

-rw------- 1 root root 1000030 11. Aug 18:49 /tmp/storebackup.log.5

Older log files than *.5 have been deleted automatically.

--saveLogs / saveLogs Save the log files with a time and date stamp instead of deleting them after
rotating. (Setting this option deactivates option noOfOldFiles.)

--compressWith / compressWith Specifies the program to compress the saved log files (e.g., with gzip -9).
Default value is bzip2.
On the command line, the parameter to this option is parsed like a line in the configuration file and
normally has to be quoted on the command line.

--logInBackupDir / logInBackupDir Write the log file (also) in the backup directory (default name is
.storeBackup.log, also see option logInBackupDirFileName below). This log file as the case may be
does not contain all error messages like the one specified with option logFile. (The backup directory
must exist before any message can be written into this log file.)
This is useful for having a (historical) log file, while the “global” log file (from option logFile) is
useful for monitoring.

--compressLogInBackupDir / compressLogInBackupDir The log file in the backup directory will be com-
pressed if you specify this option.

--logInBackupDirFileName / logInBackupDirFileName File name of the log file to be stored in the backup
directory. Default is .storeBackup.log.

...otherBackupSeries... / otherBackupSeries On the command line, this is not an option; it is a list
parameter. So you have to write on the command line eg.:

storeBackup.pl <all_options> 0:server2 0-2:server3

In the configuration file this is similar to:
otherBackupSeries = 0:server2 0-2:server3

Here you can specify a list of other backup directories to consider for hard linking. The path to
their backup directories must be a relative path from backupDir!
Format (examples):

otherSeries/2002.08.29_08.25.28 -> consider exactly this otherSeries

or

26

0:otherSeries -> last (youngest) in <backupDir>/otherSeries

1:otherSeries -> first before last in <backupDir>/otherSeries

n:otherSeries -> n’th before last in <backupDir>/otherSeries

3-5:otherSeries -> 3rd, 4th and 5th in <backupDir>/otherSeries

all:otherSeries -> all in <backupDir>/otherSeries

If you do not specify otherBackupSeries then automatically the youngest backup from all series in
the top level directory you specified with option backupDir are considered.

6.3 storeBackupUpdateBackup.pl

You need to run this program if you use option lateLinks in storeBackup.pl. See section 5.4.3 about
performance why you perhaps want to use this option and section 7.5 how to use it.
This program includes the necessary copying if you are using the replication of backups, see chapter 7.7.
StoreBackupUpdateBackup.pl does the job of generating hard links, directories, symbolic links, compres-
sion of files and setting permissions storeBackup.pl does not do with option lateLinks. Before it starts
doing this, it will check the consistency of your references resulting from the use of lateLinks in your
backup repository, eg. it detects if one backup is missing.

To correct inconsistencies, use storeBackupUpdateBackup.pl in interactive mode (option --interactive).

To generate configuration files for replication of backups, use options --genBackupBaseTreeConf and
--genDeltaCacheConf.

storeBackupUpdateBackup.pl - updates / finalizes backups created by

storeBackup.pl with option --lateLink, --lateCompress

SYNOPSIS

storeBackupUpdateBackup.pl -b backupDirectory [--autorepair]

[--print] [--verbose] [--debug] [--lockFile] [--noCompress]

[--progressReport number] [--checkOnly] [--copyBackupOnly]

[--dontCopyBackup] [-A archiveDurationDeltaCache]

[--dontDelInDeltaCache]

[--logFile

[--suppressTime] [-m maxFilelen]

[[-n noOfOldFiles] | [--saveLogs]]

[--compressWith compressprog]]

storeBackupUpdateBackup.pl --interactive --backupDir topLevlDir

[--autorepair] [--print]

storeBackupUpdateBackup.pl --genBackupBaseTreeConf directory

storeBackupUpdateBackup.pl --genDeltaCacheConf directory

The only option you have to specify is backupDir, the rest of the options are optional. This program
only accepts parameters on the command line. It is not possible to use a configuration file.

--interactive / -i Interactive mode for repairing / deleting currupted backups created with option
lateLinks.

--backupDir The repository, where all your backups are stored. This program can be used on the master
backup or a backup copy (e.g., a copy created via replication). The meaning of this parameter is
similar to the option backupDir of storeBackup, see section 6.2.

--autorepair / -a If storeBackupUpdateBackup.pl detects inconsistencies which do not harm your repos-
itory, it will repair the reference files automatically without asking you. It will only write an INFO
message in the log file and tells you what it repaired.
If you e.g., delete your last backup with lateLinks with rm (which you should not do before success-
fully running this program!), then the internal referencing structure of your backups is inconsistent.
StoreBackupUpdateBackup.pl (and also storeBackup.pl) will recognize, that a backup which refer-
enced to another one is missing. But correcting the reference structure does not lead to a loss of
data, so this is an example when it can be repaired without user intervention. (For more information
see section 7.8 about special files.)

27

--print Prints the options used and stops after printing the options. In case of difficult quoting (especially
on the command line) this gives you the chance to see what’s really used in the program.

--verbose / -v Generate verbose messages.

--debug / -d Generate detailed information about linking, compressing, etc.

--lockFile / -L Specify a lock file. If the lock file exists and a process with the id stored in it is
running, then the program will immediately stop to avoid running it multiple times (which is
a very bad idea). The default is /tmp/storeBackupUpdateBackup.lock. You should also not run
storeBackupUpdateBackup.pl in parallel to storeBackup.pl.

--noCompress Maximal number of parallel compression operations. Default value is chosen automatically
as the number of cores plus 1.

--checkOnly / -c Do not perform any action, only check the consistency. Use this in combination with
option –debug to get detailed information.

--copyBackupOnly if you use replication – only replicate to / from delta cache, don’t do any hard linking,
compressing, change of file permissions

--dontCopyBackup do not do any replication tasks.
NOTE: If used on a master backup this option disrupt the data flow for replication!

--archiveDurationDeltaCache / -A Duration after which already in backupCopy copied and linked back-
ups will be deleted. This affects all series in deltacaches processedBackups directory. The duration
has to be specified in format ’dhms’, eg. 10d4h means 10 days and 4 hours, default is 99d (the
format is similar to option keepAll in storeBackupDel.pl)

--dontDelInDeltaCache do not delete any backup in deltaCache

--progressReport Print a progress report:
after each number files when compressing
after each number * 1000 files when linking
after each number * 10000 files when performing chmod

--logFile / -l Name of the log file. Default is stdout.

--supressTime Suppress the output of the actual time in the log file.

--maxFilelen / -m Maximal size of a log file. After reaching this size, the log file will be rotated (see
option noOfOldFiles) or compressed (see option saveLogs).

--noOfOldFiles / -n Number of old rotated log files, default is 5. With default values, it will look like this:

$ ls -l /tmp/storebackup.log*

-rw------- 1 hjc root 328815 30. Aug 12:12 /tmp/storebackup.log

-rw------- 1 root root 1000087 27. Aug 21:18 /tmp/storebackup.log.1

-rw------- 1 root root 1000038 20. Aug 19:02 /tmp/storebackup.log.2

-rw------- 1 root root 1000094 11. Aug 18:51 /tmp/storebackup.log.3

-rw------- 1 root root 1000147 11. Aug 18:49 /tmp/storebackup.log.4

-rw------- 1 root root 1000030 11. Aug 18:49 /tmp/storebackup.log.5

Older log files than *.5 have been deleted automatically.

--saveLogs Save the log files with a time and date stamp instead of deleting them after rotating. (Setting
this option overwrites the default value of option noOfOldFiles.)

--compressWith Specifies the program to compress the saved log files (e.g., with gzip -9). Default value
is bzip2.
On the command line, the parameter to this option is parsed like a line in the configuration file and
normally has to be quoted on the command line.

28

--genBackupBaseTreeConf If you want to replicate your backups, you can use this option to generate one
of the required configuration file as a template. See replication of backups, section 7.7 for details.

--genDeltaCacheConf If you want to replicate your backups, you can use this option to generate one of
the required configuration file as a template. See replication of backups, section 7.7 for details.

6.4 storeBackupRecover.pl

Restores the backup tree or parts of the backup tree.

storeBackupRecover.pl -r restore [-b root] -t targetDir [--flat]

[-o] [--tmpdir] [--noHardLinks] [-p number] [-v] [-n]

[--cpIsGnu] [--noGnuCp]

To restore one file or a small number of files, the easiest way is to use cp or a file system browser. This
tool is intended to restore (and if necessary uncompress files). It recreates the backed up data in the
same way it was in the original source directory: permissions are set (even if option ignorePerms was
set in storeBackup.pl; this option affects only the permissions in the backup tree) and also existing hard
links which were in the source tree are reconstructed.

You have to use at least two options: restoreTree and targetDir. StoreBackupRecover.pl only supports
command line arguments.

--restoreTree / -r Backup tree or part of a backup tree to restore. The easiest way to restore something
is to go into the backup directory where the tree you want to restore is located. I now assume its
name is mydir. Then type:
storeBackupRecover.pl -r mydir -t /tmp/myRestorePlace

where /tmp/myRestorePlace is the place where you want that directory and all of its content to be
restored (see option targetDir).

--backupRoot / -b Normally there should be no need to use this option! When you restore a directory,
storeBackupRecover.pl does this by searching for .md5CheckSum.info which is in the root directory of
each backup. If it find more than one of these files it generates an ERROR message. This normally
will happen if you make a storeBackup backup of a storeBackup backup and want to restore.
If you get an error message like “found info file a second time . . . ”, you need to specify the root of
this backup (where you recover with option restoreTree).

--targetDir / -t The directory where you want the recovered files to be stored. Unless you use option
flat, storeBackup always restores the complete backup path to the tree you specified with option
restoreTree.

--flat The directory structure is not restored. All files are stored directly in “targetDir”. This is only
useful if you recover a small number of files.

--overwrite / -o Overwrite existing files. Normally not a good idea. It’s better to restore in a separate
directory an move files around later.

--tmpDir / -T /tmpDir Directory for temporary files, default is picked from environment variable $tmpdir.
If It does not exist, /tmp is set as the default value.

--noHardLinks Do not reconstruct hard links in the restore tree, always copy files.

--noRestoreParallel / -p Maximal number or parallel started processes to uncompress the files in the
backup. Default is 12.
Reduce this number if you are restoring blocked files and the system has insufficient RAM.

--verbose / -v Print verbose messages.

--noRestored / -n At the end of restoring, print the number of restored dirs, hard links, symbolic links,
files, . . .

29

--noGnuCp If you configured storeBackup.pl to use gnucp (option cpIsGnu), so it can backup special files
like character devices, then storeBackupRecover.pl reads this information in the backup. But If the
computer where you restore the backup has no gnucp installed, you can configure storeBackupRe-
cover.pl not to use cp.
If you made your backup without gnucp, storeBackcupRecover.pl will not use it’s functionality.
There’s no need to do so, because no special files could be backed up.
If your using GNU/Linux based systems only, it’s best to forget this option.

6.5 storeBackupVersion.pl

storeBackupVersion.pl locates different versions of a file saved with storeBackup.pl. This is the right
program if you want to see how many different versions of a specific file exist and where a file with a
specific contents is located anywhere in a backup series.
If you want to make a more “high sophisticated” search depending on file names, sizes, dates or other
stuff, have a look at storeBackupSearch, see section 6.6.

storeBackupVersion.pl -f file [-b root] [-v]

[-l [-a | [-s] [-u] [-g] [-M] [-c] [-m]]]

This program only accepts options on the command line. The only option you have to set is --file.

--file / -f The name (and path) of the file in the backup. Write the file name exactly as it is written
in the backup.

--backupRoot / -b Normally there should be no need to use this option! When you restore a directory,
storeBackupRecover.pl does this by searching for .md5CheckSum.info which is in the root directory of
each backup. If it find more than one of these files it generates an ERROR message. This normally
will happen if you make a storeBackup backup of a storeBackup backup and want to restore.
If you get an error message like “found info file a second time . . . ”, you need to specify the root of
this backup (where you recover with option restoreTree).

--verbose / -v Print verbose messages.

--locateSame / -l Locate files with the same contents in the backup.

--showAll / -A same as -s -u -g -M -c -m

--size / -s show the size (human readable) of the source file

--uid / -u show the uid of the source file

--gid / -g show the gid of the source file

--mode / -M show the permissions of the source file

--ctime / -c show the creation time of the source file

--mtime / -m show the modify time of the source file

--atime / -a show the access time of the source file

6.6 storeBackupSearch.pl

storeBackupSearch.pl allows you to search in specific backups, in a backup series or in all backups under
backupDir. You can define any rule build from combinations of file name, size, mode (permissions), owner
(uid, gid), creation time, modify time and file type – naturally the ones of the original source directory.
See section 7.3 how to define rules. It will help you if you have at least some very basic knowledge about
scripting or programming.

storeBackupSearch.pl -g configFile

storeBackupSearch.pl [-f configFile] [-b backupDirectory]

[-s rule] [--absPath] [-w file] [--parJobs number]

[-d level] [--once] [--print] [backupRoot . . .]

30

This program allows you to set option on the command line and in a configuration file. You have to set
options backupDir and searchRule.

First, the options which can be used only on command line. There is always a long option (like --file)
and sometimes also a shortcut (-f).

--generate / -g Generate a template for a configuration file. After generation, you can edit it with the
editor of your choice. It is easier to write rules in the configuration file, because on the command
line the shell strips quotes.

--print Prints the options used (from command line and from the configuration file) and stops after
printing the options. In case of difficult quoting (especially on the command line) this gives you
the chance to see what’s really used in the program.

--file / -f Name of the configuration file you want to use.

The following options can be used on the command line and in the configuration file (see section 7.1).
There is a long option for the command line (like --searchRule), sometimes also a shortcut for the
command line (like -s) and the name of the term used in the configuration file (like searchRule)).

--backupDir / backupDir The repository / backup, where you want backups to search. You can set this
option to you whole backup repository, to a series or to a single backup.

--searchRule / -s / searchRule rule for searching, see section 7.3 how to define rules.

--absPath / -a / absPath the files found will be printed with absolute path names

--writeToFile / -w / writeToFile write the result of the search to the specified file, default is stdout

--parJobs / -p / parJobs Maximum number of parallel search operations. The default value is chosen
automatically as the number of cores plus 1.

--debug / -d / debug debug level, possible values are 0, 1, 2; default = 0

--once / -o / once show every file found only once (depending on the contence respectively the md5
sum of each file)

...backupRoot... / backupRoot On the command line, this is not an option; this is a list parameter. So
you have to write on the command line eg.:

storeBackupSearch.pl <all_options> 2008.08.27_16.59.01 2008.08.30_10.13.38

In the configuration file this is similar to:
backupRoot = 2008.08.27 16.59.01 2008.08.30 10.13.38

You can define a relative path to directories below backupDir where to search. This can be a specific
backup itself (like in this example), a whole backup series or a directory in which directories with
backup series are stored (and so on). You can configure storeBackupSearch.pl to search in multiple
directories.
If you do not specify any directory, then all backups below backupDir are used for the search.
You need read permissions for the .md5CheckSum.*-files in the backups.

6.7 storeBackupSetupIsolatedMode.pl

storeBackupSetupIsolatedMode.pl is part of the isolated mode / offline backups functionality of store-
Backup. It copies the meta data of the last backup from a series of backups to another filesystem (e.g., on
a memory stick or small hard disk). It optionally generates a customized version of the storeBackup.pl

configuration file.
This can be used to generate incremental backups with storeBackup.pl on media with low capacity, e.g., on
a memory stick during a travel – without having access to the central backup repository. Later, you can in-
tegrate you local backups into the central backup repository by using storeBackupMergeIsolatedBackup.pl12

12see storeBackupMergeIsolatedBackup.pl

31

to replicate your data and storeBackupUpdateBackup.pl13 to complete your incremental backups to full
space-efficient backups.

For a general description about how to use isolated mode, have a look at isolated mode / offline backups,
see chapter 7.6.

based on configuration file:

storeBackupSetupIsolatedMode.pl -f existingConfigFile -t targetDir

[-S series] [-g newConfigFile] [-v]

no configuration file:

storeBackupSetupIsolatedMode.pl -b backupDir -t targetDir

[-S series] [-v]

--existingConfigFile / -f original configuration file from storeBackup.pl used for normal backups on
local media. In the configuration file, the letters # and ; are used as comment signs. The cus-
tomization of the configuration will work correct only if the ; is used before unused keywords (like
in the generated original version from storeBackup.pl)!
storeBackupSetupIsolatedMode.pl will generate a new key in the newly generated configuration file
(see option --generate) called mergeBackupDir= which points to the original backupDir. This entry is
ignored by storeBackup.pl and used by storeBackupMergeIsolatedBackup.pl to copy the incremental
backups from the local media to the master backup repository.

--targetDir / -t The new top level backup directory to use by storeBackup.pl on the local media for
the incremental backups.

--backupDir / -b If you do not want to use a storeBackup.pl configuration file, you can specify the path
to your master backup repository with this option.

--series / -S If more than one series in stored in backupDir directory, you have to specify series you
want to use for your local media.

--generate / -g Specify the name for the configuration file to generate when option --existingConfigFile

is used. If no name is specified, the name for the new configuration file to make backups on the
new media will be isolate– plus the name specified at option --existingConfigFilee.

--verbose / -v Generate verbose messages.

6.8 storeBackupMergeIsolatedBackup.pl

storeBackupMergeIsolatedBackup.pl is part of the isolated mode / offline backups functionality of store-
Backup. It copies the incremental backups made in isolated mode (see isolated mode / offline backups,
chapter 7.6) and the description of storeBackupSetupIsolatedMode, see chapter 6.7 back to the central
backup repository.

based on configuration file:

storeBackupMergeIsolatedBackup.pl -f isolateConfigFile [-v] [--force]

no configuration file:

storeBackupSetupIsolatedMode.pl -i isolateBackupDir -b backupDir

[-S series] [-v] [--force]

--configFile / -f the isolated mode config file which contains the new key called mergeBackupDir= which
points to the original backupDir.

--force force copying of files whichout listing backups to copy and prompting for acceptance

13see storeBackupUpdateBackup.pl

32

--isolateBackupDir / -b specifies the backup directory (on local media) where the isolated backups were
made

--series / -S If more than one series in stored in backupDir directory, you have to specify series you
want to use for your local media.

--verbose / -v Generate verbose messages.

6.9 storeBackupls.pl

storeBackupls.pl gives you information about the age and deletion rules of a backup series.

storeBackupls.pl -f configFile [--print] [storeBackup-dir]

storeBackupls.pl [-v] [--print] storeBackup-dir

There are two possible styles to call it (with examples):

/opt/test/storeBackup/bin/storeBackupls.pl .

1 Fri Jul 04 2008 2008.07.04_20.17.13 -61

2 Sat Jul 05 2008 2008.07.05_21.19.09 -60

3 Sun Jul 06 2008 2008.07.06_17.38.22 -59

4 Mon Jul 07 2008 2008.07.07_17.31.43 -58

5 Fri Jul 11 2008 2008.07.11_19.20.14 -54

6 Sat Jul 12 2008 2008.07.12_18.17.21 -53

7 Sun Jul 13 2008 2008.07.13_17.07.53 -52

8 Mon Jul 14 2008 2008.07.14_06.28.29 -51

9 Tue Jul 15 2008 2008.07.15_07.44.41 -50

10 Wed Jul 16 2008 2008.07.16_17.56.35 -49

11 Thu Jul 17 2008 2008.07.17_10.13.47 -48

12 Fri Jul 18 2008 2008.07.18_14.13.26 -47

13 Sat Jul 19 2008 2008.07.19_16.03.40 -46

14 Fri Jul 25 2008 2008.07.25_09.29.39 -40

15 Mon Jul 28 2008 2008.07.28_19.01.04 -37

16 Wed Jul 30 2008 2008.07.30_17.25.43 -35

17 Thu Jul 31 2008 2008.07.31_16.45.56 -34

18 Fri Aug 01 2008 2008.08.01_16.43.56 -33

19 Mon Aug 04 2008 2008.08.04_17.26.42 -30

20 Thu Aug 07 2008 2008.08.07_16.16.21 -27

21 Fri Aug 08 2008 2008.08.08_20.59.46 -26

22 Sat Aug 09 2008 2008.08.09_20.48.31 -25

23 Sun Aug 10 2008 2008.08.10_14.29.18 -24

24 Mon Aug 11 2008 2008.08.11_19.51.32 -23

25 Tue Aug 12 2008 2008.08.12_14.13.02 -22

26 Wed Aug 13 2008 2008.08.13_20.41.43 -21

27 Thu Aug 14 2008 2008.08.14_16.44.02 -20

28 Fri Aug 15 2008 2008.08.15_19.47.29 -19

29 Mon Aug 18 2008 2008.08.18_18.29.06 -16

30 Tue Aug 19 2008 2008.08.19_17.58.42 -15

31 Wed Aug 20 2008 2008.08.20_18.53.46 -14

32 Thu Aug 21 2008 2008.08.21_19.56.03 -13

33 Fri Aug 22 2008 2008.08.22_23.32.10 -12

34 Sun Aug 24 2008 2008.08.24_12.57.36 -10

35 Tue Aug 26 2008 2008.08.26_10.34.06 -8 not finished

36 Tue Aug 26 2008 2008.08.26_10.59.46 -8

37 Tue Aug 26 2008 2008.08.26_13.07.08 -8

You see, that backup number 35 was not finished. Using option verbose results in:

/opt/test/storeBackup/bin/storeBackupls.pl -v .

. . .

37 Tue Aug 26 2008 2008.08.26_13.07.08 -8

version -> 1.3

date -> 2008.08.26 13.07.08

sourceDir -> ’/backup’

followLinks -> 1

compress -> ’bzip2’

uncompress -> ’bzip2’ ’-d’

33

postfix -> ’.bz2’

exceptSuffix -> ’.bz2’ ’.gif’ ’.gpg’ ’.gz’ ’.jpg’ ’.mp3’ ’.mpeg’ ’.mpg’ ’.ogg’ ’.png’ ’.tgz’ ’.tif’ ’.tiff’ ’.zip’

exceptDirs -> ’/backup/home_hjc/nosave’

includeDirs ->

exceptRule -> ’$file =~ /arconis.*tib/’ ’or’ ’$file =~ m#/te?mp/#’ ’or’ ’$file =~ m#/\.thumbnails/#’

includeRule ->

exceptTypes ->

preservePerms -> yes

lateLinks -> yes

lateCompress -> no

cpIsGnu -> yes

Only the output for the last backup is shown here. You can see, which options of storeBackup.pl where
used to generate the backup.

storeBackupls.pl -f configFile [--print] [storeBackup-dir] or
storeBackupls.pl --file configFile [--print] [storeBackup-dir]

Here it will read the configuration file of storeBackup.pl and tells something about the deletion status of
each backup:

storeBackupls.pl -f /backup/stbu-gentoo.conf .

. . .

WARNING backup <./2008.08.26_10.34.06> not finished

analysis of old Backups in <.>:

Fri 2008.07.04_20.17.13 (61): will be deleted

Sat 2008.07.05_21.19.09 (60): keepWeekDays(60d)

Sun 2008.07.06_17.38.22 (59): keepWeekDays(60d)

Mon 2008.07.07_17.31.43 (58): keepWeekDays(60d)

Fri 2008.07.11_19.20.14 (54): keepWeekDays(60d)

Sat 2008.07.12_18.17.21 (53): keepMinNumber30, keepWeekDays(60d)

Sun 2008.07.13_17.07.53 (52): keepMinNumber29, keepWeekDays(60d)

Mon 2008.07.14_06.28.29 (51): keepMinNumber28, keepWeekDays(60d)

Tue 2008.07.15_07.44.41 (50): keepMinNumber27, keepWeekDays(60d)

Wed 2008.07.16_17.56.35 (49): keepMinNumber26, keepWeekDays(60d)

Thu 2008.07.17_10.13.47 (48): keepMinNumber25, keepWeekDays(60d)

Fri 2008.07.18_14.13.26 (47): keepMinNumber24, keepWeekDays(60d)

Sat 2008.07.19_16.03.40 (46): keepMinNumber23, keepWeekDays(60d)

Fri 2008.07.25_09.29.39 (40): keepMinNumber22, keepWeekDays(60d)

Mon 2008.07.28_19.01.04 (37): keepMinNumber21, keepWeekDays(60d)

Wed 2008.07.30_17.25.43 (35): keepMinNumber20, keepWeekDays(60d)

Thu 2008.07.31_16.45.56 (34): keepMinNumber19, keepWeekDays(60d)

Fri 2008.08.01_16.43.56 (33): keepMinNumber18, keepWeekDays(60d)

Mon 2008.08.04_17.26.42 (30): keepMinNumber17, keepWeekDays(60d)

Thu 2008.08.07_16.16.21 (27): keepMinNumber16, keepWeekDays(60d)

Fri 2008.08.08_20.59.46 (26): keepMinNumber15, keepWeekDays(60d)

Sat 2008.08.09_20.48.31 (25): keepMinNumber14, keepWeekDays(60d)

Sun 2008.08.10_14.29.18 (24): keepMinNumber13, keepWeekDays(60d)

Mon 2008.08.11_19.51.32 (23): keepMinNumber12, keepWeekDays(60d)

Tue 2008.08.12_14.13.02 (22): keepMinNumber11, keepWeekDays(60d)

Wed 2008.08.13_20.41.43 (21): keepMinNumber10, keepWeekDays(60d)

Thu 2008.08.14_16.44.02 (20): keepMinNumber9, keepWeekDays(60d)

Fri 2008.08.15_19.47.29 (19): keepMinNumber8, keepWeekDays(60d)

Mon 2008.08.18_18.29.06 (16): keepMinNumber7, keepWeekDays(60d)

Tue 2008.08.19_17.58.42 (15): keepMinNumber6, keepWeekDays(60d)

Wed 2008.08.20_18.53.46 (14): keepMinNumber5, keepWeekDays(60d)

Thu 2008.08.21_19.56.03 (13): keepMinNumber4, keepWeekDays(60d)

Fri 2008.08.22_23.32.10 (12): keepMinNumber3, keepWeekDays(60d)

Sun 2008.08.24_12.57.36 (10): keepMinNumber2, keepWeekDays(60d)

Tue 2008.08.26_10.59.46 (8): will be deleted

Tue 2008.08.26_13.07.08 (8): keepMinNumber1, keepWeekDays(60d)

. . . and using option –print we see the parameters used from storeBackup.pl:

storeBackupls.pl -f /backup/stbu-gentoo.conf . --print

combined configuration and command line options

options with parameters:

file </backup/stbu-gentoo.conf>

34

firstDayOfWeek <Sun>

keepAll <60d>

keepDuplicate <7d>

keepFirstOfMonth <undef>

keepFirstOfWeek <undef>

keepFirstOfYear <undef>

keepLastOfMonth <undef>

keepLastOfWeek <undef>

keepLastOfYear <undef>

keepMaxNumber <0>

keepMinNumber <30>

keepRelative <undef>

keepWeekday <undef>

options without parameters:

list parameters:

<.>

6.10 storeBackupDel.pl

storeBackupDel.pl deletes old backups regarding the rules you defined. These rules (keep∗) are described
as options of storeBackup.pl in section 6.2. You should configure storeBackup.pl with a configuration file
and read this configuration file with storeBackupDel.pl if you want to delete old backups asynchronously
from the backup itself (see also Example 6, section 8.7).

$prog [-f configFile] [--print]

[-b backupDirectory] [-S series] [--doNotDelete]

[--deleteNotFinishedDirs] [-L lockFile]

[--keepAll timePeriod] [--keepWeekday entry] [--keepFirstOfYear]

[--keepLastOfYear] [--keepFirstOfMonth] [--keepLastOfMonth]

[--keepFirstOfWeek] [--keepLastOfWeek]

[--keepDuplicate] [--keepMinNumber] [--keepMaxNumber]

[-l logFile

[--plusLogStdout] [--suppressTime] [-m maxFilelen]

[[-n noOfOldFiles] | [--saveLogs]

[--compressWith compressprog]]

You have to set at least two options: --backupDir and --series. It doesn’t matter if you set them on the
command line, in the configuration file or mixed.

First the options which can be used only on command line. There is always a long option (like --configFile)
and sometimes also a shortcut (-f).

--print Prints the options used (from command line and from the configuration file) and stops after
printing the options. In case of difficult quoting (especially on the command line) this gives you
the chance to see what’s really used in the program.

--configFile / -f Name of the configuration file you want to use.

You can easily overwrite options in the configuration file (especially changing backupDir and unsetting
doNotDelete) on the command line. See also section 7.1.
The following options are identical to the ones in storeBackup.pl:

• backupDir

• series

• lockFile

• doNotDelete

• deleteNotFinishedDirs

• keepAll

35

• keepWeekday

• keepFirstOfYear

• keepLastOfYear

• keepFirstOfMonth

• keepLastOfMonth

• firstDayOfWeek

• keepFirstOfWeek

• keepLastOfWeek

• keepDuplicate

• keepMinNumber

• keepMaxNumber

• keepRelative

• logFile

• plusLogStdout

• suppressTime

• maxFilelen

• noOfOldFiles

• saveLogs

• compressWith

6.11 storeBackupMount.pl

storeBackupMount.pl gives you a “script” to mount the needed directories for the backup, start store-
Backup.pl and umount the directories. Before trying to mount, it can check via ping if a server is
reachable. If these directories are always (or already) mounted, there is no need to use storeBackup-
Mount.pl.

storeBackupMount.pl -c configFile [-s server] [-l logFile]

[-d] [-p pathToStoreBackup] [-k killTime] [-m] mountPoints...

To be able to mount the directories, you need an entry in /etc/fstab like the following ones:

/dev/sda5 /add reiserfs noatime 0 1

lotte:/disk1 /backup nfs rsize=8192,wsize=8192,user,exec,async,noatime 1 1

The first mount point /add is on a local device. In this example, it’s the device with a file system to be
saved. The second one (/backup) is located on /disk1 on the nfs server lotte. The rest are nfs parameters
– see section 7.9 about the configuration of nfs.
If you have these kind of entries in /etc/fstab, you can mount the file systems with:
mount /add

mount /backup

and that’s exactly what storeBackupMount.pl does.

You must at least configure option –configFile.
The command line options storeBackupMount.pl accepts are:

--server / -s Name or ip address of the of the nfs server. Default is “localhost”. This name is used for
pinging.

36

--configFile / -c Configuration file for storeBackup.pl. StoreBackupMount.pl reads option logFile from
the configuration file of storeBackup.pl. If this log file is different from the one specified for this
program, then the storeBackup.pl log file is read online and the lines are printed into the log file of
storeBackupMount.pl. This is especially useful if the log from storeBackupMount.pl is directed to
stdout.

--logFile / -l Log file for this process, default is stdout. You can log into the same log file as store-
Backup.pl. If storeBackup.pl writes to stdout, this output will be redirected into this log file, but
not till then it finished .

--debug / -d Generate some extra messages.

--pathStbu / -p Path to storeBackup.pl or storeBackup. (Debian / Ubuntu renames all programs to a
name without .pl, so both versions are searched.) Has to be set if storeBackup.pl is not in your
environment variable $PATH.

--killTime / -k Time until storeBackup.pl will be killed if it didn’t finish before. The time range has to
be specified in format ‘dms’, eg. 10d4h means 10 days and 4 hours.
Default are 365 days.

--keepExistingMounts / -m If some mounts already exists at starting time of the program, do not umount
these mounts after running storeBackup.pl.

...mountPoints... List of mount points needed to perform the backup. This must be a list of paths
which have to be defined in /etc/fstab.
If you add ro, or rw, to the beginning of a a mount point, you can overwrite that option set in
/etc/fstab. Example:
ro,/filesSystemToRead will mount /filesSystemToRead read only, even if the corresponding entry
in /etc/fstab mounts it read write.
Only root is allowed to use this feature!

exit status:

0 everything is fine

1 error message from storeBackup.pl

2 error from storeBackupMount.pl

3 error from both programs

6.12 storeBackupCheckBackup.pl

If you copy data from one disk to another one, you might have unrecognized bit failures (eg. in main
memory, in the cpu, on the transfer lines) resulting in wrong data stored in your backup. This may
happen especially over long time periods on the backup disk itself. Because storeBackup also stores
check sums in addition to the real data it’s possible to compare the stored data in the backup with the
check sums generated from the source files to give you a better probability that your backup data is not
broken.14 But don’t panic, this doesn’t happen all the time.
storeBackupCheckBackup.pl verifies the consistency of one or more backups by using the md5 sums gener-
ated during the backup in .md5CheckSums (see section 7.8) and compares these with just calculated ones. It
also checks all files in the backup and the files considered in .md5CheckSums for existence or non-existence.

storeBackupCheckBackup.pl -c backupDir [-v] [-p number] [-i]

--print print the configuration parameters and stop processing

--checkDir The repository / backup, where you want backups to search. You can set this option to you
whole backup repository, to a series or to a single backup.

--verbose / -v Verbose. Print some extra messages so you see what’s happening.

14This is not a 100% safety. It’s still possible that eg. a memory fault corrupts reading of the source data so the check
sum and the data itself are stored corrupted. In this case storeBackupCheckSource.pl, section 6.13 increases your safety.
But in general, the only protection against those issues is completely redundant hardware which is very expensive.

37

--parJobs / -p / parJobs Maximum number of parallel search operations. The default value is chosen
automatically as the number of cores plus 1.

--includeRenamedBackups / -i By using this option, renamed backups are checked also If you have re-
named backups specified with option --checkDir. Renamed backups have to follow the scheme
backupDir−something, e.g., 2012.01.30 15.21.03−renamed. Also see section 7.2.

6.13 storeBackupCheckSource.pl

If you copy data from one disk to another one, you might have unrecognized bit failures (eg. in main
memory, in the cpu, on the transfer lines) resulting in wrong data stored in your backup. This may
happen especially over long time periods on the backup disk itself. Because storeBackup also stores
check sums in addition to the real data it’s possible to compare the stored data in the backup with the
check sums generated from the source files to give you a better probability that your backup data is not
broken. This is the reason, why storeBackupCheckBackup.pl exists.
But such a bit error may occur in your source data after a long period of time also. With this program,
you can check files not changed since backed up by comparing the check sum in the backup with the
source file.

storeBackupCheckSource.pl -s sourceDir -b singleBackupDir [-v]

--sourceDir / -s This must be the directory you specified as parameter to option sourceDir to storeBackup.pl

when you were running your backup you want to compare with.

--singleBackupDir / -b The backup directory you want to use for the comparison. This must be one
single backup directory .

--verbose / -v Verbose. Print additional information:

• always printed: ERROR message if the md5 sum differs

• always printed: WARNING if permissions, uid or gid differs

• printed with option -v only: MISSING if file is not in the source directory

• printed with option -v only: INFO if file is identical

6.14 storeBackup du.pl

storeBackup du.pl evaluates the disk usage in one or more backup directories. sumLocal shows the data
local in the specified backup(s) and sumShared the data shared with other backups via hard links.

storeBackup_du.pl [-v] [-l] backupdirs ...

--verbose / -v Print accumulated values for multiple versions (days) of backed up files.

--links / -l Also print statistic about how many links the files have and how much space this saves.

...backupdirs... the backup directories to evaluate

6.15 storeBackupConvertBackup.pl

You only have to call this program when storeBackup.pl tells you to do so.
converts old backups created with storeBackup.pl to the newest version
current version of the backup format is 1.3
you can see the version by typing:

head -1 < ...<storeBackupDir>/date_time/.md5CheckSums.info

Call storeBAckupConvertBackup.pl with the backup directories to convert:

storeBackupConvertBackup.pl storeBackup-dir

38

6.16 linkToDirs.pl

Make a de-duplicated copy of files in defined directories to another location. Utilizes hard links to the
full extent possible to avoid wasting storage space.
linkToDirs.pl is a general purpose tool. However, it is very helpful if you want to copy a storeBackup
backup to another disk.
Usage note: whereas many file copy utilities have just two primary parameters (the source and destina-
tion), linkToDirs.pl allows three primary parameters:

• source,

• destination

• and a reference location.

The reference location is the place to look for existing content which can be hard linked to (see --linkWith
option).
The --linkWith option is not required. If you use it, you can optionally specify multiple link references
for hard linking (i.e., the --linkWith option can be repeated).
Files with the same content as the specified link reference(s) and on the same file system will be hard
linked. Hard links within the copied files will be maintained or re-created: linkToDirs.pl will always hard
link identical files, with one exception. That exception is: files in the directories specified by --linkWith

will never be changed. So if there are two identical files which are not hard linked, they will remain that
way (unlinked). linkToDirs.pl supports hard linking of symbolic links with at least as much capability
as the main storeBackup.pl program does.
(Naturally, if there are no identical files, it will only copy files.)
Hard links on Linux have these rules:

• Hard links cannot link directories.

• Hard links cannot cross file system boundaries.

If it is not possible to create a hard link to the reference file (due to the limitations of hard links)
linkToDirs.pl will generate a new file copy (on the target file system) and then hard link to that one
going forward. In this way, linkToDirs.pl can be used to maintain a de-duplicated state of source files
when copying them to another filesystem.
linkToDirs.pl is a general purpose tool. However, it has a special synergy with storeBackup. As you
know, storeBackup eliminates wasted space in the storage location by maintaining a de-duplicated state
through the use of hard links. But hard links cannot be maintained across different file systems.
Therefore, when you want to copy an existing storeBackup backup to a new disk (or new file system), link-
ToDirs.pl allows you to do so and to maintain all the storage efficiency benefits of the original storeBackup
backup.
Technical note: linkToDirs.pl can be helpful if you are copying to a file system that has a lower limit
(compared to original file system) on the number of permissible hard links it supports. Rather than
generating error messages and losing hard links, as other copy utilities would do, linkToDirs.pl will
handle this situation intelligently. (It creates one new file when needed and uses that file as the basis for
additional hard links.)

linkToDirs.pl [--linkWith referenceDir] [--linkWith ...]

--targetDir destinationDir

[--progressReport number] sourceDir ...

--help / -h print a help message

--linkWith / -w the reference location; consider the files in these directories for hard linking. This option
can be repeated. (The directories are recursed, as you would expect.)

--targetDir / -t the destination; files from sourceDirs will be copied to this directory.

--dontLinkSymlinks do not hard link identical symbolic links (symlinks). The default is to hard link each
existing symlink rather than copy the symlink.

--progressReport / -P write a progress report after analysing the specified number of filesSystem

39

sourceDir the source directory; files (or existing storeBackup backups) from this directory will be copied
to targetDir. sourceDir may be repeated multiple times with different directories. Normal shell
file and directory conventions, including wildcards, are acceptable. Copy functionality is recursive
into all subdirectories within the listed sourceDir.

6.17 llt

list create, access and modification times of files

llt [-r] [-i] [-a|-m|-c] [files] [dirs]

--help / -h print a help message

--reverse / -r sort in reverse order according to file names

--insensitive / -i sort case insensitively

--access / -a sort according to access time

--modification / -m sort according to modification time

--creation / -c sort according to creation time

--unixTime / -u show Unix time (unsigned integer)

6.18 multitail.pl

multitail.pl reads one or multiple log files. The files read can be shown on the screen or written into
anther log file and saved. This way, you can mix multiple log files.
It’s very robust, so it doesn’t care if a file is deleted, moved or newly created. You can also start it with
a file name which does not exist at that time.

multitail.pl [-a] [-d delay] [-p begin|end] [-t]

[-o outFile [-m max] [-P]

[[-n noFiles] | [-s [-c compressprog]]]

] files...

All options are optional, you simply have to use one or more log file names as parameter.

--addName / -a Add the file name from which the line is read to the output.

--delay / -d Delay in seconds between checking each file for new data. The value can by smaller than
1, eg. 0.2. The default value is 5 (seconds).

--position / -p At start of the program read from the begin or end of the file; allowed parameters are
begin or end. Default is begin.

--withTime -t Add a time stamp to the output.

--out / -o write output to a file, default is stdout

--maxFilelen / -m Maximal size of a log file. After reaching this size, the log file will be rotated (see
option noOfOldFiles) or compressed (see option saveLogs).

--withPID / -P write pid (process id) of multitail.pl to the log file; default is not to write it

--maxlines / -l Maximum number of line to read in one chunk from a log file. Default is 100. If you
configure “--delay 3” then every three seconds multitail.pl will read a maximum of 100 lines. The
reason for this restriction is to avoid that multitail.pl will consume too much power if a log file is
written too heavily.

--noOfOldFiles / -n Number of old rotated log files, default is 5. With default values, it will look like this:

40

$ ls -l /tmp/storebackup.log*

-rw------- 1 hjc root 328815 30. Aug 12:12 /tmp/storebackup.log

-rw------- 1 root root 1000087 27. Aug 21:18 /tmp/storebackup.log.1

-rw------- 1 root root 1000038 20. Aug 19:02 /tmp/storebackup.log.2

-rw------- 1 root root 1000094 11. Aug 18:51 /tmp/storebackup.log.3

-rw------- 1 root root 1000147 11. Aug 18:49 /tmp/storebackup.log.4

-rw------- 1 root root 1000030 11. Aug 18:49 /tmp/storebackup.log.5

Older log files than *.5 have been deleted automatically.

--saveLogs / -s Save the log files with a time and date stamp instead of deleting them after rotating.
(Setting this option overwrites the default value of option noOfOldFiles.)

--compressWith / -c Specifies the program to compress the saved log files (e.g., with gzip -9). Default
value is bzip2.
On the command line, the parameter to this option is parsed like a line in the configuration file and
normally has to be quoted on the command line.

7 General concepts

7.1 configuration file and command line

In all these programs a module is used which can handle the combination of command line and config-
uration file usage. Because in all programs always the same module is used, this description is valid for
all of them. Nevertheless, there are some programs which support both interfaces (like storeBackup.pl)
and others which support only command line (like storeBackupMount.pl). In general, programs which
support a complex configuration have both interfaces, while the ones with a more simple configuration
only support command line.

configuration file
The structure of the configuration file is:

keyword = list of parameters

There is no difference in writing:

keyword=list of parameters

If you have too much parameters for an optical nice length of the line in the configuration file, you can
continue in the next line if you add one or more white space (space or tab) in the beginning of that line:

keyword = list of parameters but now really really really

too much for one single line

You can add comments by setting a hash sign at the beginning of a line:

this is a comment

You can also make a comment by typing a semicolon (;) at the beginning of a line. For better readability,
storebackup uses this when writing (not specified) keywords in configuration files. Sometimes, this
approach is used to identify commented keywords. So you shouldn’t change this convention.
You can use environ variables like in a shell, here it’s $VAR:

keyword = $VAR ${VAR}var

If $VAR was set to XXX, this will be equal to:

keyword = XXX XXXvar

You can use quotes:

keyword = 1 2 "1 2" ’1 2’ $VAR "$VAR 1" ’$VAR’ ’$VAR 1’

This will be expanded (internally) to (the brackets are only used to show the grouping of parameters,
they do not exist in reality):

41

keyword = <1> <2> <1 2> <1 2> <XXX> <XXX 1> <$VAR> <$VAR 1>

Next thing you can do is masking of special characters. Special characters you can mask with backslash
(\) are:

$ { } " ’

It depends on the keyword, how many “words” you can assign to them. There are also underlying rules,
that some keywords are only allowed if others are set. And finally, not all characters or words are allowed
for all keywords.

command line
On the command line, you always have a long option and sometimes a shortcut. The long option begins
with --, while the short one simply begins with a -. Example:

storeBackup.pl --file backup.config

storeBackup.pl -f backup.conf

is equivalent. This also shows an option, which can have exactly one parameter (the file name).
There are others option which can have more than one parameter:

storeBackup.pl -e /proc -e /tmp -e /var/tmp

In this example, option -e (same as --exceptDirs) is used to define multiple directories not to backup.
You can simply repeat the option. It does not matter if you use the long or the short form or a mixture
of them.
Now let’s look at an option to define the program to uncompress the files in the backup. Let’s choose
gzip -d, a program with a parameter:

storeBackup.pl --uncompress "gzip -d"

As documented in the description of storeBackup.pl in section 6.2, the parameter of this option is parsed
as if it were written in the configuration file (the quoting is stripped by the shell):

uncompress = gzip -d

In this way, storeBackup.pl will see two parameters (gzip and -d) of option --uncompress. The first one
is then used as the program and the rest as parameters for it.
Sometimes, you can also use list parameters (parameters without an option). Eg. in storeBackup.pl they
are called otherBackupDirs.

bringing both together
In some programs (like storeBackup.pl) you can use both command line options and a configuration file.
Normally, it’s easier to use and more clearly arranged by using the configuration file.
But in some situations it’s very convenient to be able to overwrite an option set in the configuration file.
You can simply do this by additionally setting that option on the command line. In programs delivered
with storeBackup the command line will overrule the settings in the configuration file.
There is one special kind of situation when this normally would not be possible. Imagine, you wrote in
the configuration file of storeBackup.pl:

doNotDelete = yes

This means, storeBackup.pl will not delete any old backup, because you want to do this later with
storeBackupDel.pl. But the only thing storeBackupDel.pl has to offer is an option as a flag: --doNotDelete
which only means yes in the configuration file. There’s no special option to say no. Instead of introducing
dozens of options for such cases, these programs use the following syntax:

storeBackupDel.pl -f backup.config --unset doNotDelete

This will “unset” the doNotDelete option set in the configuration file.
You can also write:

storeBackupDel.pl -f backup.config --unset --doNotDelete

which is the name of this option on the command line.

For list parameters, there is a mapping from the list parameters without option to a special option in the
configuration file – for storeBackup.pl that’s otherBackupDirs , for storeBackupSearch.pl it’s backupRoot .
This is documented for the individual programs (see description).

42

7.2 Deletion of old Backups

The more standard Approach

StoreBackup gives you a lot of possibilities to delete or not delete your old backups. If you have a backup
which should never be deleted, the simplest way to achieve this is to rename it by appending a dash
followed by your desired text string to the existing date time filename. For example:
$ mv 2003.07.28 06.12.41 2003.07.28 06.12.41-archive

renamed backups must match this naming pattern exactly: yyyy.mm.dd dd.mm.ss-(.+)

IMPORTANT: If you use option lateLinks of storeBackup.pl, only do this after a successful run of store-
BackupUpdateBackup.pl!
To archive with a simple renaming is possible because storeBackup.pl and storeBackupDel.pl only delete
directories which match exactly the pattern YYYY.MM.DD hh.mm.ss .
The most simple way to delete a specific directory is to use rm -rf. Do not do this if you use option
lateLinks of storeBackup.pl! If you want to delete backups which are too old depending on rules, there
are several options you can choose. You can specify the time to keep old backups on the basis of weekdays
(with a default value for all weekdays in keepAll which can be overwritten with keepWeekday). You can
also specify to keep them with keepFirstOfYear, keepLastOfYear, keepFirstOfMonth and keepLastOf-
Month. or with keepFirstOfWeek and keepLastOfWeek where you can define the first weekday of your
definition of a week. In all of these cases, you have to specify a time period. How to specify a time period
is described with the options of storeBackup.pl.
Now imagine you are making your backups on an irregular basis, perhaps from a laptop to a server or
you make your backups when you think you have finished an important step of your work. In such cases,
it is useful to say “only keep the last backup of a day in a long time range” (with keepDuplicate). If you
were in holidays for a month and have set keepAll to 30d (30 days), then you probably do not want that
storeBackup deletes all of your old backups when you start it for the first time when you’re back. You
can avoid this with the option keepMinNumber. On the other hand, if you have limited space on your
backup disk, you want to limit the total number of backups, for this, you can use keepMaxNumber.
With keepDuplicate you specify a time period in which storeBackup keeps duplicate backups of a day.
After this time period only the last backup of a day will survive.
With keepMinNumber you specify the minimal number of backups storeBackup (or storeBackupDel) will
not delete. The logic is as follows:

• Do not delete backups specified with any of the other keep∗ options.

• If this is not enough, do not delete other ones beginning with the newest backups. Duplicates of a
day are not affected by this parameter.

With keepMaxNumber you specify the maximal number of backups. StoreBackup will then delete the
oldest backups if necessary. To prevent special backups from deletion, you can specify an “archive flag”
with keepAll∗ options. Backups matching an archive flag will never be delete by keepMaxNumber. In
this way it is possible that more backups will remain than specified with this parameter, but the archive
flag is useful to prevent special backups like “last backup of a month” or “last backup of a year” to be
deleted.

Using keepRelative as a Deletion Strategy

This option activates an alternative backup deletion scheme that allows you to specify the relative age of
the backups you would like to have rather then the period over which a backup should be kept.
Imagine that you always want to have the following backups available:

• 1 backup from yesterday

• 1 backup from last week

• 1 backup from last month

• 1 backup from 3 months ago

Note that this is most likely not what you really want to have, because it simply means that you have to
do daily backups and have to keep every backup for exactly 3 months. Otherwise you wouldn’t always
have a backup that is of exactly the requested age.
What you really want to have is therefore probably something like this:

43

• 1 backup of age 1 hour to 24 hours / 1 day

• 1 backup of age 1 day to 7 days

• 1 backup of age 14 days to 31 days

• 1 backup of age 80 days to 100 days

This is now a very common backup strategy, but you would have difficulty to achieve this with the
usual keepFirstOf* options, especially if you don’t do backups with perfect regularity. However, you can
implement it very easily using keepRelative. All you need to write is:
keepRelative = 1h 1d 7d 14d 31d 80d 100d

i.e. you list all the intervals for which you want to have backups. storeBackup will delete backups in such
a way that you come as close as possible (if you don’t do backups often enough, there is of course nothing
that storeBackup can do) to your requested backup scheme.
Note that this may mean that storeBackup keeps more backups that you think it has to, i.e. it may keep
two backups in the same period. In this case storeBackup “looks into the future” and determines that
both backups will later be necessary in order to have a backups for all periods. This is also the reason
why in the above example you have somehow implicitly specified the period 7 days to 14 days, although
you didn’t really want to have a backup in this period – in order to have backups in the next period (14
days to 31 days) you always need to have a backup in the period 7 days to 14 days as well. Therefore
the syntax doesn’t allow you to exclude some periods.
Finally you should be aware that storeBackup shifts all the intervals if it cannot find a recent enough
backup: if your first intervals is from 10 days to 20 days, but your most recent backup is actually 25
days old, all subsequent periods will be extended by 5 days. This ensures that if you haven’t made any
backups over a large period, this period is not taken into account for your backup scheme. To give an
example why this is useful: if you wanted to have backups 1, 3, 7 and 10 days old and then went on
vacation for 14 days, it is pretty unlikely that you want all your backups deleted when you come back,
hence storeBackup ignores these 14 days and keeps the backups appropriately longer.

7.3 Defining rules

Rules can be defined in storeBackup.pl, see section 6.2 (options excludeRule, includeRule and com-
prRule) and in storeBackupSearch.pl, see section 6.6 (option searchRule). Both support the definition in
configuration files and on the command line.

This part of the description shows how to use rules in storeBackup. If you are not familiar with pattern
matching and perl you should try to change the examples very carefully a little bit. But you can run
easily into error messages you will not understand.
First, all the examples are explained for being written in a configuration file. Mostly I will use the key
word from storeBackup.pl (exceptRule), but the rules are identical to the ones you can use for includeRule
and searchRule. Later, we will see how to use rules on the command line.
All the values we a talking about now, are the ones from the files backed up at the point in time when
the backup was performed, not from the files in the backup!
In general, rules are a piece of perl with some specialities. We start with some easy and typical examples:

Example 1:

exceptRule = ’$size > 1610612736’

(Take care of the quotes. Generate a configuration file with storeBackup.pl or storeBackupSearch.pl and
read the comments in the beginning how quoting and environment variables are interpreted.)
This rule will match for all files with more than 1.5GB (1.5 ∗ 10243) bytes. $size represents the size of
each individual file. In this example, all files bigger than 1.5GB will not be saved. This is not very easy
to read, and you can write instead:

exceptRule = ’$size > &::SIZE("1.5G")’

(Take care of all quotes.) This will have the same effect as the rule before. &::SIZE is a function which
calculates the real value from the string ”1.5G”. You can use identifiers from ’k’ to ’P’ with the following
meaning:

44

1k 1 kilobyte = 1024 Byte
1M 1 Megabyte = 10242 Byte
1G 1 Gigabyte = 10243 Byte
1T 1 Terabyte = 10244 Byte
1P 1 Petabyte = 10245 Byte

Eg: &::SIZE("0.4T") is valid, while &::SIZE("1G1M") is not.

Example 2:

exceptRule = ’$file =~ m#\.bak$#’

(Take care of the quotes.) This rule will match for all files ending with ’.bak’ which means they will not
be saved. $file represents the individual file name with the relative path below the parameter of option
sourceDir from storeBackup.pl. If you do not understand the strange thing right to $file, it’s called
pattern matching or regular expression. See man perlretut (perl regular expressions tutorial) for detailed
explanation. But you should be able to expand this to simple needs:

exceptRule = ’$file =~ m#\.bak$#’ or ’$file =~ m#\.mpg$#’

(Take care of the quotes and all blanks.) This rule will match and therefore not save files ending with
’.bak’ or ’.mpg’.

exceptRule = ’$file =~ m#\.bak$#’ or ’$file =~ m#\.mpg$#’

or ’$file =~ m#\.avi$#’

It should not be a surprise, that you will not backup files ending with ’.bak’, ’.mpg’ or ’.avi’.
Now we want to create a rule which will prevent the backup of all files which end with ’.bak’, ’.mpg’ or
’.avi’ and also all files bigger than 500 Megabyte:

exceptRule = ’$file =~ m#\.bak$#’ or ’$file =~ m#\.mpg$#’

or ’$file =~ m#\.avi$#’ or ’$size > &::SIZE("0.5G")’

If you set ’debug = 2’, you can see if and how the rule matches for individual files. If you set ’debug =
1’, you can see if the rule matches for each file. With ’debug = 0’ (default), you will not get a message.

You can use the following ’preset variables’:

$file file name with relative path from original sourceDir
$size size of the file in bytes
$mode mode of the file (integer, use 0... to compare with octal value, eg. $mode = 0644

$ctime creation time in seconds since epoch (Jan 1 1970), see below
$mtime modify time in seconds since epoch, see below
$uid user id (string if defined in operating systems), eg. $uid eq "bob"

$uidn user id (numerical value), eg. $uidn = 1001

$gid group id (string if defined in operating system), see $uid

$gidn group id (numerical value), see $uidn

$type type of the file, can be one of SbcFpl, see option exceptTypes in storeBackup.pl

If you use $ctime or $mtime, it’s not pure fun to calculate the number of seconds since epoch every time.
For this reason, storeBackup supports a special function &::DATE to make your live cosy:

Example 3:

searchRule = ’$mtime > &::DATE("14d")’ and ’$mtime < &::DATE("3d12h")’

With this search rule (in storeBackupSearch.pl) you will find all files which are younger than exactly 14
days and older than 3 days and 12 hours. The syntax understood by &::DATE is:

1.

d day
h hour
m minute
s second

So ”3d2h50s” means 3 days, 2 hours and 50 seconds. With the function above, you specify “now”
minus that period.

45

2.

YYYY.MM.DD year.month.day
YYYY.MM.DD hh.mm.ss same format as backup dirs
2008.04.30 specifies April 30 2008, 0:00,
2008.04.30 14.03.05 specifies April 30 2008, at 2 o’clock, 3 min. and 5 sec. in the afternoon.

With the function &::DATE, you specify a fixed point in time also.

You already saw some possibilities to group the checking of the “variables” by using: and and or. You
can use:

and, or, not, (,)

Everything is like in perl. (To be honest, it is evaluated by the perl interpreter.). But you should surround
each of these with one (or more) blanks (white spaces) if you want debug = 2 to work correctly!

Example 4:

searchRule = (’$mtime < &::DATE("14d")’ and ’$mtime > &::DATE("3d12h")’)

and not ’$file =~ m#\.bak$’

Finds all files younger than 14 days and older than 3 days, 12 hours, but only if they do not end with
.bak.
See how and, not, (and) have at least one white space surrounding it.

using rules on the command line
Let’s take a look at:

exceptRule = ’$size > &::SIZE("1.5G")’

If we try to use the command line like this:

--exceptRule ’$size > &::SIZE("1.5G")’ ### WRONG ###

we will get some nasty error messages because the shell strips the single quotes and storeBackup tries to
interpret the result the same way as in the configuration file (see description in each configuration file
at the top). Here, storeBackup will complain about not knowing the environment variable $size. (The
$-sign is not masked any more because the shell removed the single quote.) So we have to mask the
$-sign. We also have to mask the double quotes, because normally, storeBackup will interpret them as
grouping quotes and will not bypass them directly to perl. The right way specifying this option is:

--exceptRule ’\$size > &::SIZE(\"1.5G\")’ ### CORRECT ###

We have to write example 4 in the following way:

--searchRule ’(\$mtime < &::DATE(\"14d\") and \

\$mtime > &::DATE(\"3d12h\")) and not \$file =~ m#\.bak\$#’

In case of problems, you should read the perl error massage which shows what perl really gets. Beside
this, option --print will show each parameter after being parsed through shell and storeBackup. You
can use --print in combination with configuration files also.

7.3.1 How to define if a file should be compressed

You can configure the behaviour of storeBackup about compression with a combination of the following
options: exceptSuffix, addExceptSuffix, compressSuffix, minCompressSize and comprRule. Please note
that option comprRule is generated from the others so you do not have to care about it. However, if you
set comprRule, the values of the other options are ignored (only use comprRule if you want to do very fancy
stuff).

using default values:

If you use default values, starting with storeBackup version 3.3 nothing changes to previous versions.
The default values are:

46

exceptSuffix = \.zip \.bz2 \.gz \.tgz \.jpg \.gif \.tiff \.tif \.mpeg \.mpg \.mp3 \.ogg

\.gpg \.png

addExceptSuffix =

compressSuffix =

minCompressSize = 1024

You can change the value of minCompressSize, change the suffixes of exceptSuffix or add suffixes to
addExceptSuffixes. As long as compressSuffix is not set, storeBackup will internally generate a rule with
means (with default values):
Do not compress files less than 1k bytes or having on of the suffixes defined in exceptSuffix or defined
in addExceptSuffix.
If you do not define exceptSuffix or minCompressSize, the default values will be taken!15

no compression at all:

If the rule comprRule returns 0, the concerned file will not be compressed. So we can configure simply:

comprRule = 0

compress every file:

If the rule comprRule returns 1, the concerned file will be compressed. So we can configure:

comprRule = 1

But that’s not really useful. Why compressing files, which cannot be compressed any more and will
therefore be bigger after compression!?

using a white list and a blacklist:

Mostly, you know some file types (by suffix) you are using not to compress (like .jpg) and others where
it makes sense to compress (like .doc, .bmp, .txt, . . .).
If you define one or more suffixes at compressSuffix, e.g., .pdf

compressSuffix = \.pdf

then storeBackup will behave in the following way:
Do not compress files less the value defined in minCompressSize. Do not compress files with suffixes defined
in exceptSuffix or addExceptSuffix. Compress files with suffixes defined in comprSuffix. For the rest of
the files, make a decision based on COMPRESSION CHECK.

let storeBackup decide:

There’s a special rule-function which appraises if it’s worth to compress a file. This rule-function returns
1 if it thinks the file should be compressed and 0 if not. So we simply define the following comprRule:

comprRule = ’&::COMPRESSION_CHECK($file)’

The rule above works pretty well, but often, it’s not necessary to run this rating and therefore you can
simply set the other options and do not have to care about comprRule (which is generated automatically,
like described above).

recommendation

What you should do and what fits in most cases: Depending on your needs, simply define some suffixes for
files which should be compressed (comprSuffix) (like .pdf) and maybe extend the list of files with suffixes
with should not be compressed (addExceptSuffixes). That’s it.
Remark: If you use the “blocked file”features of storeBackup, you can also use this algorithm by setting
e.g., option checkBlocksCompr to check. See blocked files (section 7.4) for more information.

do it your own way

If you have very special demands, e.g., configure everything in the way described above, but do not

compress the files for a specific group or some users, you have to (and can) define an individual rule. Do
this by using the hints given in section 7.3 and run very small backups with debug level 3 for testing.

15This is compatible to the behavior before the introduction of compression Suffix and COMPRESSION CHECK.

47

7.4 Saving Image Files / raw Devices / Blocked Files

The scope of blocked files

Saving big images files which change only in parts completely every backup is inefficient: very time and
space consuming. To give some examples:

• Some mailers use traditional mbox (mailbox) format to save email. This is convenient, because it’s
a well supported format. But you will get a big file of perhaps multiple gigabyte with all your mails
in it. Backing up such a file means backing up everything despite the fact that only a very little
portion of it has changed.
The same category are the .pst files from Outlook. If you have to save these kind of files (and if
they are big), you should think about using “blocked files”.

• If you use an image file with an encrypted file system in it like e.g., TrueCrypt does, you should
backup the encrypted data, not the files in it. If you backup the files in it you need another encrypted
container, which means the backup program has to know all passwords to run automatically which
is a perfect security hole.
For that reason you should backup the binary image data as it is. If you make a simple copy, it
will take the size of the image each time (you also cannot compress this data). This is a perfect
situation to use the storeBackup blocked files feature (without compression), where you can have
lots of historic versions of the image without needing too much space and without a security whole
(storeBackup doesn’t need to know and doesn’t know anything about the content it saves).

• Images for Hypervisors like Xen, KVM or VMware are another example which you can save very
successful as “blocked files”.

• Do not use blocked files which are compressed as a whole like jpegs or other types of compressed or
encrypted files (.gz, .bz2, .gpg, etc.). Changing something in that files result mostly in a complete
change of all blocks.

• The feature of blocked files is also not suitable for database dump files, because storeBackup (up
to now) works with fixed blocks. If you add one byte in the beginning of a file, all blocks will be
different.

How it works

If you specify a file to be saved blocked (see below how to do this), then storeBackup.pl will do the
following:

sourceDir backupDir

image file

1st backup 2nd backup

1. Create a directory with the same combination of path and file name of the original image file in
the source directory.

48

2. Split the source file into blocks and see, if any of these blocks exist anywhere in a backup (see option
otherBackupDirs of storeBackup.pl). If a block already exists, a hard link is generated, if it does
not exist, the block will be copied or stored compressed.

3. The md5 sum of all these files will be stored in a special file called .md5BlockCheckSums.bz2 in that
directory. These md5 sums are also stored in the file .md5BlockCheckSums.bz2 in the root directory
of the backup.

4. storeBackup.pl will also calculate the md5 sum of the whole file and store it in .md5CheckSum.

Because references to existing files are realized via hard links, every backup is a full backup.
If you use option lateLinks, see section 7.5, the links will be set later. If you also use option lateCompress,
the compression will be done later also.

how to save image files

There are two ways to configure which files storeBackup.pl should treat as blocked files:

1. The easiest way is using the following options:

checkBlocksSuffix The configuration is similar to exceptSuffix, a list of suffixes which are checked
for a match, e.g., \.vdmk for VMware images. They simply mean that the last part of the file
name must be similar to what you define here.
The next options described here are only used if checkBlocksSuffix is set.

checkBlocksMinSize Only files with this minimum size will the treated as blocked files. You can
use the same shortcuts as described in defining rules, see section 7.3, e.g., 50M means 50
megabytes. The default value is 100M.

checkBlocksBS Defines the block size in which the files which matches has to be split by store-
Backup.pl. The format is equal to checkBlocksMinSize. The default value is 1M. The minimal
value is 10k.

checkBlocksCompr Defines if the blocks are compressed. Possible values are yes, no or check. On
the command line, set --checkBlocksCompr.
This flag only affects files selected with checkBlocksSuffix.

Example:
You want to backup all your VMware images and you also have to backup some Outlook .pst

files. The blocked file feature will be chosen from storeBackup for files with a minimum size of 50
megabyte ending with .vmdk or .pst. The block size chosen is 500k and the resulting blocks in the
backup will be compressed:

checkBlocksSuffix = ’\.vmdk’ ’\.pst’

checkBlocksMinSize = 50M

checkBlocksBS = 500k

checkBlocksCompr = yes

2. The more flexible way to specify the handling of blocked files is to use rules like described in defining
rules, see section 7.3. The following options are available five times, so there is a checkBlocksRule0,
checkBlocksRule1, checkBlocksRule2, checkBlocksRule3 and checkBlocksRule4:

checkBlocksRulei The ith rule specifying files to treat as blocked files in the backup.

checkBlocksBSi The corresponding block size for the blocks in the backup. The default value is 1
megabyte. The minimal value is 10k.

checkBlocksCompri If set to yes, the blocks will be compressed. If set to no, they will not be
compressed. If set to check, storeBackup will decide itself if they will be compressed. This
may result in a mix of compressed and copied blocks.

checkBlocksReadi Defines a filter for reading the specified file, e.g., gunzip or gzip -d . This option
may be useful if you have to save an already compressed image file. (Using the “blocked file”
feature of storeBackup with already compressed files compressed as a whole does not make
sense.)

49

Example:
Let’s assume, you have a TrueCrypt image on your disk and want to have a backup of it each
time you start storeBackup.pl. You chose the unremarkable name myPics.iso, block size is 1M, no
compression. So you define rule 0:

checkBlocksRule0= ’$file =~ m#/myPics\.iso$#’

#checkBlocksBS0=

#checkBlocksCompr0=

checkBlocksRule1= ’$size > &::SIZE("50M")’ and

(’$file =~ m#\.pst$#’ or ’$file =~ m#windows_D/Outlook/#’)

checkBlocksBS1=200k

checkBlocksCompr1=check

You also defined rule 1, which match for all files bigger than 50 megabytes which end with .pst or
are located in the relative path windows D/Outlook/ in the backup. (I’m using this to backup the
data of my dual boot laptop.) If you are not familiar with rules in storeBackup, you should read
section 7.3.

You can use checkBlocksSuffix and checkBlocksRulei at the same time in one configuration file. Store-
Backup first evaluates checkBlocksRulei (in ascending order) and then checkBlocksSuffix.

how to save mass storage devices

Backing up a mass storage device (like /dev/sdc or /dev/sdc1) works in the same way as saving an image
file with storeBackup. You choose the device(s) with checkDevicesi, the block size in the backup with
checkDevicesBSi and switch compression on or off with checkDevicesCompri. Additionally, you have to
specify the relative path with checkDevicesDiri in the backup where the contents of the devices will be
stored.
The blocks in the backup resulting from image files or devices are hard linked if storeBackup finds the
same contents.
The options are in detail:

checkDevicesi List of devices (e.g., /dev/sdd2 /dev/sde1) to backup.

--checkDevicesDiri Directory where the devices are stored in the backup (relative path). The image file
will be restored in that directory also if you restore the backup with storeBackupRecover.pl (if you
use default parameters.) Into this directory storeBackup will create a subdirectory which name is
generated from the parameters of option checkDevices, e.g., /dev/sdc will result in dev sdc.

checkDevicesBSi Defines the block size in which the devices specified have to be split by storeBackup.pl.
The format is equal to checkBlocksMinSize. The default value is 1M. The minimal value is 10k.

checkDevicesCompri Defines if the blocks are compressed. Possible values are yes, no or check; the default
value is no.
This option only affects files selected with checkDevicesi. If you set this option to check, every
block is checked for compression (or not).

choosing the block size

There is no fix rule about the “best” block size. I made some measurements about the block size and the
used space. The second backup was done with lateLinks (see section 7.5), so I could use df again to see
how much space was really needed. The used file system was reiserfs with tail packing. If you use a file
system without tail packing (like ext2, ext3 or ext4), the overhead will be bigger and small block sizes
are less attractive (same if you use compression). The results also depend on the application writing to
your source image file.
All the examples are done without compression (for performance reasons). They were done with real
data. Naturally, I’m using compression in my real backups. The 2nd backup shows the space needed
for the changed data. The percentage line below shows the relation between the first and the second
backup. The sums line shows the sum of the first and second backup, the next line (1x) the relationship
between that sum depending on the last value with 5M (5 megabyte blocks). The last line show the
same relationship regarding the size of the first backup and 10 times the second one (extrapolating 10
backups). So this should be the most interesting value.

50

The first example shows the results when storing a big Outlook .pst file of 1.2GB with the changes I had
from one day to the other:

BlockSize 50k 100k 200k 1M 5M
1. backup [kB] 1219253 1172263 1172863 1173801 1173724
2. backup [kB] 7692 13445 22720 73826 240885

0.63% 1.15% 1.94% 6.29% 20.52%
sum [kB] 1226945 1185708 1195583 1247627 1414609
1x 86.73% 83.82% 84.52% 88.20% 100.00%
10x 36.18% 36.47% 39.08% 53.37% 100.00%

The second example was done with a smaller Outlook file of 117 megabyte. This is the one for the input
folder. The numbers show a different behavior than in the first example.

BlockSize 50k 100k 200k 1M 5M
1. backup [kB] 122487 118221 118891 119184 119181
2. backup [kB] 33400 51240 74424 107632 119181

27.27% 43.34% 62.60% 90.31% 100.00%
sum [kB] 155887 169461 193315 226816 238362
1x 65.40% 71.09% 81.10% 95.16% 100.00%
10x 34.82% 48.10% 65.84% 91.19% 100.00%

The third example shows the results when storing a VMware image of 2.1 GB. Between the first and the
second backup the VM was booted, a program for updating my navigational system was updated and I
connected the navigational system for an update also.

BlockSize 50k 100k 200k 1M 5M
1. backup [kB] 2162595 2106781 2112547 2117178 2117094
2. backup [kB] 53656 80609 131701 438241 1112652

2.48% 3.83% 6.23% 20.70% 52.56%
sum [kB] 2216251 2187390 2244248 2555419 3229746
1x 68.62% 67.73% 69.49% 79.12% 100.00%
10x 20.38% 21.99% 25.90% 49.08% 100.00%

In all these examples you can see in the last line, that at some point smaller block sizes will not reduce
the space needed An optimum values seems to be between 50k and 200k (when using tail packing).

There is one additional important aspect about the block size: If you choose a small block size, the
performance will also go down. To be able to achieve acceptable performance, the following optimizations
are implemented:

• If you do not compress the the blocks within storeBackup.pl (no compression at all or later com-
pression via option lateCompress), no parallelizing is used.

• If you compress the blocks within storeBackup.pl and configure a block size of 1 megabyte or more,
parallelizing is used.

• If you compress the blocks within storeBackup.pl with bzip2 and configure a block size of less than
1 megabyte, storeBackup.pl tries to use the perl module IO::Compress::Bzip2. If it is installed on
your system, it will be used.

It’s best to make your own tests to get a feeling of useful block sizes in your use cases.

7.5 using option lateLinks

You can use storeBackup as one program (storeBackup.pl) which does everything alone or you can split
the different tasks into several pieces. There is mostly one advantage to run different programs for the
different tasks: the time for backup itself from the perspective of the saved computer (or) data is lower.

It makes sense to use option lateLinks if you store your Backup on an nfs server and if you think it’s a good
idea to speed up (see section 5.4.3, performance). Configuring lateLinks is a little bit more complicated
than using storeBackup.pl as a standalone programe because you have to manage multiple programs.

51

StoreBackup.pl as a standalone program does the following tasks:

1. The link consistency of all backups (from all backup series) is checked. We will see late what this
means.

2. Loading of meta data from one or more old backups. This task is like an initialisation, where it
gets file names, md5 sums, dates, times and some other information from the old backups.

3. Checking for all files to backup if another file with that specific content is already in those old
backups from where the file names, md5 sums etc. were loaded.

4. The changed data is transferred to the backup: By copying, by compression or by hard linking.
Naturally, also the directory structure is generated.

5. The permissions and owners of the directories are set to the same values as in the source directory.

6. Depending on the rules defined with the keep∗ options of storeBackup.pl, old backups are deleted.

If you start storeBackup.pl with option lateLinks, then the transfer of data (see step 4) and the actions
on the remote file system are reduced to the absolutely necessary minimum:

• The changed or new files (including special files) are copied. Changed files which should be com-
pressed are only copied if option lateCompress is set. It depends on your situation if usage of
lateCompress makes sense or not.

• Hard links are not generated in the new backup.

• Directories are only created if they are needed for copying / compressing.

• An additional file is created in the new backup: .storeBackupLinks/linkFile.bz2. It contains all the
information what should have been done to complete a “full” backup with all hard links, directory
entries and compressions. The correct permissions (which are also not set) are stored in the file
.md5CheckSums in the top level of the backup. This file is also generated in a “full” backup run of
storeBackup.pl. It is used for restoring data (storeBackupRecover.pl).

Independent of option lateLinks you can always configure storeBackup.pl to not perform step 6, the
deletion of old backups. Especially if you are writing your backup on an nfs mount, this will take
some time and lengthen you backup. Use storeBackupDel.pl (which can read the configuration file of
storeBackup.pl) to split the deletion of old backups from the direct backup process.

It is important to understand that using option lateLinks creates an unfinished backup. Such backups do
contain all the data which was intended to be backed up, so the core backup is complete. But storeBackup’s
job is not completed in the following ways:

• Directory entries are missing.

• Files are not compressed (if you use option lateCompress).

• Hard links are not set at all.

• Permissions are not set correctly, neither for files nor for directories.

• Not that all the information that’s necessary to complete to a full backup is available! In the
case of hard links this means that there is a reference in the file linkFile.bz2 which points to
a file in an older backup. In that older backup, there also can be only a reference in its file
linkFile.bz2, and so on. Naturally, at one point there must (and will) be a real file. But you
should be aware: if you delete one of these referenced backups, you will destroy all backups which are
referencing (directly in indirectly) to that backup. Only delete backups with storeBackup.pl
or storeBackupDel.pl – never use “rm” or something similar! These two programs take
care of the dependency just described. If you really want to delete files with “rm”, then make sure,
that storeBackupUpdateBackup.pl completed all backups successfully. When all links are set, there
are absolutely no dependencies (beside hard links) between the different backups.

52

With option lateLinks you create temporarly existing incremental backups. Later you create with
storeBackupUpdateBackup full backups out of them by using old backups also.

The following picture shows two cross linked backup series (from different computers).16 You see, that
the references resulting from the lateLinks option can be complex. The hard links are never a problem,
because there is no original or “real” reference – every hard link is an original pointer to the file or more
precise to the inode (see section 7.10). The file will only be deleted if the last hard link has gone. But
the references created by lateLinks are just some file names in a file which has nothing to do with the file
system.

Backup 1
(complete)

Backup 2
(lateLinks)

Backup 3
(lateLinks)

Backup 1
(complete)

Backup 2
(lateLinks)

backup series from computer1

references generated from op-
tion lateLinks
no hard links!

backup series from computer2

hard links

To complete an unfinished backup (make all those nasty linking and compressing and so on), use store-
BackupUpdateBackup.pl, see section 6.3. It also will analyse your backups (below “backupDir”) and
find the right order to complete them. After running storeBackupUpdateBackup.pl successfully your
backups will be in the same state as if you ran your backup without option lateLinks. Among some others,
file .storeBackupLinks/linkFile.bz2 is deleted and everything is hard linked (and compressed), also the
permissions are set like in the source directory (except if set option ignorePerms in storeBackup.pl).
If you use option lateLinks, your should run storeBackupUpdateBackup.pl regularly, e.g., every night and
check if there were some ERROR messages.
Summary:

• An unfinished backup is a backup that was made with lateLinks and that has not yet been finished
via storeBackupUpdateBackup.pl.

• You cannot make a new full backup (that is, a backup without using lateLinks) when this new
backup refers to a prior unfinished backup. This is simply because you cannot hard link to files
which are not there.

• When using storeBackup.pl or storeBackupDel.pl, you cannot delete earlier backups to which an
unfinished backup refers.

16see section 6.2, option otherBackupDirs to see how this can be configured

53

7.6 isolated mode / offline backups

Traveling with a laptop and a small storage for backup (e.g., a memory stick) – this is the typical use
case for this scenario. StoreBackup isolatedMode offers the ideal solution in this use case.

Advantages:

• You can just take incremental backups while not having access to your master backup repository

• You can store these incremental backups on small portable media such as a memory stick.17

• You have a history of all changes backed up during your travels.

• You can conveniently integrate the incremental backups into your master backup repository when
you return

Limitations:

• It is recommended to use configuration files when using storeBackup in isolated mode.18 (Techni-
cally, there’s no difference with or without configuration files.)

• Naturally, you do not have access to all data in your master backup repository via this method.

• If you want to obtain older files from your master backup repository, you need to access to it (or
have somebody sends you a file per email or whatever).

Imagine, you have a big backup disk (or raid or whatever) at work or in your home containing your
master backup repository. Now you have to go away for a week or so. You want to able to make backups
while not connected (with good enough performance) to your master backup repository. (We call these
offline backups.) You want to use the most convenient storage media possible during your travels. Most
importantly – you know you need to integrate your travel backup contents into your master backup
repository.19

With storeBackup isolatedMode and a small memory stick, the application initializes your memory stick
by copying the meta data from the last backup of you laptop from the master backup. The application
will also fine-tune your storeBackup options as needed20. Then you go traveling and make incremental
backups on your stick. These backups will normally need only very limited memory to store them because
they contain the (compressed) deltas only. When you’re back and you have access to your master backup
repository, you’ll run storeBackupMergeIsolatedBackup.pl which will copy your incremental backups to
the right place in the master backup repository and then storeBackupUpdateBackup.pl will automatically
do all the necessary tasks to make space efficient full backups from your incremental ones.21 Naturally,
tools from storeBackup support you in doing this to make the steps easy and reliable.

7.6.1 You can use isolated backup in the following way:

• Prepare your local storage (e.g., the memory stick):
This step is not strictly specific to storeBackup. This is similar to the basic task you would do
to prepare almost any Linux storage media. Make a Linux file system which is able to use hard
links (e.g., ext2, reiserfs). You can do this by using graphical tools like gparted or as root on the
command line using fdisk -l to identify the stick and mkfs.ext2 (or mkfs.reiserfs or whatever) to
create the file system. You can also use a stick with NTFS.
Mount your stick and create a directory as the top level backup directory for storeBackup.pl.

17We refer to using a memory stick for traveling, but this storage can be any kind of storage you wish to use, including
a large HDD.

18This isn’t really a limitation, but if you are not using configuration files presently, you should probably begin to use
them to take full advantage of this mode because it’s easier and more convenient to do so.

19Integration could be done with linkToDirs.pl, but isolatedMode does not need memory for whole backups, is more
convenient and quicker in the present use case.

20See section 7.6.1. Depending on the usage of storeBackupSetupIsolatedMode.pl, it will generate a new configura-
tion file from your existing configuration.

21This means it will do compression, hard linking, setting date/time, permissions and ownership.

54

• Use storeBackupSetupIsolatedMode.pl to automatically copy the meta data from your master backup
to the media you want to use for your travel. It will copy just a few megabyte – storeBackup.pl

with option lateLinks only needs these meta data; no real file data is needed in order to generate
incremental backups.
NOTE: This script also changes your configuration file for storeBackup.pl – changes depend on
your usage of the tool.
For safety reasons, storeBackupSetupIsolatedMode.pl only picks up meta data from full back-
ups. If your last backup of the series you’ve chosen is not yet a full backup, it asks you to run
storeBackupUpdateBackup.pl.
Depending on the usage of storeBackupSetupIsolatedMode.pl, it will generate a new configuration
file from your existing ones also.

• Use storeBackup.pl to run your normal backups. If your configuration file was adjusted by the run
of storeBackupSetupIsolatedMode.pl, you can use the newly generated one. Otherwise, you have to
adjust the options by yourself (e.g., backupDir, lateLinks).

• After running storeBackup.pl to make the isolated backup(s), use storeBackupMergeIsolatedBackup.pl
to merge your isolated (incremental) backups into your master backup repository once you have
access to it again. storeBackup makes each of these steps more convenient and easier if you use
configuration files.
As you can see, it’s a good idea to use configuration files when using storeBackup in isolated mode.

• After running storeBackupMergeIsolatedBackup.pl your local backups are copied to the central
repository; you should now run storeBackupUpdateBackup.pl (or wait until it runs via cron, etc.).
When everything is fine, you can delete all the affected files (directories) on your local media (e.g.,
the memory stick).

Naturally, you can use isolated mode together with the replication of backups, see replication of backups,
see chapter 7.7.
You will find detailed information in storeBackupSetupIsolatedMode.pl, see chapter 6.7. Also, have a
look at the description of storeBackupMergeIsolatedBackup.pl, see chapter 6.8.

WARNING: It is not supported to run your lateLinks backup onto a file system with fat or vfat format
(e.g., on your stick)! This type of file system is not able to distinguish between filenames in upper and
lower case. This means, filename file.txt is similar to File.txt without any warning or error message.
If you have two files or directories with the same name (only different in upper / lower case) in one
directory, you will definitely not get all files in your backup.
But you can use NTFS if you want!

7.6.2 setting up isolated mode

To explain what to do, we will go step-by-step through simple example using configuration files.22

You can go through this demo and later adopt the e.g., the paths to your environment.

running a backup to master backup First of, I will do something you should already have done:
creating a backup in the master backup directory.

For this demo, I’ll create a master backup repository in the directory isol-test in my home direc-
tory (backup), a source directory to backup (source), copy a file to backup into it and generate a
configuration file:

cd

mkdir isol-test

cd isol-test

mkdir backup source

ls

cp -v /bin/ls source

ls -l source

storeBackup.pl -g stbu.conf

22I assume all programs of storeBackup to be in $PATH so they can be called without a path.

55

Next, use an editor of your choice and change the following items in stbu.conf:

sourceDir=source

backupDir=backup

We need a full backup so we can copy its meta data to the external media:

storeBackup.pl -f stbu.conf

WARNING 2012.06.09 09:07:57 5647 created directory <backup/default>

... <snip, deleted output of storeBackup.pl>

The warning tells you that storeBackup.pl created a subdirectory for the series default.

setting up isolated mode You may want use ls (or maybe a file browser) to see that the backup into
directory backup has happened.

Now plug in your external media, e.g., a memory stick; it has to be formatted with a Linux file
system or with NTFS (not FAT). Make sure it’s mounted in the same path always. You can do
this in several ways, maybe depending on you distribution and / or the GUI you are using. If you
have no idea how to do this, search for "blkid fstab" with an internet search engine like Google or
another one.

In the following settings I assume your external media has been mounted at /media/stick. Please
adjust the path /media/stick to your local settings!

Now it’s time to set up the stick after creating a backup directory /media/stick/stbu on it:

mkdir /media/stick/stbu

storeBackupSetupIsolatedMode.pl -f stbu.conf -t /media/stick/stbu

INFO 2012.06.09 09:27:29 5888 ./isolate-stbu.conf: changed <backupDir> to ’/media/stick/stbu’

INFO 2012.06.09 09:27:29 5888 ./isolate-stbu.conf: created <mergeBackupDir> as ’backup’

INFO 2012.06.09 09:27:29 5888 ./isolate-stbu.conf: setting <otherBackupSeries> to 0:default

INFO 2012.06.09 09:27:29 5888 ./isolate-stbu.conf: changed <lateLinks> to ’yes’

INFO 2012.06.09 09:27:29 5888 you may want to adjust <./isolate-stbu.conf> to your needs

The program storeBackupSetupIsolatedMode.pl told you, that it had created a new configuration
file called isolate-stbu.conf with some adjustments: backupDir has been set to the directory on
the stick and lateLinks (storeBackup.pl’s option lateLinks, see section 7.5) has been switched
on. It also created an entry mergeBackupDir which is used by storeBackupMergeIsolatedBackup.pl

later to integrate your isolated backups on the stick into the central ones in directory backup (in
this example). Finally, otherBackupSeries is set to this backup series only. Generating references
to other backup series (which does not exist in this simple example) isn’t possible when making
backups on your stick.23

Have a look at the generated configuration file. The adjustment of options will only work, if unused
options are leaded by a semicolon (;), not a hash sign (#).

run backups on your local media Now lets copy a new file to source directory and run a backup on
it:

cp /bin/pwd source

storeBackup.pl -f isolate-stbu.conf

That’s it. Now let’s see what happend:

ls -lh /media/stick/stbu/default/*

/media/stick/stbu/default/2012.06.09_09.07.57:

total 0

/media/stick/stbu/default/2012.06.09_09.56.36:

total 16K

-rw------- 1 root root 13K Jun 9 09:56 pwd.bz2

23This is true in this simple example. But if you copy multiple backup series via storeBackupSetupIsolatedMode.pl to
your local backup, you can also adjust this option to cross link between them – but only if both series are available with
the same series names (paths) in the master backup also.

56

As you can see, there is no saved file in the first backup directory (2012.06.09 09.07.57) because
meta data was copied by storeBackupSetupIsolatedMode.pl. In the second backup you see the
new file pwd but not ls because it wasn’t changed. It will be hard linked after being integrated
into the master backup. If want to see some internals, you can look into the command file for
storeBackupUpdateBackup.pl to see it has to be linked:

bzcat /media/stick/stbu/default/*/.storeBackupLinks/linkFile.bz2

link md5sum

existingFile

newLink

compress md5sum

fileToCompress

dir dirName

symlink file

target

linkSymlink link

existingFile

newLink

link 92385e9b8864032488e253ebde0534c3

../2012.06.09_09.07.57/./ls.bz2

ls.bz2

You can run as many additional backups as you want, but naturally space on you local media must
be sufficient. Use df -h /media/stick (adjust the path to your needs) to see how much space is
free. You can also run du to see how much space has been used so far for your isolated backups:

du -sh /media/stick/stbu/default/*

24K /media/stick/stbu/default/2012.06.09_09.07.57

44K /media/stick/stbu/default/2012.06.09_09.56.36

merging your isolated backups back into the central one Merging into the master backup simply
means to copy the incremental backups. This job is done by storeBackupMergeIsolatedBackup.pl:

storeBackupMergeIsolatedBackup.pl -f isolate-stbu.conf

in directory </media/stick/stbu/default>, copy

<2012.06.09_09.56.36>

to

<backup/default>

?

yes / no -> yes

INFO 2012.06.09 10:15:11 6557 copying data . . .

INFO 2012.06.09 10:15:11 6557 finished copying data

INFO 2012.06.09 10:15:11 6557 please run

INFO 2012.06.09 10:15:11 6557 storeBackupUpdateBackup.pl -b "backup"

The program uses the parameter of option mergeBackupDir inserted by storeBackupSetupIsolatedMode.pl

to get the path to the master backup. For safety reasons, it asks you if you want to copy the pre-
sented list of backups (only one in this example) to the master backup at backup/default. After
answering yes, the data is copied.

To get a “normal” full backup, run storeBackupUpdateBackup.pl -b backup.

If you use isolated mode in the same way a second time (after re-merging backup to the master backup),
you can use option --backupDir of storeBackupSetupIsolatedMode.pl (because you already have a valid
configuration file) or simply generate a new configuration file with another name (see option --generate)
and use the old one which you may have adjusted to your needs.

7.7 replication of backups

NOTE : If you want to use replication in your data center and if you have questions about what’s possible
in addition to the described scenario(s) in this chapter – please send me an email. With some scripting

57

it’s possible to enhance the behavior and the possibilities for replicating e.g., to other locations. The
result of these discussions may result in better documentation and new features.

When you use storeBackup, you normally create new backups by hard linking them to older backups
in the same series or maybe to other series also. You should store your backups on another disk (or
even another computer) so a failure of the source disk doesn’t destroy your backup also. But what
happens if the backup disk fails – you will lose the history of your data. This kind of failure may include
hardware (disk itself), filesystem or a building burns down. A RAID does not protect against all data
loss possibilities. (For more on this topic use a search engine to search the phrase Why RAID is not a
backup solution.)

7.7.1 Quick start using storeBackup’s Replication Wizard

This example is aimed at users who have at least some experience with storeBackup and who have at
least one existing backup created by storeBackup. If you have zero experience with storeBackup, learn to
make a master backup before you begin considering replication of your backups. If you are an advanced
user, later sections in this document will explain all the details not covered in this quick start.

storeBackup’s Replication Wizard (storeBackupReplicationWizard.pl) will set up your environment so
that you can immediately begin using storeBackup’s replication features for the most typical replication
scenarios. storeBackup’s Replication Wizard is an interactive program. It does lots of checks and it
prompts you when needed.

The Replication Wizard creates three configuration files. You can certainly set up storeBackup’s replica-
tion without using the Replication Wizard and we will give you all the information you need in order to
do so – see the sections below. However, in this example we want to show you how to get started with
storeBackup’s replication features as quickly as possible (assuming your replication needs are typical).

If you do not run your backups with option lateLinks at the moment and want to use replication, you
have to enable option lateLinks when using storeBackup.pl. See section 7.7.5 for more information. Also
note that in this example, option lateLinks will be set correctly by the wizard.

Now, and in the future, you will set lateLinks=yes in the configuration file and use these two commands
(which could be put into one executable script):

storeBackup.pl -f stbu.config

storeBackupUpdateBackup.pl -b <dirOfMasterBackup>

In the example below <dirOfMasterBackup> will be /masterBackup, but in practice use your actual
location. Likewise, use the actual name of your config file instead of stbu.config.

This example assumes we have these four different directories involved:

1. /home which you want to save

2. /masterBackup where your master Backup is located

3. /extDisk/backupCopy the location to which you want to replicate your master backup. (This becomes
the backup copy.)

4. /deltaCache which is a place to keep the deltas until they are delivered to the backup copy

You need write permissions in all of these directories.

Furthermore, we assume the backup series you want to copy is named homeBackup. For more information
about backup series, have a look at section 3, Quick Start. This example also assumes you already
have backups in your master backup repository. We will copy the backups from series homeBackup to the
replication location to seed the replication process. If you do not have any existing backups, see the other
examples such as section 7.7.4 (or make a backup and then return to this section).

Let’s begin:

1. copy the existing backup(s) to get a base for the replication. This can take a while.
linkToDirs.pl /masterBackup/homeBackup -t /extDisk/backupCopy

2. Next, take a quick look at the Replication Wizard help:

58

storeBackupReplicationWizard.pl -h

3. Now run the Replication Wizard, telling it the location of the master backup, the deltaCache and
the location to which you wish to replicate (copy) the master backup. None of those three directories
is allowed to be a subdirectory of the others. See section 7.7.3, Basic concepts to know before

using storeBackup’s replication for more information.

storeBackupReplicationWizard.pl -S homeBackup -m /masterBackup -c /extDisk/backupCopy/ \

-d /deltaCache

(or

storeBackupReplicationWizard.pl --series homeBackup --masterBackupDir /masterBackup \

--backupCopyDir /extDisk/backupCopy/ --deltaCacheDir /deltaCache

)

4. At this point you could inspect the contents of the three replication-related configuration files, if
you wish. (They are in /masterBackup, /deltaCache and /extDisk/backupCopy with the extension
.conf.) For example, see:

cat /masterBackup/storeBackupBaseTree.conf

cat /deltaCache/deltaCache.conf

5. Now you can run your very first backup which will be replicated:
storeBackup.pl -s /home -b /masterBackup -S homeBackup --lateLinks 0:homeBackup
This creates a backup in /masterBackup. If you go there, you can see the delta files plus the command
file24 what’s to be done to complete the backup. The last parameter (0:homeBackup) makes sure,
that there are only hard links to older versions of the same backup series. Because we only want to
replicate this one series, it’s not possible to have cross links to other series! (This only is necessary
if you have multiple backup series in your master backup.)

6. Next step you can do is to copy the deltas to the place (/deltaCache) where they are kept until
you connect the external disk and replicate the deltas. In this step you will also complete the just
made backup in the master backup directory. The following command will read the configuration
file /masterBackup/storeBackupBaseTree.conf:
storeBackupUpdateBackup.pl /masterBackup

7. Now you can finish the replication by completing the backup in the backup copy:
storeBackupUpdateBackup.pl -b /extDisk/backupCopy

Have a look into the backup copy at /extDisk/backupCopy. It’s a complete backup now. Also, have
a look /deltaCache. The delta was moved to /deltaCache/processedBackups.25

After you set up the environment (which the wizard did in the steps above), simply do the following steps
in the future:

• Run your backups with storeBackup.pl like you want – but use option lateLinks (and restrict the
hard linking references to the series you want to replicate).26.

• run
storeBackupUpdateBackup.pl -b /masterBackup

to complete your backups and copy the deltas to the delta cache. Best is to do this directly after
the run of storeBackup.pl. If you have an own server it’s most easy to run this command in the
night via cron on the server. You may not need to include option --autorepair.

24That’s the file .storeBackupLinks/linkFile.bz2 inside the root directory of the backup which was just created.
25This deltas are not deleted directly for safety reasons. You can set the storage time for this kind of data with option

--archiveDurationDeltaCache and --dontDelInDeltaCache of program tt storeBackupUpdateBackup.pl.
26This restriction may go away in the future

59

• connect your external disk whenever you want (e.g., once a week), mount that drive to /extDisk so
the path to you backup copy is /extDisk/backupCopy. Run
storeBackupUpdateBackup.pl -b /extDisk/backupCopy

When it’s ready, umount the external disk and disconnect it from you computer and from power.
You may not need to include option --autorepair.

Questions not addressed in this Replication Quick Start are covered below.

7.7.2 Why copying backups is not a substitute for replication functionality

We will make this discussion less abstract by providing an example. A common backup strategy is to
run your backups to the master backup respository every day (maybe automatically via cron) and to
move (or rotate) this backup offsite (or at least to another physically separate media) periodically. For
illustration purposes, let’s assume you have a separate backup disk stored offsite that you will update
weekly.27 Once each week you will add the newly made backups from your master backup to the backup
copy on the external(offsite) disk (which you temporarily bring onsite and connect to your computer).

Copying the new backup only with “cp -a” is a bad idea, because the newly copied directories (backups)
will not be hard linked to the existing ones on the external disk.28 You can use linkToDirs.pl to link
(and copy) the new backups in the master backup to the existing ones in the backup copy on the external
disk. Using linkToDirs.pl is nice for ad hoc replications, but not the best for planned and automated
ones.

Another common way to copy the new backups to the external disk is to use synchronization tools like
rsync. There are two issues with this approach – 1st, it takes very long if you have lots of backups and
2nd, you will replicate every fault on you master backup disk to your backup, and that’s really not what
you want. Imagine, your disk for the master backup gets a block error in a file from the backup one
month ago. So the affected file is broken in your backup. If you now synchronize the disk with eg. rsync,
you will copy the broken file. In the worst of all cases, you can destroy your whole Backup by this method
(without getting more security). If you use the replication from storeBackup, old data is not affected in
the replication.
BUT STOP: What if the newly copied data is broken because some sectors of the disk are seriously
broken or you have to deal with broken RAM or any other reason which leads to incorrect data in you
master backup? Will you ever determine (parts of) your data in the backup is broken? The backup
program storeBackup will tell you the same as rsync about that – nothing, because it’s not in their
control. For this reason you should run storeBackupCheckBackup.pl which (recalculates check sums for
every file) periodically on your backup(s). By running this program, you are able to see faults in old
backups which you are able to correct manually if you have a replica. And you are able to see in an early
stage if your new backups are broken. Therefore, we suggest to run storeBackupCheckBackup.pl on new
backups every week or so on the master backup and on the copy plus to run it on old backups (which
may take a long time) every few months.
If you recognize Errors on your hard disk, you should investigate deeper into the problem and not hesitate
to replace the disk.

The basic idea of storeBackup’s replication feature is to solve the issues described above. A replication
means we have the same state in two different locations (e.g., in the master backup and in the backup
copy). That’s what we have done in the description above with the cp -a command. Let’s say, this was
the backup from Monday. After a day we have a change (a new backup on Tuesday) in the master backup.
For the replication, we need just the differences between the backup from Monday and the backup from
Tuesday. If we have some clever algorithm to get all the changes (deltas) from the backup of Monday to
the backup of Tuesday, we could transport these changes to the backup copy on the external disk and
rebuild the full backup (with all links, permissions and so on) on the external disk also. As a result, the
backup on the external disk contains exactly the same information than the master backup.

27If you want to realize a continuous replication to another location – that’s possible also. But for this explanation, we’ll
assume a single external offsite disk because this is a common and suitable strategy. The mechanisms used are the same
for both use cases. You can also use more than one external disk. Let’s say you have two external copies and replicate the
backups alternating every week to them. Then you can use the same mechanisms as for one disk. The only difference is to
describe both disks in the configuration files and to connect another one each week.

28This means you will much more space for your backups for the backup copy than for your master backup.

60

If we want to connect the external disk only once a week29 we need a place to store the differences. We
will have these deltas from Monday to Tuesday, from Tuesday to Wednesday etc. What we are doing, is
to rebuild the complete and full backups on the backup copy disk, eg.:

• Backup from Tuesday −→ rebuild from full backup from Monday plus (Deltas from Monday to
Tuesday)

• Backup from Wednesday −→ rebuild from full backup from Tuesday plus (Deltas from Tuesday to
Wednesday)

• Backup from Thursday −→ rebuild from full backup from Wednesday plus (Deltas from Wednesday
to Thursday)

• . . .

This means we need the deltas between two sequent backups in the master backup. In principle, there
are two ways to get these:

1. Calculation of the differences, which means something like a “reverse de-duplication” (storeBackup
searches for files (or part of files) with identical contents and hard links these).

2. Identification of the differences directly when creating the backups. At that point, the differences
are calculated and known.

The second way is the typical way used for replications, eg. used in database or LDAP replication.
StoreBackup also uses this way to replicate.

StoreBackup generates deltas to (one or more) existing backups with option lateLinks and temporarily
stores these in a ”delta cache”.30 (See section 7.5 for more information about how to configure it.)

The storeBackup replication functionality provides the following features:

• Replication of backups takes advantage of storeBackup’s existing capability to store just the differ-
ences to the former backup(s) plus the information needed to reconstruct to a full backup.

• You can configure which series have to be replicated. At the master backup you do not have to
know the number of copies you want to make. This provides decoupling of source (master backup)
and target (backup copy)).

• Replication of backups can be fully automated. Along with several configuration files that are
needed for replication, you simply use cron (or similar) to run storeBackupUpdateBackup.pl, see
section 6.3. You also can run storeBackupDel.pl, see section 6.10 to automatically delete (very) old
backups in the replication.

• replica disk(s) do not need to be permanently attached. You can decide if you want to connect one
or more of the replica disk(s) permanently or not (so you need manual intervention).) This may
depend on the location you replicate to (external via WAN or via LAN) and your backup strategy.

• For security reasons, you can set up the different storage places in a way that the master backup
does not have to be accessible from the copies (and vice verse).

• Replication is asynchronous. This means you may connect your disk1 for backup copy number 1 on
even weekends and backup copy number 2 on disk2 on uneven weekends. But as a result you get
the same data on both backup disks, regardless of your individual deletion scheme of each backup
including the master backup.

• Deletion of old backups on the replicated backups can be done for replica(s) and master backup
with the same tool (storeBackupDel.pl, see section 6.10). Especially, you can use different deletion
schemes, e.g., to additionally store very long term backups on your (slower) replica medium(s).

• Replicas behave like normal storeBackup backups. Naturally, you can run storeBackupCheckBackup.pl

(see section 6.12) on the replicas also.

29or if we want a replication to another (online) location which no direct routing between the master backup and the
backup copy

30storing in the delta cache is done only if you use replication

61

• It is robust. If something goes wrong with the replication (so the deltas are lost on the way to
the replica backup) for whatever reason, you can use linkToDirs.pl to generate a new identical
status (backup version) to be able to continue with replication of backups. You can do this without
copying everything (from the master backup or from another replica) by just copying / hard linking
missing delta. (But you need direct access between the affected backups / replicas during that time
or you have to perform an intermediate copy.) Another advantage of this proceeding is that you do
not copy possible faults in older backups from one backup copy to the other one, like you possibly
would when using standard synchronization tools.

In short, if you make a “normal” backup (without replication) with storeBackup.pl, you typically have
one place (see option backupDir) where you store your backups. This will be called the master backup.
(It is the same as what we have called the master backup repository in other sections of this document.)
If the disk (or e.g., the file) system for this “master backup” fails, you will lose the backup and therefore
the history of your data. It is a form of data loss that can be prevented with storeBackup’s replication
feature.

7.7.3 Basic concepts to know before using storeBackup’s replication

The prior subsection listed some of the main features of storeBackup’s replication functionality. In the
following subsection we offer a simple and typical example to have a copy of your backup data on other
disk (or at another location). (In subsection 7.7.6, we also offer a more advanced example.)

But first, there are a few important conventions and concepts related to storeBackup’s replication func-
tionality that you need to be aware of. With storeBackup’s replication functionality, there are four
important storage locations you need to be conceptually familiar with. These four locations are normal
directory trees.31

Of these four conceptual locations, one is the original source. The other three are related to backups or
replication:

1. “master backup”32

2. “backup copy”33

3. “deltaCache”.

None of those three directories is allowed to be a subdirectory of the others. These locations
are separate directory trees.34

You are already familiar with what we are calling the “master backup” if you are doing any kind of
backup: it is just the backup of your original data.35

The next important storage location for replication is the backup copy. That one is probably obvious –
after all, it is the point of replication.36

The last of the important storage locations for replication is a cache of deltas (and meta data) used by
storeBackup to provide its advanced replication functionality in the most efficient manner. We refer to
this location as the “deltaCache”. The reason why there is a deltaCache is it allows the masterBackup
to be completed (including hard linked) independently of the backup copies.

Another important replication detail to understand is that each of those backup-related directory trees
must have its own configuration file in the root of the tree. The reason is that by establishing a fixed
location for the configuration files, everything can be handled without additional options (or complication)
to storeBackupUpdateBackup.pl.

31In practice, the four conceptual locations can become more than four physical storage locations because replication is
not limited to a single copy of a single backup.

32it’s not supported to have multiple master backups replicating to the same one and only deltaCache. Although it is
untested and unsupported, it might work (with different series names).

33In practice there may be any number of “backup copy” directory trees.
34What this means is that the directory trees are not nested. None of the three replication-specific directories is allowed

to be a subdirectory of the others. The deltaCache can be nested under the source tree if it is excluded from the backup
via storeBackup.pl options.

35In storeBackup, a “master backup” is a backup series (or, potentially, a set of backup series). It is called a series because
this directory will hold a series of backups (e.g., one each day) for your computer. See section 5.4.1

36Replication can be used to produce multiple copies of the master backup at different locations.

62

In storeBackup replication, the data flow is always: masterBackup → deltaCache → (multiple) backup
copy / copies.

1. “master backup” contains its own unique storeBackupBaseTree.conf

2. each “backup copy” directory tree contains its own unique storeBackupBaseTree.conf

3. “deltaCache” contains deltaCache.conf

The “master backup” directory tree has to contain the configuration file storeBackupBaseTree.conf. This
config file defines which backup series to copy to deltaCache.

Each “backup copy” directory tree contains a file named storeBackupBaseTree.conf which is its individual
configuration file. It defines which backup series has to be copied to this specific backup copy directory
tree.

The “deltaCache” directory tree contains deltaCache.conf in the root of the tree. The purpose of this
configuration file is to provide one central place which denotes which backup series shall be copied
to which named backup copy. (Physical directory paths are not used.) This information is needed
by storeBackupUpdateBackup.pl to decide if a backup can be marked as processed and, later, deleted.
storeBackupUpdateBackup.pl needs to know who wants to copy a backup and if it has already been
copied.

These config files contain some options (e.g., backupTreeName) for which you specify a unique identifier.
Note that this parameter is simply a named reference to another location. It is not a file system path or
an actual directory name. It is a unique identifiers that you can make up. This will be explained further
below.

There is no information shared between two different backup copies. For a home user, this is necessary
because the external disks used for replication might not always be connected. In the Prof. Admin case
it might be related to no routing for security reasons.

However, when understanding the overall concept of storeBackup replication, you might want to under-
stand why the replication configuration uses these unique identifiers (which are not specific directory
names). Why not just use the directory name? The reasons that storeBackup needs a unique identifier
which is not a directory name can be illustrated with two examples.

First, consider the case of somebody who wants to make two backup copies (replicas) to two different
external disks, one on odd weekends and one on even weekends. Assume these would be mounted at
the same mount point. The most elegant way for storeBackup has to manage the alternation of these
two different copies is via these unique identifiers. In this example, imagine you have unique identifiers
named CopyA and CopyB. This allows storeBackup to know whether each one was completed (copied
+ hard linked) so it can be move to processedBackups – even if a backup was interrupted, etc. Other
implementations would not be as advantageous.

Another example would be a sysadmin who wants to make two replications, one in the same data center
and the other one in a remote data center. He sets up a server for that in the same data center which pulls
its data from the deltaCache via some mount points. In the remote data center, he sets up another server
in the same way. Using unique identifiers in storeBackup’s replication configuration (so it is decoupled
from the physical directory) makes this administration easier.

The configuration file of deltaCache doesn’t know the directory where the backup copy is located. Instead,
the configuration file knows only a name (unique identifier), which is more flexible. If you change the
directory of the backup copy, you do not have to change the deltaCache configuration file. And, as
illustrated in the examples above, you have have two unique identifiers pointing to the same physical
path to facilitate rotation of backup copies.

You will probably have at least four separate configuration files with your storeBackup replication setup.
These are the three files mentioned above and your normal storeBackup.pl config file37.

The use of replication can affect two options of storeBackup.pl: --lateLinks and --otherBackupDirs.
If you do not run your backups with option lateLinks at the moment and want to use replication, you
have to enable option lateLinks when using storeBackup.pl. However, there is no real disadvantage

37You can also use command line options, but finally that’s more complicated.

63

to using this option. It simply splits the full backup process into two steps without otherwise altering
anything that would be done without this option.

You also need to be aware of option --otherBackupDirs in the main config file and how this relates to the
potential need for using a command line parameter (e.g. 0:homeBackup as shown in the example below)
with storeBackup.pl.

When you want to replicate one backup series only, it is not possible to have cross links to other backup
series! (This restriction only applies, of course, if you have multiple backup series [e.g., different com-
puters] in your master backup.) From a series which is replicated, you cannot refer to series not being
replicated to the same backup copy. (But, conversely, from a series which is not replicated, you can refer
to any series being replicated.)

This restriction might go away in the future. (This would mean that the unresolvable files have to be
added to the deltas (for deltaCache) when running storeBackupUpdateBackup.pl on the master backup.)

In short, to keep it simple and to set up replication the first time, make sure that there are only hard
links to older versions of the same backup series. Anything where you have links in the master backup
you also have to have in the backup copy, so the same links can be established. If you replicate all series,
you do not have to change anything about hard linking.

This is all very simple (but only) if you understand what’s happening. (And naturally, the situation is
somewhat more complicated if you replicate different series (overlapping) to different backup copies.)

When running storeBackupUpdateBackup.pl on the backup copy, autorepair is switches on by default (but
does only generate an INFO entry, no ERROR message).

7.7.4 Understanding storeBackup’s Replication Wizard via an example

If you have done the Replication Wizard Quick Start, you probably do not need to go through this
example in detail. This example is useful if your needs are atypical (which means the Replication Wizard
Quick Start wasn’t applicable) and you need to become familiar with the Replication Wizard. This
example will help you quickly become familiar with Replication Wizard so you can move on to more
advanced configurations.

The Replication Wizard creates three configuration files. This simple example will help you understand
the files created by the Replication Wizard as well as how the Replication Wizard works.

The following command line example will demonstrate the Replication Wizard by taking you through a
complete backup and replication using some temporary files.
To keep this example simple, we will be using the default series. For more information about backup
series, have a look at section 3, Quick Start.

The files you will back up will be in /tmp/repliTest/localDisk/sourceFiles. The backup will be in
/tmp/repliTest/externalDisk 1/masterBup. /tmp/repliTest/externalDisk 2/copyBup locates the replicated
backup. Normally, the replicated backup would be on another disk such as a USB HDD or another server.
That is the main way this example differs from what you would do in actuality. (The other ways it differs
are: 1) we are backing up just a few example files, 2) we aren’t using storeBackup.pl’s main configuration
file, and 3) we are not copying an existing backup to “seed” the replica.)

First, set up some temporary files to back up. The contents are not important. This is just an example.

mkdir -p /tmp/repliTest/localDisk/sourceFiles /tmp/repliTest/localDisk/deltaCache \

/tmp/repliTest/externalDisk_1/masterBup /tmp/repliTest/externalDisk_2/copyBup

cd /tmp/repliTest/

cp /bin/ls /tmp/repliTest/localDisk/sourceFiles

touch /tmp/repliTest/localDisk/sourceFiles/test.txt

ls -la /tmp/repliTest/localDisk/sourceFiles

We assume storeBackup/bin is in your path. If not, create symbolic links as shown in section 1,Super
Quick Start. If needed, in a terminal run these 2 commands (the 2nd line ends with: space,dot):

cd /usr/local/bin

ln -s /opt/storeBackup/bin/* .

cd -

64

Second, do the initial backup using option lateLinks. This gives you something to replicate.

storeBackup.pl -s /tmp/repliTest/localDisk/sourceFiles/ \

-b /tmp/repliTest/externalDisk_1/masterBup/ --lateLinks

You can expect one warning during the backup:

WARNING 2012.07.21 16:12:11 12580 created directory <backup//default>

Next, take a quick look at the Replication Wizard help:

storeBackupReplicationWizard.pl -h

Now run the Replication Wizard, telling it the location of the master backup, the deltaCache and the
location to which you wish to replicate (copy) the master backup. None of those three directories is
allowed to be a subdirectory of the others. And normally, the location for the copy (of the master
backup) would be an external disk or another server. (The delta cache can be on the same disk where
the source resides.) See section 7.7.3, Basic concepts to know before using storeBackup’s replication for
more information.

storeBackupReplicationWizard.pl -m /tmp/repliTest/externalDisk_1/masterBup/ \

-c /tmp/repliTest/externalDisk_2/copyBup/ -d /tmp/repliTest/localDisk/deltaCache

Because you didn’t use the series name as an argument of option -S, you will be prompted as follows:

found series <default>

replicate it?

Answer yes to the prompt and the wizard complete. (If you had specified the --series option, the wizard
would not have prompted you.)

At this point you could inspect the contents of the three replication-related configuration files, if you
wish. (They are in /tmp/repliTest/externalDisk 1/masterBup, /tmp/repliTest/localDisk/deltaCache and
/tmp/repliTest/externalDisk 2/copyBup with the extension .conf.) For example, see:

cat /tmp/repliTest/externalDisk_1/masterBup/storeBackupBaseTree.conf

cat /tmp/repliTest/localDisk/deltaCache/deltaCache.conf

You can also inspect the current files before your backup is replicated.

find /tmp/repliTest/ -print | sort

The last step is to finish the backup using storeBackupUpdateBackup.pl in the same way you normally
would with option lateLinks. By virtue of the configuration files the Replication Wizard has created, this
step will now replicate (copy) your master backup to the replication location you have specified. Later,
you can put the following two commands into a script and you can also set them up to run in a cron
job.38

storeBackupUpdateBackup.pl -b /tmp/repliTest/externalDisk_1/masterBup/

storeBackupUpdateBackup.pl -b /tmp/repliTest/externalDisk_2/copyBup/

You can now inspect the files again and see that your backup was replicated.
(Notice deltaCache/processedBackups too.)

find /tmp/repliTest/ -print | sort

As we mentioned, storeBackup’s Replication Wizard is an interactive program. If you wish to test this,
use it with different options or try it with a broken environment. For example, try it with a non-existing
master backup in an example similar to the above.

38For the second one, you should double check if the external disk is connected.

65

7.7.5 A simple replication example without the Replication Wizard

Now that you are familiar with the Replication Wizard, this section will deepen your understanding so
you can move on to more advanced configurations. If you replication needs are simple and typical, you
may not need to read this section.

If you do not run your backups with option lateLinks at the moment and want to use replication, you
have to enable option lateLinks when using storeBackup.pl. This means in practice, you have previously
been running something like:

storeBackup.pl -f stbu.config

Now, and in the future, you will set lateLinks=yes in the configuration file and use these two commands
(which could be put into one executable script):

storeBackup.pl -f stbu.config

storeBackupUpdateBackup.pl -b <dirOfMasterBackup>

Here, storeBackup.pl will create the deltas described above which are stored in your master backup.
If you look into this data, you will see, that there are e.g., no hard links to already existing files in
the previous backup. After running storeBackupUpdateBackup.pl, all the “missing” steps (like linking,
changing permissions) are done. It’s nothing else than splitting the work storeBackup.pl does as an
all-in-one application into two different steps.

So the result of these two commands will be exactly the same – a full backup like before (when you didn’t
use option lateLinks and ran one command). The batch above is just a simple example; you can also run
storeBackupUpdateBackup.pl e.g., on your server at a later time. See section 7.5 for more information).
Naturally, if you want to use replication, you have to configure it first. The Replication Wizard can do
this for you. However, in this section we demonstration the manual steps.

If we use the simple example above, replication to the backup copy on the external disk works as follows.
I assume we have four different directories involved:

1. /home which you want to save

2. /masterBackup where your master Backup is located

3. /extDisk/backupCopy where you want to copy your master backup to (the backup copy)

4. /deltaCache which is a place to keep the deltas until they are delivered to the backup copy
(/extDisk/backupCopy)

I also assume the backup series you want to copy is named homeBackup. You need write permissions in
all of these directories (in /home only read permissions are required).

1. copy the existing backup(s) to get a base for the replication:
linkToDirs.pl /masterBackup/homeBackup -t /extDisk/backupCopy

2. Now you have to create a configuration file in your master backup to tell storeBackup to do the
replication:
storeBackupUpdateBackup.pl --genBackupBaseTreeConf /masterBackup

3. edit the generated configuration file /masterBackup/storeBackupBaseTree.conf so it has the following
contents:39

backupTreeName=myMasterBackup

backupType=master

seriesToDistribute=homeBackup

deltaCache=/deltaCache

In the master backup configuration file, a value for backupTreeName is only needed for error messages,
warnings and so on. It’s mostly there for future enhancements, so all directories will have a unique
identifier.

You can change the unique identifier for parameter backupTreeName to whatever you want (here
myMasterBackup was chosen). But you have to set backupType to master!

39The “rules” for the configuration file are the same as for all other configuration files.

66

4. Now you can run your very first backup which will be replicated:
storeBackup.pl -s /home -b /masterBackup -S homeBackup --lateLinks 0:homeBackup
This creates a backup in /masterBackup. If you go there, you can see the delta files plus the command
file40 what’s to be done to complete the backup. The last parameter (0:homeBackup) makes sure,
that there are only hard links to older versions of the same backup series. Because we only want to
replicate this one series, it’s not possible to have cross links to other series! (This only is necessary
if you have multiple backup series in your master backup.)

5. Next step you can do is to copy the deltas to the place (/deltaCache) where they are kept until
you connect the external disk and replicate the deltas. In this step you will also complete the just
made backup in the master backup directory. The following command will read the configuration
file /masterBackup/storeBackupBaseTree.conf:
storeBackupUpdateBackup.pl -b /masterBackup

6. Now you need to generate the configuration file for the “delta cache. The just started command has
copied the deltas from your master backup to this place. (You should explore directory /deltaCache

to see what has happened.)
storeBackupUpdateBackup.pl --genCopyStationConf /deltaCache

7. edit the generated configuration file /deltaCache/deltaCache.conf so it has the following contents:41

backupCopy0=myBackupCopy homeBackup

;backupCopy1=

;backupCopy2=

Do not change the other commented keywords backupCopy1 to backupCopy9 because we only one
replication. (The delta cache is the central distribution place for all defined replications.) Entry
myBackupCopy is just a name (not a path) for the copied backup on your external disk. You can
chose any name you want, but it has to be exactly the same as in the configuration file for your
backup copy at /extDisk/backupCopy. After “myBackupCopy” you have to enter the list of series
you want to replicate. It’s only the series homeBackup in this example.

8. Next, you have to tell your backup copy which data it should add to the backup and where this
data is located. Generate a configuration file for that:
storeBackupUpdateBackup.pl --genBackupBaseTreeConf /extDisk/backupCopy

9. edit the generated configuration file /extDisk/backupCopy/storeBackupBaseTree.conf so it has the
following contents:42

backupTreeName=myBackupCopy

backupType=copy

seriesToDistribute=homeBackup

deltaCache=/deltaCache

The name of the backup must be the same as specified in the configuration file in of the deltaCache
which is loated at /deltaCache/deltaCache.conf. The backupType must be ’copy’, so the program
storeBackupUpdateBackup.pl knows it has to copy the deltas from the deltaCache.43

10. Now you can finish the replication by completing the backup in the backup copy:
storeBackupUpdateBackup.pl -b /extDisk/backupCopy

Have a look into the backup copy at /extDisk/backupCopy. It’s a complete backup now. Also, have
a look /deltaCache. The backup was moved to /deltaCache/processedBackups.44

After you set up the environment, simply do the following:

40That’s the file .storeBackupLinks/linkFile.bz2 inside the root directory of the backup which was just created.
41The “rules” for the configuration file are the same as for all other configuration files.
42The “rules” for the configuration file are the same as for all other configuration files.
43as opposite to value ’master’ which tells storeBackupUpdateBackup.pl to copy the deltas to the deltaCache.
44This deltas are not deleted directly for safety reasons. You can set the storage time for this kind of data with option

--archiveDurationCopyStation and --dontDelInCopyStation of program tt storeBackupUpdateBackup.pl.

67

• Run your backups with storeBackup.pl like you want – but use option lateLinks (and restrict the
hard linking references to the series you want to replicate).45.

• run
storeBackupUpdateBackup.pl -b /masterBackup

to complete your backup copy and to replicate the deltas to the delta cache. Best is to do this
directly after the run of storeBackup.pl. If you have an own server it’s most easy to run this
command in the night via cron on the server.

• connect your external disk whenever you want (e.g., once a week), mount that drive to /extDisk so
the path to you backup copy is /extDisk/backupCopy. Run
storeBackupUpdateBackup.pl -b /extDisk/backupCopy

When it’s ready, umount the external disk and disconnect it from you computer.

7.7.6 How storeBackup’s replication works

If you wish to create advanced replication configurations, this section will be of interest to you. The
following picture shows the principle data flow when replicating backups:

central backup

series1

series2

series3

series1

series2

deltaCache
series1

series2

series1

extDisk1

extDisk2

storeBackupBaseTree.conf

deltaCache.conf

storeBackupBaseTree.conf

storeBackupBaseTree.conf

Important: Before you can start replicating backups, you have to copy a common version of the backup
from the master backup to the locations where the copies will reside. The replication is based on incre-
mental backups mostly (option lateLinks of storeBackup.pl) and they always have to be linked against
the backup version to which these incremental backups were generated! You can use cp -a or (better)
linkToDirs.pl to copy these (old) backups.
Assume your master backup is located at /masterBackup and you want to copy the series series1, series2
and series3 to /extDisk1/stbu (which will be the top level of your backup copy), you can run:46

linkToDirs.pl /masterBackup/series1 /masterBackup/series2 /masterBackup/series3 \

--targetDir /extDisk1/stbu}

In the example shown in the picture above, there is a master backup where all the backups are stored. In
this master backup, there are three different series called series1, series2 and series3. In each of these
series, there are three incremental backups (shown as circles) created with option lateLinks and which
have to be replicated.
The configuration file located in the top level directory of the master backup (storeBackupBaseTree.conf)
has been configured that two (series1, series2) of the three series have to be copied onto the external
disks. The configuration file would look e.g., as follows (without comments):

backupTreeName=myMasterBackup

backupType=master

45This restriction may go away in the future
46linkToDir.pl is delivered with storeBackup

68

seriesToDistribute=series1 series2

deltaCache=/deltaCache

You can generate this type of configuration file by typing
storeBackupUpdateBackup.pl --genBackupBaseTreeConf directory
where directory is the top level directory of your master backup. After generation, edit the configuration
file depending to your needs.

The example configuration above tells storeBackup (to be precise storeBackupUpdateBackup.pl) that
you’re calling your master backup myMasterBackup (chose this name however you want, it has noth-
ing to do with a directory name - it is a unique identifier you choose and which will point to an actual
directory) and that this is your master backup. The configuration file also defines, that series1 and
series2 have to be copied and that the central hub, your “deltaCache” is in directory /deltacache. After
copying the incremental backup via storeBackupUpdateBackup.pl as just described above, the same run
of that program starts generating the missing hard links (etc.) in the master backup so the incremental
backups become full backups.

In this example, I assume that the server (or generally the box) to save has two internal disks. On /,
the file system and the user data are located, and the second disk, mounted at /backup stores the master
backup (and maybe data you do not want to backup). To locate the “deltaCache” on the first disk which
has to be saved makes sense: If the first (operating system) disk it broken, you can use the backup disk
to restore later. If the backup disk is broken, you still have the delta to the external disks on the first
one. Naturally, if both are broken at the same time, you only have the external ones and may lose some
days (if you do not do a daily sync).

In the deltaCache, you have to generte (see below) and configure a configuration file named deltaCache.conf

in the top level directory with the following contents:

backupCopy0= ’extDisk1’ series1 series2

backupCopy1= ’extDisk2’ series1

;backupCopy2=

;backupCopy3=

;backupCopy4=

;backupCopy5=

;backupCopy6=

;backupCopy7=

;backupCopy8=

;backupCopy9=

You have to define two copy targets because in this example, you want to make two copies. The first line
(backupCopy0) in the configuration file above defines that series1 and series2 have to be copied to the
backup copy with the unique identifier extDisk1. The second line (backupCopy1 tells storeBackup to copy
series1 to the backup with the unique identifier extDisk2.
You can generate this type of configuration file by typing
storeBackupUpdateBackup.pl --genCopyStationConf directory
where directory is the top level directory of your deltaCache. After generation, edit the configuration file
depending to your needs.

Finally, you have to configure a configuration file for the place where you want to replicate your data.
Because (in this example) you want to replicate to two different storage systems (called extDisk1 and
extDisk2) you have to generate two configurations files in the top level of these replicas:
storeBackupUpdateBackup.pl --genBackupBaseTreeConf directory
Where directory is the top level directory of your backup copy. The generated configuration file with
the name storeBackupBaseTree.conf will be stored in that top level directory. After generation, edit the
configuration file depending to your needs; in this example that’s:

69

backupTreeName=extDisk1

backupType=copy

seriesToDistribute= series1 series2

deltaCache=/deltaCache

Options backupTreeName and seriesToDistribute must fit to the corresponding entry of deltaCache.conf
(see above, backupCopy0).
When you call:
storeBackupUpdateBackup.pl --backupDir directory
where directory is the top level backup directory (with the series below), it will copy the backups in
deltaCache from the configured series to the specified location.
You might want to add some other options to storeBackupUpdateBackup.pl, eg.:
storeBackupUpdateBackup.pl --progressReport 200 --archiveDurationCopyStation 32d -b directory
This means, it will print a progress report and will delete backups in deltaCache after a month, but only
if they were delivered and hard linked successfully to the replica backups .

Finally, you have to repeat the last step of configuring a configuration file for extDisk2 also:

backupTreeName=extDisk2

backupType=copy

seriesToDistribute= series1

deltaCache=/deltaCache

That’s it. Now each run of storeBackupUpdateBackup.pl on the master backup will copy the required
backup deltas (= backups generated with lateLinks) and finalize the backups to be complete ones
(not incremental ones). Running storeBackupUpdateBackup.pl on the replica backups (extDisk1 and
extDisk2) will copy those deltas from the deltaCache to the selected replica. Finally, one of those calls
of storeBackupUpdateBackup.pl will delete delete those deltas from deltaCache (depending on option
--archiveDurationCopyStation).

7.8 special files generated and used by storeBackup

Never change the files described below! They are absolutely important for storeBackup to work properly!
Inside a backup, the following entries are always created. Don’t delete them. Also make sure
you do not have these in the top level directory of your source tree:

.md5CheckSums.info This file contains meta information about the backup. Example (I cut some lines for
better readability):

version=1.3

date=2008.09.06 10.23.33

sourceDir=’/home/hjc’

followLinks=0

compress=’bzip2’

uncompress=’bzip2’ ’-d’

postfix=’.bz2’

exceptSuffix=’\.bz2’ ’\.gif’ ’\.gpg’ ’\.gz’ ’\.jpg’ ’\.mp3’ ’\.mpeg’ ’\.mpg’ ’\.ogg’

exceptDirs=’/home/hjc/Mail’ ’/home/hjc/Maildir’ ’/home/hjc/nosave’ ’/home/hjc/tmp’

includeDirs=

exceptRule=’$size > &::SIZE("100M")’

includeRule=

exceptTypes=

preservePerms=yes

lateLinks=yes

lateCompress=yes

cpIsGnu=yes

.md5CheckSums[.bz2] This file contains all information about the files, directories, . . . in the backup. A
few lines selected as an example:

70

contents/md5 compr dev-inode inodeBackup ctime mtime atime size uid

gid mode filename

dir 0 2097-386 0 1169342164 1094800914 1200948038 0 1049 100 493 c++

063e5feb114a82059e7f44c5fb0e548c c 2097-1834 1372638 1169343033 1078512595 1125554314 489786 1049 1001 384 mbox

symlink 0 2097-31105 0 1169350675 1169350675 1169350675 0 1049 0 0 .Xresources

The permissions (mode) are stored as decimal values (not octal)!

.storeBackupLinks A directory which is empty if all links are set.

These files may be in the root of your backup directory:

.md5CheckSums.notFinished The existence of this file indicates, that this backup was not properly finished
(means it was e.g., stopped by pression control-c).

.storeBackup.log[.bz2] The log file of storeBackup.pl. This is the default name, which you can change
using the options of storeBackup.pl. (Options logInBackupDir and compressLogInBackupDir)

.storeBackup.notSaved.bz2 If you exclude files with rules, you can generate a list of files (via option
writeExcludeLog of storeBackup.pl) which are not stored in the backup.

The following file only exist if you use option lateLinks, see section 7.5. After a successful run
of storeBackupUpdateBackup.pl, see section 6.3, these files are deleted:

.storeBackupLinks/linkFile.bz2 Contains (parts) of the information what has to be done by storeBack-
upUpdateBackup.pl (beside file .md5CheckSums[.bz2]).

.storeBackupLinks/linkTo Contains relative paths to the backups where linkFile.bz2 refers to, eg:

../2008.09.05_16.07.23

../../lotte/2008.09.06_02.00.04

Here you see a relative path to a previous backup and a link to a backup in another backup series.

.storeBackupLinks/linkFrom<number> Each file contains relative paths from backups to the actual one.
Example:

../2008.09.06_10.23.33

7.9 configuring NFS

Let’s assume, that your server, where you want to write your backup via NFS is called ’nfsserver’ and the
path to the backup is /storeBackup. You then can use the following entry in /etc/exports on nfsserver

(example with GNU/Linux, can differ on other Unix like operating systems):

/storeBackup 192.168.1.0/24(async,rw,no_root_squash)

192.168.1.0/24 means, that access from any ip address beginning with 192.168.1 is allowed.

You should run
exportfs -a

to make your entry visible to NFS. With
exportfs -v

you can see how NFS is configured.
You probably have to change the ip address and the mask to your needs. Using no root squash is
important for the client root user to have root permissions on the mounted file system. Use async to get
a much better write performance (see man mount for further explanations).
In /etc/fstab on the NFS client (where you run storeBackup) you should configure a line like

nfsserver:/storeBackup /backup nfs user,exec,async,noatime 1 1

This will mount the file system /storeBackup of nfsserver to /backup on your client. This will occur if
you boot or if you type:
mount /backup

on the NFS client.

71

There are many other options with NFS. This short description only tries to give some helpful hints, not
to explain NFS.

read or write access?

You probably want write access for storeBackup.pl but only read access for the users. There are at least
two ways to achieve this:

1. Mount the specific NFS directory for the backup (e.g., /backup read only. In the configuration file
for storeBackup, use:

precommand = mount /backup -o remount,rw

postcommand = mount /backup -o remount,ro

This will give storeBackup.pl write access (rw = read write) during the backup. Naturally, you can
also wrap a script around storeBackup.pl what does the same.
The disadvantage of this method is, that the users also will get write access during backup.

2. Simply arrange two mount points to the NFS server: one rw and one ro. Limit access to the read
write (rw) mount to root. You can also mount the mount points for storeBackup.pl only for the
time during the backup. You can use storeBackupMount.pl, see section 6.11 for this.

7.10 what’s an inode

In Unix like system, the central element of a file system entry is an inode (index node):

inode

location of blocks
inode number

number of hard links
date & time

size
permissions
uid + gid

/tmp/a
/home/bob/xfile

/var/tmp/file

This inode contains several meta information and the location of that file on the disk (that part of the
picture does absolutely not reflect the real situation).
In the figure above, you see three hard links (“file names”) for this inode, so the number of hard links to
this inode would be 3. We can see this with ls -li:

$ ls -li /tmp/a /home/bob/xfile /var/tmp/file

114693 -rw-r--r-- 3 hjc hjc 5 Sep 6 13:55 /tmp/a

114693 -rw-r--r-- 3 hjc hjc 5 Sep 6 13:55 /home/bob/xfile

114693 -rw-r--r-- 3 hjc hjc 5 Sep 6 13:55 /var/tmp/file

The first digits form the inode number.
Naturally, all hard links to an inode must be in the same file systems. If the different directories in the
example above are not in the same file system on your computer, than you cannot configure exactly that
example. To create a hard link, on the shell you have to use the command ln.
All these entries for that inode have the same permissions, gid and uid. See section 7.13, Limitations to
understand what this means for storeBackup.

Btw., you cannot set a hard link to a directory because this could result in infinite loops. Nevertheless, a
directory entries also use the feature of having multiple names for one inode: Take a look at the directory
“name”, “.” and “..” (the last perhaps multiple times)!

72

7.11 Statistical Output of storeBackup.pl

After creating a new backup and possibly deleting old ones, storeBackup will write some statistical output:

directories Number of directories storeBackup found in the data source and created in the backup

files Number of files (more exactly number of links) storeBackup found in the data source. This includes
all types of files storeBackup is able (or configured) to process.

symbolic links Number of symbolic links storeBackup found in the data source

name pipes Number of named pipes storeBackup found in the data source

new internal linked files Number of files with the same contents storeBackup found in the actual
backup (not in an old backup) (this is checked first)

old linked files Number of files which exists in the previous backup with the same name, same size,
same ctime and same mtime

unchanged files Number of files with the same contents storeBackup found in the old backup(s)

copied files Files with a new contents, copied to the backup directory

compressed files Files with a new contents, compressed into the backup directory

excluded files because pattern Files excluded because of option ’exceptPattern’

included files because pattern Files included because of option ’includePattern’

max size of copy queue Maximum size of copy queue during the backup

max size of compress queue Maximum size of compress queue during the backup

calculated md5 sums Number of files for which an md5 sum was calculated.

forks total Total number of forks (number of forks md5 + forks compress + forks copy + forks named
pipes)

forks md5 Number of forks for program md5sum.

forks copy Number of forks for program cp

forks <compress> Number of forks for program ¡compress¿

sum of source Size in bytes of all files in the source directory

sum of target all Size in bytes of all files in the target directory

sum of target new Size in bytes of new copied or compressed files in the target directory

sum of md5ed files Size in bytes of all files for which an md5 sum was processed

sum internal linked (copy) Size of bytes of all files which were internal linked (see: new internal linked
files). These files were linked to files which were copied into the backup.

sum internal linked (compr) Size in bytes of all files which were internal linked (see: new internal linked
files). These files were linked to files which were stored compressed into the backup.

sum old linked (copy) Size in bytes of all files which were linked to older backups (see: old linked files).
These files were linked to files which were copied into the backup.

sum old linked (compr) Size in bytes of all files which were linked to older backups (see: old linked files).
These files were linked to files which were stored compressed into the backup.

sum unchanged (copy) Size in bytes of all files which existed with the same name, mtime and atime in
the previous backup. These files were linked to files which were copied into the old backup.

73

sum unchanged (compr) Size in bytes of all files which existed with the same name, mtime and atime in
the previous backup. These files were linked to files which were stored compressed into the old
backup.

sum new (copy) Size in bytes of all files which were copied into the backup

sum new (compr) Size in bytes of all files which were stored compressed into the backup

sum new (compr), orig size Size in bytes in the source directory of the above files

sum new / orig Percentage of new files in the backup to their original size in the source directory

size of md5CheckSum file Size of the file ¡backupDir¿/.md5CheckSums[.bz2]

size of temporary db files Size of the db files generated during the backup in tmpdir

deleted old backups Number of old backups which were deleted.

deleted directories Number of directories deleted in old backups.

deleted files Number of files truly deleted in old backups (last link removed)

(only) removed links Number of links removed in old backups (files not deleted)

freed space in old directories Freed space in old directories, does not include meta information.

add. used space in files Additionally used space for this backup: difference between new allocated
space and freed space in old backups.

backup duration Backup duration: time for precommand, backup, postcommand and deletion of old
backups.

over all files/sec (real time) number of files divided by real time

over all files/sec (CPU time) number of files divided by (user and system time)

CPU usage average cpu time for the time period of ”backup duration”

PROGRESS 2009.05.09 10:16:43 22774 5000 files processed (324M, 152M) (340234099, 159903981)

storeBackup read 5000 files so far. The first number (324M or 340234099 bytes) is the total size of
new files found on the source. The second number (152M or 159903981 bytes) is the space consumed
in the backup destination by those new files. This size represents the files actually copied, the effects
of compression to reduce the size, and the effects of linking to identical files already in the backup
(so that additional spaced used is essentially near 0).

7.12 Monitoring

If you want to monitor your backups, you can simply grep for ^ERROR and / or ^WARNING in the log files.
The start of a program (which writes log files) typically starts with a BEGIN message in the log and ends
with an END message if there were no errors which lead to an immediate end of the program.

If you are monitoring your systems with Nagios or Icinga, you can use a plugin from
http://exchange.nagios.org/directory/Plugins/Backup-and-Recovery/storeBackup.

7.13 Limitations

• storeBackup can backup normal files, directories, symbolic links and named pipes. You can backup
other file types only with option cpIsGnu (and if gnu cp is installed on your system).

• The permissions in the backup tree(s) are equal to the permissions in the original directory. Under
special rare conditions it is possible, that a user cannot read one ore more of own his/her files in the
backup because files are shared using hard links. With the restore tool – storeBackupRecover.pl –
everything is restored with the original permissions.

74

http://www.nagios.org
http://www.icinga.org
http://exchange.nagios.org/directory/Plugins/Backup-and-Recovery/storeBackup

• storeBackup uses hard links to save disk space. GNU/Linux with ext2 file system supports up to
32000, reiserfs up to 64535 hard links when you use a 32 bit operating system. If storeBackup needs
more hard links, it will store a new (compressed) copy of the file. If you use ext2 for the backup,
you have to reserve enough (static) inodes! (You will need one inode for each different file in the
backup, not for every single hard link.)

• Changing the compression program is not supported up to now. In a backup (“backupDir”) you
should use the same compression program.

8 How to use storeBackup (Examples)

8.1 Some Information in the Beginning

Before explaining some examples, it’s not too bad if you know what you are doing. Here are some
important aspects about how storeBackup works: (The following explains the principle mechanisms, for
performance reasons it’s implemented a little bit different. There are several waiting queues, parallelisms
and a tiny scheduler inside which are not described here.)

storeBackup uses at least two internal flat files in each generated backup:
.md5CheckSums.info – general information about the backup
.md5CheckSums[.bz2] – information about every file (dir, etc.) saved

When starting storeBackup.pl, it will basically do (beside some other things):

1. read the contents of the previous .md5CheckSums[.bz2] file and store it in two dbm databases:
dbm(md5sum) and dbm(filename) (dbm(md5sum) means, that md5sum is the key). Default is to
store these databases in memory.

2. read the contents of other .md5CheckSums[.bz2] files (otherBackupDirs) and store it to dbm(md5sum).
Always store the last copied file in the dbm file if two different files (e.g. from different backup
series) are identical. This assures, that multiple versions of the same file in different backups are
unified in future backups.

• This item describes how storeBackup.pl works without sharing files from another backup series
(simple backup), see example 1, section 8.2 and example 2, section 8.3.
In a loop over all files to backup it will do:

1. look into dbm(filename) – which contains all files from the previous backup – if the exact
same file exists and has not changed. In this case, the needed information are the values of
dbm(filename).
If it existed in the previous backup(s), make a hard link and go to 3.)

2. calculate the md5 sum of the file to backup look into dbm(md5sum) for that md5 sum
if it exists there, make a hard link
if it doesn’t exist, copy or compress the file

3. write the information of the new file to the corresponding .md5CheckSums[.bz2] file

• This item describes how storeBackup works with sharing of files from another backup series, see
example 3, section 8.4 and example 4, section 8.5.
In a loop over all files to backup it will do:

1. look into dbm(filename) – which contains all files from the previous backup – if the exact
same file exists and has not changed. In this case, the needed information are the values of
dbm(filename).
(Now, because there are independent backups, it is possible, that a file with the same contents
exists in another backup series. So storeBackup.pl has to look into the dbm(md5sum) to ensure
linking to the same file from all different backup series.)

2. calculate the md5 sum of the file to backup if not known from step 1)
look into dbm(md5sum) for that md5 sum
if it exists there, make a hard link
if it doesn’t exist, copy or compress the file

75

3. write the information of the new file to the corresponding .md5CheckSums[.bz2] file

• This item describes the usage of Option lateLinks, example 6, section 8.7 below
If you save your backup via NFS to a server, then most of the time will be spent for setting hard
links. Setting a hard link is very fast, but if you have many thousands of them it takes some time.
You can avoid waiting for hard linking if you use the option lateLinks:

1. make a backup with storeBackup and set --lateLinks (or set lateLinks = yes) in the configu-
ration file. Then storeBackup will not generate any hard links, only a file will be written with
the information what has to be linked.
The newly, just generated backup initially is an incremental backup.

2. In a separate step, call storeBackupUpdateBackup to set all the required hard links to make
full backups out of these incomplete backups. Please also see section 7.5, using option lateLinks
for a more detailed explanation.

Conclusions:

1. Do not delete a backup to which the hard links are not yet generated. Use storeBackupUpdate-
Backup.pl to set the hard links and check consistency. It’s a good idea to only use storeBackup.pl
or storeBackupDel.pl for the deletion of old backups.

2. All sharing of data in the backups is done via hard links. This means:

• A backup series cannot be split across different file systems.

• If you want to share data between different backup series, all backups must reside in the same
file system.

3. Every information of a backup in the .md5CheckSums is stored with relative paths. It does not
matter if you change the absolute path to the backup or backup with a different machine (server
makes backup from client via NFS – client makes backup to server via NFS).
Unresolved hard links to to other backup series (via option lateLinks) are also stored with relative
paths. This means: You can move backupDir around as you like, but you should never change
the relative paths between backup series before resolving all the links with storeBackupUpdate-
Backup.pl.

If you have additional ideas or any questions, feel free to contact me (hjclaes(at)web.de).

It is a good idea to use a configuration file instead of command line options. Simply call:

storeBackup.pl --generate <configFile>

Edit the configuration file and call storeBackup in the following way:

storeBackup.pl -f <configFile>

You can override settings in the configuration file on the command line (see Example 6).

8.2 Example 1, very simple backup

This is a simple configuration with storeBackup using only the two required options (the source directory
and the backup destination) and a single optional parameter, the name of a log file. This configuration
will backup source tree /home/jim to /backup:

storeBackup.pl --sourceDir /home/jim --backupDir /backup/jim --logFile /tmp/storeBackup.log

Option --logFile is optional and tells storeBackup to log into the file /tmp/storeBackup.log. Otherwise
it would log to stdout.
The option “backupDir” is the destination – the external USB drive or other place your copied files will
reside when the backup is finished. For more info, have a look at section 3, Quick Start. If you still have
questions, review subsubsection 6.2.1, storeBackup.pl Options and specifically look at the –backupDir
option.

76

8.3 Example 2, backup of multiple directories

For historical reasons, storeBackup.pl can only handle one source directory. But this drawback transforms
to a feature when using option followLinks, because everything then becomes very easy and flexible.
You can also use the well known mechanism of includeDirs and exceptDirs well-established from other
programs. But that is by way of comparison uncomfortable and nasty to handle.
To use lateLinks, execute the following steps (I assume, you will backup /home/greg/important, /home/jim
and /etc to /backup/stbu. You can very easily change this later.). First of all, you make a special
directory, e.g., /opt/stbu. Let’s also assume that you stored storeBackup at /opt/storeBackup:

mkdir /opt/stbu

cd /opt/stbu

ln -s /opt/storeBackup storeBackup

ln -s /home/jim home_jim

ln -s /etc etc

ln -s /home/greg/important home_greg_important

ln -s . backup

With the first symbolic link we make sure, that storeBackup itself is part of the backup. So it’s possible
to restore it later with cp and then use storeBackupRecover.pl for the rest.
The last symbolic link is a trick to get an exact copy of /opt/stbu in the backup.
Now you should write a short script to start storeBackup.pl. Store it at /opt/stbu/backup.sh:

/opt/storeBackup/bin/storeBackup.pl -s /opt/stbu -b /backup/stbu \

-S . -l /tmp/storeBackup.log --followLinks 1

Option --followsLinks 1 tells storeBackup to use the first level of symbolic links exactly like directories.
Therefore, you will find home jim as a directory entry in your backup.
Finally, set the permissions of the script:

chmod 700 /opt/backup/backup.sh

Whenever you start this script, you will backup the wanted directories and your short script. You need
to be root to have the required permissions to read the directories in this example. And naturally you
need write permissions in /backup/stbu.
Now, you can simply change the directories to save or not to save by deleting or creating symbolic links
in this directory.

8.4 Example 3, make a big backup once a week, a small every day

Now you will configure a big backup of the whole machine with exceptDirs and the small one of some
special directories with option follow links. Naturally, you can also configure it the other way around,
only use followLinks for both or use includeDirs.
Let’s assume, you want to do:

1. your machine mounts from other servers directory /net which you don’t want to backup

2. you also don’t want to save /tmp and /var/tmp.

3. you want to backup the whole machine once a week to /net/server/backup/weekly

4. you want to backup /home/jim and /home/tom/texts to /net/server/backup/daily more quickly after
you finished your work.

5. naturally, you want to share files between the two backup series

6. If you start both scripts at the same time, then new files will not be shared between these two. But
over time, this will come together. But you should not start both backups at the same time when
you start them for the very first time! In this case, all your files will not be shared!

7. You do not want to use option lateLinks, which would speed up your backups massively, because
you cannot run scripts on the nfs server (or for whatever other reason).

To prepare the steps described above, you need to do the following:
For the daily backup, make a special directory (we use followLinks) like described in example 2 (you also
stored storeBackup in /opt/storeBackup in this example):

77

mkdir /opt/small-backup

cd /opt/small-backup

ln -s . small-backup

ln -s /home/jim home_jim

ln -s /home/tom/texts home_tom_texts

and write a backup script byBackup.sh:

#! /bin/sh

/opt/storeBackup/bin/storeBackup.pl -s /opt/small-backup

-b /net/server/backup \

-S daily -l /tmp/storeBackup.log --followLinks 1 0:weekly

Then write a script for the weekly backup:

#! /bin/sh

/opt/storeBackup/bin/storeBackup.pl -s / -b /net/server/backup -S weekly \

-l /tmp/storeBackup.log --exceptDirs net -e tmp -e var/tmp \

-e proc -e sys -e dev 0:daily

The “0” before the paths (like 0:daily) means to take the last backup of the other backup series to check
for identical files.
And – naturally – the directories weekly and daily must exist inside of /net/server/backup on the NFS
server.
As you can see, using command line options begin to be a little bit confusing. When configuring such
examples, you should try to generate a configuration file with storeBackup.pl -g configFile and to use
that instead.

8.5 Example 4, backup from different machines, share data

This example shows how to make backups from different machines (not coordinated) and to share the
data with hard links.
Imagine, you have defined the following boundary conditions:

1. you have a server called “server” with a separate disk which is mounted at /disk1

2. you want to backup machine “client1” which mounts disk1 of the server at /net/server/disk1 to
/net/server/disk1 and shall save to client1 in that directory.

3. you want to backup machine “client2” which mounts disk1 of the server at /net/server/disk1 to
/net/server/disk1 and shall save to client2 in that directory.

4. the backup of the server runs nightly, independent of the other backups

5. the backups of the clients run uncoordinated, that means perhaps at the same time

6. you want to share all the data in the backup

7. you can also make small backups of parts of the source (with data sharing), but that’s the same
mechanism and not detailed in this example

8. If you have a client / server architecture like this, it’s a good idea to use option lateLinks if you
want to speed up. Example 6 explains how to use it.

Write the following script for the server:

#! /bin/sh

<PATH>storeBackup.pl -s / -b /disk1 -S server -l /tmp/storeBackup.log \

-e /tmp -e /var/tmp -e /disk1 -e /sys -e /dev -e /proc 0:client1 0:client2

Write the following script for client 1:

#! /bin/sh

<PATH>/storeBackup.pl -s / -b /net/server/disk1 -S client1 \

-l /tmp/storeBackup.log -e /tmp -e /var/tmp -e /disk1 -e /sys -e /dev \

-e /proc 0:client1 0:client2

78

Write the following script for client 2:

#! /bin/sh

<PATH>/storeBackup.pl -s / -b /net/server/disk1 -S client2 \

-l /tmp/storeBackup.log -e /tmp -e /var/tmp -e /disk1 -e /sys -e /dev \

-e /proc 0:server 0:client1

8.6 Example 5, different keepTimes for some directories

You can do this very easy and obvious with the following (from the previous examples) known trick.
Lets say you want to keep your backup for 60 days and all files in the directory “notimportant” for only
7 days.
Simply make two backups, one with --keepAll 60d and exclude directory “notimportant”. Make the
second backup with --keepAll 7d for the missing directory. Like described in Example 3, create a
relationship between the backups. So, if you move or copy a file between “notimportant”’ and the rest
of your saved directories, you will not use additional space for the file.

8.7 Example 6, using lateLinks

After reading the previous example, it should not be a problem for you to understand how to configure
multiple source directories (see example 2) and how to configure cross linking between to backup (see
examples 3 and 4). I now assume, that you generate a configuration file with

storeBackup.pl -g stbu.conf

• Configure storeBackup to make a backup to you backup directory via NFS. You configure all options
in the configuration file stbu.conf and you set among others:

lateLinks = yes

lateCompress = yes

doNotDelete = yes

If you have a high bandwidth line, there is no need to change lateCompress from no to yes. Because
of doNotDelete = yes you will not have to wait for the deletion of old backups.

• Make your backup(s). (Like always, the very first backup will be slow.) You do not have to do
anything more from your client (NFS client) side.

• Start (via cron) on the server (NFS server = backup server):

storeBackupUpdateBackup.pl -f stbu.conf -b <backupDirDir> \

-l /tmp/stbuUpdate.log

to generate the missing hard links (and others).

• Start (via cron) on the server:

storeBackupDel.pl -f <cf1> -b <backupDirDir> \

--unset doNotDelete

This will overwrite (unset) also the doNotDelete flag in the configuration file.
You have to set backupDir in the command above to the same location you specified in the config-
uration file of storeBackup.pl. If it’s the same path on the client and on the server, you don’t have
to overwrite it (you don’t have to specify it on the command line of storeBackupUpdateBackup.pl).
(You can read more about configuration files and command line options in section 7.1.)

You can also make the very first backup with the lateLinks option set. Naturally, you have to run
storeBackupUpdateBackup.pl to get a complete backup.
Detailed explanations about option lateLinks are available in Using option lateLinks, see chapter 7.5.

79

9 FAQ, Frequently asked Questions

1 I don’t want to compress any file
2 Where is the GUI?
3 I do not need that lateLinks stuff
4 Making a remote Backup with SSH (no NFS)
5 I like this blocked file stuff and want to use it for all files bigger than 50 MB
6 How do I make a full backup of my GNU/Linux machine?

* * * * *

FAQ 1 I don’t want to compress any file
I don’t want to compress any file in the backup. How can I configure this?
When configuring storeBackup.pl, set option exceptSuffix to ’.*’, which is the pattern for “match every-
thing”.

* * * * *

FAQ 2 Where is the GUI?
Why doesn’t storeBackup provide a GUI (graphical user interface)?
There are several reasons why storeBackup is command line driven:

• If it’s possible, you should make your backups on a regular basis via an automatic mechanism, e.g.,
via cron.

• If you run storeBackup on a server, there probably is no gui. Or think about the dependencies to
different versions of gui libraries.

• If you want to restore data to a somehow corrupted system, perhaps the gui (if you had one running)
does not start any more. Then it’s fine to have a tool, which you can start from any command line
or recovery CD. It also makes sense, to let storeBackup itself be part of the backup, see example 2.

• If you just want to restore some files, you can use any operating system specific file browser you
want. So that’s kind of a GUI and you only have to learn the path to the backup.

• If you want to write a separte GUI calling storeBackup, you’re welcome!

* * * * *

FAQ 3 I do not need that lateLinks stuff
I only want to make my backup to an external usb drive and don’t want to use this new option “lateLinks”.
How can I do this?
You don’t have to concern yourself with this “highly sophisticated option” (or with storeBackupUpdate-
Backup.pl) if you do not use option lateLinks. Have a look at Example 1.

* * * * *

FAQ 4 Making a remote Backup with SSH (no NFS)
Under GNU/Linux, it is also possible to back up data over an SSH connection. This has the advantage
that no separate network file system has to be configured (as it is the case for NFS).
In order to NFS mount the target directory, the sshfs program has to be used. It is shipped with most
distributions, but can also be obtained from http://fuse.sourceforge.net/sshfs.html47.
The command to mount the remote directory /var/backup on the computer chronos as user “backup” to
the target directory /mnt/target is:

sshfs backup@chronos:/var/backup /mnt/target

47http://fuse.sourceforge.net/sshfs.html

80

http://fuse.sourceforge.net/sshfs.html

Now storeBackup.pl only has to be configured to place the backup in /mnt/target. After the backup, the
target directory can be unmounted with fusermount -u /mnt/target.

Speeding up a Remote Backup over SSHFS

sshfs uses an individual network request for each individual hardlink that has to be set and for each single
file that has to be deleted. Since the latency for any network operation is generally several magnitudes
larger than for any local operation, backing up to a remote system can therefore be very slow even if the
network bandwith is as high as for a local harddisk.
For this reason, it is strongly recommended to use the lateLinks and doNotDelete options for remote
backups. Their usage allows to perform the hardlinking and deletion operations on the remote system
only and generally speeds up backups by a factor of 10 to 75, depending on the amount of changed data
and the latency of the network.
The general procedure is as follows:

1. Mount remote system:

sshfs backup@chronos:/var/backup /mnt/target

2. Do the backup:

storeBackup.pl --backupDir /mnt/target --lateLinks \

--doNotDelete [other options]

3. Unmount remote system:

fusermount -u /mnt/target

4. Set hardlinks on remote system:

ssh -T -l backup ebox.rath.org \

’storeBackupUpdateBackup.pl --backupDir /var/backup’

5. Delete old backups on remote system:

ssh -T -l backup chronos \

"storeBackupDel.pl --backupDir /var/backup [other options]"

Note that this requires that storeBackup is also installed on the remote system.

* * * * *

FAQ 5 I like this blocked file stuff and want to use it for all files bigger than 50 MB
To archive the desired result, simply set:

checkBlocksSuffix = .*

checkBlocksMinSize = 50M

This configuration will use blocked files for all file with a size of 50 megabyte or more. If you want another
size than 50 megabyte, eg. 800 kilobyte, set the value of checkBlocksMinSize to 800k.

Explanation for the experts: storeBackup.pl will generate an internal rule from the configuration above:

’$file =~ /.*$/’ and ’$size >= 52428800’

You can also directly use the following rule:

’$size >= &::SIZE("50M")’

to get the same result.

* * * * *

81

FAQ 6 How do I make a full backup of my GNU/Linux machine?
First of all, generate a configuration file:

storeBackup.pl -g completeLinux.conf

Open the configuration file with an editor of your choice and edit the following options:

sourceDir = /

Set sourceDir to /, so the whole file system will be saved.

backupDir=/media/drive

Here, I assume your attached hard disk for the backup uses path /media/drive. You have to change this
if it’s mounted elsewhere. Naturally, you also can save your backups eg. on an nfs mount. If you do so,
you can find an explanation how to a remote file system via nfs in section 7.9. If you make a backup via
nfs, you should read section 7.5.

Next, configure the directories you do not want to backup. We have to include backupDir in this list to
avoid recursion.

exceptDirs= tmp var/tmp proc sys media

If there a other directories you do not want to save (e.g., nfs mounted home directories), include them
into this list.

Now let’s say you also want to exclude the contents of all other directories called tmp or temp (upper or
lower case) anywhere in the file system. So add:

exceptRule= ’$file =~ m#/te?mp/#i’

To avoid cached files, add all directories with cache in their names (upper or lower case) to that rule.
Change the line above to:

exceptRule= ’$file =~ m#/te?mp/#i’ or ’$file =~ m#cache.*/#i’

But now there is the risk, that perhaps some important files are not saved because the are stored in a
directory called /tmp/, /temp/ or a directory with e.g., Cache in its name.
So write all files excluded because of rule exceptRule in a file to check these names after the backup:

writeExcludeLog=yes

In every backup, there will be a file called .storeBackup.notSaved.bz2 listing all these files.
To copy all file types, expecially block and character devices in /dev, set:

cpIsGnu=yes

For making a full backup, you also have to store the boot sector. The following script assumes your
system boots from drive sda. You may need to change this value to match your system. Make the
directory /backup and locate the following script (pre.sh) in that directory:

#! /bin/sh

rm -f /backup/MBR.prior

mv /backup/MBR.copy /backup/MBR.prior

copy the boot loader

dd if=/dev/sda of=/backup/MBR.copy bs=512 count=1 > /dev/null 2>&1

copy back with:

dd if=/backup/MBR.copy of=/dev/sda bs=512 count=1

Set the permissions:

chmod 755 /backup/pre.sh

To call the script, set precommand in the configuration file:

precommand = /backup/pre.sh

To see that something is happening during the backup, set:

82

progressReport = 2000

printDepth = yes

Look at the keep* option and set the appropriate values and set logFile to a useful value for you.
Also set the other options to values that fit to your need.

As always, the first backup will take some time because of calculating all the md5 sums and especially
because of file compression. The next backups will be much faster.
After making your backup, you should control which files were not in the backup because of option
exceptRule.

10 Contributors

Thanks to all people who shared their ideas with me, sent me bug reports and were patient enough to
evolve storeBackup to what it is.
I like to list especially

• Francesco Potorti who helped a lot in bug fixing in parts of version 1.x

• Arthur Korn for lots of discussions and his support in Debian.

• Nikolaus Rath (Nikolaus at rath.org) who made substantial contributions to version 2 and rewoke
my interest in continuing the development storeBackup

• W. David Shields, ViewMachine Corporation, Florida, USA, (dave at viewmachine.com) who en-
hanced the documentation, discussed new enhancements and found many bugs during the testing
phases of version 3.

This should not neglect all the others who helped me.

11 Change Log

Copyright (c) 2002-2012 by Heinz-Josef Claes (see README)

Published under the GNU General Public License v3 or any later version

version 1.0 2002.05.07

first official release

version 1.1 2002.05.18

statistical output ’over all files/sec’ was unclear

changed to:

over all files/sec (real time) =

over all files/sec (CPU time) =

CPU usage =

versions are now (overall checksum):

storeBackup.pl -V => 1.3461

storeBackupls.pl -V => 1.2583

storeBackupVersions.pl -V => 1.4313

storeBackupRecover.pl -V => 1.4992

version 1.2 2002.05.19

storeBackup.pl:

with option --exceptDirs you can also use wildcards

added option --contExceptDirsErr

storeBackupRecover.pl:

83

if you extract a directory (eg. abc) and there exists another

directory with a name with the same beginning (eg. abcd), this

one will also be extracted -> corrected

versions are now (overall checksum):

storeBackup.pl -V => 1.3471

storeBackupls.pl -V => 1.2583

storeBackupVersions.pl -V => 1.4313

storeBackupRecover.pl -V => 1.5145

version 1.3 2002.05.22

all programs:

the usage of the programms with sensless list parameters

(like *.h) was ignored -- now an error message is produced

storeBackupVersions.pl:

improved performance, checks same inodes before calculating

md5 sums

storeBackup.pl:

when the time for backup was < 1 sec, a division by zero could happen

(thanks to Joerg Paysen for the report)

added --keepMinNumberAfterLastOfDay (instead of replacing --keepMinNumber)

versions are now (overall checksum):

storeBackup.pl -V => 1.3491

storeBackupls.pl -V => 1.2583

storeBackupVersions.pl -V => 1.4483

storeBackupRecover.pl -V => 1.5159

version 1.4 2002.05.27

all programs:

support recovering of hard links in the source tree of storeBackup.pl

storeBackupRecover.pl

fixed some little bugs introduced in version 1.2

storeBackupConvertBackup.pl

new program to convert old backup directories (target) to the new

format of .md5CheckSums[.bz2]

YOU HAVE TO CALL IT, IF YOU WANT TO USE VERSION 1.4 WITH OLD BACKUPS!

versions are now (overall checksum):

storeBackup.pl -V => 1.3568

storeBackupls.pl -V => 1.2583

storeBackupVersions.pl -V => 1.4775

storeBackupRecover.pl -V => 1.4073

storeBackupConvertBackup.pl -V => 1.9776

version 1.5 2002.05.28

storeBackup.pl

better statistics about freed/used space on disk

versions are now (overall checksum):

storeBackup.pl -V => 1.3606

storeBackupls.pl -V => 1.2583

storeBackupVersions.pl -V => 1.4775

storeBackupRecover.pl -V => 1.4073

storeBackupConvertBackup.pl -V => 1.9776

84

version 1.6 2002.06.10

storeBackupVersions.pl

added flags:

--showAll (same as all below)

--size (shows size of found files)

--uid (show also uid of source file)

--gid (show also gid of source file)

--mode (show also mode of source file)

--ctime (show also creation time of source file)

--mtime (show also modify time of source file)

storeBackup.pl

added weekday to INFO output in log file when deleting old dir

via parameter --keepOnlyLastOfDay

ROADMAP is actualized

versions are now (overall checksum):

storeBackup.pl -V => 1.3617

storeBackupls.pl -V => 1.2583

storeBackupVersions.pl -V => 1.4401

storeBackupRecover.pl -V => 1.4073

storeBackupConvertBackup.pl -V => 1.9776

version 1.7 2002.07.2

storeBackup.pl

added flag --ignoreReadError

added flags --file, --generate, --print: you can now use a

configuration file instead of putting all in command line options

versions are now (overall checksum):

storeBackup.pl -V => 1.2871

storeBackupls.pl -V => 1.2972

storeBackupVersions.pl -V => 1.3795

storeBackupRecover.pl -V => 1.3280

storeBackupConvertBackup.pl -V => 2.0308

version 1.8 2002.08.17

storeBackupConvertBackup.pl

updated program to convert old backup directories (target) to the new

format of .md5CheckSums[.bz2] and .md5CheckSums.info

YOU HAVE TO CALL IT, IF YOU WANT TO USE VERSION 1.7 WITH OLD BACKUPS!

see file bin/_ATTENTION_ for detailed information

storeBackupls.pl

added option -v for verbose information

storeBackup.pl

- correction of minor errors

- added list parameter(s) otherBackupDirs

allows you to hard link to older trees from the same backup

allows you to hard link to backup trees of another backup series

This gives you the possiblity to share data via hard link between

independent backups. See README file for more information (search

for ’otherBackupDirs’).

storeBackupVersion.pl + storeBackupRecover.pl

- compatible with new file format

85

version 1.8.1 2002.08.19

Error fixing:

storeBackup.pl

- didn’t build dbm(filename) correctly when first backup with

otherBackupDirs

- pattern for recognizing of relative part of backup path did not

work with some strange path names, pattern replaced with substr

and length

- if the directory to backup was empty, then no .md5CheckSum.bz2

was created

version 1.9 2002.08.26

storeBackup.pl

- new option --chmodMD5File

- total internal replacement for handling --onlyMD5Check

is now handled in ::buildDBMs -> nearly as fast as without

--onlyMD5Check

- new option --printDepth

- options --onlyMD5Check and --onlyMD5CheckOn are now only needed

if hard linking with other backups (see otherBackupDirs)

version 1.9.1 2002.08.31

storeBackup.pl

- performance improvement when copying small files (< 100KB)

- error fix: --onlyMD5Check was not as fast as described in v1.9

du to an error when making the package (but fortunately the

correct version was in my backup)

versions are now (overall checksum):

storeBackup.pl -V => 1.3138

storeBackupls.pl -V => 1.2626

storeBackupVersions.pl -V => 1.4091

storeBackupRecover.pl -V => 1.3454

storeBackupConvertBackup.pl -V => 2.0844

version 1.10 2002.10.20

storeBackup.pl

- options --onlyMD5Check and --onlyMD5CheckOn are now obsolete

storeBackup decides itself, if the functionality is needed

- you do not have to worry when using ’otherBackupDirs’ if it’s not

yet ready. this is recognized automatically

- added options --withUserGroupStat --userGroupStatFile

versions are now (overall checksum):

storeBackup.pl -V => 1.3325

storeBackupls.pl -V => 1.2966

storeBackupVersions.pl -V => 1.4295

storeBackupRecover.pl -V => 1.3709

storeBackupConvertBackup.pl -V => 2.0844

version 1.10.1 2002.10.27

storeBackup.pl + storeBackupRecover.pl

- replaced syscall lchown with fork-exec chown

because of error messages with perl 5.8 (SuSE 8.1)

versions are now (overall checksum):

storeBackup.pl -V => 1.3334

storeBackupls.pl -V => 1.2966

86

storeBackupVersions.pl -V => 1.4295

storeBackupRecover.pl -V => 1.3722

storeBackupConvertBackup.pl -V => 2.0844

version 1.11 2003.03.05

storeBackup.pl

- --exceptSuffix: removed ’.bmp’, added ’.pgp’

- changed default of parameter --logFile

- new parameters:

--plusLogStdout, --saveLogs, --compressWith,

--logInBackupDir, --compressLogInBackupDir,

--logInBackupDirFileName

- if called with parameter -f ... --print then

evaluation of wildcards is performed

- correction of litte faults

versions are now (overall checksum):

storeBackup.pl -V => 1.3435

storeBackupls.pl -V => 1.3152

storeBackupVersions.pl -V => 1.4406

storeBackupRecover.pl -V => 1.3862

storeBackupConvertBackup.pl -V => 2.0844

version 1.12 2003.04.16

storeBackup.pl

- exception list was not taken into account when checking

collisions from options of -t and -s

- added parameter --copyBWLimit (uses rsync for copying)

- in some cases internal linkage of duplicated files did not

working

- added parameter --postcommand

- added statistical output for used length of queues

versions are now (overall checksum):

storeBackup.pl -V => 1.3537

storeBackupls.pl -V => 1.3322

storeBackupVersions.pl -V => 1.4518

storeBackupRecover.pl -V => 1.4001

storeBackupConvertBackup.pl -V => 2.0844

llt -V => 1.4294

multitail.pl -V => 1.4555

version 1.12.1 2003.05.01

storeBackup.pl

- When copying files < 100 KB into the backup, owner and permissions

were not set correctly. When hard linking in the next backup, this

was corrected. -> Error fixed

- When problems with forking cp or the compression program occured,

this was not handled correctly.

versions are now (overall checksum):

storeBackup.pl -V => 1.3545

storeBackupls.pl -V => 1.3322

storeBackupVersions.pl -V => 1.4518

storeBackupRecover.pl -V => 1.4001

storeBackupConvertBackup.pl -V => 2.0844

llt -V => 1.4294

multitail.pl -V => 1.4555

87

version 1.12.2 2003.05.18

storeBackup.pl

- When copying files < 100 KB into the backup, sometimes the

storeBackup internal scheduler slows down the backup -> fixed

- Files with size zero where not handled correctly -> fixed

- Some complicated if cases where not covered -> fixed

- better internal documentation

- granularity of the internal scheduler is now finer, prog should be

about 5% faster

- added /etc/cron.daily/storebackup from Arthur Korn for Debian users

versions are now (overall checksum):

storeBackup.pl -V => 1.3554

storeBackupls.pl -V => 1.3322

storeBackupVersions.pl -V => 1.4518

storeBackupRecover.pl -V => 1.4001

storeBackupConvertBackup.pl -V => 2.0844

llt -V => 1.4294

multitail.pl -V => 1.4555

version 1.13 2003.07.28

- BSD is now supported

storeBackup.pl

- Many new options for managing old backups. New/changed parameters:

--noDelete changed to --doNotDelete

--keepAll can now handle the ’archive flag’

--keepWeekDay can now handle the ’archive flag’

--keepFirstOfYear is new

--keepLastOfYear is new

--keepFirstOfMonth is new

--keepLastOfMonth is new

--firstDayOfWeek is new

--keepFirstOfWeek is new

--keepLastOfWeek is new

--keepOnlyLastOfDay changed to --keepDuplicate

--keepMaxNumber is new

--keepMinNumberAfterLastOfDay has gone

- Correct error message if you do not have permission to read a

file (not being root).

- Option --exceptDirs only worked correct when storeBackup was

started in the source directory (sourceDir)

storeBackupDel.pl

- new programm to only delete old backups with the flags described

above at storeBackup.pl

versions are now (overall checksum):

storeBackup.pl -V => 1.3664

storeBackupls.pl -V => 1.3509

storeBackupVersions.pl -V => 1.3765

storeBackupRecover.pl -V => 1.4154

storeBackupConvertBackup.pl -V => 2.0844

storeBackupDel.pl -V => 1.3606

llt -V => 1.2222

multitail.pl -V => 1.4555

version 1.14 2003.08.26

storeBackup.pl

- most parts of the statistical output were twice when one ore more

old backups were deleted

88

- now runs on AIX

- checks, if targetDir has write permissions (better error message)

- replace statistic message:

additional used space

with

add. used space in files

storeBackupDel.pl

- can use the config file of storeBackup.pl to operate

storeBackupls.pl

- can use the config file of storeBackup.pl to show analysis of

livetime of old backups

versions are now (overall checksum):

storeBackup.pl -V => 1.2993

storeBackupls.pl -V => 1.2102

storeBackupVersions.pl -V => 1.2949

storeBackupRecover.pl -V => 1.3134

storeBackupConvertBackup.pl -V => 2.0844

storeBackupDel.pl -V => 1.2795

llt -V => 1.2222

multitail.pl -V => 1.4555

version 1.14.1 2003.10.25

storeBackup.pl (fixed)

- in some cases, setuid and setgid were not stored in the backup

- depending on the kernel version, permissions in the backup were

not set correctly

storeBackupRecover.pl (fixed)

- depending on the kernel version, permissions in the backup were

not set correctly

versions are now (overall checksum):

storeBackup.pl -V => 1.3001

storeBackupls.pl -V => 1.2102

storeBackupVersions.pl -V => 1.2949

storeBackupRecover.pl -V => 1.3147

storeBackupConvertBackup.pl -V => 2.0844

storeBackupDel.pl -V => 1.2795

llt -V => 1.2222

multitail.pl -V => 1.4555

version 1.15 2004.02.06

storeBackup.pl

- otherBackupDirs now understands ’from-to’ and ’all’

--includeDirs is new

--exceptPattern is new

--includePattern is new

--resetAtime (in the source directory) is new

- sets atime and mtime in the backup to the same values as in

the source directory

deleting of old backups (storeBackup.pl, storeBackupls.pl,

storeBackupDel.pl)

- fixed bug with options --keepMinNumber and --keepMaxNumber

- set default value of --keepDuplicate to 7d

- result of checking old log files is now write to logfile

inside of backup (if wanted)

storeBackupRecover.pl

- restores atime and mtime when restoring backups

89

llt

- output now in format yyyy.mm.dd, no longer in german format

configuration file syntax

- allows now the use of single quotes

storeBackupMount.pl

- pings server, mounts file systems, calls storeBackup and

umounts filesystems

versions are now (overall checksum):

(these values have changed dramatically because I switched from cvs to svn)

storeBackup.pl -V => 157.8243

storeBackupls.pl -V => 96.8069

storeBackupVersions.pl -V => 138.2092

storeBackupRecover.pl -V => 171.4032

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 153.4117

storeBackupMount.pl -V => 129.1638

llt -V => 103.7589

multitail.pl -V => 62.3245

version 1.15.1 2004.02.08

storeBackup.pl

- fixed a bug when reading the config file

(affecting exceptPattern, includePattern)

- fixed a bug when using ’sourceDir = /’ and exceptPattern

or includePattern

versions are now (overall checksum):

storeBackup.pl -V => 183.5295

storeBackupls.pl -V => 143.9218

storeBackupVersions.pl -V => 171.1896

storeBackupRecover.pl -V => 212.6288

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 183.3940

storeBackupMount.pl -V => 170.2637

llt -V => 104.0773

multitail.pl -V => 116.9386

version 1.16 2004.02.25

storeBackup.pl

- added parameter --exceptTypes

- store data in dbm files with pack / unpack

- better handling if maximum number of hard links is exceeded

- precommand and postcommand now understand single quotes nested

in double quotes in the commandline (like ...Pattern)

- storeBackup didn’t store the uncompress command correctly since

version 1.15. This means, that storeBackupRecover could not

restore the original version. This is because of the missing

option ’-d’ in file .md5CheckSums.info. Wrong version:

uncompress=bzip2

but must be

uncompress=bzip2 -d

Change this line with an editor or use the script correct.sh

storeBackupRecover.pl

- storeBackupConvertBackup.pl had a bug, so that storeBackupRecover

did not work any more. storeBackupRecover is now able to

90

handle converted backups (again).

versions are now (overall checksum):

storeBackup.pl -V => 183.9252

storeBackupls.pl -V => 144.0733

storeBackupVersions.pl -V => 171.5950

storeBackupRecover.pl -V => 213.5498

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 183.7625

storeBackupMount.pl -V => 170.9166

llt -V => 104.0773

multitail.pl -V => 116.9386

version 1.16.1 2004.03.07

storeBackup.pl

- better explanations in the configuration file

and for command line options

- better error messages

- option --print did not work for some values

- fixed a bug in the module for reading the

configuration file with keepWeekday

- when printing to a log file and to stdout

simultaneously, a possible error message with exit

is now also printed to stdout

- option verbose now has the same effekt as debug=1

versions are now (overall checksum):

storeBackup.pl -V => 184.4928

storeBackupls.pl -V => 144.6597

storeBackupVersions.pl -V => 172.0055

storeBackupRecover.pl -V => 214.0630

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 184.5203

storeBackupMount.pl -V => 171.2973

llt -V => 104.0773

multitail.pl -V => 117.4461

version 1.16.2 2004.04.04

storeBackup.pl

- exit status is now correct (0) when running successfully

- option --verbose now prints some additionally verbose messages

it is not similar any more to --debug 1

- the log file written into the backup now contains the

"delete old backupevaluation"

- unsupported file type didn’t generate an error message

instead, the blew up the backup -> corrected

- integer overrun in the statistical output when saving large

amounts of data is corrected

storeBackup_du.pl added to the package

versions are now (overall checksum):

storeBackup.pl -V => 184.6565

storeBackupls.pl -V => 144.2247

storeBackupVersions.pl -V => 172.0004

storeBackupRecover.pl -V => 214.0566

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 184.5157

storeBackupMount.pl -V => 171.2909

llt -V => 104.0773

multitail.pl -V => 116.9386

91

version 1.17 2004.09.04

storeBackup.pl

- reduced size of temporary berkeley db files

this results in better caching (and therefore better performance

for backups with many files)

- also print size of the berkely db files into the statistical output

- new option --unlockBeforeDel

- various little bug fixes (corrected comments and print outputs)

storeBackupMount.pl

- better exit status, distinguishes between errors in

storeBackup und storeBackupMount

versions are now (overall checksum):

storeBackup.pl -V => 184.9850

storeBackupls.pl -V => 144.6790

storeBackupVersions.pl -V => 173.1101

storeBackupRecover.pl -V => 214.4541

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 184.8048

storeBackupMount.pl -V => 171.8483

storeBackup_du.pl -V => 73.0682

llt -V => 104.0773

multitail.pl -V => 118.2667

version 1.18 2004.06.03

storeBackup.pl

- minor corrections to statistical output

- fixed a bug with options --includePattern and --exceptPattern:

There had to be brackets around a logical expression.

storeBackupRecover.pl

- restoring of directories with a round bracket in the name did not

work sometimes, fixed

versions are now (overall checksum):

storeBackup.pl -V => 185.0688

storeBackupls.pl -V => 144.6790

storeBackupVersions.pl -V => 173.1101

storeBackupRecover.pl -V => 215.1446

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 184.8048

storeBackupMount.pl -V => 171.8483

storeBackup_du.pl -V => 73.0682

llt -V => 104.0773

multitail.pl -V => 118.2667

version 1.18.1 2004.06.08

storeBackup.pl

- fixed a silly bug which occured one did not use option progressReport

versions are now (overall checksum):

storeBackup.pl -V => 185.1527

storeBackupls.pl -V => 144.6790

storeBackupVersions.pl -V => 173.1101

storeBackupRecover.pl -V => 215.1446

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 184.8048

storeBackupMount.pl -V => 171.8483

storeBackup_du.pl -V => 73.0682

llt -V => 104.0773

multitail.pl -V => 118.2667

92

version 1.18.2 2004.06.26

storeBackup.pl

- storeBackup calculated too much md5 sums, corrected

- storeBackup had a dependency with perl versions >= 5.8,

now it does not depend on this new version any more

versions are now (overall checksum):

storeBackup.pl -V => 185.4812

storeBackupls.pl -V => 145.1333

storeBackupVersions.pl -V => 173.1101

storeBackupRecover.pl -V => 215.5421

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 185.0938

storeBackupMount.pl -V => 171.8483

storeBackup_du.pl -V => 73.0682

llt -V => 104.0773

multitail.pl -V => 118.2667

version 1.18.3 2004.07.06

storeBackup.pl

- much better performance when used with exceptPattern or

includePattern

storeBackupls.pl

- if used with option -f, default is to read the the location

of the backup from the configuration file

this default can be overwritten (if you have different mount

points)

versions are now (overall checksum):

storeBackup.pl -V => 185.8650

storeBackupls.pl -V => 173.5429

storeBackupVersions.pl -V => 173.9271

storeBackupRecover.pl -V => 216.1658

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 185.5475

storeBackupMount.pl -V => 172.4720

storeBackup_du.pl -V => 73.0682

llt -V => 104.0773

multitail.pl -V => 118.2667

version 1.18.4 2004.07.11

storeBackup.pl

- (much) better performance because of reducing the number of

md5sum calls when using otherBackupDirs

- the very first backup of a backup series did not hard link

to another backup series defined with otherBackupDirs

- some temporary files were not deleted

versions are now (overall checksum):

storeBackup.pl -V => 186.1958

storeBackupls.pl -V => 173.9472

storeBackupVersions.pl -V => 174.1391

storeBackupRecover.pl -V => 216.4308

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 185.7402

storeBackupMount.pl -V => 172.4720

storeBackup_du.pl -V => 73.0682

llt -V => 104.0773

multitail.pl -V => 118.2667

version 1.19 2005.08.05

storeBackup.pl

93

- in some rare cases filenames were stored with a leading slash

in .md5CheckSum. I could not be simulated by me. But the bug

should be fixed.

- some fixes in handling of directory paths

- uid and gid were not set correctly for symbolic links in the

backups (in the files, not the description of the files)

- formatting of file sizes with human readable number (eg. 3.5k)

didn’t work properly in all cases

- check for symbolic links before opening temporary files

- set permissions of backup root directory to 0755

(independent of umask)

storeBackupRecover.pl

- could not restore directory ’.’ with option -r

- uid and gid were not set correctly for symbolic links when

restoring, instead they were changed in the file where the

symlink pointed to

versions are now (overall checksum):

storeBackup.pl -V => 186.1958

storeBackupls.pl -V => 173.9472

storeBackupVersions.pl -V => 174.1391

storeBackupRecover.pl -V => 216.4308

storeBackupConvertBackup.pl -V => 178.6868

storeBackupDel.pl -V => 185.7402

storeBackupMount.pl -V => 172.4720

storeBackup_du.pl -V => 73.0682

llt -V => 107.5789

multitail.pl -V => 118.2667

- changed max args for GNU/Linux to 64*1024 because of possible

problems when using multibyte character sets

version 1.19.1 2005.10.08

storeBackup.pl

- reduced the lenght of the command line because of problems

with dual byte characters

- all temporary file names now have a 64 bit random number

all (randomly generated) file names are checked for existence

before used

version 1.19.2 2005.11.13

storeBackup.pl

- when saving with --sourceDir / without using --includeDirs then

storeBackup calculated useless md5sums

version 2.0 2008.11.09

all programs:

- changed licence to gpl-3

- backup format is compatible to version 1.19,

options *have changed*

- fixed several bugs

- introduction of lateLinks (this is the major change)

- new options lateLinks, lateCompress

- new module for interpreting command line arguments and

configuration file: a combination is now possible

- better support for files > 2GB on 64 bit operating systems

storeBackup.pl, storeBackupDel.pl:

- arguments in command line can overwrite configuration file

94

- new option keepRelative

- new option deleteNotFinishedDirs

storeBackup.pl:

- rewrite of core engine

- changed algorithm for linking with old backups

- directories specified with exceptDirs will now be created

as empty directories

- new option ignorePerms

- new option cpIsGnu (support for special files)

- new option saveRAM (default is now to hold temp. DBs in RAM)

- removal of option exceptDirsSep

- renamed option withTime to suppressTime

- renamed option compressMD5File to doNotCompressMD5File

- exceptPattern has gone, now there is exceptRule (different syntax)

- includePattern has gone, now there is includeRule (different syntax)

- new option writeExcludeLog

- setting time on (absolute) symbolic link resulted in setting time

in the original file -> corrected

storeBackupUpdateBackup.pl

- new program

- sets links asynchronously after running storeBackup with lateLinks

storeBackupSearch.pl

- new program

- allows searching in backups with a free definition depending on

filename, size, uid, gid, ctime, mtime and file type

version 2.0.1 2008.12.14

storeBackupDel.pl:

- option keepLastOfWeek wasn’t recognized when set in

configuration file

storeBackup.pl:

- corrected wrong addition for statistical output of

option progressReport

version 3.0 2009.03.15

- support of ’;’ as comment sign in configuration files

(additionally to ’#’ for better readability)

storeBackupCheckBackup.pl

- new program, checks consistency of a backup

storeBackupDel.pl:

- option keepLastOfWeek wasn’t recognized when set in

configuration file

storeBackup.pl:

- new options for saving files blocked:

checkBlocksSuffix

checkBlocksSuffixMinSize

checkBlocksSuffixBS

checkBlocksCompr

- new options for saving files blocked:

checkBlocksRule (0-4)

checkBlocksBS (0-4)

checkBlocksCompr (0-4)

checkBlocksRead (0-4)

- new options for saving devices blocked:

checkDevices (0-4)

checkDevicesDir (0-4)

checkDevicesBS (0-4)

checkDevicesCompr (0-4)

- new option to hard link symbolic links:

95

linkSymlinks

- new option for defining which files to compress:

comprRule

version 3.1 2009.05.24

storeBackup.pl

- storeBackup did not backup sockets, now it does

- for new files, the md5 sum is now calculated before *and*

after copying / compressing for safety reasons. The file could

have been changed during that time. So the md5 sum would not

match the real one. A file with the firstly calculated

md5 sum later could be hard linked to the changed file which

means there is no backup of its content.

If both md5 sums do not match, an warning is generated and

the md5 sum is set to ggggg... which is a not possible value.

This problem does not exist for blocked files in v3.0.

- improved statistic at the end of a run (sum of warnings

and errors)

- added options checkBlocksParallel and checkDevicesParallel

- added option linkToRecent

- name clashes because of compressing files (eg. add .bz2)

were not handeld corretly - bug was introduced in 3.0

corrected

- when making a backup with source=/ while not using

includeDir then the md5 sums of all files were calculated

also after the first backup

- corrected some issues with the statistical output

- option copyBWLimit is now deprecated because

- of internal performance optimization

- it is useless

- new option suppressWarning

storeBackupUpdateBackup.pl

- if sourceDir=/, for the very first backup with option

lateLinks an empty ’linkFrom’ file was generated which lead

to (useless) error messages. corrected.

storeBackupCheckBackup.pl

- now also checks if files in the backup are not listed

in .md5CheckSum

storeBackupRecover.pl

- the directories in the path to the restored files / directories

were not set the original permissions, corrected

llt

- added option --epoch to calculate human readable dates from

epoch based dates

man

- man pages for all programs (Thanks to Ryan Niebur)

all programs

- solved issues with single quotes in path and filenames

version 3.2 2009.07.18

storeBackup.pl

- new option --highLatency, useful on high latency lines

- corrected some typos in print statements to log files

- now also checks for size of files if files with two equal

md5 sums are detected

- fixed a bug when using *block* options. storeBackup.pl stopped

with an error message when blocked file was existing with same

path, filename, contents and times in another series but did

not exist in the own series of that backup.

- plus some very minor enhancements

96

all programs:

- if an option in a configuration file is set to nothing, the

default value (if exists) is used

version 3.2.1 1012.02.12

storeBackup.pl

- replaced File::Copy by own function, because File::Copy did not

handle strange filenames (eg. with \n) without warnings

- read .md5CheckSum.info with algorithm for configuration file

- changed comments for some options

- new parameter fileNameWithLineFeed to option suppressWarning:

suppresses warning if a filename contains a line feed

- write logInBackupDirFileName into .md5CheckSum.info so it can

be identified by storeBackupCheckBackup.pl

- deletition of old backups is now done before postcommand

- backup of a blocked file (or device) didn’t store all md5sums

for all blocks in the local .md5CheckSum file if two or more

block in one blocked file were identical

this means it is possible to restore the data with cat or bzcat,

but *not* with storeBackupRecover.pl !

- statistics for storage of blocked files corrected

- avoided some (useless) perl warnings about undef’ed variables

- avoided some (useless) perl warnings about gotos (happens in

new perl versions)

- if a file cannot be hard linked, storeBackup.pl makes a new

copy of that file. The warning about that fact was shifted to

debug output because it confused some users

- corrected some confusing code about combinations of compression,

lateCompression and lateLinks

- solved several possible timing issues (reading of tmp-result files

- masking for file names with \n was missing when writing into

lateLinks command file

- avoid possibility of division by zero when calculating time

for run (percentage) in statistics

- corrected calculation of ’sum of target all’ in statistics

- directories with \n in their name didn’t get right time stamps

in the backup; corrected

- permissions on directories with \n in their names were not set

correctly

storeBackupls.pl

- in storeBackupls.pl option keepLastOfWeek, backupDir and series

was ignored in the configuration file

- option -v didn’t work properly

- workaround for timing issue when reading value for inodeBackup

storeBackupMount.pl

- corrected filering of output from mount command

- added ’rw’, ’ro’ feature to overwrite read only or read write

from /etc/fstab

storeBackupCheckBackup.pl

- read .md5CheckSum.info with algorithm for configuration file

- add option includeRenamedBackups

- changed option -b to -c (for compatibility to storeBackupRecover.pl

- many error corrections (mostly written new)

storeBackupRecover.pl

- read .md5CheckSum.info with algorithm for configuration file

- backup of a directory / file starting with ’.’ didn’t work

- recovery of blocked files did not work in special cases

(depending on size of the blocks and compression flag)

- permissions on directories were not restored because if wrong

order - they are now set after restoring all files

- optimized performance (bigger block size for restoring blocked files)

97

- mtime of restored files was not set to original values because

of wrong order of setting permissions (corrected)

storeBackupUpdateBackup.pl

- replaced File::Copy by own function, because File::Copy did not

handle strange filenames (eg. with \n) without warnings

- read .md5CheckSum.info with algorithm for configuration file

- corrected line number when reporting problems with command file

(.storeBackupLinks/linkFile.bz2)

- directories didn’t get right time stamps when restoring; corrected

storeBackupVersions.pl

- read .md5CheckSum.info with algorithm for configuration file

version 3.3 2012.08

general

- command line option --unset now also works with list parameters

set in configuration files

(you can use eg. --unset otherBackupSeries with storeBackup.pl)

storeBackup.pl

- when saving blocked files or devices with a block size smaller

than 1M, then always bzip2 is used as compression algorithm -

doesn’t matter if you eg. had chosen gzip2. In the backup, the

suffix was eg. .gz, but compression algorithm was bzip2.

storeBackupRecover cannot restore these backups correctly!

Please restore with eg. zcat manually

- added rule-function COMPRESS_CHECK

- added option comprSuffix (now there exists a white list and a

black list to decide if a file should be compressed or not;

the rest of the files is rated by COMPRESS_CHECK)

- added option checkBlocksParallel (similar functionality

as eg. checkBlocksParallel0)

- use DB_File now done in eval. This means, that there is now

error message any more if this extension is not available

-> should solve problems with several NAS boxes

- ignore option ’mergeBackupDir’ used by new program

storeBackupMergeIsolatedBackup.pl

- added statistical output ’COMPR_CHECK’ for blocked files

- added keys to option ’suppressWarning’:

use_DB_File, use_IOCompressBzip2

- option ’ignoreReadError’ didn’t work - read errors on

directories always were shown as WARNING only; fixed

storeBackup.pl + storeBackupUpdateBackup.pl

- fixed bug: backup with block + lateLinks; 1st backup complete;

2nd backup with *no* changes to blocked file; 3rd backup with

changes to blocked file (all without UpdateBackup between 1st,

2nd and 3rd run) -> in 3rd run no blocks were linked to

existing one

storeBackupUpdateBackup.pl

- added support for replication, new options:

--copyBackupOnly, --dontCopyBackup, --archiveDurationCopyStation,

--dontDelInCopyStation, --genBackupBaseTreeConf,

--genCopyStationConf

storeBackupMount.pl

- Debian (and Ubuntu) changes all executables to a name without

the suffix ’.pl’. storeBackupMount.pl now looks for

storeBackup.pl _and_ storeBackup

storeBackupCheckBackup.pl

- corrected help text / man page

storeBackupDel.pl

- added ’BEGIN’ and ’END’ to log files for better support

through NAGIOS plugin

storeBackupSetupIsolatedMode.pl

98

- new program

storeBackupMergeIsolatedBackup.pl

- new program

storeBackupReplicationWizard.pl

- new program

linkToDirs.pl

- new program

12 License

Copyright (C)
Dr. Heinz-Josef Claes (2000-2009) [hjclaes at web.de]
Nikolaus Rath (2008) [Nikolaus at rath.org] (who made substantial contributions to version 2)

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.
The licenses for most software and other practical works are designed to take away your freedom to
share and change the works. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change all versions of a program–to make sure it remains free software for all its
users. We, the Free Software Foundation, use the GNU General Public License for most of our software;
it applies also to any other work released this way by its authors. You can apply it to your programs,
too.
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to
the recipients the same freedoms that you received. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.
Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.
For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this
free software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.
Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those domains in future versions of the GPL,
as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semicon-
ductor masks.

99

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing it
on a computer or modifying a private copy. Propagation includes copying, distribution (with or
without modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not
conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a
convenient and prominently visible feature that (1) displays an appropriate copyright notice, and
(2) tells the user that there is no warranty for the work (except to the extent that warranties are
provided), that licensees may convey the work under this License, and how to view a copy of this
License. If the interface presents a list of user commands or options, such as a menu, a prominent
item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it.
“Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one
that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole,
that (a) is included in the normal form of packaging a Major Component, but which is not part of
that Major Component, and (b) serves only to enable use of the work with that Major Component,
or to implement a Standard Interface for which an implementation is available to the public in source
code form. A “Major Component”, in this context, means a major essential component (kernel,
window system, and so on) of the specific operating system (if any) on which the executable work
runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to
generate, install, and (for an executable work) run the object code and to modify the work, including
scripts to control those activities. However, it does not include the work’s System Libraries, or
general-purpose tools or generally available free programs which are used unmodified in performing
those activities but which are not part of the work. For example, Corresponding Source includes
interface definition files associated with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is specifically designed to require, such
as by intimate data communication or control flow between those subprograms and other parts of
the work.

The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a covered work is covered
by this License only if the output, given its content, constitutes a covered work. This License
acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so
long as your license otherwise remains in force. You may convey covered works to others for the

100

sole purpose of having them make modifications exclusively for you, or provide you with facilities
for running those works, provided that you comply with the terms of this License in conveying all
material for which you do not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction and control, on terms that
prohibit them from making any copies of your copyrighted material outside their relationship with
you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable
law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of
the work as a means of enforcing, against the work’s users, your or third parties’ legal rights to
forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice; keep intact all notices stating that this License and any non-permissive terms added in
accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and
give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program,
in the form of source code under the terms of section 4, provided that you also meet all of these
conditions:

(a) The work must carry prominent notices stating that you modified it, and giving a relevant
date.

(b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section
7 additional terms, to the whole of the work, and all its parts, regardless of how they are
packaged. This License gives no permission to license the work in any other way, but it does
not invalidate such permission if you have separately received it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices,
your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by
their nature extensions of the covered work, and which are not combined with it such as to form
a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the compilation and its resulting copyright are not used to limit the access or legal rights of the
compilation’s users beyond what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

101

You may convey a covered work in object code form under the terms of sections 4 and 5, provided
that you also convey the machine-readable Corresponding Source under the terms of this License,
in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long
as you offer spare parts or customer support for that product model, to give anyone who
possesses the object code either (1) a copy of the Corresponding Source for all the software in
the product that is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corresponding Source from a network server
at no charge.

(c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding
Source may be on a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code saying where
to find the Corresponding Source. Regardless of what server hosts the Corresponding Source,
you remain obligated to ensure that it is available for as long as needed to satisfy these
requirements.

(e) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public
at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property
which is normally used for personal, family, or household purposes, or (2) anything designed or sold
for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether the product
has substantial commercial, industrial or non-consumer uses, unless such uses represent the only
significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys,
or other information required to install and execute modified versions of a covered work in that
User Product from a modified version of its Corresponding Source. The information must suffice
to ensure that the continued functioning of the modified object code is in no case prevented or
interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a transaction in which the right of possession and use
of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed under this section must
be accompanied by the Installation Information. But this requirement does not apply if neither
you nor any third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the

102

recipient, or for the User Product in which it has been modified or installed. Access to a network
may be denied when the modification itself materially and adversely affects the operation of the
network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the
public in source code form), and must require no special password or key for unpacking, reading or
copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions
from one or more of its conditions. Additional permissions that are applicable to the entire Program
shall be treated as though they were included in this License, to the extent that they are valid under
applicable law. If additional permissions apply only to part of the Program, that part may be
used separately under those permissions, but the entire Program remains governed by this License
without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permis-
sions from that copy, or from any part of it. (Additional permissions may be written to require their
own removal in certain cases when you modify the work.) You may place additional permissions
on material, added by you to a covered work, for which you have or can give appropriate copyright
permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you
may (if authorized by the copyright holders of that material) supplement the terms of this License
with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of
this License; or

(b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

(d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

(e) Declining to grant rights under trademark law for use of some trade names, trademarks, or
service marks; or

(f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient,
for any liability that these contractual assumptions directly impose on those licensors and
authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further restriction, you may remove that term.
If a license document contains a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms of that license document,
provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is void, and will automatically terminate your
rights under this License (including any patent licenses granted under the third paragraph of section
11).

103

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that copyright holder, and you cure
the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and
not permanently reinstated, you do not qualify to receive new licenses for the same material under
section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require acceptance. However, nothing other than
this License grants you permission to propagate or modify any covered work. These actions infringe
copyright if you do not accept this License. Therefore, by modifying or propagating a covered work,
you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all
assets of one, or subdividing an organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that transaction who receives a copy of the
work also receives whatever licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the Corresponding Source of the
work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under
this License. For example, you may not impose a license fee, royalty, or other charge for exercise
of rights granted under this License, and you may not initiate litigation (including a cross-claim
or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling,
offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a
work on which the Program is based. The work thus licensed is called the contributor’s “contributor
version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contrib-
utor, whether already acquired or hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its contributor version, but do not include
claims that would be infringed only as a consequence of further modification of the contributor
version. For purposes of this definition, “control” includes the right to grant patent sublicenses in
a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the con-
tributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify
and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a patent
or covenant not to sue for patent infringement). To “grant” such a patent license to a party means
to make such an agreement or commitment not to enforce a patent against the party.

104

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source
of the work is not available for anyone to copy, free of charge and under the terms of this License,
through a publicly available network server or other readily accessible means, then you must either
(1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the
benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the
requirements of this License, to extend the patent license to downstream recipients. “Knowingly
relying” means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country, would infringe
one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of
the covered work, then the patent license you grant is automatically extended to all recipients of
the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits
the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you are a party to an arrangement
with a third party that is in the business of distributing software, under which you make payment to
the third party based on the extent of your activity of conveying the work, and under which the third
party grants, to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or copies made
from those copies), or (b) primarily for and in connection with specific products or compilations
that contain the covered work, unless you entered into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot convey a covered work so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not convey it at all. For example, if
you agree to terms that obligate you to collect a royalty for further conveying from those to whom
you convey the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any
covered work with a work licensed under version 3 of the GNU Affero General Public License into a
single combined work, and to convey the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the special requirements of the GNU Affero General
Public License, section 13, concerning interaction through a network will apply to the combination
as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it, you have
the option of following the terms and conditions either of that numbered version or of any later
version published by the Free Software Foundation. If the Program does not specify a version
number of the GNU General Public License, you may choose any version ever published by the Free
Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.

105

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approxi-
mates an absolute waiver of all civil liability in connection with the Program, unless a warranty or
assumption of liability accompanies a copy of the Program in return for a fee.

106

	Super Quick Start
	storeBackup's Top Features
	Why should you back up your files?

	Installation
	Getting Started
	What's new?
	What's new in storeBackup version 3.3

	The Idea behind it
	abstract
	Another Backup Tool? / Roots of storeBackup
	What would be an ideal Backup Tool?
	How storeBackup works
	Illustration
	Reducing Disk Space
	Performance
	Example of a Run

	Components / Programs to use
	Supported Platforms and Tips
	storeBackup.pl
	storeBackup.pl Options

	storeBackupUpdateBackup.pl
	storeBackupRecover.pl
	storeBackupVersion.pl
	storeBackupSearch.pl
	storeBackupSetupIsolatedMode.pl
	storeBackupMergeIsolatedBackup.pl
	storeBackupls.pl
	storeBackupDel.pl
	storeBackupMount.pl
	storeBackupCheckBackup.pl
	storeBackupCheckSource.pl
	storeBackup_du.pl
	storeBackupConvertBackup.pl
	linkToDirs.pl
	llt
	multitail.pl

	General concepts
	configuration file and command line
	Deletion of old Backups
	Defining rules
	How to define if a file should be compressed

	Saving Image Files / raw Devices / Blocked Files
	using option lateLinks
	isolated mode / offline backups
	You can use isolated backup in the following way:
	setting up isolated mode

	replication of backups
	Quick start using storeBackup's Replication Wizard
	Why copying backups is not a substitute for replication functionality
	Basic concepts to know before using storeBackup's replication
	Understanding storeBackup's Replication Wizard via an example
	A simple replication example without the Replication Wizard
	How storeBackup's replication works

	special files generated and used by storeBackup
	configuring NFS
	what's an inode
	Statistical Output of storeBackup.pl
	Monitoring
	Limitations

	How to use storeBackup (Examples)
	Some Information in the Beginning
	Example 1, very simple backup
	Example 2, backup of multiple directories
	Example 3, make a big backup once a week, a small every day
	Example 4, backup from different machines, share data
	Example 5, different keepTimes for some directories
	Example 6, using lateLinks

	FAQ, Frequently asked Questions
	Contributors
	Change Log
	License

