
XForms

XForms (Forms Library)

A Graphical User Interface Toolkit for X

Library Version 1.2

January 2014

i

Table of Contents

. 1

Preface . 2

Part I - Using the Forms Library 7

1 Introduction . 8

2 Getting Started . 10
2.1 Naming Conventions . 10
2.2 Some Examples . 10
2.3 Programming Model . 14

3 Defining Forms . 16
3.1 Starting and Ending a Form Definition . 16
3.2 Boxes . 16
3.3 Texts . 18
3.4 Buttons . 19
3.5 Sliders . 20
3.6 ValSliders . 21
3.7 Input Fields . 21
3.8 Grouping Objects . 22
3.9 Hiding and Showing . 23
3.10 Deactivating and Triggering Objects . 23
3.11 Changing Attributes . 24

3.11.1 Color . 24
3.11.2 Bounding Boxes . 27
3.11.3 Label Attributes and Fonts . 28
3.11.4 Tool Tips . 32
3.11.5 Redrawing Objects . 32
3.11.6 Changing Many Attributes . 33
3.11.7 Symbols . 33

3.12 Adding and Removing Objects . 36
3.13 Freeing Objects . 36

4 Doing Interaction . 38
4.1 Displaying a Form . 38
4.2 Simple Interaction . 44
4.3 Periodic Events and Non-blocking Interaction 46
4.4 Dealing With Multiple Windows . 49
4.5 Using Callback Functions . 52
4.6 Handling Other Input Sources . 55

ii

5 Free Objects . 57
5.1 Free Object . 57
5.2 An Example . 60

6 Goodies . 70
6.1 Messages and Questions . 70
6.2 Command Log . 74
6.3 Colormap . 75
6.4 File Selector . 76

Part II - The Form Designer 82

7 Introduction . 83

8 Getting Started . 84

9 Command Line Arguments 87

10 Creating Forms . 89
10.1 Creating and Changing Forms . 89
10.2 Adding Objects . 89
10.3 Selecting Objects . 89
10.4 Moving and Scaling . 90
10.5 Aligning Objects . 90
10.6 Raising and Lowering . 91
10.7 Setting Attributes . 91
10.8 Generic Attributes . 91

10.8.1 Basic Attributes . 92
10.8.2 Font . 93
10.8.3 Misc. Attributes . 93
10.8.4 Colors . 93

10.9 Object Specific Attributes . 93
10.10 Cut, Copy and Paste . 94
10.11 Groups . 94
10.12 Hiding and Showing Objects . 95
10.13 Testing Forms . 95

11 Saving and Loading Forms 96

12 Language Filters . 102
12.1 External Filters . 102
12.2 Command Line Arguments of the Filter . 103

13 Generating Hardcopies . 104

iii

Part III - Object Classes . 106

14 Introduction . 107

15 Static Objects . 109
15.1 Box Object . 109

15.1.1 Adding Box Objects . 109
15.1.2 Box Types . 109
15.1.3 Box Attributes . 109
15.1.4 Remarks . 110

15.2 Frame Object . 110
15.2.1 Adding Frame Objects . 110
15.2.2 Frame Types . 110
15.2.3 Frame Attributes . 111
15.2.4 Remarks . 111

15.3 LabelFrame Object . 111
15.3.1 Adding LabelFrame Objects . 111
15.3.2 LabelFrame Types . 111
15.3.3 Attributes . 112
15.3.4 Remarks . 112

15.4 Text Object . 112
15.4.1 Adding Text Objects . 112
15.4.2 Text Types . 112
15.4.3 Text Attributes . 112
15.4.4 Remarks . 112

15.5 Bitmap Object . 113
15.5.1 Adding Bitmap Objects . 113
15.5.2 Bitmap Types . 113
15.5.3 Bitmap Interaction . 113
15.5.4 Other Bitmap Routines . 113
15.5.5 Bitmap Attributes . 114
15.5.6 Remarks . 114

15.6 Pixmap Object . 114
15.6.1 Adding Pixmap Objects . 114
15.6.2 Pixmap Types . 114
15.6.3 Pixmap Interaction . 114
15.6.4 Other Pixmap Routines . 114
15.6.5 Pixmap Attributes . 115
15.6.6 Remarks . 115

15.7 Clock Object . 116
15.7.1 Adding Clock Objects . 116
15.7.2 Clock Types . 116
15.7.3 Clock Interaction . 116
15.7.4 Other Clock Routines . 116
15.7.5 Clock Attributes . 117
15.7.6 Remarks . 117

15.8 Chart Object . 117

iv

15.8.1 Adding Chart Objects . 117
15.8.2 Chart Types . 117
15.8.3 Chart Interaction . 118
15.8.4 Other Chart Routines . 118
15.8.5 Chart Attributes . 119
15.8.6 Remarks . 119

16 Button-like Objects . 120
16.1 Adding Button Objects . 120
16.2 Button Types . 122
16.3 Button Interaction . 123
16.4 Other Button Routines . 123
16.5 Button Attributes . 126
16.6 Remarks . 126

17 Valuator Objects . 127
17.1 Slider Object . 127

17.1.1 Adding Slider Objects . 127
17.1.2 Slider Types . 127
17.1.3 Slider Interaction . 128
17.1.4 Other Slider Routines . 129
17.1.5 Slider Attributes . 129
17.1.6 Remarks . 130

17.2 Scrollbar Object . 130
17.2.1 Adding Scrollbar Objects . 131
17.2.2 Scrollbar Types . 131
17.2.3 Scrollbar Interaction . 132
17.2.4 Other Scrollbar Routines . 132
17.2.5 Scrollbar Attributes . 133
17.2.6 Remarks . 133

17.3 Dial Object . 134
17.3.1 Adding Dial Objects . 134
17.3.2 Dial Types . 134
17.3.3 Dial Interaction . 134
17.3.4 Other Dial Routines . 135
17.3.5 Dial Attributes . 136
17.3.6 Remarks . 136

17.4 Positioner Object . 136
17.4.1 Adding Positioner Objects . 136
17.4.2 Positioner Types . 136
17.4.3 Positioner Interaction . 136
17.4.4 Other Positioner Routines . 137
17.4.5 Positioner Attributes . 138
17.4.6 Remarks . 138

17.5 Counter Object . 138
17.5.1 Adding Counter Objects . 139
17.5.2 Counter Types . 139
17.5.3 Counter Interaction . 139

v

17.5.4 Other Counter Routines . 140
17.5.5 Counter Attributes . 141
17.5.6 Remarks . 141

17.6 Spinner Object . 141
17.6.1 Adding Spinner Objects . 141
17.6.2 Spinner Types . 142
17.6.3 Spinner Interaction . 142
17.6.4 Other Spinner Routines . 143
17.6.5 Spinner Attributes . 143

17.7 Thumbwheel Object . 144
17.7.1 Adding Thumbwheel Objects . 144
17.7.2 Thumbwheel Types . 144
17.7.3 Thumbwheel Interaction . 144
17.7.4 Other Thumbwheel Routines . 145
17.7.5 Thumbwheel Attributes . 146
17.7.6 Remarks . 146

18 Input Objects . 147
18.1 Adding Input Objects . 147
18.2 Input Types . 147
18.3 Input Interaction . 148
18.4 Other Input Routines . 152
18.5 Input Attributes . 154
18.6 Remarks . 156

19 Choice Objects . 157
19.1 Select Object . 157

19.1.1 Adding Select Objects . 157
19.1.2 Select Interaction . 159
19.1.3 Other Select Routines . 160
19.1.4 Select Attributes . 162
19.1.5 Remarks . 163

19.2 Nmenu Object . 163
19.2.1 Adding Nmenu Objects . 163
19.2.2 Nmenu Interaction . 165
19.2.3 Other Nmenu Routines . 166
19.2.4 Nmenu Attributes . 168
19.2.5 Remarks . 168

19.3 Browser Object . 168
19.3.1 Adding Browser Objects . 169
19.3.2 Browser Types . 169
19.3.3 Browser Interaction . 169
19.3.4 Other Browser Routines . 171
19.3.5 Browser Attributes . 174
19.3.6 Remarks . 177

vi

20 Container Objects . 178
20.1 Folder Object . 178

20.1.1 Adding Folder Objects . 178
20.1.2 Folder Types . 178
20.1.3 Folder Interaction . 178
20.1.4 Other Folder Routines . 179
20.1.5 Remarks . 181

20.2 FormBrowser Object . 182
20.2.1 Adding FormBrowser Objects . 182
20.2.2 FormBrowser Types . 182
20.2.3 FormBrowser Interaction . 182
20.2.4 Other FormBrowser Routines . 183
20.2.5 Remarks . 185

21 Other Objects . 186
21.1 Timer Object . 186

21.1.1 Adding Timer Objects . 186
21.1.2 Timer Types . 186
21.1.3 Timer Interaction . 186
21.1.4 Other Timer Routines . 186
21.1.5 Timer Attributes . 187
21.1.6 Remarks . 187

21.2 XYPlot Object . 187
21.2.1 Adding XYPlot Objects . 188
21.2.2 XYPlot Types . 188
21.2.3 XYPlot Interaction . 189
21.2.4 Other XYPlot Routines . 190
21.2.5 XYPlot Attributes . 196
21.2.6 Remarks . 196

21.3 Canvas Object . 197
21.3.1 Adding Canvas Objects . 197
21.3.2 Canvas Types . 197
21.3.3 Canvas Interaction . 197
21.3.4 Other Canvas Routines . 199
21.3.5 Canvas Attributes . 200
21.3.6 OpenGL Canvas . 200

22 Popups . 202
22.1 Adding Popups . 202
22.2 Popup Interaction . 211
22.3 Other Popup Routines . 213
22.4 Popup Attributes . 215

vii

23 Deprecated Objects . 219
23.1 Choice Object . 219

23.1.1 Adding Choice Objects . 219
23.1.2 Choice Types . 219
23.1.3 Choice Interaction . 219
23.1.4 Other Choice Routines . 220
23.1.5 Choice Attributes . 221
23.1.6 Remarks . 222

23.2 Menu Object . 222
23.2.1 Adding Menu Objects . 222
23.2.2 Menu Types . 222
23.2.3 Menu Interaction . 223
23.2.4 Other Menu Routines . 223
23.2.5 Menu Attributes . 226
23.2.6 Remarks . 227

23.3 XPopup . 227
23.3.1 Creating XPopups . 227
23.3.2 XPopup Interaction . 232
23.3.3 Other XPopup Routines . 234
23.3.4 XPopup Attributes . 235
23.3.5 Remarks . 236

Part IV - Designing Object Classes 237

24 Introduction . 238

25 Global Structure . 239
25.1 The Routine fl_add_NEW() . 240

26 Events . 242
26.1 Shortcuts . 245

27 The Type FL_OBJECT . 247

28 Drawing Objects . 254
28.1 General Remarks . 254
28.2 Color Handling . 255
28.3 Mouse Handling . 256
28.4 Clipping . 257
28.5 Getting the Size . 258
28.6 Font Handling . 259
28.7 Drawing Functions . 259

29 An Example . 266

viii

30 New Buttons . 269

31 Using a Pre-emptive Handler 276

Part V - General Informations 277

32 Overview of Main Functions 278
32.1 Version Information . 278
32.2 Initialization . 278
32.3 Creating Forms . 286
32.4 Object Attributes . 287
32.5 Doing Interaction . 293
32.6 Signals . 299
32.7 Idle Callbacks and Timeouts . 301
32.8 Global Variables . 302

33 Some Useful Functions . 304
33.1 Misc. Functions . 304
33.2 Windowing Support . 304
33.3 Cursors . 308
33.4 Clipboard . 309

34 Resources for Forms Library 311
34.1 Current Support . 311

34.1.1 Resources Example . 313
34.2 Going Further . 314

35 Dirty Tricks . 316
35.1 Interaction . 316

35.1.1 Form Events . 316
35.1.2 Object Events . 317

35.2 Other . 317

36 Trouble Shooting . 319

Part VI - Image Support API 320

ix

37 Images . 321
37.1 The Basic Image Support API . 321
37.2 The FL_IMAGE Structure . 324
37.3 Supported image types . 327
37.4 Creating Images . 328
37.5 Supported Image Formats . 330

37.5.1 Built-in support . 330
37.5.2 Adding New Formats . 332
37.5.3 Queries . 337

37.6 Setup and Configuration . 338
37.7 Simple Image Processing . 340

37.7.1 Convolution . 340
37.7.2 Tint . 341
37.7.3 Rotation . 341
37.7.4 Image Flipping . 342
37.7.5 Cropping . 342
37.7.6 Scaling . 343
37.7.7 Warping . 344
37.7.8 General Pixel Transformation . 345
37.7.9 Image Annotation . 346

37.7.9.1 Using Text Strings . 346
37.7.9.2 Using Markers . 347
37.7.9.3 Pixelizing the Annotation . 349

37.7.10 Write Your Own Routines . 349
37.8 Utilities . 349

37.8.1 Memory Allocation . 349
37.8.2 Color Quantization . 350
37.8.3 Remarks . 351

Index of Functions . 352

Index of Global Variables . 361

Index of Constants . 362

1

Preface 2

Preface

The Forms Library for the X Window system (or XForms for short) is a GUI toolkit
with a rather long history. It was developed in the last decade of the last millenium by
Dr. T. C. Zhao (then at the Department of Physics, University of Wisconsin-Milwaukee,
USA) and Prof. Dr. Mark Overmars (Department of Computer Science, Utrecht University,
Netherlands) at a time when there were hardly any alternatives except expensive packages.
While at first being closed source it became open source software in 2002, distributed
according to the Lesser GNU Public License (LGPLv2).

While development slowed down a bit while other toolkits became available and matured,
XForms is still used, and development continues. While it may not be as polished as newer
toolkits it has the advantage of being relatively small and thus easier to get started with it.

The XForms home page is at
http://xforms-toolkit.org/

The sources and mailing list are hosted on
https://savannah.nongnu.org/projects/xforms/

The source package can be downloaded from
http://download.savannah.gnu.org/releases/xforms/

while the git repository can be accessed via
git://git.savannah.nongnu.org/xforms.git

http://git.savannah.gnu.org/cgit/xforms.git

ssh://git.sv.gnu.org/srv/git/xforms.git

There also is a mailing list. You can subscribe to it at
http://lists.nongnu.org/mailman/listinfo/xforms-development

The archive of the mailing list can be found at
http://lists.gnu.org/archive/html/xforms-development/

The archive of messages from before August 2009 and going back until 1996 is at
http://xforms-toolkit.org/old-archive

Please write to the mailing list if you have questions or find bugs.

This document is based on the documentation for version 0.89 of the Forms Library. It has
been reconstructed from the PDF version (the original sources seem to have been lost) and
has been updated to cover all changes introduced since version 0.89.

In the following the preface for the last available version of the documentation (version 0.89
from June 2000) is reproduced. Please note that quite a bit of the information there-in is
outdated. Many of the URLs mentioned don’t exist anymore, email addresses have changed
and the restrictions on the distribution of the library have been removed by the original
authors in favor of the LGPL.

Preface of Version 0.89 (June 2000)

http://xforms-toolkit.org/
https://savannah.nongnu.org/projects/xforms/
http://download.savannah.gnu.org/releases/xforms/
git://git.savannah.nongnu.org/xforms.git
http://git.savannah.gnu.org/cgit/xforms.git
ssh://git.sv.gnu.org/srv/git/xforms.git
http://lists.nongnu.org/mailman/listinfo/xforms-development
http://lists.gnu.org/archive/html/xforms-development/
http://xforms-toolkit.org/old-archive

Preface 3

Window-based user interfaces are becoming a common and required feature for most com-
puter systems, and as a result, users have come to expect all applications to have polished
user-friendly interfaces. Unfortunately, constructing user interfaces for programs is in gen-
eral a time consuming process. In the last few years a number of packages have appeared
that help build up graphical user interfaces (so-called GUI’s) in a simple way. Most of them,
though, are difficult to use and/or expensive to buy and/or limited in their capabilities. The
Forms Library was constructed to remedy this problem. The design goals when making the
Forms Library were to create a package that is intuitive, simple to use, powerful, graphically
good looking and easily extendible.

The main notion in the Forms Library is that of a form. A form is a window on which
different objects are placed. Such a form is displayed and the user can interact with the
different objects on the form to indicate his/her wishes. Many different classes of objects
exist, like buttons (of many different flavors) that the user can push with the mouse, sliders
with which the user can indicate a particular setting, input fields in which the user can
provide textual input, menus from which the user can make choices, browsers in which
the user can scroll through large amounts of text (e.g., help files), etc. Whenever the
user changes the state of a particular object on one of the forms displayed the application
program is notified and can take action accordingly. There are a number of different ways
in which the application program can interact with the forms, ranging from very direct
(waiting until something happens) to the use of callback routines that are called whenever
an object changes state.

The application program has a large amount of control over how objects are drawn on the
forms. It can set color, shape, text style, text size, text color, etc. In this way forms can
be fine tuned to one’s liking.

The Forms Library consists of a large number of C-routines to build up interaction forms
with buttons, sliders, input fields, dials, etc. in a simple way. The routines can be used
both in C and in C++ programs. The library uses only the services provided by the Xlib
and should run on all workstations that have X installed on them. The current version
needs 4bits of color (or grayscale) to look nice, but it will function properly on workstations
having less depth (e.g., XForms works on B&W X-terminals).

The library is easy to use. Defining a form takes a few lines of code and interaction is fully
handled by the library routines. A number of demo programs are provided to show how
easy forms are built and used. For simple forms and those that may be frequently used
in application programs, e.g., to ask a question or select a file name, special routines are
provided. For example, to let the user choose a file in a graphical way (allowing him/her
to walk through the directory hierarchy with a few mouse clicks) the application program
needs to use just one line of code.

To make designing forms even easier a Form Designer is provided. This is a program that
lets you interactively design forms and generate the corresponding C-code. You simply
choose the objects you want to place on the forms from a list and draw them on a form.
Next you can set attributes, change size and position of the objects, etc., all using the
mouse.

Although this document describes all you need to know about using the Forms Library for
X, it is not an X tutorial. On the contrary, details of programming in X are purposely
hidden in the Forms Library interfaces, and one need not be an X-expert to use the Forms

Preface 4

Library, although some knowledge of how X works would help to understand the inner
workings of the Forms Library.

Forms Library and all the programs either described in this document or distributed as
demos have been tested under X11 R4, R5 & R6 on all major UNIX platforms, including
SGI, SUN, HP, IBM RS6000/AIX, Dec Alpha/OSF1, Linux(i386, alpha, m68k and sparc)
as well as FreeBSD, NetBSD (i386, m68k and sparc), OpenBSD(i386, pmax, sparc, alpha),
SCO and Unixware. Due to access and knowledge, testing on non-unix platforms such as
OpenVMS, OS/2 and Microsoft/NT are less than comprehensive.

This document consists of four parts. The first part is a tutorial that provides an easy,
informal introduction to the Forms Library. This part should be read by everybody that
wants to use the library. You are encouraged to try variations of the demo programs
distributed in the Forms Library package.

Part II describes the Form Designer with which you can design forms interactively and
haveForm Designer write code for you.

Part III gives an overview of all object classes currently available in the library. The tutorial
part only mentions the most basic classes but here you find a complete overview.

Adding new object classes to the system is not very complicated. Part IV describes how
this should be done.

Version Note

The authors request that the following name(s) be used when referring to this toolkit
Forms Library for X,

Forms Library

or simply

XForms

Forms Library is not public domain. It is copyright (c) by T.C. Zhao and Mark Over-
mars, and others, with all published and unpublished rights reserved. However, permis-
sion to use for non-commercial and not-for-profit purposes is granted. You may not use
xforms commercially (including in-house and contract/consulting use) without contacting
(xforms@world.std.com) for a license arrangement. Use of xforms for the sole purpose of
running a publically available free software that requires it is not considered a commercial
use, even in a commercial setting.

You may not "bundle" and distribute this software with commercial systems without prior
consent of the authors. Permission to distribute this software with other free software that
requires it, including Linux CD distribution, is granted. Further, permission to re-package
the software is granted.

This software is provided "as is" without warranty of any kind, either expressed or implied.
The entire risk as to the quality and performance of the software is with you. Should the
software prove defective, you assume the cost of all necessary servicing, repair or correction
and under no circumstance shall the authors be liable for any damages resulting from the
use or mis-use of this software.

Preface 5

It would be appreciated if credit to the authors is acknowledged in published articles on
applications based on the library. A reprint of the article would also be appreciated.

The development environment for xforms consists of Linux 1.0.8/a.out X11R5 and Linux
2.0/ELF X11R6 with additional testing and validation on SGI R8000 and occasionally IBM
RS6000/AIX and other machines. For every public release, most of the demos and some
internal testing programs are run on each platform to ensure quality of the distribution.

Figures in this document were produced by fd2ps, a program that takes the output of the
form designer and converts the form definition into an encapsulated POSTSCRIPT file.
fd2ps as ofXForms V0.85 is included in the distribution.

This document is dated June 12, 2000.

Support

Although XForms has gone through extensive testing, there are most likely a number of
bugs remaining. Your comments would be greatly appreciated. Please send any bug reports
or suggestions to T.C. Zhao (tc zhao@yahoo.com or xforms@world.std.com but not both).
Please do not expect an immediate response, but we do appreciate your input and will do
our best.

Bindings to other languages

As of this writing, the authors are aware of the following bindings

perl binding by Martin Bartlett (<martin@nitram.demon.co.uk>)

ada95 binding by G. Vincent Castellano (<gvc@ocsystems.com>)

Fortran binding by G. Groten (<zdv017@zam212.zam.kfa-juelich.de>) and Anke Haeming
(<A.Haeming@kfa-juelich.de>)

pascal binding by Michael Van Canneyt (<michael@tfdec1.fys.kuleuven.ac.be>)

scm/guile binding by Johannes Leveling (<Johannes.Leveling@Informatik.Uni-
Oldenburg.DE>)

python binding by Roberto Alsina (<ralsina@ultra7.unl.edu.ar>). (Seems the author has
stopped working on this binding).

Follow the links on XForms’s home page to get more info on these bindings.

Archive Sites

Permanent home for the Forms Library is at

ftp://ncmir.ucsd.edu/pub/xforms

ftp://ftp.cs.ruu.nl/pub/XFORMS (Primary mirror site)

The primary site is mirrored by many sites around the world. The following are some of
the mirror sites

ftp://ftp.fu-berlin.de/unix/X11/gui/xforms

ftp://gd.tuwien.ac.at/hci/xforms

ftp://ftp.st.ryukoku.ac.jp/pub/X11/xforms

ftp://ftp.via.ecp.fr/pub2/xforms

ftp://ftp.unipi.it/pub/mirror/xforms

ftp://ftp.uni-trier.de/pub/unix/X11/xforms

Additional mirrors, html version of this document, news and other information related to
XForms can be accessed through www via the following URL

Preface 6

http://world.std.com/~xforms

In addition to ftp and www server, a mail server is available for those who do not have
direct internet access.

To use the mail server, send a message to <mail-server@cs.ruu.nl> or the old-fashioned path
alternative <uunet!mcsun!sun4nl!ruuinf!mail-server>.

The message should be something like the following

begin

path fred@stone.age.edu (substitute your address)

send help

end

To get a complete listing of the archive tree, issue send ls-lR.Z.

Mailing List

A mailing list for news and discussions about XForms is available. To subscribe or un-
subscribe, send a message to <xforms-request@bob.usuhs.mil> with one of the following
commands as the mail body

help

subscribe

unsubscribe

To use the mailing list, send mail to <xforms@bob.usuhs.mil>. Please remember that the
message will be sent to hundreds of people. Please Do not send subscribe/unsubscribe
messages to the mailing list, send them to <xforms-request@bob.usuhs.mil>.

The mailing list archive is at http://bob.usuhs.mil/mailserv/list-archives.

Thanks

Many people contributed, in one way or another, to the development of Forms Library,
without whose testing, bug reports and suggestions, Forms Library would not be what it is
today and would certainly not be in the relatively bug free state it is in now. We thank Steve
Lamont of UCSD (<spl@szechuan.ucsd.edu>), for his numerous suggestions and voluminous
contributions to the mailing list. We thank Erik Van Riper (<geek@midway.com>), formerly
of CUNY, and Dr. Robert Williams of USUHS (<bob@bob.usuhs.mil>) for running the
mailing list and keeping it running smoothly. We also thank every participant on the
mailing list who contributed by asking questions and challenging our notion of what typical
use of the Forms Library is. The html version of the document, undoubtedly browsed by the
thousands, is courtesy of Danny Uy (<dau@westworld.com>). We appreciate the accurate
and detailed bug reports, almost always accompanied with a demo program, from Gennady
Sorokopud (<gena@NetVision.net.il>) and Rouben Rostamian (<rostamian@umbc.edu>). We
also thank Martin Bartlett (<martin@nitram.demon.co.uk>), who, in addition to marrying
Forms Library to perl, made several xforms API suggestions, Last but certainly not least,
we thank Henrik Klagges (<henrik@UniX11.com>) for his numerous suggestions during the
early stages of the development.

Part I - Using the Forms Library 7

Part I - Using the Forms Library

Chapter 1: Introduction 8

1 Introduction

The Forms Library is a library of C-routines that allows you to build up interaction forms
with buttons, sliders, input fields, dials, etc. in a very simple way. Following the X tradition,
Forms Library does not enforce the look and feel of objects although in its default state, it
does provide a consistent look and feel for all objects.

The Forms Library only uses the services provided by Xlib and should be compilable on
all machines that have X installed and have an ANSI compatible compiler. Being based on
Xlib,Forms Library is small and efficient. It can be used in both C and C++ programs and
soon it will be available for other languages1.

The basic procedure of using the Forms Library is as follows. First one or more forms are
defined, by indicating what objects should be placed on them and where. Types of objects
that can be placed on the forms include: boxes, texts, sliders, buttons, dials, input fields
and many more. Even a clock can be placed on a form with one command. After the form
has been defined it is displayed on the screen and control is given to a library call [fl_do_
forms()], page 297. This routine takes care of the interaction between the user and the
form and returns as soon as some change occurs in the status of the form due to some user
action. In this case control is returned to the program (indicating that the object changed)
and the program can take action accordingly, after which control is returned again to the
[fl_do_forms()], page 297 routine. Multiple forms can be handled simultaneously by
the library and can be combined with windows of the application program. More advanced
event handling via object callbacks is also supported.

The Forms Library is simple to use. Defining a form takes a few lines of code and interaction
is fully handled by the library routines. A number of demo programs are provided to show
how to piece together various parts of the library and demonstrate how easy forms are built
and used. They can be found in the directory demos. Studying these demos is a good way
of learning the system.

If you only have very simple applications for the Forms Library, e.g., to ask the user for a
file name, or ask him a question or give him a short message, Chapter 6 [Goodies], page 70
contains some even more simple routines for this. So, e.g., a form with the question "Do
you want to quit?" can be made with one line of code.

To make designing forms even easier a Form Designer is provided. As its name implies,
this is a program that lets you interactively design forms and generate the corresponding
C-code. See Chapter 7 [Introduction], page 83, and the following chapters for its use.

The current version of the software is already quite extended but we are working on further
improvements. In particular, we plan on designing new classes of objects that can be
placed on the forms. Adding classes to the system is not very complicated. Part IV of this
document describes in detail how to do this yourself.

The following chapters will describe the basic application programmer’s interface to the
Forms Library and lead you through the different aspects of designing and using forms.
In Chapter 2 [Part I Getting Started], page 10 we give some small and easy examples of
the design and use of forms. In Chapter 3 [Defining Forms], page 16 we describe how to
define forms. This chapter just contains the basic classes of objects that can be placed

1 As of this writing, perl, Ada95, scheme, pascal, Fortran and python bindings are in beta testing.

Chapter 1: Introduction 9

on forms. Also, for some classes only the basic types are described and not all. For an
overview of all classes and types of objects see Part III of this document. Chapter 4 [Doing
Interaction], page 38 describes how to set up interaction with forms. A very specific class
of objects are free objects and canvases. The application program has full control over
their appearance and interaction. They can be used to place anything on forms that is not
supported by the standard objects. Chapter 5 [Free Objects], page 57 describes their use.
Finally, Chapter 6 [Goodies], page 70 describes some built-in routines for simple interaction
like asking questions and prompting for choices etc.

Chapter 2: Getting Started 10

2 Getting Started

This chapter introduces the typographical conventions used throughout the manual and then
continues with showing a few, simple examples on using the Forms Library. It concludes
with a short resumee of the programming model typically found in programs using the
library.

2.1 Naming Conventions

The names of all Forms Library functions and user-accessible data structures begin with
fl_ or FL_, and use an "underscore-between-words" convention, that is when function and
variable names are composed of more than one word, an underscore is inserted between
each word. For example,

fl_state

fl_set_object_label()

fl_show_form()

All Forms Library macros, constants and types also follow this convention, except that (at
least) the first two letters are capitalized. For example,

FL_min()

FL_NORMAL_BUTTON

FL_OBJECT

The term "form" often can be taken to mean a window of your application. But be aware
that there are also can be forms that themselves contain further forms, so "form" and
"window" aren’t necessarily synonyms.

The only exceptions from the above convention are names of functions related to image
manipulations - they start with flimage_. And then there’s a single function called [flps_

init()], page 292 that allows customization of the way hardcopies are created from an
existing user interface.

2.2 Some Examples

Before using forms for interaction with the user you first have to define them. Next you can
display them and perform interaction with them. Both stages are simple. Before explaining
all the details let us first look at some examples. A very simple form definition would look
as

FL_FORM *simpleform;

simpleform = fl_bgn_form(FL_UP_BOX, 230, 160);

fl_add_button(FL_NORMAL_BUTTON, 40, 50, 150, 60, "Push Me");

fl_end_form();

The first line indicates the start of the form definition. simpleform will later be used to
identify the form. The type of the form is FL_UP_BOX. This means that the background
of the form is a raised box that looks like it is coming out of the screen. The form has a
size of 230 by 160 pixels. Next we add a button to the form. The type of the button is
FL_NORMAL_BUTTON which will be explained below in detail. It is positioned in the form
by virtue of the button geometry supplied and has "Push Me" as its label. After having
defined the form we can display it using the call

Chapter 2: Getting Started 11

fl_show_form(simpleform, FL_PLACE_MOUSE, FL_NOBORDER,

"SimpleForm");

This will show the form on the screen at the mouse position. (The third argument indicates
whether the form gets window manager’s decoration and the fourth is the window title.)

Next we give the control over the interaction to the Forms Library’s main event loop by
calling

fl_do_forms();

This will handle interaction with the form until you press and release the button with the
mouse, at which moment control is returned to the program. Now the form can be removed
from the screen (and have its associated window destroyed) using

fl_hide_form(simpleform);

The complete program is given in the file ‘pushme.c’ in the subdirectory ‘demos’. All
demonstration programs can be found in this directory. Studying them is a good way of
learning how the library works.

Compile and run it to see the effect. To compile a program using the Forms Library use
the following command or something similar

cc -o pushme pushme.c -lforms

Please note that linking against the Forms library requires some other libraries to be istalled,
at least the X11 and the Xpm library. Some applications may also require the JPEG and/or
the GL library. These libraries don’t need to be specified explicitely in the linker command
but must be available since the Forms library depends on them. If not installed contact
your systems administrator.

This simple example is, of course, of little use. Let us look at a slightly more complicated
one (the program can be found in ‘yesno.c’.)

#include <forms.h>

int main(int argc, char *argv[]) {

FL_FORM *form;

FL_OBJECT *yes,

*no,

*but;

fl_initialize(&argc, argv, "FormDemo", 0, 0);

form = fl_bgn_form(FL_UP_BOX, 320, 120);

fl_add_box(FL_NO_BOX, 160, 40, 0, 0, "Do you want to Quit?");

yes = fl_add_button(FL_NORMAL_BUTTON, 40, 70, 80, 30, "Yes");

Chapter 2: Getting Started 12

no = fl_add_button(FL_NORMAL_BUTTON, 200, 70, 80, 30, "No");

fl_end_form();

fl_show_form(form, FL_PLACE_MOUSE, FL_TRANSIENT, "Question");

while (1) {

if (fl_do_forms() == yes)

{

printf("Yes is pushed\n");

break;

}

else

printf("No is pushed\n");

}

fl_finish();

return 0;

}

It creates a form with a simple text and two buttons. After displaying the form [fl_

do_forms()], page 297 is called. This routine returns the object being pushed. Simply
checking whether this is object yes or no determines whether we should quit.

As you see, the program starts by calling the routine [fl_initialize()], page 278. This
routine should be called before any other calls to the library are made (except for [fl_set_
defaults()], page 280). One of the things this routine does is to establish a connection to
the X server and initialize a resource database used by the X resource manager. It also does
many other things, such as parsing command line options and initializing internal Forms
Library structures. For now, it suffices to know that by calling this routine, a program
automatically recognizes the following command line options

Option Value type Meaning
-display host:dpy string Remote host
-name appname string change application name
-visual class string TrueColor, PseudoColor etc.
-depth depth integer Preferred visual depth
-private none Force a private colormap
-shared none Always share colormap
-stdcmap none Use standard colormap
-fldebug level integer Print some debug information
-flhelp none Print out these options
-sync none Force synchronous mode

Chapter 2: Getting Started 13

Note that the executable name argv[0] should not contain period or *. See Chapter 32
[Overview of Main Functions], page 278, for further details. The above program can in fact
be made a lot simpler, using the goodies described in Chapter 6 [Goodies], page 70. You
can simply write:

while (!fl_show_question("Do you want to Quit?", 0))

/* empty */ ;

Except printing out a message telling which button was pressed it will have exactly the
same effect.

The above program only shows one of the event handling methods provided by the library.
The direct method of event handling shown is appropriate for simple programs. But, obvi-
ously, already for a program with just a few nmore objects it would become rather tedious
to have to check each time [fl_do_forms()], page 297 returns each of those objects to
find out which of them was responsible and react accordingly. Utilizing object callback
functions is then typically much easier and thus os strongly recommended.

We demonstrate the use of object callbacks using the previous example with some modifica-
tions so that event processing via callbacks is utilized. It is recommended and also typical
of a good XForms application to separate the UI components and the application program
itself. Typically the UI components are generated by the bundled GUI builder and the
application program consists mostly of callbacks and some glue code that combines the UI
and the program.

To use callbacks, a typical procedure would be to define all the callback functions first, then
register them with the system using [fl_set_object_callback()], page 291. After the
form is realized (shown), control is handed to Forms Library’s main loop [fl_do_forms()],

page 297, which responds to user events indefinitely and never returns.

After modifications are made to utilize object callbacks, the simple question example looks
as follows:

#include <stdio.h>

#include <stdlib.h>

#include <forms.h>

void yes_callback(FL_OBJECT *obj, long user_data) {

printf("Yes is pushed\n");

fl_finish();

exit(0);

}

void no_callback(FL_OBJECT *obj, long user_data) {

printf("No is pushed\n");

}

int main(int argc, char *argv[]) {

FL_FORM *form;

FL_OBJECT *obj;

fl_initialize(&argc, argv, "FormDemo", 0, 0);

Chapter 2: Getting Started 14

form = fl_bgn_form(FL_UP_BOX, 320, 120);

fl_add_box(FL_NO_BOX, 160, 40, 0, 0, "Do you want to Quit?");

obj = fl_add_button(FL_NORMAL_BUTTON, 40, 70, 80, 30,"Yes");

fl_set_object_callback(obj, yes_callback, 0);

obj = fl_add_button(FL_NORMAL_BUTTON, 200, 70, 80, 30,"No");

fl_set_object_callback(obj, no_callback, 0);

fl_end_form();

fl_show_form(form, FL_PLACE_MOUSE, FL_TRANSIENT, "Question");

fl_do_forms();

return 0;

}

In this example, callback routines for both the yes and no buttons are first defined. Then
they are registered with the system using [fl_set_object_callback()], page 291. After
the form is shown, the event handling is again handed to the main loop in Forms Library
via [fl_do_forms()], page 297. In this case, whenever the buttons are pushed, the call-
back routine is invoked with the object being pushed as the first argument to the callback
function, and [fl_do_forms()], page 297 never returns.

You might also have noticed that in this example both buttons are made anonymous, that
is, it is not possible to reference the buttons outside of the creating routine. This is often
desirable when callback functions are bound to objects as the objects themselves will not be
referenced except as callback arguments. By creating anonymous objects a program avoids
littering itself with useless identifiers.

The callback model presented above is the preferred way of interaction for typical pro-
grams and it is strongly recommended that programs using XForms be coded using object
callbacks.

2.3 Programming Model

To summarize, every Forms Library application program must perform several basic steps.
These are

Initialize the Forms Library
This step establishes a connection to the X server, allocates resources and oth-
erwise initializes the Forms Library’s internal structures, which include visual
selection, font initialization and command line parsing.

Defining forms
Every program creates one or more forms and all the objects on them to con-
struct the user interface. This step may also include callback registration and
per object initialization such as setting bounds for sliders etc.

Showing forms
This step makes the designed user interface visible by creating and mapping
the window (and subwindows) used by the forms.

Chapter 2: Getting Started 15

Main loop Most Forms Library applications are completely event-driven and are designed
to respond to user events indefinitely. The Forms Library main loop, usually
invoked by calling [fl_do_forms()], page 297, retrieves events from the X
event queue, dispatches them to the appropriate objects and notifies the appli-
cation of what action, if any, should be taken. The actual notification method
depends on how the interaction is set up, which could be done by calling an
object callback or by returning the object whose status has changed to the
application program.

The following chapters will lead you through each step of the process with more details.

Chapter 3: Defining Forms 16

3 Defining Forms

In this chapter we will describe the basics of defining forms. Not all possible classes of
objects are described here, only the most common ones. Also, for most classes only a
subset of the available types are described. See Part III for a complete overview of all
object classes currently available.

Normally you will almost never have to write the code to define forms yourself because the
package includes a Form Designer that does this for you (see Part II). Still it is useful to
read through this chapter because it explains what some of the different object classes are
and how to work with them.

3.1 Starting and Ending a Form Definition

A form consists of a collection of objects. A form definition is started with the routine

FL_FORM *fl_bgn_form(int type, FL_Coord w, FL_Coord h);

w and h indicate the width and height of the form (in pixels by default). Positions in the
form will be indicated by integers between 0 and w-1 or h-1. The actual size of the form
when displayed on the screen can still be varied. type indicates the type of the background
drawn in the form. The background of each form is a box. See the next section for the
different types available. The routine returns a pointer to the form just defined. This
pointer must be used, for example, when drawing the form or doing interaction with it.
The form definition ends with

void fl_end_form(void);

Between these two calls objects are added to the form. The following sections describe some
of the more common classes of objects that can be added to a form.

there’s no built-in upper limit on the number of forms that can be defined and displayed
when required. Normally you probably will first define all your forms before starting the
actual work but it’s no problem to define new forms also later on.

3.2 Boxes

The probably simplest type of objects are boxes. Boxes are used to give the forms and
objects a nicer appearance. They can be used to visually group other objects together. The
background of each form is a box. To add a box to a form you use the routine

FL_OBJECT *fl_add_box(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

where type indicates the shape of the box. The Forms Library at the moment supports the
following types of boxes:

FL_NO_BOX

No box at all (it’s transparent), just a label

FL_UP_BOX

A box that comes out of the screen

FL_DOWN_BOX

A box that goes down into the screen

Chapter 3: Defining Forms 17

FL_BORDER_BOX

A flat box with a border

FL_SHADOW_BOX

A flat box with a shadow

FL_FRAME_BOX

A flat box with an engraved frame

FL_ROUNDED_BOX

A rounded box

FL_EMBOSSED_BOX

A flat box with an embossed frame

FL_FLAT_BOX

A flat box without a border (normally invisible unless given a different color
than the surroundings)

FL_RFLAT_BOX

A rounded box without a border (normally invisible unless given a different
color than the surroundings)

FL_RSHADOW_BOX

A rounded box with a shadow

FL_OVAL_BOX

A box shaped like an ellipse

FL_ROUNDED3D_UPBOX

A rounded box coming out of the screen

FL_ROUNDED3D_DOWNBOX

A rounded box going into the screen

FL_OVAL3D_UPBOX

An oval box coming out of the screen

FL_OVAL3D_DOWNBOX

An oval box going into the screen

The arguments x and y in the call of [fl_add_box()], page 109indicate the upper left
corner of the box in the form while w and h are its width and height. label is a text that

Chapter 3: Defining Forms 18

is placed in the center of the box. If you don’t want a label in the box use an empty string
or a NULL pointer. The label can be either one line or multiple lines. To obtain multi-line
labels, insert newline characters (\n) in the label string. It is also possible to underline the
label or one of the characters in the label. This is accomplished by embedding <CNTRL> H

(\010 or ’\b’) after the letter that needs to be underlined. If the very first character of
the label is <Ctrl>H, the entire label is underlined.

The routine [fl_add_box()], page 109 returns a pointer to the box object. (All routines
that add objects return a pointer to the object.) This pointer can be used for later references
to the object.

It is possible to change the appearance of a box in a form. First of all, it is possible to change
the color of the box and secondly, it is possible to change color, size and position of the
label inside the box. Details on changing attributes of objects can be found in Section 3.11
[Changing Attributes], page 24. Just a simple example has to suffice here. Assume we want
to create a red box, coming out of the screen with the large words "I am a Box" in green
in the center:

FL_OBJECT *thebox;

thebox = fl_add_box(FL_UP_BOX, 20, 20, 100, 100, "I am a Box");

fl_set_object_color(thebox, FL_RED, 0); /* make box red */

fl_set_object_lcolor(thebox, FL_GREEN); /* make label green */

fl_set_object_lsize(thebox, FL_LARGE_SIZE); /* make label large */

Of course, this has to be placed inside a form definition (but the functions for changing the
object attributes can also used anywhere else within the program).

3.3 Texts

A second type of object is text. Text can be placed at any place on the form in any color
you like. Placing a text object is done with the routine

FL_OBJECT *fl_add_text(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

where type indicates the shape of the text. The Forms Library at the moment supports
only one type of text: FL_NORMAL_TEXT.

The text can be placed inside a box using the routine [fl_set_object_boxtype()],

page 288 to be described in Section 3.11 [Changing Attributes], page 24. Again, the text
can be multi-lined or underlined by embedding respectively the newline (\n) or <Ctrl>H

(\010 or ’\b’) in the label. The style, size and color of the text can be controlled and
changed in many ways, see Section 3.11.3 [Label Attributes and Fonts], page 28.

Note that there is almost no difference between a box with a label and a text. The only
difference lies in the position where the text is placed object. Text is normally placed inside
the box at the left side. This helps you put different lines of text below each other. Labels
inside boxes are by default centered in the box. You can change the position of the text
inside the box using the routines in Section 3.11.3 [Label Attributes and Fonts], page 28.
Note that, when not using any box around the text there is no need to specify a width and
height of the box, they can both be 0.

Chapter 3: Defining Forms 19

3.4 Buttons

A very important class of objects are buttons. Buttons are placed on the form such that the
user can push them with the mouse. Different types of buttons exist: buttons that return
to their normal position when the user releases the mouse, buttons that stay pushed until
the user pushes them again and radio buttons that make other buttons be released. Adding
a button to a form can be done using the following routine

FL_OBJECT *fl_add_button(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

label is the text placed inside (or next to) the button. type indicates the type of the
button. The Forms Library at the moment supports a number of types of buttons. The
most important ones are:

FL_NORMAL_BUTTON

FL_PUSH_BUTTON

FL_TOUCH_BUTTON

FL_RADIO_BUTTON

They all look the same on the screen but their functions are quite different. Each of these
buttons get pushed down when the user presses the mouse on top of them. What actually
happens when the user does so depends on the type of button.

A normal button returns to its normal position when the user releases the mouse button.

A push button remains pushed and is only released when the user pushes it again.

A touch button is like a normal button except that as long as the user keeps the mouse
pressed it is returned to the application program (see Chapter 4 [Doing Interaction], page 38
on the details of interaction).

A radio button is a push button with additional extra property: Whenever the user pushes
a radio button, all other pushed radio buttons in the form (or at least in the group, see
below) they belong to are released. In this way the user can make a choice among some
mutually exclusive possibilities.

Whenever the user pushes a button and then releases the mouse, the interaction routine
[fl_do_forms()], page 297 is interrupted and returns a pointer to the button that was
pushed and released. If a callback routine is present for the object being pushed, this
routine will be invoked. In either case, the application program knows that the button was
pushed and can take action accordingly. In the first case, control will have to be returned
to [fl_do_forms()], page 297 again after the appropriate action is performed; and in the
latter, [fl_do_forms()], page 297 would never return. See Chapter 4 [Doing Interaction],
page 38, for details on the interaction with forms.

Different types of buttons are used in all the example programs provided. The application
program can also set a button to appear pushed or not without user action. This is of course
only useful for push buttons and radio buttons. To set or reset a push or radio button use
the routine

void fl_set_button(FL_OBJECT *obj, int pushed);

pushed indicates whether the button should appear to be pushed (1) or released (0). Note
that this does not invoke a callback routine bound to the button or results in the button
getting returned to the program, i.e., only the visual appearance of the button is changed

Chapter 3: Defining Forms 20

and what it returns when asked for its state (and, in the case of a radio button, possibly
that of another radio button in the same group). To also get the callback invoked or the
button returned to the program additonally call e.g., [fl_trigger_object()], page 291.

To figure out whether a button appears as pushed or not use

int fl_get_button(FL_OBJECT *obj);

See the program ‘pushbutton.c’ for an example of the use of push buttons and setting and
getting button information.

The color and label of buttons can again be changed using the routines in Section 3.11
[Changing Attributes], page 24.

There are other classes of buttons available that behave the same way as buttons but only
look different.

Light buttons
have a small "light" (colored area) in the button. Pushing the button switches
the light on, and releasing the button switches it off. To add a light button
use [fl_add_lightbutton()], page 120 with the same parameters as for nor-
mal buttons. The other routines are exactly the same as for normal buttons.
The color of the light can be controlled with the routine [fl_set_object_

color()], page 287, see Section 3.11 [Changing Attributes], page 24.

Round buttons
are buttons that are round. Use [fl_add_roundbutton()], page 120 to add
a round button to a form.

Round3d buttons
are buttons that are round and 3D-ish looking. Round and light buttons are
nice as radio and push buttons.

Check buttons
are buttons that have a small checkbox the user can push. To add a check
button, use [fl_add_checkbutton()], page 120. More stylish for a group of
radio buttons.

Bitmap buttons
are buttons that have a bitmap on top of the box. Use routine [fl_add_

bitmapbutton()], page 120 to add a bitmap button to a form.

Pixmap buttons
are buttons that have a pixmap on top of the box. Use routine [fl_add_

pixmapbutton()], page 120 to add a pixmap button to a form.

Playing with different boxtypes, colors, etc., you can make many different types of buttons.
See ‘buttonall.c’ for some examples. Fig. 16.1 shows all buttons in their default states.

3.5 Sliders

Sliders are useful in letting the user indicate a value between some fixed bounds. A slider
is added to a form using the routine

FL_OBJECT *fl_add_slider(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

Chapter 3: Defining Forms 21

const char *label);

The two most important types of sliders are FL_VERT_SLIDERM and FL_HOR_SLIDER. The
former displays a slider that can be moved vertically and the latter gives a slider that moves
horizontally. In both cases the label is placed below the slider. Default value of the slider
is 0.5 and can vary between 0.0 and 1.0. These values can be changed using the routines:

void fl_set_slider_value(FL_OBJECT *obj, double val);

void fl_set_slider_bounds(FL_OBJECT *obj, double min, double max);

Whenever the value of the slider is changed by the user, it results in the slider being returned
to the application program or the callback routine invoked. The program can read the slider
value using the call

double fl_get_slider_value(FL_OBJECT *obj);

and take action accordingly. See the example program ‘demo05.c’ for the use of these
routines.

3.6 ValSliders

A valslider is almost identical with a normal slider. The only difference is the way the slider
is drawn. For valsliders, in addition to the slider itself, its current value is also shown.

To add a valslider, use

FL_OBJECT *fl_add_valslider(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

For all other interaction with a valslider the same function as for normal sliders can be used.

3.7 Input Fields

It is often required to obtain textual input from the user, e.g., a file name, some fields in a
database, etc. To this end input fields exist in the Forms Library. An input field is a field
that can be edited by the user using the keyboard. To add an input field to a form use

FL_OBJECT *fl_add_input(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The main type of input field available is FL_NORMAL_INPUT. The input field normally looks
like an FL_DOWN_BOX. This can be changed using the routine [fl_set_object_boxtype()],
page 288 to be described in Section 3.11 [Changing Attributes], page 24.

Whenever the user presses the mouse inside an input field a cursor will appear in it (and
it will change color). Further input will appear inside this field. Full emacs(1) style editing
is supported. When the user presses <Return> or <Tab> the input field is returned to the

Chapter 3: Defining Forms 22

application program and further input is directed to the next input field. (The <Return>

key only works if there are no default buttons in the form. See the overview of object
classes. The <Tab> key always works.)

The user can use the mouse to select parts of the input field which will be removed when
the user types the erase character or replaced by any new input the user types in. Also the
location of the cursor can be moved in the input field using the mouse.

The input field is fully integrated with the X Selection mechanism. Use the left button to
cut from and the middle button to paste into an input field.

The application program can direct the focus to a particular object using the call

void fl_set_focus_object(FL_FORM *form, FL_OBJECT *obj);

It puts the input focus in the form form onto object obj. To obtain the focus object, the
following routine is available

FL_OBJECT *fl_get_focus_object(FL_FORM *form);

Note that the label is not the default text in the input field. The label is (by default) placed
in front of the input field. To set the contents of the input field use the routines

void fl_set_input(FL_OBJECT *obj, const char *str);

void fl_set_input_f(FL_OBJECT *obj, const char *fmt, ...);

To change the color of the input text or the cursor use

void fl_set_input_color(FL_OBJECT *obj, int tcol, int ccol);

Here tcol indicates the color of the text and ccol is the color of the cursor. To obtain the
string in the field (when the user has changed it) use:

const char *fl_get_input(FL_OBJECT *obj);

See the program ‘demo06.c’ for an example of the use of input fields.

3.8 Grouping Objects

Objects inside a form definition can be grouped together. To this end we place them in
between the routines

FL_OBJECT *fl_bgn_group(void);

and

void fl_end_group(void);

The first function returns a pointer to a pseudo-object that represents the start of the group
(its class is FL_BEGIN_GROUP). It can be used in a number of functions to work on the whole
group at once. Also the second creates a pseudo-object (of class FL_END_GROUP), marking
the groups end, but since this object can’t be used its address isn’t returned.

Chapter 3: Defining Forms 23

Groups can’t be nested. Groups are useful for two reasons. First of all it is possible to hide
groups of objects. (see Section 3.9 [Hiding and Showing], page 23 below.) This is often
very handy. We can, for example, display part of a form only when the user asks for it (see
demo program ‘group.c’. Some attributes are naturally multi-objects, e.g., to glue several
objects together using the gravity attribute. Instead of setting the gravity for each object,
you can place all related objects inside a group and set the resize/gravity attribute of the
group.

The second reason is for using radio buttons. As indicated in section 3.4 pushing a radio
button makes the currently pushed radio button released. In fact, this happens only with
radio buttons in the particular group. So to make two pairs (or more) of radio buttons,
simply put each pair in a different group so that they won’t interfere with each other. See,
e.g., the example program ‘buttonall.c’. It is a good idea to always put radio buttons in
a group, even if you have only one set of them.

It is possible to add objects to an existing group

FL_OBJECT *fl_addto_group(FL_OBJECT *group);

where group is the object returned by [fl_bgn_group()], page 286. After this call, you
can start adding objects to the group (e.g., [fl_add_button()], page 120 etc.). The
newly added objects are appended at the end of the group. When through with adding,
use [fl_end_group()], page 286 as before.

3.9 Hiding and Showing

It is possible to temporarily hide certain objects or groups of objects. To this end, use the
routine

void fl_hide_object(FL_OBJECT *obj);

obj is the object to hide or the group of objects to hide. Hidden objects don’t play any role
anymore. All routines on the form act as if the object does not exist. To make the object
or group of objects visible again use

void fl_show_object(FL_OBJECT *obj);

Hiding and showing (groups of) objects are useful to change the appearance of a form
depending on particular information provided by the user. You can also make overlapping
groups in the form and take care that only one of them is visible.

If you want to know if an object is shown you can use

int fl_object_is_visible(FL_OBJECT *obj);

Please note for an object to be visible also the form it belongs to must be shown, which
isn’t factored into the return value.

3.10 Deactivating and Triggering Objects

Sometimes you might want a particular object to be temporarily inactive, e.g., you want to
make it impossible for the user to press a particular button or to type input in a particular
field. For this you can use the routine

void fl_deactivate_object(FL_OBJECT *obj);

obj is the object to be deactivated. When obj is a group the whole group is deactivated.
To reactivate the group or button use the routine

Chapter 3: Defining Forms 24

void fl_activate_object(FL_OBJECT *obj);

To find out if an object is in active state use the function

int fl_object_is_active(FL_OBJECT *obj);

Normally you also want to give the user a visual indication that the object is not active.
This can, for example, be done by changing the label color to grey (see below). This is not
done automatically, so unless you set e.g., a different color the objects appearance won’t
change on deactivation (or re-activation).

It is possible to simulate the action of an object being triggered from within the program
by using the following routine

void fl_trigger_object(FL_OBJECT *obj);

Calling this routine on an object obj results in the object returned to the application
program or its callback being called if it exists. Note however, there is no visual feedback,
i.e., fl_trigger_object(button) will not make the button object named button appear
to be pushed.

3.11 Changing Attributes

There are a number of general routines that can be used to alter the appearance of any
object.

3.11.1 Color

To change the color of a particular object use the routine

void fl_set_object_color(FL_OBJECT *obj,

FL_COLOR col1, FL_COLOR col2);

col1 and col2 are indices into a colormap. Which colors are actually changed depends on
the type of the object. For box and text only col1 is important. It indicates the color of
the box or of the box in which the text is placed. For buttons, col1 is the color of the
button when released and col2 is the color of the button when pushed. (Note that when
changing the color of a button the nice property that the color of a button changes when
the mouse moves over it disappears.) For light buttons the two colors indicate the color of
the light when off and when on. For bitmap buttons, col1 is the color of the box and col2

is the color of the bitmap. For sliders col1 is the color of the background of the slider and
col2 is the color of the slider itself. Finally, for input objects col1 is the color of the input
field when it is not selected and col2 is the color when it has input focus, i.e., the user can
enter text. For all types of objects, the default colors can be found in the file ‘forms.h’.
For example, for input fields the default colors are FL_INPUT_COL1 and FL_INPUT_COL2.
Form Designer comes in very handy in familiarizing you with various attributes since you
can change all attributes of an object and immediately see the difference by "test"ing the
object.

To find out the colors of an object use

void fl_get_object_color(FL_OBJECT *obj,

FL_COLOR *col1, FL_COLOR *col2);

The following pre-defined color symbols can be used in all color change requests. If the
workstation does not support this many colors, substitution by the closest color will happen.

Chapter 3: Defining Forms 25

Name RGB triple

FL_BLACK (0, 0, 0)

FL_WHITE (255, 255, 255),

FL_COL1 (173, 173, 173)

FL_BOTTOM_BCOL (89, 89, 89)

FL_RIGHT_BCOL (41, 41, 41)

FL_MCOL (191, 191, 191)

FL_LEFT_BCOL (222, 222, 222)

FL_LIGHTER_COL1 (204, 204, 204)

FL_DARKER_COL1 (161, 161, 161)

FL_SLATEBLUE (113, 113, 198)

FL_INDIANRED (198, 113, 113)

FL_RED (255, 0, 0)

FL_BLUE (0, 0, 255)

FL_GREEN (0, 255, 0)

FL_YELLOW (255, 255, 0)

FL_MAGENTA (255, 0, 255)

FL_CYAN (0, 255, 255)

FL_TOMATO 255, 99, 71

FL_INACTIVE (110, 110, 110)

FL_TOP_BCOL (204, 204, 204)

FL_PALEGREEN (113, 198, 113)

FL_DARKGOLD (205, 149, 10)

FL_ORCHID (205, 105, 201)

FL_DARKCYAN (40, 170, 175)

FL_DARKTOMATO (139, 54, 38)

FL_WHEAT (255, 231, 155)

FL_DARKORANGE (255, 128, 0)

FL_DEEPPINK (255, 0, 128)

FL_CHARTREUSE (128, 255, 0)

FL_DARKVIOLET (128, 0, 255)

Chapter 3: Defining Forms 26

FL_SPRINGGREEN (0, 255, 128)

FL_DODGERBLUE (0, 128, 255)

FL_FREE_COL1 (?, ?, ?)

Of all the colors listed in the table above FL_FREE_COL1 has the largest numerical value,
and all color with indices smaller than that are used (or can potentially be used) by the
Forms Library although, if you wish, they can also be changed using the following routine
prior to [fl_initialize()], page 278:

void fl_set_icm_color(FL_COLOR index, int r, int g, int b);

Note that although the color of an object is indicated by a single index, it is not necessarily
true that the Forms Library is operating in PseudoColor. Forms Library is capable of
operating in all visuals and as a matter of fact the Forms Library will always select TrueColor
or DirectColor if the hardware is capable of it.

The actual color is handled by an internal colormap of FL_MAX_COLORS entries (default is
1024). To change or query the values of this internal colormap use the call

void fl_set_icm_color(FL_COLOR index, int r, int g, int b);

void fl_get_icm_color(FL_COLOR index, int *r, int *g, int *b);

Call [fl_set_icm_color()], page 285 before [fl_initialize()], page 278 to change
XForms’s default colormap. Note that these two routines do not communicate with the X
server, they only populate/return information about the internal colormap, which is made
known to the X server by the initialization routine [fl_initialize()], page 278.

To change the colormap and make a color index active so that it can be used in various draw-
ing routines after [fl_initialize()], page 278 initialization, use the following function

unsigned long fl_mapcolor(FL_COLOR i,

int red, int green, int blue);

This function frees the previous allocated pixel corresponding to color index i and re-
allocates a pixel with the RGB value specified. The pixel value is returned by the function.
It is recommended that you use an index larger than FL_FREE_COL1 for your remap request
to avoid accidentally freeing the colors you have not explicitly allocated. Indices larger than
224 are reserved and should not be used.

Sometimes it may be more convenient to associate an index with a colorname, e.g., "red"
etc., which may have been obtained via resources. To this end, the following routine exists

long fl_mapcolorname(FL_COLOR i, const char *name);

where name is the color name1. The function returns -1 if the colorname name is not
resolved. You can obtain the RGB values of an index by using the following routine

unsigned long fl_getmcolor(FL_COLOR i,

int *red, int *green, int *blue);

The function returns the pixel value as known by the Xserver. If the requested index,
i, is never mapped or is freed, the RGB values as well as the pixel value are random.
Since this function communicates with the Xserver to obtain the pixel information, it has
a two-way traffic overhead. If you’re only interested in the internal colormap of XForms,
[fl_get_icm_color()], page 285 is more efficient.

1 Standard color names are listed in a file named ‘rgb.txt’ and usually resides in ‘/usr/lib/X11/’

Chapter 3: Defining Forms 27

Note that the current version only uses the lower byte of the primary color. Thus all primary
colors in the above functions should be specified in the range of 0-255 inclusive.

To free any colors that you no longer need, the following routine should be used

void fl_free_colors(FL_COLOR colors[], int ncolors);

Prior to XForms version 0.76, there is a color "leakage" in the implementation of the
internal colormap that prevents the old index from being freed in the call [fl_mapcolor()],
page 256, resulting in accelerated colormap overflow and some other undesirable behavior.
Since there may still be some applications based on older versions of the Forms Library, a
routine is provided to force the library to be compatible with the (buggy) behavior:

void fl_set_color_leak(int flag);

Due to the use of an internal colormap and the simplified user interface, changing the
colormap value for the index may not result in a change of the color for the object. An
actual redraw of the object (see below) whose color is changed may be required to have the
change take effect. Therefore, a typical sequence of changing the color of a visible object is
as follows:

fl_mapcolor(newcol, red, green, blue); /* obj uses newcol */

fl_redraw_object(obj);

3.11.2 Bounding Boxes

Each object has a bounding box. This bounding box can have different shapes. For boxes
it is determined by the type. For text it is normally not visible. For input fields it normally
is a FL_DOWN_BOX, etc. The shape of the box can be changed using the routine

void fl_set_object_boxtype(FL_OBJECT *obj, int boxtype);

boxtype should be one of the following: FL_UP_BOX, FL_DOWN_BOX, FL_FLAT_BOX, FL_

BORDER_BOX, FL_SHADOW_BOX, FL_ROUNDED_BOX, FL_RFLAT_BOX, FL_RSHADOW_BOX and FL_

NO_BOX, with the same meaning as the type for boxes. Some care has to be taken when
changing boxtypes. In particular, for objects like sliders, input fields, etc. never use the
boxtype FL_NO_BOX. Don’t change the boxtype of objects that are visible on the screen. It
might have undesirable effects. If you must do so, redraw the entire form after changing
the boxtype of an object (see below). See the program ‘boxtype.c’ for the effect of the
boxtype on the different classes of objects.

It is possible to alter the appearance of an object by changing the border width attribute

void fl_set_object_bw(FL_OBJECT *obj, int bw);

To find out about the current setting for the border width of an object call

int fl_get_object_bw(FL_OBJECT *obj);

Border width controls the "height" of an object, e.g., a button having a border width
of 3 pixels appears more pronounced than one having a border width of 2. The Forms
Library’s default is FL_BOUND_WIDTH (1) pixels (before version 1.0.91 the default was 3).
Note that the border width can be negative. Negative border width does not make a down
box, rather, it makes the object having an upbox appear less pronounced and "softer". See
program ‘borderwidth.c’ for the effect of border width on different objects. All applications
developed using XForms accept a command line option ‘-bw’, followed by an integer number,
the user can use to select the preferred border width. It is recommended that you document
this flag in your application documentation. If you prefer a certain border width, use

Chapter 3: Defining Forms 28

[fl_set_defaults()], page 280 or [fl_set_border_width()], page 282 before [fl_

initialize()], page 278 to set the border width instead of hard-coding it on a per form
or per object basis so the user has the option to change it at run time via the ‘-bw’ flag.

There also exists a call that changes the object border width for the entire application

void fl_set_border_width(int border_width);

3.11.3 Label Attributes and Fonts

There are also a number of routines to change the appearance of the label. The first one is

void fl_set_object_lcolor(FL_OBJECT *obj, FL_COLOR lcol);

It sets the color of the label. The default is black (FL_BLACK). The font size of the label
can be changed using the routine

void fl_set_object_lsize(FL_OBJECT *obj, int lsize);

where lsize gives the size in points. Depending on the server and fonts installed, arbitrary
sizes may or may not be possible. Fig 3.5 shows the font sizes that are standard with
MIT/XConsortium distribution. So use of these values is encouraged. In any case, if a
requested size can not be honored, substitution will be made. The default size for XForms
is 10pt.

FL_TINY_SIZE 8pt
FL_SMALL_SIZE 10pt
FL_NORMAL_SIZE 12pt
FL_MEDIUM_SIZE 14pt
FL_LARGE_SIZE 18pt
FL_HUGE_SIZE 24pt

Labels can be drawn in many different font styles. The style of the label can be controlled
with the routine

Chapter 3: Defining Forms 29

void fl_set_object_lstyle(FL_OBJECT *obj, int lstyle);

The default font for the Forms Library is Helvetica at 10pt.

Additional styles are available:

FL_NORMAL_STYLE Normal text
FL_BOLD_STYLE Boldface text
FL_ITALIC_STYLE Guess what
FL_BOLDITALIC_STYLE BoldItalic
FL_FIXED_STYLE Fixed width (good for tables)
FL_FIXEDBOLD_STYLE

FL_FIXEDITALIC_STYLE

FL_FIXEDBOLDITALIC_STYLE

FL_TIMES_STYLE Times-Roman like font
FL_TIMESBOLD_STYLE FL

FL_TIMESITALIC_STYLE

FL_TIMESBOLDITALIC_STYLE

FL_SHADOW_STYLE Text casting a shadow
FL_ENGRAVED_STYLE Text engraved into the form
FL_EMBOSSED_STYLE Text standing out

The last three styles are special in that they are modifiers, i.e., they do not cause font
changes themselves, they only modify the appearance of the font already active. E.g., to
get a bold engraved text, set lstyle to FL_BOLD_STYLE|FL_ENGRAVED_STYLE.

Other styles correspond to the first 12 fonts. The package, however, can handle up to 48
different fonts. The first 16 (numbers 0-15) have been pre-defined. The following table gives
their names:

0 helvetica-medium-r

1 helvetica-bold-r

2 helvetica-medium-o

3 helvetica-bold-o

4 courier-medium-r

5 courier-bold-r

6 courier-medium-o

7 courier-bold-o

8 times-medium-r

9 times-bold-r

10 times-medium-o

11 times-bold-o

12 charter-medium-r

13 charter-bold-r

14 charter-medium-i

15 Symbol

The other 32 fonts (numbers 16-47) can be filled in by the application program. Actually, the
application program can also change the first 16 fonts if required (e.g., to force a particular
resolution). To change a font for the the entire application, use one of the following routines:

Chapter 3: Defining Forms 30

int fl_set_font_name(int index, const char *name);

int fl_set_font_name(int index, const char *fmt, ...);

The first form accepts just a simple string for the font name while the second assembles the
name from a format string as it’s used with printf() etc. and the following arguments.
The first argument, index, is the number of the font (between 0 and FL_MAXFONTS-1) and
the font name should be a valid font name (with the exception of the size field). If you are
defining a completely different font family starting at index k, it’s a good idea to define k +

FL_BOLD_STYLE to be the corresponding bold font in the family , and k + FL_ITALIC_STYLE

the corresponding italic font in the family (so object like browser can obtain correct style
when switching font styles):

#define Pretty 30

#define PrettyBold (Pretty + FL_BOLD_STYLE)

#define PrettyItalic (Pretty + FL_ITALIC_STYLE)

fl_set_font_name(Pretty, fontname);

fl_set_font_name(PrettyBold, boldfontname);

fl_set_font_name(PrettyItalic, italicfontname);

...

fl_set_object_lstyle(obj, PrettyBold);

The function returns a negative value if the requested font is invalid or otherwise can’t be
loaded. Note however, if this routine is called before [fl_initialize()], page 278, it
will return 0, but may fail later if the font name is not valid. To change the default font
(helvetica-medium), a program should change font FL_NORMAL_STYLE.

If a font name in XLFD is given, a question mark (?) in the point size position informs the
Forms Library that variable size will be requested later. It is preferable that the complete
XLFD name (i.e., with 14 dashes and possibly wildcards) be given because a complete
name has the advantage that the font may be re-scalable if scalable fonts are available.
This means that although both

"-*-helvetica-medium-r-*-*-*-?-*-*-*-*-*-*"

"-*-helvetica-medium-r-*-*-*-?-*-*"

are valid font names, the first form may be re-scalable while the the second is not. To
obtain the actual built-in font names, use the following function

int fl_enumerate_fonts(void (*cb)(const char *f), int shortform);

where cb is a callback function that gets called once for every built-in font name. The font
name is passed to the callback function as the string pointer parameter while shortform

selects if a short form of the name should be used.

XForms only specifies the absolutely needed parts of the font names, and assumes the font
path is set so that the server always chooses the most optimal fonts for the system. If this
is not true, you can use [fl_set_font_name()], page 284 or [fl_set_font_name_f()],
page 284 to select the exact font you want. In general, this is not recommended if your
application is to be run/displayed on different servers.

See ‘fonts.c’ for a demonstration of all the built-in font styles available.

You can change the alignment of the label with respect to the bounding box of the object.
For this you should use the routine

Chapter 3: Defining Forms 31

void fl_set_object_lalign(FL_OBJECT *obj, int align);

with the following values for the align argument:

FL_ALIGN_LEFT To the left of the box.
FL_ALIGN_RIGHT To the right of the box.
FL_ALIGN_TOP To the top of the box.
FL_ALIGN_BOTTOM To the bottom of the box.
FL_ALIGN_CENTER In the middle of the box.
FL_ALIGN_RIGHT_BOTTOM To the right and bottom of the box.
FL_ALIGN_LEFT_BOTTOM To the left and bottom of the box.
FL_ALIGN_RIGHT_TOP To the right and top of the box.
FL_ALIGN_LEFT_TOP To the left and top of the box.

Alignment requests with the abpve constants place the text outside the box (except for
[FL_ALIGN_CENTER], page 31). To get a value that can be used to align the label within
the object the function

int fl_to_inside_lalign(int align);

can be used, which returns the necessary value for the corresponding inside alignment.
Except for the case of [FL_ALIGN_CENTER], page 31 (which is always inside the object)
the result is the original value, logically or’ed with the constant .

There’s also a function for the reverse conversion, i.e., from a calue for inside to outside
alignment

int fl_to_outside_lalign(int align);

Using this functions is a bit simpler than combining the value with the [FL_ALIGN_

INSIDE], page 31 constant, especially when it comes to [FL_ALIGN_CENTER], page 31

(which doesn’t has the this bit set, even though labels with this alignment will always be
shown within the object.

Both functions return -1 if an invalid value for the alignment is passed to them.

There exist also three functions to test for the inside or outside alignment:

int fl_is_inside_lalign(int align);

int fl_is_outside_lalign(int align);

int fl_is_center_lalign(int align);

Note that these functions return 0 also in the case that the alignment value passed to them
is invalid.

Not all objects accept all kinds of label alignment. For example for sliders, inputs etc. it
doesn’t make sense to have the label within the object und in these cases a request for
an inside label is ignored (or, more precisely, converted to the corresponding request for
an outside label or, on a request with [FL_ALIGN_CENTER], page 31, the reversion to the
default label position). On the other hand, some objects like the text object (where the text
to be shown is the label’s text) accept only inside alignment and a request for an outside
alignment will automatically replaced by the corresponding inside alignment.

See also the demo program ‘lalign.c’ for an example of the positioning of labels using the
above constants.

Finally, the routines

Chapter 3: Defining Forms 32

void fl_set_object_label(FL_OBJECT *obj, const char *label);

void fl_set_object_label_f(FL_OBJECT *obj, const char *fmt, ...);

change the label of a given object. Whilw the first function expects a simple string for the
label. the second one accepts a format string with the same format specifiers as printf()
etc., followed by as many additional arguments as there are format specifiers. An internal
copy of the label for the object is made. As mentioned earlier, newline (\n) can be embedded
in the label to generate multiple lines. By embedding <Ctrl>H (\010) in the label, the entire
label or one of the characters in the label can be underlined. The function

const char * fl_get_object_label(FL_OBJECT *obj);

returns the label string.

3.11.4 Tool Tips

As will be seen later, an object can be decorated by icons instead of labels. For this kind
of object, it is helpful to show a text string that explains the function the object controls
under appropriate conditions. Forms Library elected to show the message after the mouse
enters the object for about 600 milli-seconds. The text is removed when the mouse leaves
the object or when the mouse is pressed.

To set the text, use the following routines

void fl_set_object_helper(FL_OBJECT *obj, const char *helpmsg);

void fl_set_object_helper_f(FL_OBJECT *obj, const char *fmt, ...);

where helpmsg is a text string (with possible embedded newlines in it) that will be shown
when the mouse enters the object, after about a 600 milli-second delay. The second form of
the function accepts instead a format string like printf() etc., followed by the appropriate
number of arguments. In both cases an internal copy of the string is made.

The boxtype, color and font for the message display can be customized further using the
following routines

void fl_set_tooltip_boxtype(int boxtype);

void fl_set_tooltip_color(FL_COLOR textcolor, FL_COLOR background);

void fl_set_tooltip_font(int style, int size);

void fl_set_tooltip_lalign(int align);

where boxtype is the backface of the form that displays the text. The default is FL_

BORDER_BOX. textcolor and background specify the colors of the text string and the
backface. The defaults for these are FL_BLACK and FL_YELLOW respectively. The style and
size parameters are the font style and size of the text. align is the alignment of the text
string with respective to the box. The default is FL_ALIGN_LEFT | FL_ALIGN_INSIDE .

3.11.5 Redrawing Objects

A word of caution is required. It is possible to change the attributes of an object at any
time. But when the form is already displayed on the screen some care has to be taken.
Whenever attributes change the system redraws the object. This is fine when drawing the
object erases the old one but this is not always the case. For example, when placing labels
outside the box (not using FL_ALIGN_CENTER) they are not correctly erased. It is always
possible to force the system to redraw an object using

void fl_redraw_object(FL_OBJECT *obj);

When the object is a group it redraws the complete group. To redraw an entire form, use

Chapter 3: Defining Forms 33

void fl_redraw_form(FL_FORM *form);

Use of these routines is normally not necessary and should be kept to an absolute minimum.

3.11.6 Changing Many Attributes

Whenever you change an attribute of an object in a visible form the object is redrawn
immediately to make the change visible. This can be undesirable when you change a
number of attributes of the same object. You only want the changed object to be drawn
after the last change. Drawing it after each change will give a flickering effect on the screen.
This gets even worse when you, for example, just want to hide a few objects. After each
object you hide the entire form is redrawn. In addition to the flickering, it is also time
consuming. Thus it is more efficient to tell the library to temporarily not redraw the form
while changes are being made. This can be done by "freezing" the form. While a form is
being frozen it is not redrawn, all changes made are instead buffered internally. Only when
you unfreeze the form, all changes made in the meantime are drawn at once. For freezing
and unfreezing two calls exist:

void fl_freeze_form(FL_FORM *form);

and

void fl_unfreeze_form(FL_FORM *form);

It is a good practice to place multiple changes to the contents of a form always between
calls to these two procedures. Further, it is better to complete modifying the attributes of
one object before starting work on the next.

3.11.7 Symbols

Rather than using text as a label it is possible to place symbols like an arrows etc. on
objects. This is done in the following way:

When the label starts with the character @ instead of the text a particular symbol is drawn2.
The rest of the label string indicates the symbol. A number of pre-defined symbols are
available:

-> Normal arrow pointing to the right.
<- Normal arrow pointing to the left.
> Triangular arrow pointing to the right.
< Triangular arrow pointing to the left.
>> Double triangle pointing to the right.
<< Double triangle pointing to the left.
<-> Arrow pointing left and right.
->| A normal arrow with a bar at the end.
>| A triangular arrow with a bar at the end.
--> A thin arrow pointing to the right.
= Three embossed lines.
arrow Same as -->.
returnarrow <Return> key symbol.
square A square.
circle A circle.

2 If you want a literal @ character as the first character of a label text, escape it with another @ character.

Chapter 3: Defining Forms 34

line A horizontal line.
plus A plus sign (can be rotated to get a cross).
UpLine An embossed line.
DnLine An engraved line.
UpArrow An embossed arrow.
DnArrow An engraved arrow.

See Fig. 3.6 for how some of them look.

It is possible to use the symbols in different orientations. When the symbol name is preceded
by a digit 1-9 it is rotated like on the numerical keypad, i.e., 6 (and also 5) result in no
rotation, 9 a rotation of 45 degrees counter-clockwise, 8 a rotation of 90 degrees, etc. Hence
the order is 6, 9, 8, 7, 4, 1, 2, 3. (Just think of the keypad as consisting of arrow keys with
6 pointing in the default orientation, i.e., to the right). So to get an arrow that is pointing
to the left top use a label @7->. To put the symbol in other orientations, put a 0 after the @,
followed by the angle (counter-clockwise). E.g., to draw an arrow at an angle of 30 degrees
you can use @030->.

The symbol will be scaled to fit in the bounding box. When the bounding box is not square,
scaling in the x- and y-directions will be different. If keeping the aspect ratio is desired,
put a sharp (#) immediately after the . E.g., @#9->.

Two additional prefixes, + and -, followed by a single digit, can be used to make small
symbol size adjustment. A + indicates an increase of the symbol size while a - a decrease.
The single digit following the prefix is the amount of increment (or decrement) in pixels.
For example, to draw a square that is 3 pixels smaller in size than the default size use
@-3square. If a single sequence of + or - and a single digit does not suffice, it can repeated,
the effect is cumulative. Of course, this can also be combined with a rotation etc., so i.e., @-
9-3030-> (the order in which the different sequences are used doesn’t matter) will result in
an arrow drawn 12 pixels smaller than normal and rotated by 30 degrees counter-clockwise.

As already stated the "default" size of a symbol is (this at least holds for the built-in ones)
one where it fits autoatically into the box it is to be drawn into, with a bit of room left
around it. Thus the size of the symbol should in most cases be fine without any further
fine-tuning. If you increase the size for whatever reasons please consider that the symbol
automatically gets clipped to the area it is will be drawn into, i.e., increments that result
in the symbol becoming larger than the box it is to be drawn into should be avoided.

Chapter 3: Defining Forms 35

In addition to using symbols as object labels, symbols can also be drawn directly using

int fl_draw_symbol(const char *symbolname, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, FL_Color col);

(the function returns 1 on success and 0 on failure when the symbol name isn’t valid) or
indirectly via [fl_drw_text()], page 263. Drawing is clipped automatically to the area
given by the arguments.

The application program can also add symbols to the system which it can then use to
display symbols on objects that are not provided by the Forms Library. To add a symbol,
use the call

int fl_add_symbol(const char *name, void (*drawit)(),int sc);

name is the name under which the symbol should be known, which may not have a @, a #

or a digit at the start (or + or -, directly followed by a digit). drawit() is the routine to
be called for drawing the symbol. sc is reserved and currently has no meaning. Best set it
to 0.

The routine drawit() should have the form

void drawit(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

int angle, FL_COLOR col);

col is the color in which to draw the symbol. This is the label color that can be provided and
changed by the application program. The routine should draw the symbol centered inside
the box by x, y, w, h and rotated from its natural position by angle degrees. The draw
function can call all types of drawing routines, including [fl_draw_symbol()], page 35.
Before it is called clipping is set to the area given by the first four arguments.

If the new symbol name is the same as that of a built-in or of one previously defined, the
new definition overrides the built-in or previously defined one.

Chapter 3: Defining Forms 36

The function returns 1 on success and 0 on failure (due to invalid arguments).

The symbol handling routines really should be viewed as a means of associating an arbitrary
piece of text (the label) with arbitrary graphics, application of which can be quite pleasant
given the right tasks.

A symbol (built-in or previously defined) can also be deleted using

int fl_delete_symbol(const char *name);

On success 1 is returned, otherwise 0.

3.12 Adding and Removing Objects

In some situations you might want to add objects to an already existing form (i.e., a form
for which fl_end_form() has already been called. Reopening a form for the addition of
further objects can be done by using the call

FL_FORM *fl_addto_form(FL_FORM *form);

After this call you can again add objects to the form with the usual functions for adding
objects (like [fl_add_button()], page 120 etc.). When done with adding objects to the
form again call [fl_end_form()], page 286. It is possible to add objects to forms that
are being displayed, but this is not always a good idea because not everything behaves well
(e.g., strange things might happen when a group is started but not yet finished).

To remove an object from a form simply use

void fl_delete_object(FL_OBJECT *obj);

It removes the object from the form it currently belongs to and also from a group it may
belong to. The argument can also be the pseudo-object starting a group (i.e., the return
value of [fl_bgn_group()], page 286) in which case the whole group of objects will be
removed from the form.

Contrary to what the name of the function may hint at the object itself isn’t deleted but
it remains available (except if it’s an object that marks the start or end of a group) and
thus it can be added again to the same or another form (without having to call [fl_addto_
form()], page 287 first and [fl_end_form()], page 286 afterwards) using the function

void fl_add_object(FL_FORM *form, FL_OBJECT *obj);

Normally, this function should only be used within object classes to add a newly created
object to the form currently under construction. It can not be used for pseude-objects
representing the start or end of a group.

3.13 Freeing Objects

If the application program does not need an object anymore it can completely delete it,
freeing all memory used for it, using a call of

void fl_free_object(FL_OBJECT *obj);

After this the object is truely destroyed and can no longer be used. If you hadn’t removed
the object from the form it did belong to using [fl_delete_object()], page 287 before
this will be done automatically.

To free the memory used by an entire form use a call of

Chapter 3: Defining Forms 37

void fl_free_form(FL_FORM *form);

This will delete and free all the objects of the form and the form itself. A freed form can
not be referenced anymore.

Chapter 4: Doing Interaction 38

4 Doing Interaction

4.1 Displaying a Form

After having defined the forms the application program can use them to interact with the
user. As a first step the program has to display the forms with which it wants the user to
interact. This is done using the routine

Window fl_show_form(FL_FORM *form, int place, int border,

const char *name);

It opens a (top-level) window on the screen in which the form is shown. The parameter
name is the title of the form (and its associated icon if any). The routine returns the ID
of the forms window. You normally never need this. Immediately after the form becomes
visible, a full draw of all objects on the form is performed. Due to the two way buffering
mechanism of Xlib, if [fl_show_form()], page 293 is followed by something that blocks
(e.g., waiting for a device other than X devices to come online), the output buffer might
not be properly flushed, resulting in the form only being partially drawn. If your program
works this way, use the following function after [fl_show_form()], page 293

void fl_update_display(int blocking);

where blocking is false (0), the function flushes the X buffer so the drawing requests
are on their way to the server. When blocking is true (1), the function flushes the
buffer and waits until all the events are received and processed by the server. For typ-
ical programs that use [fl_do_forms()], page 297 or [fl_check_forms()], page 297

after [fl_show_form()], page 293, flushing is not necessary as the output buffer is flushed
automatically. Excessive call to [fl_update_display()], page 38 degrades performace.

The location and size of the window to be shown on the call of [fl_show_form()],

page 293 are determined by the place argument. The following possibilities exist:

FL_PLACE_SIZE

The user can control the position but the size is fixed. Interactive resizing is
not allowed once the form becomes visible.

FL_PLACE_POSITION

Initial position used will be the one set via [fl_set_form_position()],

page 296. Interactive resizing is possible.

FL_PLACE_GEOMETRY

Place at the latest position and size (see also below) or the geometry set via
[fl_set_form_geometry()], page 296. A form so shown will have a fixed
size and interactive resizing is not allowed.

FL_PLACE_ASPECT

Allows interactive resizing but any new size will have the aspect ratio as that
of the initial size.

FL_PLACE_MOUSE

The form is placed centered below the mouse. Interactive resizing will not be
allowed unless this option is accompanied by [FL_FREE_SIZE], page 39 as in
[FL_PLACE_MOUSE], page 38|[FL_FREE_SIZE], page 39.

Chapter 4: Doing Interaction 39

FL_PLACE_CENTER

The form is placed in the center of the screen. If [FL_FREE_SIZE], page 39 is
also specified, interactive resizing will be allowed.

FL_PLACE_FULLSCREEN

The form is scaled to cover the full screen. If [FL_FREE_SIZE], page 39 is also
specified, interactive resizing will be allowed.

FL_PLACE_FREE

Both the position and size are completely free. The initial size used is the de-
signed size. Initial position, if setvia [fl_set_form_position()], page 296,
will be used otherwise interactive positioning may be possible if the window
manager allows it.

FL_PLACE_HOTSPOT

The form is placed so that mouse is on the form’s "hotspot". If [FL_FREE_
SIZE], page 39 is also specified, interactive resizing will be allowed.

FL_PLACE_CENTERFREE

Same as [FL_PLACE_CENTER], page 38|[FL_FREE_SIZE], page 39, i.e., place
the form at the center of the screen and allow resizing.

FL_PLACE_ICONIC

The form is shown initially iconified. The size and location used are the window
manager’s default.

As mentioned above, some of the settings will result in a fixed size of the form (i.e., a size
that can’t be changed by the user per default). In some cases this can be avoided by OR’ing
the value with FL_FREE_SIZE as a modifier.

If no size was specified, the designed (or later scaled) size will be used. Note that the
initial position is dependent upon the window manager used. Some window managers allow
interactive placement of the windows but some don’t.

You can set the position or size to be used via the following calls

void fl_set_form_position(FL_FORM *form, FL_Coord x, FL_Coord y);

and

void fl_set_form_size(FL_FORM *form, FL_Coord w, FL_Coord h);

or, combining both these two functions,

void fl_set_form_geometry(FL_FORM form*, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h);

before placing the form on the screen. (Actually the routines can also be called while the
form is being displayed. They will change the position and/or size of the form.) x, y, w and
h indicate the position of the form on the screen and its size1. The position is measured
from the top-left corner of the screen. When the position is negative the distance from
the right or the bottom is indicated. Next the form should be placed on the screen using
[FL_PLACE_GEOMETRY], page 38, [FL_PLACE_FREE], page 39. E.g., to place a form at
the lower-right corner of the screen use

1 The parameters should be sensitive to the coordinate unit in effect at the time of the call, but at present,
they are not, i.e., the function takes only values in pixel units.

Chapter 4: Doing Interaction 40

fl_set_form_position(form, -1, -1);

fl_show_form(form, FL_PLACE_GEOMETRY, FL_TRANSIENT, "formName");

(Following the X convention for specifying geometries a negative x-position specifies the
distance of the right eside of the form from the right side of the screen and a negative
y-position the distance of the bottom of the form from the bottom of the screen.)

To show a form so that a particular object or point is under the mouse, use one of the
following two routines to set the "hotspot"

void fl_set_form_hotspot(FL_FORM *form, FL_Coord x, FL_Coord y);

void fl_set_form_hotobject(FL_FORM *form, FL_OBJECT *obj);

and then use [FL_PLACE_HOTSPOT], page 39 for the place argument in the call of [fl_
show_form()], page 293. The coordinates x and y are relative to the upper-left hand
corner of the form (within the window decorations).

In the call [fl_show_form()], page 293 the argument border indicates whether or not
to request window manager’s decoration. border should take one of the following values:

FL_FULLBORDER

Full border decorations.

FL_TRANSIENT

Borders with (possibly) less decorations.

FL_NOBORDER

No decoration at all.

For some dialogs, such as demanding an answer etc., you probably do not want the window
manager’s full decorations. Use [FL_TRANSIENT], page 40 for this.

A window border is useful to let the user iconify a form, move it around or resize it. If
a form is transient or has no border, it is normally more difficult (or even impossible) to
move the form. A transient form typically should have less decoration, but not necessarily
so. It depends on the window managers as well as their options. [FL_NOBORDER], page 40

is guaranteed to have no border2 and is immune to iconification request. Because of this,
borderless forms can be hostile to other applications3, so use this only if absolutely necessary.

There are other subtle differences between the different decoration requests. For instance,
(small) transient forms always have save_under (see XSetWindowAttributes()) set to true
by default. Some window properties, WM_COMMAND in particular, are only set for full-bordered
forms and will only migrate to other full-bordered forms when the original form having the
property becomes unmapped.

The library has a notion of a "main form" of an application, roughly the form that would be
on the screen the longest. By default, the first full-bordered form shown becomes the main
form of the application. All transient windows shown afterwards will stay on top of the
main form. The application can set or change the main form anytime using the following
routine

void fl_set_app_mainform(FL_FORM *form);

Setting the main form of an application will cause the WM_COMMAND property set for the form
if no other form has this property.

2 Provided the window manager is compliant. If the window manager isn’t compliant all bets are off.
3 Actually, they are also hostile to their sibling forms. See Chapter 32 [Overview of Main Functions], page 278.

Chapter 4: Doing Interaction 41

Sometimes it is necessary to have access to the window resource ID before the window is
mapped (shown). For this, the following routine can be used

Window fl_prepare_form_window(FL_FORM *form, int place, int border,

const char *name);

This routine creates a window that obeys any and all constraints just as [fl_show_form()],
page 293 does but remains unmapped. To map such a window, the following must be used

Window fl_show_form_window(FL_FORM *form);

Between these two calls, the application program has full access to the window and can set
all attributes, such as icon pixmaps etc., that are not set by [fl_show_form()], page 293.

You can also scale the form and all objects on it programmatically using the following
routine

void fl_scale_form(FL_FORM *form, double xsc, double ysc);

where you indicate a scaling factor in the x- and y-direction with respect to the current
size. See ‘rescale.c’ for an example.

When a form is scaled, either programmatically or interactively, all objects on the form per
default will also be scaled. This includes both the sizes and positions of the objects. For
most cases, this default behavior is adequate. In some cases, e.g., to keep a group of objects
together, more control is needed. To this end, the following routines can be used

void fl_set_object_resize(FL_OBJECT *obj, unsigned how_resize);

void fl_set_object_gravity(FL_OBJECT *obj,

unsigned nw_gravity, unsigned se_gravity);

The how_resize argument of [fl_set_object_resize()], page 290 can be one of

FL_RESIZE_NONE

don’t resize the object at all

FL_RESIZE_X

resize it in x- (horizontal) direction only

FL_RESIZE_Y

resize it in y- (vertical) direction only

FL_RESIZE_ALL

is an alias for [FL_RESIZE_X], page 41|[FL_RESIZE_Y], page 41 and makes
the object resizable in both dimension.

The arguments nw_gravity and se_gravity of fl_set_object_gravity() control the
positioning of the upper-left and lower-right corner of the object and work analogously to
the win_gravity in Xlib. The details are as follows: Let P be the corner the gravity applies
to, (dx1,dy1) the distance to the upper-left corner of the form, (dx2,dy2) the distance to
the lower-right corner of the form, then,

Value Effect
FL_NoGravity Default linear scaling, see below

FL_NorthWest dx1, dy1 constant

Chapter 4: Doing Interaction 42

FL_North dy1 constant

FL_NorthEast dy1, dx2 constant

FL_West dx1 constant

FL_East dx2 constant

FL_SouthWest dx1, dy2 constant

FL_South dy2 constant

FL_SouthEast dx2, dy2 constant

ForgetGravity don’t consider the setting for this argument

Default for all object is [FL_RESIZE_ALL], page 41 and [ForgetGravity], page 42.
Note that the three parameters are not orthogonal and the positioning request will always
override the scaling request in case of conflict. This means the resizing settings for an
object are considered only if one (or both) of the gravities is [FL_NoGravity], page 41.

For the special case where how_resize is [FL_RESIZE_NONE], page 41 and both gravities
are set to ForgetGravity, the object is left un-scaled, but the object is moved so that the
new position keeps the center of gravity of the object constant relative to the form.

Again, since all sizing requests go though the window manager, there is no guarantee that
your request will be honored. If a form is placed with [FL_PLACE_GEOMETRY], page 38 or
other size-restricting options, resizing it later via [fl_set_form_size()], page 296 will
likely be rejected.

To determine the gravity and resize settings for an object use the functions

void fl_get_object_gravity(FL_OBJECT *obj,

unsigned int *nw, unsigned int *se);

void fl_get_object_resize(FL_OBJECT *obj, unsigned int *resize);

Sometimes, you may want to change an attribute for all objects on a particular form, to
this end, the following iterator is available

void fl_for_all_objects(FL_FORM *form,

Chapter 4: Doing Interaction 43

int (*operate)(FL_OBJECT *obj, void *data),

void *data);

where function operate is called for every object of the form form unless operate() returns
nonzero, which terminates the iterator.

Multiple forms can be shown at the same moment and the system will interact with all of
them simultaneously.

The graphical mode in which the form is shown depends on the type of machine. In general,
the visual chosen by XForms is the one that has the most colors. Application programs
have many ways to change this default, either through command line options, resources or
programmatically. See the Part V for details.

If for any reason, you would like to change the form title (as well as its associated icon)
after it is shown, the following functions can be used

void fl_set_form_title(FL_FORM *form, const char *name)

void fl_set_form_title_f(FL_FORM *form, const char *fmt, ...)

To set or change the icon shown when a form is iconified, use the following routine

void fl_set_form_icon(FL_FORM *form, Pixmap icon, Pixmap mask);

where icon and mask can be any valid Pixmap ID. (See Section 15.6.4 [Other Pixmap
Routines], page 114 for some of the routines that can be used to create Pixmaps.) Note
that an icon previously setvia this function (if it exists) is not freed or modified in anyway.
See the demo program ‘iconify.c’ for an example.

If the application program wants to stop interacting with a form and remove it from the
screen, it has to use the call

void fl_hide_form(FL_FORM *form);

To check if a form is visible or not, use the following call

int fl_form_is_visible(FL_FORM *form);

The function returns one of

FL_INVISIBLE

if the form is not visible (0),

FL_VISIBLE

if the form is visible (1) and

FL_BEING_HIDDEN

if the form is visible but is in the process of being hidden (-1).

Note that if you don’t need a form anymore you can deallocate its memory using the call
[fl_free_form()], page 287 described earlier.

Window managers typically have a menu entry labeled "delete" or "close" meant to ter-
minate an application program gently by informing the application program with a WM_

DELETE_WINDOW protocol message. Although the Forms Library catches this message, it
does not do anything except terminating the application. This can cause problems if the
application has to do some record keeping before exiting. To perform record keeping or to
elect to ignore this message, register a callback function using the following routine

Chapter 4: Doing Interaction 44

int fl_set_atclose(int (*at_close)(FL_FORM *, void *), void *data);

The callback function at_close will be called before the Forms Library terminates the
application. The first parameter of the callback function is the form that received the WM_

DELETE_WINDOW message. To prevent the Forms Library from terminating the application,
the callback function should return the constant FL_IGNORE. Any other value (e.g., FL_OK)
will result in the termination of the application.

Similar mechanism exists for individual forms

int fl_set_form_atclose(FL_FORM *,

int (*at_close)(FL_FORM *, void *),

void *data);

except that FL_OK does not terminate the application, it results in the form being closed.
Of course, if you’d like to terminate the application, you can always call exit(3) yourself
within the callback function.

4.2 Simple Interaction

Once one or more forms are shown it is time to give control to the library to handle the
interaction with the forms. There are a number of different ways of doing this. The first
one, appropriate for most programs, is to call of

FL_OBJECT *fl_do_forms(void);

It controls the interaction until some object in one of the forms changes state. In this case
a pointer to the changed object is returned.

A change occurs in the following cases:

box A box never changes state and, hence, is never returned by [fl_do_forms()],

page 297.

text Also a text never changes state.

button A button is returned when the user presses a mouse button on it and then
releases the button. The change is not reported before the user releases the
mouse button, except with touch buttons which are returned all the time as
long as the user keeps the mouse pressed on it. (See e.g., ‘touchbutton.c’ for
the use of touch buttons.)

slider A slider per default is returned whenever its value is changed, so whenever the
user clicks on it and moves the mouse the slider object gets returned.

input An input field is returned per default when it is deactivated, i.e., the user has
selected it and then starts interacting with another object that has the ability
to get returned.

(This list just contains a small number of objects that exist, see Part III for a list of all
objects and the documentation of the exact behaviour of them.)

When the (address of the) object is returned by [fl_do_forms()], page 297 the appli-
cation program can take action accordingly. See some of the demo programs for examples
of use. Normally, after the action is taken by the application program [fl_do_forms()],

page 297 is called again to continue the interaction. Hence, simpler programs have the
following global form:

Chapter 4: Doing Interaction 45

/* define the forms */

/* display the forms */

while (! ready) {

obj = fl_do_forms();

if (obj == obj1)

/* handle the change in obj1 */

else if (obj == obj2)

/* handle the change in obj2 */

....

}

For more complex programs interaction via callbacks is often preferable. For such programs,
the global structure looks something like the following

/* define callbacks */

void callback(FL_OBJECT *obj, long data) {

/* perform tasks */

}

void terminate_callback(FL_OBJECT *obj, long data) {

/* cleanup application */

fl_finish();

exit(0);

}

main(int argc, char *argv[]) {

/* create form and bind the callbacks to objects */

/* enter main loop */

fl_do_forms();

return 0;

}

In this case, [fl_do_forms()], page 297 handles the interaction indefinitely and never
returns. The program exits via one of the callback functions.

There is also the possibility to conrol under which exact conditions the object gets returned.
An application that e.g., doesn’t want to be notified about each change of a slider but instead
only want a single notification after the mouse button has been released and the value of
the slider was changed in the process would call the function

int fl_set_object_return(FL_OBJECT *obj, unsigned int when);

with when set to FL_RETURN_END_CHANGED.

There are several values when can take:

FL_RETURN_CHANGED

Return (or call object callback) whenever there is a change in the state of the
object (button was pressed, input field was changed, slider was moved etc.).

FL_RETURN_END

Return (or invoke callback) at the end of the interaction (typically when the
user releases the mouse button) regardless if the objects state was changed or
not.

Chapter 4: Doing Interaction 46

FL_RETURN_END_CHANGED

Return (or call object callback) when interaction stops and the state of the
object changed.

FL_RETURN_SELECTION

Return when e.g., a line in a [FL_MULTI_BROWSER], page 169 browser was
selected.

FL_RETURN_DESELECTION

Return when e.g., a line in a [FL_MULTI_BROWSER], page 169 browser was
deselected.

FL_RETURN_ALWAYS

Return (or invoke callback) on any of the events that can happen to the object.

FL_RETURN_NONE

Never notiy the application about interactions with this object (i.e., never re-
turn it nor invoke its callback). Note: this is not meant for deactivation of an
object, it will still seem to work as normal, it just doesn’t get returned to the
application nor does is callbak get invoked.

Since for different objects only subsets of these conditions make sense please read the more
detailed descriptions for each of the object types in Part III.

All of the values above, except [FL_RETURN_END_CHANGED], page 45, [FL_RETURN_

ALWAYS], page 46 and [FL_RETURN_NONE], page 46 can be logically OR’ed.
[FL_RETURN_END_CHANGED], page 45 is different in that it only can be returned when the
conditions for [FL_RETURN_END], page 45 and [FL_RETURN_CHANGED], page 45 are sat-
isfied at once. If this is request [FL_RETURN_END], page 45 and [FL_RETURN_CHANGED],

page 45 will automatically deselected. So if you want notifications about the conditions
that lead to [FL_RETURN_END], page 45 or [FL_RETURN_CHANGED], page 45 (or both at
once) ask instead for the logical OR of these two.

[FL_RETURN_ALWAYS], page 46 includes all conditions except [FL_RETURN_END_CHANGED],
page 45.

Once an object has been returned (or its callback is invoked) you can determine the reason
why it was returned by calling

int fl_get_object_return_state(FL_OBBJECT *obj);

This returns the logical OR of the conditions that led to the object being returned, where
the conditions can be [FL_RETURN_CHANGED], page 45, [FL_RETURN_END], page 45,
[FL_RETURN_SELECTION], page 46 and [FL_RETURN_DESELECTION], page 46. (The
[FL_RETURN_END_CHANGED], page 45 condition is satisfied if both [FL_RETURN_END],

page 45 and [FL_RETURN_CHANGED], page 45 are set.)

Please note that calling this function only makes sense in a callback for an object or when the
object has been just returned by e.g., [fl_do_forms()], page 297. Further interactions
with the object overwrite the value!

4.3 Periodic Events and Non-blocking Interaction

The interaction mentioned above is adequate for many application programs but not for
all. When the program also has to perform tasks when no user action takes place (e.g.,
redrawing a rotating image all the time), some other means of interaction are needed.

Chapter 4: Doing Interaction 47

There exist two different, but somewhat similar, mechanisms in the library that are de-
signed specifically for generating and handling periodic events or achieving non-blocking
interaction. Depending on the application, one method may be more appropriate than the
other.

For periodic tasks, e.g., rotating an image, checking the status of some external device or
application state etc., interaction via an idle callback comes in very handy. An idle callback
is an application function that is registered with the system and is called whenever there
are no events pending for forms (or application windows).

To register an idle callback, use the following routine

FL_APPEVENT_CB fl_set_idle_callback(FL_APPEVENT_CB callback,

void *user_data);

After the registration, whenever the main loop ([fl_do_forms()], page 297) is idle, i.e.,
no user action or light user action, the callback function of type FL_APPEVENT_CB is called

typedef int (*FL_APPEVENT_CB)(XEvent *xev, void *user_data);

i.e., a function with the signature

int idle_callback(XEvent *xev, void *user_data);

where user_data is the void pointer passed to the system in [fl_set_idle_callback()],

page 301 through which some information about the application can be passed. The re-
turn value of the callback function is currently not used. xev is a pointer to a synthetic4

MotionNotify event from which some information about mouse position etc. can be ob-
tained. To remove the idle callback, use [fl_set_idle_callback()], page 301 with call-
back set to NULL.

Timeouts are similar to idle callbacks but with somewhat more accurate timing. Idle call-
backs are called whenever the system is idle, the time interval between any two invocations
of the idle callback can vary a great deal depending upon many factors. Timeout callbacks,
on the other hand, will never be called before the specified time is elapsed. You can think
of timeouts as regularized idle callbacks, and further you can have more than one timeout
callbacks.

To add a timeout callback, use the following routine

typedef void (*FL_TIMEOUT_CALLBACK)(int, void *);

int fl_add_timeout(long msec, FL_TIMEOUT_CALLBACK callback,

void *data);

The function returns the timeout’s ID5. When the time interval specified by msec (in milli-
seconds) has elapsed the timeout is removed, then the callback function is called. The
timeout ID is passed to the callback function as the first parameter. The second parameter
the callback function is passed is the data pointer that was passed to [fl_add_timeout()],
page 301.

To remove a timeout before it triggers, use the following routine

void fl_remove_timeout(int id);

4 I.e., xev->xmotion.send_event is true.
5 The function will not return 0 or -1 as timeout IDs, so the application program can use these values to tag

invalid or expired timeouts.

Chapter 4: Doing Interaction 48

where id is the timeout ID returned by [fl_add_timeout()], page 301. There is also
an FL_OBJECT, the FL_TIMER object, especially the invisible type, that can be used to do
timeout. Since it is a proper Forms Library object, it may be easier to use simply because
it has the same API as any other GUI elements and is supported by the Form Designer. See
Section 21.1 [Timer Object], page 186, for complete information on the FL_TIMER object.

Note that idle callback and timeout are not appropriate for tasks that block or take a long
time to finish because during the busy or blocked period, no interaction with the GUI can
take place (both idle callback and timeout are invoked by the main loop, blockage or busy
executing application code prevents the main loop from performing its tasks).

So what to do in situations where the application program does require a lengthy computa-
tion while still wanting to have the ability to interact with the user interface (for example,
a Stop button to terminate the lengthy computation)?

In these situations, the following routine can be used:

FL_OBJECT *fl_check_forms(void);

This function is similar to [fl_do_forms()], page 297 in that it takes care of handling
events and appropriate callbacks, but it does not block. Instead it always returns to the
application program immediately. If a change has occurred in some object the object is
returned as with [fl_do_forms()], page 297. But when no change has occurred control
is also returned but this time a NULL object is returned. Thus, by inserting this statement
in the middle of the computation in appropriate places in effect "polls" the user interface.
The downside of using this function is that if used excessively, as with all excessive polls,
it can chew up considerable CPU cycles. Therefore, it should only be used outside the
inner most loops of the computation. If all objects have callbacks bound to them, [fl_
check_forms()], page 297 always returns NULL, otherwise, code similar to the following
is needed:

obj = fl_check_forms();

if (obj == obj1)

/* handle it */

...

Depending on the applications, it may be possible to partition the computation into smaller
tasks that can be performed within an idle callback one after another, thus eliminating the
need of using [fl_check_forms()], page 297.

Handling intensive computation while maintaining user interface responsiveness can be
tricky and by no means the above methods are the only options. You can, for exam-
ple, fork a child process to do some of the tasks and communicate with the interface via
pipes and/or signals, both of which can be handled with library routines documented later,
or use multi-thread (but be careful to limit Xserver access within one thread). Be creative
and have fun.

For running external executables while maintaining responsiveness of the interface, see [fl_
exe_command()], page 74 and [fl_popen()], page 74 documented later in Section 6.2
[Command Log], page 74.

Chapter 4: Doing Interaction 49

4.4 Dealing With Multiple Windows

It is not atypical that an application program may need to take interaction from more than
one form at the same time, Forms Library provides a mechanism with which precise control
can be exercised.

By default, [fl_do_forms()], page 297 takes interaction from all forms that are shown.
In certain situations, you might not want to have interaction with all of them. For example,
when the user presses a quit button in a form you might want to ask a confirmation using
another form. You don’t want to hide the main form because of that but you also don’t
want the user to be able to press buttons, etc. in this form. The user first has to give
the confirmation. So you want to temporarily deactivate the main form. This can be done
using the call

void fl_deactivate_form(FL_FORM *form);

To reactivate the form later again use

void fl_activate_form(FL_FORM *form);

It is a good idea to give the user a visual clue that a form is deactivated. This is not
automatically done mainly for performance reasons. Experience shows that graying out
some important objects on the form is in general adequate. Graying out an object can
be accomplished by using [fl_set_object_lcolor()], page 289 (see ‘objinactive.c’.
What objects to gray out is obviously application dependent.

The following two functions can be used to register two callbacks that are called whenever
the activation status of a form is changed:

typedef void (*FL_FORM_ATACTIVATE)(FL_FORM *, void *);

FL_FORM_ATACTIVATE fl_set_form_atactivate(FL_FORM *form,

FL_FORM_ATACTIVATE callback,

void *data);

typedef void (*FL_FORM_ATDEACTIVATE)(FL_FORM *, void *);

FL_FORM_ATDEACTIVATE fl_set_form_atdeactivate(FL_FORM *form,

FL_FORM_ATDEACTIVATE callback,

void *data);

It is also possible to deactivate all current forms and reactivate them again. To this end
use the functions:

void fl_deactivate_all_forms(void);

void fl_activate_all_forms(void);

Note that deactivation works in an additive way, i.e., when deactivating a form say 3 times
it also has to be activated 3 times to become active again.

One problem remains. Mouse actions etc. are presented to a program in the form of
events in an event queue. The library routines [fl_do_forms()], page 297 and [fl_

check_forms()], page 297 read this queue and handle the events. When the application
program itself also opens windows, these windows will rather likely receive events as well.
Unfortunately, there is only one event queue. When both the application program and the
library routines would read events from this one queue problems would occur and events
missed. Hence, the application program should not read the event queue itself.. To solve
this problem, the library maintains (or appears to maintain) a separate event queue for the

Chapter 4: Doing Interaction 50

user. This queue behaves in exactly the same way as the normal event queue. To access
it, the application program must use replacements for the usual Xlib routines. Instead of
using XNextEvent(), the program will use [fl_XNextEvent()], page 50, with the same
parameters except the Display * argument. The following is a list of all replacement
routines:

int fl_XNextEvent(XEvent *xev);

int fl_XPeekEvent(XEvent *xev);

int fl_XEventsQueued(int mode);

int fl_XPutbackEvent(XEvent *xev);

Note that these routines normally return 1, but after a call of [fl_finish()], page 286

they return 1 instead.

Other events routines may be directly used if proper care is taken to make sure that only
events for the application windows not handled by the library are removed. These routines
include XWindowEvent(), XCheckWindowEvent() etc.

To help find out when an event has occurred, whenever [fl_do_forms()], page 297 and
[fl_check_forms()], page 297 encounter an event that is not meant for handling by the
library but by the application program itself they return a special object [FL_EVENT],

page 302. Upon receiving this special event, the application program can and must remove
the pending event from the queue using [fl_XNextEvent()], page 50.

So the basis of a program with its own windows would look as follows:

/* define the forms */

/* display the forms */

/* open your own window(s) */

while (! ready) {

obj = fl_do_forms(); /* or fl_check_forms() */

if (obj == FL_EVENT) {

fl_XNextEvent(&xevent);

switch (xevent.type) {

/* handle the event */

}

} else if (obj != NULL)

/* handle the change in obj */

/* update other things */

}

}

In some situations you may not want to receive these "user" events. For example, you might
want to write a function that pops up a form to change some settings. This routine might
not want to be concerned with any redrawing of the main window, etc., but you also not
want to discard any events. In this case you can use the routines [fl_do_only_forms()],
page 297 and [fl_check_only_forms()], page 297 that will never return [FL_EVENT],

page 302. The events don’t disappear but will be returned at later calls to the normal
routines [fl_do_forms()], page 297 etc.

It can’t be over-emphasized that it is an error to ignore [FL_EVENT], page 302 or use
[fl_XNextEvent()], page 50 without seeing [FL_EVENT], page 302.

Chapter 4: Doing Interaction 51

Sometimes an application program might need to find out more information about the event
that triggered a callback, e.g., to implement mouse button number sensitive functionalities.
To this end, the following routines may be called

long fl_mouse_button(void);

This function, if needed, should be called from within a callback. The function returns
one of the constants [FL_LEFT_MOUSE], page 243, [FL_MIDDLE_MOUSE], page 243,
[FL_RIGHT_MOUSE], page 243, [FL_SCROLLUP_MOUSE], page 243 or [FL_SCROLLDOWN_

MOUSE], page 243, indicating which mouse button was pushed or released. If the callback
is triggered by a shortcut, the function returns the keysym (ascii value if ASCII) of the
key plus [FL_SHORTCUT], page 244. For example, if a button has a shortcut <Ctrl>C

(ASCII value is 3), the button number returned upon activation of the shortcut would be
FL_SHORTCUT + 3. [FL_SHORTCUT], page 244 can be used to determine if the callback is
triggered by a shortcut or not

if (fl_mouse_button() >= FL_SHORTCUT)

/* handle shortcut */

else

switch (fl_mouse_button()) {

case FL_LEFTMOUSE:

....

}

More information can be obtained by using the following routine that returns the last
XEvent

const XEvent *fl_last_event(void);

Note that if this routine is used outside of a callback function, the value returned may not
be the real "last event" if the program was idling and, in this case, it returns a synthetic
MotionNotify event.

Some of the utilities used internally by the Forms Library can be used by the application
programs, such as window geometry queries etc. Following is a partial list of the available
routines:

void fl_get_winorigin(Window win, FL_Coord *x, FL_Coord *y);

void fl_get_winsize(Window win, FL_Coord *w, FL_Coord *h);

void fl_get_wingeometry(Window win, FL_Coord *x, FL_Coord *y,

FL_Coord *w, FL_Coord *h);

All positions are relative to the root window.

There are also routines that can be used to obtain the current mouse position relative to
the root window:

Window fl_get_mouse(FL_Coord *x, FL_Coord *y,

unsigned int *keymask);

where keymask is the same as used in XQueryPointer(3X11). The function returns the
window ID the mouse is in.

To obtain the mouse position relative to an arbitrary window, the following routine may be
used

Window fl_get_win_mouse(Window win, FL_Coord *x, FL_Coord *y,

unsigned int *keymask);

Chapter 4: Doing Interaction 52

To print the name of an XEvent, the following routine can be used:

XEvent *fl_print_xevent_name(const char *where, const XEvent *xev);

The function takes an XEvent, prints out its name and some other info, e.g., expose,
count=n. Parameter where can be used to indicate where this function is called:

fl_print_xevent_name("In tricky.c", &xevent);

4.5 Using Callback Functions

As stated earlier, the recommended method of interaction is to use callback functions. A
callback function is a function supplied to the library by the application program that binds
a specific condition (e.g., a button is pushed) to the invocation of the function by the system.

The application program can bind a callback routine to any object. Once a callback function
is bound and the specified condition is met, [fl_do_forms()], page 297 or [fl_check_
forms()], page 297 invokes the callback function instead of returning the object.

To bind a callback routine to an object, use the following

typedef void (*FL_CALLBACKPTR)(FL_OBJECT *obj, long argument);

FL_CALLBACKPTR fl_set_object_callback(FL_OBJECT *obj,

FL_CALLBACKPTR callback,

long argument);

where callback is the callback function. argument is an argument that is passed to the
callback routine so that it can take different actions for different objects. The function
returns the old callback routine already bound to the object. You can change the callback
routine anytime using this function. See, for example, demo program ‘timer.c’.

The callback routine should have the form

void callback(FL_OBJECT *obj, long argument);

The first argument to every callback function is the object to which the callback is bound.
The second parameter is the argument specified by the application program in the call to
[fl_set_object_callback()], page 291.

See program ‘yesno_cb.c’ for an example of the use of callback routines. Note that callback
routines can be combined with normal objects. It is possible to change the callback routine
at any moment.

Sometimes it is necessary to access other objects on the form from within the callback
function. This presents a difficult situation that calls for global variables for all the objects
on the form. This runs against good programming methodology and can make a program
hard to maintain. Forms Library solves (to some degree) this problem by creating three
fields, void *u_vdata, char *u_cdata and long u_ldata, in the FL_OBJECT structure that
you can use to hold the necessary data to be used in the callback function. A better and
more general solution to the problem is detailed in Part II of this documentation where all
objects on a form is are grouped into a single structure which can then be "hang" off of
u_vdata or some field in the FL_FORM structure.

Another communication problem might arise when the callback function is called and, from
within the callback function, some other objects’ state is explicitly changed, say, via [fl_

set_button()], page 123, [fl_set_input()], page 152 etc. You probably don’t want
to put the state change handling code of these objects in another object’s callback. To
handle this situation, you can simply call

Chapter 4: Doing Interaction 53

void fl_call_object_callback(FL_OBJECT *obj);

When dealing with multiple forms, the application program can also bind a callback routine
to an entire form. To this end it should use the routine

void fl_set_form_callback(FL_FORM *form,

void (*callback)(FL_OBJECT *, void *),

void *data);

Whenever [fl_do_forms()], page 297 or [fl_check_forms()], page 297 would return
an object in form they call the routine callback instead, with the object as an argument.
So the callback should have the form

void callback(FL_OBJECT *obj, void *data);

With each form you can associate its own callback routine. For objects that have their own
callbacks the object callbacks have priority over the form callback.

When the application program also has its own windows (via Xlib or Xt), it most likely
also wants to know about XEvents for the window. As explained earlier, this can be
accomplished by checking for [FL_EVENT], page 302 objects. Another (and better) way
is to add an event callback routine. This routine will be called whenever an XEvent is
pending for the application’s own window. To setup an event callback routine (of type
[FL_APPEVENT_CB], page 47 use the call

typedef int (*FL_APPEVENT_CB)(XEvent *, void *);

FL_APPEVENT_CB fl_set_event_callback(int (*callback)(XEvent *ev,

void *data),

void *data);

Whenever an event happens the callback function is invoked with the event as the first
argument and a pointer to data you want it to receive. So the callback should have the
form

int callback(XEvent *xev, void *data);

This assumes the application program solicits the events and further, the callback routine
should be prepared to handle all XEvent for all non-form windows. The callback function
normally should return 0 unless the event isn’t for one of the applcation-managed windows.

This could be undesirable if more than one application window is active. To further partition
and simplify the interaction, callbacks for a specific event on a specific window can be
registered:

FL_APPEVENT_CB fl_add_event_callback(Window window, int xev_type,

FL_APPEVENT_CB callback,

void *user_data);

where window is the window for which the callback routine is to be registered. xev_type

is the XEvent type you’re interested in, e.g., Expose etc. If xev_type is 0, it is taken to
mean that the callback routine will handle all events for the window. The newly installed
callback replaces the callback already installed. Note that this function only works for
windows created directly by the application program (i.e., it won’t work for forms’ windows
or windows created by the canvas object). It is possible to access the raw events that
happen on a form’s window via [fl_register_raw_callback()], page 316 discussed in
Section 35.1.1 [Form Events], page 316.

Chapter 4: Doing Interaction 54

[fl_add_event_callback()], page 298 does not alter the window’s event mask nor does
it solicit events for you. That’s mainly for the reason that an event type does not always
correspond to a unique event mask, also in this way, the user can solicit events at window’s
creation and use 0 to register all the event handlers.

To let XForms handle solicitation for you, call the following routine

void fl_activate_event_callbacks(Window win);

This function activates the default mapping of events to event masks built-in in the Forms
Library, and causes the system to solicit the events for you. Note however, the mapping of
events to masks are not unique and depending on applications, the default mapping may
or may not be the one you want. For example, MotionNotify event can be mapped into
ButtonMotionMask or PointerMotionMask. Forms Library will use both.

It is possible to control the masks you want precisely by using the following function, which
can also be used to add or remove solicited event masks on the fly without altering other
masks already selected:

long fl_addto_selected_xevent(Window win, long mask);

long fl_remove_selected_xevent(Window win, long mask);

Both functions return the resulting event masks that are currently selected. If event call-
back functions are registered via both fl_set_event_callback() and [fl_add_event_

callback()], page 298, the callback via the latter is invoked first and the callback reg-
istered via [fl_set_event_callback()], page 298 is called only if the first attempt is
unsuccessful, that is, the handler for the event is not present. For example, after the fol-
lowing sequence

fl_add_event_callback(winID, Expose, expose_cb, 0);

fl_set_event_callback(event_callback);

and all Expose events on window winID are consumed by expose_cb then
event_callback() would never be invoked as a result of an Expose event.

To remove a callback, use the following routine

void fl_remove_event_callback(Window win, int xev_type);

All parameters have the usual meaning. Again, this routine does not modify the win-
dow’s event mask. If you like to change the events the window is sensitive to after re-
moving the callback, use [fl_activate_event_callbacks()], page 299. If xev_type is
0, all callbacks for window win are removed. This routine is called automatically if [fl_
winclose()], page 307 is called to unmap and destroy a window. Otherwise, you must
call this routine explicitly to remove all event callbacks before destroying a window using
XDestroyWindow().

A program using all of these has the following basic form:

void event_cb(XEvent *xev, void *mydata1) {

/* Handles an X-event. */

}

void expose_cb(XEvent *xev, void *mydata2) {

/* handle expose */

}

Chapter 4: Doing Interaction 55

void form1_cb(FL_OBJECT *obj) {

/* Handles object obj in form1. */

}

void form2_cb(FL_OBJECT *obj) {

/* Handles object obj in form2. */

}

main(int argc, char *argv[]) {

/* initialize */

/* create form1 and form2 and display them */

fl_set_form_callback(form1, form1cb);

fl_set_form_callback(form2, form2cb);

/* create your own window, winID and show it */

fl_addto_selected_xevent(winID,

ExposureMask | ButtonPressMask |...);

fl_winshow(winID);

fl_set_event_callback(event_cb, whatever);

fl_add_event_callback(winID, Expose, expose_cb, data);

fl_do_forms();

return 0;

}

The routine [fl_do_forms()], page 297 will never return in this case. See ‘demo27.c’ for
a program that works this way.

It is recommended that you set up your programs using callback routines (either for the
objects or for entire forms). This ensures that no events are missed, events are treated in the
correct order, etc. Note that different event callback routines can be written for different
stages of the program and they can be switched when required. This provides a progressive
path for building up programs.

Another possibility is to use a free object so that the application window is handled auto-
matically by the internal event processing mechanism just like any other forms.

4.6 Handling Other Input Sources

It is not uncommon that X applications may require input from sources other than the X
event queue. Outlined in this section are two routines in the Forms Library that provide a
simple interface to handle additional input sources. Applications can define input callbacks
to be invoked when input is available from a specified file descriptor.

The function

typedef void (*FL_IO_CALLBACK)(int fd, void *data);

void fl_add_io_callback(int fd, unsigned condition,

FL_IO_CALLBACK callback, void *data);

registers an input callback with the system. The argument fd must be a valid file descriptor
on a UNIX-based system or other operating system dependent device specification while

Chapter 4: Doing Interaction 56

condition indicates under what circumstance the input callback should be invoked. The
condition must be one of the following constants

FL_READ File descriptor has data available.

FL_WRITE File descriptor is available for writing.

FL_EXCEPT

an I/O error has occurred.

When the given condition occurs, the Forms Library invokes the callback function specified
by callback. The data argument allows the application to provide some data to be passed
to the callback function when it is called (be sure that the storage pointed to by data has
global (or static) scope).

To remove a callback that is no longer needed or to stop the Forms Library’s main loop
from watching the file descriptor, use the following function

void fl_remove_io_callback(int fd, unsigned condition,

FL_IO_CALLBACK callback);

The procedures outlined above work well with pipes and sockets, but can be a CPU hog
on real files. To workaround this problem, you may wish to check the file periodically and
only from within an idle callback.

Chapter 5: Free Objects 57

5 Free Objects

In some applications the standard object classes as provided by the Forms Library may not
be enough for your task. There are three ways of solving this problem. First of all, the
application program can also open its own window or use a canvas (the preferred way) in
which it does interaction with the user). A second way is to add your own object classes
(see Part IV). This is especially useful when your new type of objects is of general use.

The third way is to add free objects to your form. Free objects are objects for which the
application program handles the drawing and interaction. This chapter will give all the
details needed to design and use free objects.

5.1 Free Object

To add a free object to a form use the call

FL_OBJECT *fl_add_free(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label, int (*handle)());

type indicates the type of free object, see below for a list and their meaning. x, y, w and h

are the bounding box. The label is normally not drawn unless the handle routine takes
care of this. handle is the routine that does the redrawing and handles the interaction with
the free object. The application program must supply this routine.

This routine handle is called by the library whenever an action has to be performed. The
routine should have the form:

int handle(FL_OBJECT *obj, int event, FL_Coord mx, FL_Coord my,

int key, void *xev);

where obj is the object to which the event applies. event indicates what has to happen
to the object. See below for a list of possible events. mx and my indicate the position of
the mouse (only meaningful with mouse related events) relative to the form origin and key

is the KeySym of the key typed in by the user (only for FL_KEYPRESS events). xev is the
(cast) XEvent that causes the invocation of this handler. event and xev->type can both
be used to obtain the event types. The routine should return whether the status of the
object has changed, i.e., whether [fl_do_forms()], page 297 or [fl_check_forms()],

page 297 should return this object.

The following types of events exist for which the routine must take action:

FL_DRAW The object has to be redrawn. To figure out the size of the object you can use
the fields obj->x, obj->y, obj->w and obj->h. Some other aspects might also
influence the way the object has to be drawn. E.g., you might want to draw the
object differently when the mouse is on top of it or when the mouse is pressed
on it. This can be figured out as follows. The field obj->belowmouse indi-
cates whether the object is below the mouse. The field obj->pushed indicates
whether the object is currently being pushed with the mouse. Finally, obj-
>focus indicates whether input focus is directed towards this object. When
required, the label should also be drawn. This label can be found in the field
obj->label. The drawing should be done such that it works correctly in the
visual/depth the current form is in. Complete information is available on the

Chapter 5: Free Objects 58

state of the current form as well as several routines that will help you to tackle
the trickiest (also the most tedious) part of X programming. In particular,
the return value of [fl_get_vclass()], page 254 can be used as an index
into a table of structures, [fl_state], page 302[], from which all informa-
tion about current active visual can be obtained. See Chapter 28 [Drawing
Objects], page 254, for details on drawing objects and the routines.

FL_DRAWLABEL

This event is not always generated. It typically follows FL_DRAW and indicates
the object label needs to be (re)drawn. You can ignore this event if (a) the
object handler always draws the label upon receiving FL_DRAW or (b) the object
label is not drawn at all1.

FL_ENTER This event is sent when the mouse has entered the bounding box. This might
require some action. Note that also the field belowmouse in the object is being
set. If entering only changes the appearance redrawing the object normally
suffices. Don’t do this directly! Always redraw the object using the routine fl_
redraw_object(). It will send an FL_DRAW event to the object but also does
some other things (like setting window id’s, taking care of double buffering and
some other bookkeeping tasks).

FL_LEAVE The mouse has left the bounding box. Again, normally a redraw is enough (or
nothing at all).

FL_MOTION

A motion event is sent between FL_ENTER and FL_LEAVE events when the mouse
position changes on the object. The mouse position is given with the routine.

FL_PUSH The user has pushed a mouse button in the object. Normally this requires some
action.

FL_RELEASE

The user has released the mouse button. This event is only sent if a FL_PUSH

event was sent earlier.

FL_DBLCLICK

The user has pushed a mouse button twice within a certain time limit (FL_
CLICK_TIMEOUT), which by default is about 400 msec.

FL_TRPLCLICK

The user has pushed a mouse button three times within a certain time window
between each push. This event is sent after a FL_DBLCLICK, FL_PUSH, FL_

RELEASE sequence.

FL_UPDATE

The mouse position has changed. This event is sent to an object between an
FL_PUSH and an FL_RELEASE event (actually this event is sent periodically, even
if mouse has not moved). The mouse position is given as the parameter mx and
my and action can be taken based on the position.

1 Label for free objects can’t be drawn outside of the bounding box because of the clippings by the dispatcher.

Chapter 5: Free Objects 59

FL_FOCUS Input got focussed to this object. This event and the next two are only sent to
a free object of type FL_INPUT_FREE (see below).

FL_UNFOCUS

Input is no longer focussed on this object.

FL_KEYPRESS

A key was pressed. The KeySym is given with the routine. This event only
happens between FL_FOCUS and FL_UNFOCUS events.

FL_STEP A step event is sent all the time (at most 50 times per second but often less
because of time consuming redraw operations) to a free object of type FL_

CONTINUOUS_FREE such that it can update its state or appearance.

FL_SHORTCUT

Hotkeys for the object have been triggered. Typically this should result in the
returning of the free object.

FL_FREEMEM

Upon receiving this event, the handler should free all object class specific mem-
ory allocated.

FL_OTHER Some other events typically caused by window manager events or inter-client
events. All information regarding the details of the events is in xev.

Many of these events might make it necessary to (partially) redraw the object. Always do
this using the routine [fl_redraw_object()], page 298.

As indicated above not all events are sent to all free objects. It depends on their types.
The following types exist (all objects are sent FL_OTHER when it occurs):

FL_NORMAL_FREE

The object will receive the events FL_DRAW, FL_ENTER, FL_LEAVE, FL_MOTION,
FL_PUSH, FL_RELEASE and FL_MOUSE.

FL_INACTIVE_FREE

The object only receives FL_DRAW events. This should be used for objects with-
out interaction (e.g., a picture).

FL_INPUT_FREE

Same as FL_NORMAL_FREE but the object also receives FL_FOCUS, FL_UNFOCUS
and FL_KEYPRESS events. The obj->wantkey is by default set to FL_KEY_

NORMAL, i.e., the free object will receive all normal keys (0-255) except <Tab>
and <Return> key. If you’re interested in <Tab> or <Return> key, you need to
change obj->wantkey to FL_KEY_TAB or FL_KEY_ALL. See Chapter 26 [Events],
page 242, for details.

FL_CONTINUOUS_FREE

Same as FL_NORMAL_FREE but the object also receives FL_STEP events. This
should be used for objects that change themselves continuously.

FL_ALL_FREE

The object receives all types of events.

Chapter 5: Free Objects 60

See ‘free1.c’ for a (terrible) example of the use of free objects. See also ‘freedraw.c’,
which is a nicer example of the use of free objects.

Free objects provide all the generality you want from the Forms Library. Because free
objects behave a lot like new object classes it is recommended that you also read part IV
of this documentation before designing free objects.

5.2 An Example

We conclude our discussion of the free object by examining a simple drawing program
capable of drawing simple geometric figures like squares, circles, and triangles of various
colors and sizes, and of course it also utilizes a free object.

The basic UI consists of three logical parts. A drawing area onto which the squares etc. are
to be drawn; a group of objects that control what figure to draw and with what size; and
a group of objects that control the color with which the figure is to be drawn.

The entire UI is designed interactively using the GUI builder fdesign with most objects
having their own callbacks. fdesign writes two files, one is a header file containing forward
declarations of callback functions and other function prototypes:

#ifndef FD_drawfree_h_

#define FD_drawfree_h_

extern void change_color(FL_OBJECT *, long);

extern void switch_figure(FL_OBJECT *, long);

/* more callback declarations omitted */

typedef struct {

FL_FORM * drawfree;

FL_OBJECT * freeobj;

FL_OBJECT * figgrp;

FL_OBJECT * colgrp;

FL_OBJECT * colorobj;

FL_OBJECT * miscgrp;

FL_OBJECT * sizegrp;

FL_OBJECT * wsli;

FL_OBJECT * hsli;

FL_OBJECT * drobj[3];

void * vdata;

long ldata;

} FD_drawfree;

extern FD_drawfree *create_form_drawfree(void);

#endif /* FD_drawfree_h_ */

The other file contains the actual C-code that creates the form when compiled and executed.
Since free objects are not directly supported by fdesign, a box was used as a stub for
the location and size of the drawing area. After the C-code was generated, the box was
changed manually to a free object by replacing fl_add_box(FL_DOWN_BOX,...) with fl_

Chapter 5: Free Objects 61

add_free(FL_NORMAL_FREE,...). We list below the output generated by fdesign with some
comments:

FD_drawfree *create_form_drawfree(void) {

FL_OBJECT *obj;

FD_drawfree *fdui = fl_calloc(1, sizeof *fdui);

fdui->drawfree = fl_bgn_form(FL_NO_BOX, 530, 490);

obj = fl_add_box(FL_UP_BOX, 0, 0, 530, 490, "");

This is almost always the same for any form definition: we allocate a structure that will
hold all objects on the form as well as the form itself. In this case, the first object on the
form is a box of type FL_UP_BOX.

fdui->figgrp = fl_bgn_group();

obj = fl_add_button(FL_RADIO_BUTTON, 10, 60, 40, 40,

"@#circle");

fl_set_object_lcolor(obj,FL_YELLOW);

fl_set_object_callback(obj, switch_figure, 0);

obj = fl_add_button(FL_RADIO_BUTTON, 50, 60, 40, 40,

"@#square");

fl_set_object_lcolor(obj, FL_YELLOW);

fl_set_object_callback(obj, switch_figure, 1);

obj = fl_add_button(FL_RADIO_BUTTON, 90, 60, 40, 40,

"@#8*>");

fl_set_object_lcolor(obj, FL_YELLOW);

fl_set_object_callback(obj, switch_figure, 2);

fl_end_group();

This creates three buttons that control what figures are to be drawn. Since figure selection
is mutually exclusive, we use RADIO_BUTTON for this. Further, the three buttons are placed
inside a group so that they won’t interfere with other radio buttons on the same form. Notice
that the callback function switch_figure() is bound to all three buttons but with different
arguments. Thus the callback function can resolve the associated object via the callback
function argument. In this case, 0 is used for circle, 1 for square and 2 for triangle. This
association of a callback function with a piece of user data can often reduce the amount of
code substantially, especially if you have a large group of objects that control similar things.
The advantage will become clear as we proceed.

Next we add three sliders to the form. By using appropriate colors for these sliding bars
(red, green, blue), there is no need to label them. There’s also no need to store their
addresses as their callback routine change_color() will receive them automatically.

fdui->colgrp = fl_bgn_group();

obj = fl_add_slider(FL_VERT_FILL_SLIDER, 25, 170, 30, 125, "");

fl_set_object_color(obj, FL_COL1, FL_RED);

Chapter 5: Free Objects 62

fl_set_object_callback(obj, change_color, 0);

obj = fl_add_slider(FL_VERT_FILL_SLIDER, 55, 170, 30, 125, "");

fl_set_object_color(obj, FL_COL1, FL_GREEN);

fl_set_object_callback(obj, change_color, 1);

obj = fl_add_slider(FL_VERT_FILL_SLIDER, 85, 170, 30, 125, "");

fl_set_object_color(obj, FL_COL1, FL_BLUE);

fl_set_object_callback(obj, change_color, 2);

fdui->colorobj = obj = fl_add_box(FL_BORDER_BOX,

25, 140, 90, 25, "");

fl_set_object_color(obj, FL_FREE_COL1, FL_FREE_COL1);

fl_end_group();

Again, a single callback function, change_color(), is bound to all three sliders. In addition
to the sliders, a box object is added to the form. This box is set to use the color indexed
by FL_FREE_COL1 and will be used to show visually what the current color setting looks
like. This implies that in the change_color() callback function, the entry FL_FREE_COL1

in the Forms Library’s internal colormap will be changed. We also place all the color related
objects inside a group even though they are not of radio buttons. This is to facilitate gravity
settings which otherwise require setting the gravities of each individual object.

Next we create our drawing area which is simply a free object of type NORMAL_FREE with a
handler to be written

obj = fl_add_frame(FL_DOWN_FRAME, 145, 30, 370, 405, "");

fl_set_object_gravity(obj, FL_NorthWest, FL_SouthEast);

fdui->freeobj = obj = fl_add_free(FL_NORMAL_FREE,

145, 30, 370, 405, "",

freeobject_handler);

fl_set_object_boxtype(obj, FL_FLAT_BOX);

fl_set_object_gravity(obj, FL_NorthWest, FL_SouthEast);

The frame is added for decoration purposes only. Although a free object with a down box
would appear the same, the down box can be written over by the free object drawing while
the free object can’t draw on top of the frame since the frame is outside of the free object.
Notice the gravity settings. This kind of setting maximizes the real estate of the free object
when the form is resized.

Next, we need to have control over the size of the object. For this, two sliders are added,
using the same callback function but with different user data (0 and 1 in this case):

fdui->sizegrp = fl_bgn_group();

fdui->wsli = obj = fl_add_valslider(FL_HOR_SLIDER,

15, 370, 120, 25, "Width");

fl_set_object_lalign(obj, FL_ALIGN_TOP);

fl_set_object_callback(obj, change_size, 0);

Chapter 5: Free Objects 63

fdui->hsli = obj = fl_add_valslider(FL_HOR_SLIDER,

15, 55, 410,25, "Height");

fl_set_object_lalign(obj, FL_ALIGN_TOP);

fl_set_object_callback(obj, change_size, 1);

fl_end_group();

The rest of the UI consists of some buttons the user can use to exit the program, elect to
draw outlined instead of filled figures etc. The form definition ends with [fl_end_form()],

page 286. The structure that holds the form as well as all the objects within it is returned
to the caller:

fdui->miscgrp = fl_bgn_group();

obj = fl_add_button(FL_NORMAL_BUTTON, 395, 445, 105, 30,

"Quit");

fl_set_button_shortcut(obj, "Qq#q", 1);

obj = fl_add_button(FL_NORMAL_BUTTON, 280, 445, 105, 30,

"Refresh");

fl_set_object_callback(obj, refresh_cb, 0);

obj = fl_add_button(FL_NORMAL_BUTTON, 165, 445, 105, 30,

"Clear");

fl_set_object_callback(obj,clear_cb,0); fl_end_group();

obj = fl_add_checkbutton(FL_PUSH_BUTTON, 15, 25, 100, 35,

"Outline");

fl_set_object_color(obj, FL_MCOL, FL_BLUE);

fl_set_object_callback(obj, fill_cb, 0);

fl_set_object_gravity(obj, FL_NorthWest, FL_NorthWest);

fl_end_form();

return fdui;

}

After creating the UI we need to write the callback functions and the free object handler.
The callback functions are relatively easy since each object is designed to perform a very
specific task.

Before we proceed to code the callback functions we first need to define the overall data
structure that will be used to glue together the UI and the routines that do real work.

The basic structure is the DrawFigure structure that holds the current drawing function as
well as object attributes such as size and color:

#define MAX_FIGURES 500

typedef void (*DrawFunc)(int /* fill */,

Chapter 5: Free Objects 64

int, int, int, int, /* x,y,w,h */

FL_COLOR /* color */);

typedef struct {

DrawFunc drawit; /* how to draw this figure */

int fill, /* is it to be filled? */

x, y, w, h; /* position and sizes */

int pc[3]; /* primary color R,G,B */

int newfig; /* indicate a new figure */

FL_COLOR col; /* color index */

} DrawFigure;

static DrawFigure saved_figure[MAX_FIGURES],

*cur_fig;

static FD_drawfree *drawui;

int max_w = 30, /* max size of figures */

max_h = 30;

All changes to the figure attributes will be buffered in cur_fig and when the actual drawing
command is issued (mouse click inside the free object), cur_fig is copied into saved_figure
array buffer.

Forms Library contains some low-level drawing routines that can draw and optionally fill
arbitrary polygonal regions, so in principle, there is no need to use Xlib calls directly. To
show how Xlib drawing routines are combined with Forms Library, we use Xlib routines to
draw a triangle:

void draw_triangle(int fill, int x, int y,

int w, int h, FL_COLOR col) {

XPoint xp[4];

GC gc = fl_state[fl_get_vclass()].gc[0];

Window win = fl_winget();

Display *disp = fl_get_display();

xp[0].x = x;

xp[0].y = y + h - 1;

xp[1].x = x + w / 2;

xp[1].y = y;

xp[2].x = x + w - 1;

xp[2].y = y + h - 1;

XSetForeground(disp, gc, fl_get_pixel(col));

if (fill)

XFillPolygon(disp, win, gc, xp, 3, Nonconvex, Unsorted);

else {

xp[3].x = xp[0].x;

xp[3].y = xp[0].y;

XDrawLines(disp, win, gc, xp, 4, CoordModeOrigin);

}

Chapter 5: Free Objects 65

}

Although more or less standard stuff, some explanation is in order. As you have probably
guessed, [fl_winget()], page 259 returns the current "active" window, defined to be the
window the object receiving the dispatcher’s messages (FL_DRAW etc.) belongs to2. Similarly
the routine [fl_get_display()], page 255 returns the current connection to the X server.
Part IV has more details on the utility functions in the Forms Library.

The array of structures [fl_state], page 302[] keeps much "inside" information on the
state of the Forms Library. For simplicity, we choose to use the Forms Library’s default
GC. There is no fundamental reason that this has be so. We certainly can copy the default
GC and change the foreground color in the copy. Of course unlike using the default GC
directly, we might have to set the clip mask in the copy whereas the default GC always
have the proper clip mask (in this case, to the bounding box of the free object).

We use the Forms Library’s built-in drawing routines to draw circles and rectangles. Then
our drawing functions can be defined as follows:

static DrawFunc drawfunc[] = {

fl_oval, fl_rectangle, draw_triangle };

Switching what figure to draw is just changing the member drawit in cur_fig. By using
the proper object callback argument, figure switching is achieved by the following callback
routine that is bound to all figure buttons

void switch_object(FL_OBJECT *obj, long which) {

cur_fig->drawit = drawfunc[which];

}

So this takes care of the drawing functions. Similarly, the color callback function can be
written as follows

void change_color(FL_OBJECT *obj, long which) {

cur_fig->c[which] = 255 * fl_get_slider_value(obj);

fl_mapcolor(cur_fig->col,

cur_fig->c[0], cur_fig->c[1], cur_fig->c[2]);

fl_mapcolor(FL_FREE_COL1,

cur_fig->c[0], cur_fig->c[1], cur_fig->c[2]);

fl_redraw_object(drawui->colorobj);

}

The first call of [fl_mapcolor()], page 256 defines the RGB components for index cur_

fig->col and the second [fl_mapcolor()], page 256 call defines the RGB component
for index FL_FREE_COL1, which is the color index used by colorobj that serves as current
color visual feedback.

Object size is taken care of in a similar fashion by using a callback function bound to both
size sliders:

void change_size(FL_OBJECT * obj, long which) {

if (which == 0)

cur_fig->w = fl_get_slider_value(obj);

else

cur_fig->h = fl_get_slider_value(obj);

2 If [fl_winget()], page 259 is called while not handling messages, the return value must be checked.

Chapter 5: Free Objects 66

}

Lastly, we toggle the fill/outline option by querying the state of the push button

void outline_callback(FL_OBJECT *obj, long data) {

cur_fig->fill = !fl_get_button(obj);

}

To clear the drawing area and delete all saved figures, a Clear button is provided with the
following callback:

void clear_cb(FL_OBJECT *obj, long notused) {

saved_figure[0] = *cur_fig; /* copy attributes */

cur_fig = saved_figure;

fl_redraw_object(drawui->freeobj);

}

To clear the drawing area and redraw all saved figures, a Refresh button is provided with
the following callback:

void refresh_cb(FL_OBJECT *obj, long notused) {

fl_redraw_object(drawui->freeobj);

}

With all attributes and other services taken care of, it is time to write the free object
handler. The user can issue a drawing command inside the free object by clicking either
the left or right mouse button.

int freeobject_handler(FL_OBJECT *obj, int event,

FL_Coord mx, FL_Coord my,

int key, void *xev) {

DrawFigure *dr;

switch (event) {

case FL_DRAW:

if (cur_fig->newfig == 1)

cur_fig->drawit(cur_fig->fill,

cur_fig->x + obj->x,

cur_fig->y + obj->y,

cur_fig->w, cur_fig->h,

cur_fig->col);

else {

fl_drw_box(obj->boxtype, obj->x, obj->y, obj->w,

obj->h, obj->col1, obj->bw);

for (dr = saved_figure; dr < cur_fig; dr++) {

fl_mapcolor(FL_FREE_COL1,

dr->c[0], dr->c[1], dr->c[2]);

dr->drawit(dr->fill,dr->x + obj->x,

dr->y + obj->y,

dr->w, dr->h, dr->col);

}

}

Chapter 5: Free Objects 67

cur_fig->newfig = 0;

break;

case FL_PUSH:

if (key == FL_MIDDLE_MOUSE)

break;

cur_fig->x = mx - cur_fig->w / 2;

cur_fig->y = my - cur_fig->h / 2;

/* convert figure center to relative to the object*/

cur_fig->x -= obj->x;

cur_fig->y -= obj->y;

cur_fig->newfig = 1;

fl_redraw_object(obj);

*(cur_fig + 1) = *cur_fig;

fl_mapcolor(cur_fig->col + 1, cur_fig->c[0],

cur_fig->c[1], cur_fig->c[2]);

cur_fig++;

cur_fig->col++;

break;

}

return FL_RETURN_NONE;

}

In this particular program, we are only interested in mouse clicks and redraw. The event
dispatching routine cooks the X event and drives the handler via a set of events (messages).
For a mouse click inside the free object, its handler is notified with an FL PUSH together
with the current mouse position mx, my. In addition, the driver also sets the clipping mask
to the bounding box of the free object prior to sending FL_DRAW. Mouse position (always
relative to the origin of the form) is directly usable in the drawing function. However, it is
a good idea to convert the mouse position so it is relative to the origin of the free object if
the position is to be used later. The reason for this is that the free object can be resized or
moved in ways unknown to the handler and only the position relative to the free object is
meaningful in these situations.

It is tempting to call the drawing function in response to FL_PUSH since it is FL_PUSH that
triggers the drawing. However, it is a (common) mistake to do this. The reason is that
much bookkeeping is performed prior to sending FL_DRAW, such as clipping, double buffer
preparation and possibly active window setting etc. All of these is not done if the message
is anything else than FL_DRAW. So always use [fl_redraw_object()], page 298 to draw
unless it is a response to FL_DRAW. Internally [fl_redraw_object()], page 298 calls the
handler with FL_DRAW (after some bookkeeping), so we only need to mark FL_PUSH with a
flag newfig and let the drawing part of the handler draw the newly added figure.

FL_DRAW has two parts. One is simply to add a figure indicated by newfig being true and
in this case, we only need to draw the figure that is being added. The other branch might

Chapter 5: Free Objects 68

be triggered as a response to damaged drawing area resulting from Expose event or as a
response to Refresh command. We simply loop over all saved figures and (re)draw each of
them.

The only thing left to do is to initialize the program, which includes initial color and size,
and initial drawing function. Since we will allow interactive resizing and also some of the
objects on the form are not resizeable, we need to take care of the gravities.

void draw_initialize(FD_drawfree *ui) {

fl_set_form_minsize(ui->drawfree, 530, 490);

fl_set_object_gravity(ui->colgrp, FL_West, FL_West);

fl_set_object_gravity(ui->sizegrp, FL_SouthWest, FL_SouthWest);

fl_set_object_gravity(ui->figgrp, FL_NorthWest, FL_NorthWest);

fl_set_object_gravity(ui->miscgrp, FL_South, FL_South);

fl_set_object_resize(ui->miscgrp, FL_RESIZE_NONE);

cur_fig = saved_figure;

cur_fig->pc[0] = cur_fig->pc[1] = cur_fig->pc[2] = 127;

cur_fig->w = cur->fig->h = 30;

cur_fig->drawit = fl_oval;

cur_fig->col = FL_FREE_COL1 + 1;

cur_fig->fill = 1;

fl_set_button(ui->drobj[0], 1); /* show current selection */

fl_mapcolor(cur_fig->col, cur_fig->pc[0],

cur->fig->pc[1], cur->fig->pc[2]);

fl_mapcolor(FL_FREE_COL1, cur_fig->pc[0],

cur->fig->pc[1], cur->fig->pc[2]);

fl_set_slider_bounds(ui->wsli, 1, max_w);

fl_set_slider_bounds(ui->hsli, 1, max_h);

fl_set_slider_precision(ui->wsli, 0);

fl_set_slider_precision(ui->hsli, 0);

fl_set_slider_value(ui->wsli, cur_fig->w);

fl_set_slider_value(ui->hsli, cur_fig->h);

}

With all the parts in place, the main program simply creates, initializes and shows the UI,
then enters the main loop:

int main(int argc, char *argv[]) {

fl_initialize(&argc, argv, "FormDemo", 0, 0);

drawui = create_form_drawfree();

draw_initialize(drawui);

fl_show_form(drawui->drawfree, FL_PLACE_CENTER|FL_FREE_SIZE,

FL_FULLBORDER, "Draw");

fl_do_forms();

return 0;

}

Chapter 5: Free Objects 69

Since the only object that does not have a callback is the Quit button, [fl_do_forms()],
page 297 will return only if that button is pushed. Full source code to this simple drawing
program can be found in ‘demos/freedraw.c’.

Chapter 6: Goodies 70

6 Goodies

A number of special routines are provided that make working with simple forms even sim-
pler. All these routines build simple forms and handle the interaction with the user.

6.1 Messages and Questions

The following routines are meant to give messages to the user and to ask simple questions:

void fl_show_message(const char *s1, const char *s2, const char *s3);

It shows a simple form with three lines of text and a button labeled OK on it. The form is
so shown such that the mouse pointer is on the button.

Sometimes, it may be more convenient to use the following routine

void fl_show_messages(const char *str);

when the message is a single line or when you know the message in advance. Embed newlines
in str to get multi-line messages.

As a third alternative you can also use

void fl_show_messages_f(const char * fmt, ...);

The only required argument fmt is a format string as you would use it for e.g., printf(3),
which then is followed by as many arguments as there are format specifiers in the format
string. The string resulting from expanding the format string, using the remaining argu-
ments, can have arbitrary length and embedded newline characters (’\n’), producing line
breaks. The size of the message box is automatically made to fit the whole text.

Both of the message routines block execution and do not return immediately (but idle
callbacks and asynchronous IO continue to be run and checked). Execution resumes when
the OK button is pressed or <Return> is hit, or when the message form is removed from
the screen by the following routine (for example, triggered by a timeout or idle callback):

void fl_hide_message(void)

There is also a routine that can be used to show a one-line message that can only be removed
programmatically

void fl_show_oneliner(const char *str, FL_Coord x, FL_Coord y);

void fl_hide_oneliner(void);

where str is the message and x and y are the coordinates (relative to the root window) the
message should be placed. Note that multi-line messages are possible by embedding the
newline character into str. See the demo program ‘preemptive.c’ for an example of its
use.

By default, the background of the message is yellow and the text black. To change this
default, use the following routine

void fl_set_oneliner_color(FL_COLOR background, FL_COLOR textcol);

A similar routine exists to change the font style and size

void fl_set_oneliner_font(int style, int size);

void fl_show_alert(const char *s1, const char *s2, const char *s3,

int centered);

void fl_hide_alert(void);

Chapter 6: Goodies 71

work the same as [fl_show_messages()], page 70 goodie except that an alert icon (!)
is added and the first string is shown bold-faced. The extra parameter centered controls
whether to display the form centered on the screen.

As in the case of messages also another function is avaialble

void fl_show_alert2(int centered, const char *fmt, ...);

centered controls if the alert message is centered and fmt must be a format string as
e.g., used for printf(3). After the format string as many further arguments are required
as there are format specifiers in the format string. The string resulting from expanding
the format string, using the rest of the arguments, can have arbitrary length and the first
embedded form-feed character (’\f’) is used as the separator between the title string and
the message of the alert box. Embedded newline characters (’\n’) produce line breaks.

In combination with [fl_add_timeout()], page 301, it is easy to develop a timed alert
routine that goes away when the user pushes the OK button or when a certain time has
elapsed:

static void dismiss_alert(int ID, void *data) {

fl_hide_alert();

}

void show_timed_alert(const char *s1, const char *s2,

const char *s3, int centered) {

fl_add_timeout(10000, dismiss_alert, 0); /* ten seconds */

/* fl_show_alert blocks, and returns only when the OK button

is pushed or when the timeout, in this case, 10 seconds,

has elapsed */

fl_show_alert(s1, s2, s3, centered);

}

Then you can use show_timed_alert() just as fl_show_alert() but with added function-
ality that the alert will remove itself after 10 seconds even if the user does not push the OK
button.

int fl_show_question(const char *message, int def);

void fl_hide_question(void);

Again shows a message (with possible embedded newlines in it) but this time with a Yes
and a No button. def controls which button the mouse pointer should be on: 1 for Yes,
0 for No and any other value causes the form to be shown so the mouse pointer is at the
center of the form. It returns whether the user pushed the Yes button. The user can also
press the <Y> key to mean Yes and the <N> key to mean No.

If the question goodie is removed programmatically via [fl_hide_question()], page 71,
the default def as given in [fl_show_question()], page 71 is taken. If no default is set,
0 is returned by [fl_show_question()], page 71. The following code segment shows one
way of using [fl_hide_question()], page 71

void timeout_yesno(int id, void *data) {

fl_hide_question();

}

Chapter 6: Goodies 72

...

fl_add_timeout(5000, timeout_yesno, 0);

/* show_question blocks until either timeouts or

one of the buttons is pushed */

if (fl_show_question("Want to Quit ?", 1))

exit(0);

/* no is selected, continue */

... /* rest of the code *.

In the above example, the user is given 5 seconds to think if he wants to quit. If within the 5
seconds he can’t decide what to do, the timeout is triggered and [fl_show_question()],

page 71 returns 1. If, on the other hand, he pushes the No button before the timeout
triggers, [fl_show_question()], page 71 returns normally and [fl_hide_question()],

page 71 becomes a no-op.

int fl_show_choice(const char *s1, const char *s2, const char *s3,

int numb, const char *b1, const char *b2,

const char *b3, int def);

int fl_show_choices(const char *s, int numb,

const char *b1, const char *b2, const char *b3,

int def);

void fl_set_choices_shortcut(const char *s1, const char *s2,

const char *s3);

void fl_hide_choice(void);

The first routine shows a message (up to three lines) with one, two or three buttons. numb
indicates the number of buttons. b1, b2 and b3 are the labels of the buttons. def can be 1, 2
or 3, indicating the default choice. The second routine is similar to the first except that the
message is passed as a single string with possible embedded newlines in it. Both routines
return the number of the button pressed (1, 2 or 3). The user can also press the <1>, <2>
or <3> key to indicate the first, second, or third button. More mnemonic hotkeys can be
defined using the shortcut routine, s1, s2 and s3 are the shortcuts to bind to the three
buttons. If the choice goodie is removed by [fl_hide_choice()], page 72, the default
def is returned.

To change the font used in all messages, use the following routine

void fl_set_goodies_font(int style, int size);

To obtain some text from the user, use the following routine

const char *fl_show_input(const char *str1, const char *defstr);

void fl_hide_input(void);

Chapter 6: Goodies 73

This shows a box with one line of message (indicated by str1), and an input field into
which the user can enter a string. defstr is the default input string placed in the input
box. In addition, three buttons, labeled Cancel, OK and Clear respectively, are added. The
button labeled Clear deletes the string in the input field. The routine returns the string in
the input field when the user presses the OK button or the <Return> key. The function also
returns when button Cancel is pressed. In this case, instead of returning the text in the
input field, NULL is returned. This routine can be used to have the user provide all kinds of
textual input.

Removing the input field programmatically by calling [fl_hide_input()], page 72 results
in NULL being returned by [fl_show_input()], page 72, i.e., it’s equivalent to pressing
the Cancel button.

A similar but simpler routine can also be used to obtain textual input

const char *fl_show_simple_input(const char *str1, const char *defstr);

The form shown in this case only has the OK button. The example program ‘goodies.c’
shows you these goodies.

It is possible to change some of the built-in button labels via the following resource function
with proper resource names

void fl_set_resource(const char *res_str, const char *value)

To, for example, change the label of the Dismiss button to "Go" in the alert form, code
similar to the following can be used after calling [fl_initialize()], page 278 but before
any use of the alert goodie:

fl_set_resource("flAlert.dismiss.label", "Go");

Currently the following goodies resources are supported:

flAlert.title

The window title of the alert goodie

flAlert.dismiss.label

The label of the Dismiss button

flQuestion.yes.label

The label of the Yes button

flQuestion.no.label

The label of the No button

flQuestion.title

The window title of the Question goodie

flChoice.title

The window title of the Choice goodie

*.ok.label

The label of the OK button

Note that all goodies are shown with FL_TRANSIENT and not all window managers decorate
such forms with titles. Thus the title setting in the above listing may not apply.

Chapter 6: Goodies 74

6.2 Command Log

In a number of situations, a GUI is created specifically to make an existing command-line
oriented program easier to use. For stylistic considerations, you probably don’t want to
have the output (stderr and stdout) as a result of running the command printed on the
terminal. Rather you want to log all the messages to a browser so the user can decide if
and when to view the log. For this, a goodie is available

long fl_exe_command(const char *cmd, int block);

This function, similar to a system(3) call, forks a new process that runs the command
cmd, which must be a (null-terminated) string containing a command line passed to the
(sh) shell. The output (both stderr and stdout) of cmd is logged into a browser, which
can be presented to the user when appropriate (see below). The block argument is a flag
indicating if the function should wait for the child process to finish. If the argument block
is true (non-zero), the function waits until the command cmd completes and then returns the
exit status of the command cmd (i.e., the status one gets form wait() or waitpid(), so use
WEXITSTATUS() on it if you want the return or exit() value from the program started)). If
the argument block is false (0), the function returns immediately without waiting for the
command to finish. In this case, the function returns the process ID of the child process or
-1 if an error occured.

Unlike other goodies, [fl_exe_command()], page 74 does not deactivate other forms even
in blockng mode. This means that the user can interact with the GUI while [fl_exe_

command()], page 74 waits for the child process to finish. If this is not desired, you can use
[fl_deactivate_all_forms()], page 297 and [fl_activate_all_forms()], page 297

to wrap the function.

If [fl_exe_command()], page 74 is called in non-blocking mode, the following function
should be called to clean up related processes and resources before the caller exits (otherwise
a zombie process may result)

int fl_end_command(long pid);

where pid is the process ID returned by [fl_exe_command()], page 74. The function
suspends the current process and waits until the child process is completed, then it returns
the exit status of the child process or -1 if an error has occurred.

There is another routine that will wait for all the child processes initiated by [fl_exe_

command()], page 74 to complete

int fl_end_all_command(void)

The function returns the status of the last child process.

You can also poll the status of a child process using the following routine

int fl_check_command(long pid);

where pid is the process ID returned by [fl_exe_command()], page 74. The function
returns the following values: 0 if the child process is finished; 1 if the child process still
exists (running or stopped) and -1 if an error has occurred inside the function.

If some interaction with the command being executed is desired, the following functions
may be more appropriate. These functions operates almost exactly as the popen(3) and
pclose(3) functions:

FILE *fl_popen(const char *command, const char *type);

Chapter 6: Goodies 75

int fl_pclose(FILE *stream);

The [fl_popen()], page 74 function executes the command in a child process, and logs
the stderr messages into the command log. Further, if type is "w", stdout will also be
logged into the command browser. [fl_pclose()], page 74 should be used to clean up
the child process.

To show or hide the logs of the command output, use the following functions

int fl_show_command_log(int border);

void fl_hide_command_log(void);

where border is the same as that used in [fl_show_form()], page 293. These two rou-
tines can be called anytime anywhere after [fl_initialize()], page 278 has been in-
voked.

The command log is by default placed at the top-right corner of the screen. To change the
default placement, use the following routine

void fl_set_command_log_position(int x, int y);

where x and y are the coordinates of the upper-left corner of the form relative to the root
window. The logging of the output is accumulative, i.e., [fl_exe_command()], page 74

does not clear the browser. To clear the browser, use the following routine

void fl_clear_command_log(void);

It is possible to add arbitrary text to the command browser via the following routine

void fl_addto_command_log(const char *txt);

void fl_addto_command_log_f(const char *fmt, ...);

where txt for fl_addto_command_log() is a string and fmt for fl_addto_command_log_
f() is a format string like for printf() that gets expanded using the following arguments.
This string, with possible embedded newlines, gets added to the last line of the browser
using [fl_addto_browser_chars()], page 171.

Finally, there is a routine that can be used to obtain the GUI structure of the command
browser

typedef struct {

FL_FORM * form; /* the form */

FL_OBJECT * browser; /* the browser */

FL_OBJECT * close_browser; /* the close button */

FL_OBJECT * clear_browser; /* the clear button */

} FD_CMDLOG;

FD_CMDLOG *fl_get_command_log_fdstruct(void);

From the information returned the application program can change various attributes of the
command browser and its associated objects. Note however, that you should not hide/show
the form or free any members of the structure.

6.3 Colormap

In a number of applications the user has to select a color from the colormap. For this a
goody has been created. It shows the first 64 entries of the colormap. The user can scroll
through the colormap to see more entries. Once the user presses the mouse one of the

Chapter 6: Goodies 76

entries the corresponding index is returned and the colormap is removed from the screen.
To display the colormap use the routine

int fl_show_colormap(int oldcol);

oldcol should be the current or default color. The user can decide not to change this color
by pressing the Cancel button in the form. The procedure returns the index of the color
selected (or the index of the old color).

6.4 File Selector

The most extended predefined form is the file selector. It provides an easy and interactive
way to let the user select files. It is called as follows:

const char *fl_show_fselector(const char *message,

const char *directory,

const char *pattern,

const char *default);

A form will be shown in which all files in directory directory are listed that satisfy the
pattern pattern (see Fig 6.1). pattern can be any kind of regular expression, e.g., [a-
f]*.c, which would list all files starting with a letter between a and f and ending with
.c. default is the default file name. message is the message string placed at the top of
the form. The user can choose a file from the list given and the function then returns a
pointer to a static buffer that contains the filename selected, or NULL if the Cancel button
is pressed (see below).

The user can also walk through the directory structure, either by clicking on the box with
the name of the currently displayed directory to edit it manually, or by double-clicking on
the name of a directory (shown with a ’D’ in front of it) shown in the list. If the directory
content changes while it is being displayed in the file selector the ReScan button can be
used to request a rescan of the directory.

In a typical application, once the file selector goodie is shown, it is up to the user when the
file selector should be dismissed by pushing Ready or Cancel button. In some situations

Chapter 6: Goodies 77

the application may want to remove the file selector on it’s own. To this end, the following
routine is available

void fl_hide_fselector(void);

The effect of removing the file selector programmatically is the same as pushing the Cancel
button. There are total of FL_MAX_FSELECTOR (6) file selectors in the Forms Library with
each having its own current directory and content cache. All the file selector functions doc-
umented manipulate the currently active file selector, which can be set using the following
routine

int fl_use_fselector(int n);

where n is a number between 0 and FL_MAX_FSELECTOR - 1.

To change the font the file selector uses, the following routine can be used:

void fl_set_fselector_fontsize(int font_size);

void fl_set_fselector_fontstyle(int font_style);

These routines change the font for all the objects on the form. It is possible to change the
font for some of the objects (e.g., browser only) using [fl_get_fselector_fdstruct()],

page 79 explained later.

The window title of the file selector can be changed anytime using the following routine

void fl_set_fselector_title(const char *title);

To force an update programmatically, call

void fl_invalidate_fselector_cache(void);

before [fl_show_fselector()], page 76. Note that this call only forces an update once,
and on the directory that is to be browsed. To disable caching altogether, the following
routine can be used:

void fl_disable_fselector_cache(int yes);

A false (0) parameter (re)enables directory caching.

The user can also change the pattern by clicking the mouse on top of it it. Note that
directories are shown independent of whether they satisfy the pattern. He can also type in
a file name directly.

Complete keyboard navigation is built-in. E.g., you can use <Alt>d to change the directory
instead of using the mouse.

When the user is satisfied, i.e., found the correct directory and indicated the file name
required, he can press the button labeled Ready or press the <Return> key. He can also
double click on the file name in the browser. The full path to the filename is returned by
the procedure. If the user presses the Cancel button NULL is returned.

It is also possible to set a callback routine so that whenever the user double clicks on a
filename, instead of returning the filename, the callback routine is invoked with the filename
as the argument. To set such a callback, use the following routine

void fl_set_fselector_callback(int (*callback)(const char *, void *),

void *user_data);

where the second argument of the callback is the user data. The return value of the
callback function is currently not used. Note that the behavior of the file selector is slightly
different when a callback is present. Without the callback, a file selector is always modal.

Chapter 6: Goodies 78

Please note that when a file selector has a callback installed the field for manually entering
a file name isn’t shown.

The placement of the file selector is by default centered on the screen, which can be changed
by the following routine

void fl_set_fselector_placement(int place);

where place is the placement request same as in [fl_show_form()], page 293. The default
is FL_PLACE_CENTER | FL_FREE_SIZE.

By default, an fselector is displayed with transient property set. To change the default, use
the following routine

void fl_set_fselector_border(int border);

The border request by this function is the same as in [fl_show_form()], page 293, but
FL_NOBORDER is ignored.

If the arguments directory, pattern or default passed to [fl_show_form()], page 293

are empty strings or NULL, the previous value is used (with some reasonable defaults getting
used when this happens the first time). Thus the file selector "remembers" all the settings
the selector had last time. The application program can figure out the directory, pattern
and file name (without the path) after the user changed them using the routines

const char *fl_get_directory(void);

const char *fl_get_pattern(void);

const char *fl_get_filename(void);

It is also possible to programatically set new values for the default directory and pattern
by using the functions

int fl_set_directory(const char * dir);

void fl_set_pattern(const char * pattern);

[fl_set_directory()], page 78 returns 0 on success and 1 on failure, either because the
argument was a NULL pointer or not a valid directory.

There are other routines that make the fselector more flexible. The most important of which
is the ability to accommodate up to three application specific button:

void fl_add_fselector_appbutton(const char *label,

void (*callback)(void *),

void *data);

The argument data is passed to the callback. Whenever this application specific button is
pushed, the callback function is invoked.

To remove an application specific button, use the following routine

void fl_remove_fselector_appbutton(const char *label);

Within the callback function, in addition to using the routines mentioned above, the fol-
lowing routines can be used:

void fl_refresh_fselector(void);

This function causes the file selector to re-scan the current directory and to list all entries
in it.

If, for whatever reasons, there is a need to get the fselector’s form the following routine can
be used:

Chapter 6: Goodies 79

FL_FORM *fl_get_fselector_form(void);

See ‘fbrowse.c’ for the use of the file selector.

Although discouraged, it is recognized that direct access to the individual objects of a
fselector’s form maybe necessary. To this end, the following routine exists

typedef struct {

FL_FORM * fselect;

void * vdata;

char * cdata;

long ldata;

FL_OBJECT * browser,

* input,

* prompt,

* resbutt;

FL_OBJECT * patbutt,

* dirbutt,

* cancel,

* ready;

FL_OBJECT * dirlabel,

* patlabel;

FL_OBJECT * appbutt[3];

} FD_FSELECTOR;

FD_FSELECTOR *fl_get_fselector_fdstruct(void);

You can, for example, change the default label strings of various buttons via members of
the FD_FSELECTOR structure:

FD_FSELECTOR *fs = fl_get_fselector_fdstruct();

fl_set_object_label(fs->ready, "Go !");

fl_fit_object_label(fs->ready, 1, 1);

Since the return value of [fl_get_fselector_fdstruct()], page 79 is a pointer to an
internal structures, the members of this structure should not be modified.

In the listing of files in a directory special files are marked with a prefix in the browser (for
example, D for directories, p for pipes etc.). To change the prefix, use the following routine

void fl_set_fselector_filetype_marker(int dir,

int fifo,

int socket,

int cdev,

int bdev);

where dir is the marker character for directories, fifo the marker for pipes and FIFOs,
socket the marker for sockets, cdev the marker for character device files and, finally, bdev
the marker character for block device files.

Although file systems under Unix are similar, they are not identical. In the implementation
of the file selector, the subtle differences in directory structures are isolated and conditionally
compiled so an apparent uniform interface to the underlying directory structure is achieved.

Chapter 6: Goodies 80

To facilitate alternative implementations of file selectors, the following (internal) routines
can be freely used:

To get a directory listing, the following routine can be used

const FL_Dirlist *fl_get_dirlist(const char *dirname,

const char *pattern,

int *nfiles, int rescan);

where dirname is the directory name; pattern is a regular expression that is used to filter
the directory entries; nfiles on return is the total number of entries in directory dirname

that match the pattern specified by pattern (not exactly true, see below). The function
returns the address of an array of type FL_Dirlist with nfiles if successful and NULL

otherwise. By default, directory entries are cached. Passing the function a true (non-zero)
value for the rescan argument requests a re-read.

FL_Dirlist is a structure defined as follows

typedef struct {

char * name; /* file name */

int type; /* file type */

long dl_mtime; /* file modification time */

unsigned long dl_size; /* file size in bytes */

} FL_Dirlist;

where type is one of the following file types

FT_FILE a regular file

FT_DIR a directory

FT_SOCK a socket

FT_FIFO a pipe or FIFO

FT_LINK a symbolic link

FT_BLK a block device

FT_CHR a character device

FT_OTHER ?

To free the list cache returned by [fl_get_dirlist()], page 80, use the following call

void fl_free_dirlist(FL_Dirlist *dl);

Note that a cast may be required to get rid of compiler warnings due to the const qualifier
of the return value of [fl_get_dirlist()], page 80. See demo program ‘dirlist.c’ for
an example use of [fl_get_dirlist()], page 80.

Per default not all types of files are returned by [fl_get_dirlist()], page 80. The
specific rules for which types of file are returned are controlled by an additional filter after
the pattern filter. It has the type

int default_filter(const char *name, int type);

and is called for each entry found in the directory that matched the pattern. This filter
function should return true (non-zero) if the entry is to be included in the directory list.
The default filter is similar to the following

Chapter 6: Goodies 81

int ffilter(const char *name, int type) {

return type == FT_DIR || type == FT_FILE || type == FT_LINK;

}

i.e., per default only directories, normal files and symbolic links are shown (the first argu-
ment of the function, the file name, isn’t used by the default filter).

To change the default filter, use the following routine

typedef int (*FL_DIRLIST_FILTER)(const char *, int);

FL_DIRLIST_FILTER fl_set_dirlist_filter(FL_DIRLIST_FILTER filter);

As noted before, directories are by default not subject to filtering. If, for any reason, it is
desirable to filter also directories, use the following routine with a true flag

int fl_set_dirlist_filterdir(int flag);

The function returns the old setting. Since there is only one filter active at any time in
XForms, changing the filter affects all subsequent uses of file browsers.

By default, the files returned are sorted alphabetically. You can change the default sorting
using the following routine:

int fl_set_dirlist_sort(int method);

where method can be one of the following

FL_NONE Don’t sort the entries

FL_ALPHASORT

Sort the entries in alphabetic order - this is the default

FL_RALPHASORT

Sort the entries in reverse alphabetic order

FL_MTIMESORT

Sort the entries according to the modification time

FL_RMTIMESORT

Sort the entries according to the modification time, but reverse the order, i.e.,
latest first.

FL_SIZESORT

Sort the entries in increasing size order

FL_RSIZESORT

Sort the entries in decreasing size order

FL_CASEALPHASORT

Sort the entries in alphabetic order with no regard to case

FL_RCASEALPHASORT

Sort the entries in reverse alphabetic order with no regard to case.

The function returns the old sort method. For directories having large numbers of files,
reading the directory can take quite a long time due to sorting and filtering. Electing not
to sort and (to a lesser degree) not to filter the directory entries (by setting the filter to
NULL) can speed up the directory reading considerably.

Part II - The Form Designer 82

Part II - The Form Designer

Chapter 7: Introduction 83

7 Introduction

This part of the documentation describes the Form Designer, a GUI builder meant to help
you interactively design dialogue forms for use with the Forms Library. This part assumes
the reader is familiar with the Forms Library and has read Part I of this document. Even
though designing forms is quite easy and requires only a relatively small number of lines
of C-code, it can be time consuming to figure out all required positions and sizes of the
objects. The Form Designer was written to facilitate the construction of forms. With Form
Designer, there is no longer any need to calculate or guess where the objects should be.
The highly interactive and WYSIWYG (What You See Is What You Get) nature of the
Form Designer relieves the application programmer from the time consuming process of
user interface construction so that he/she can concentrate more on what the application
program intends to accomplish. Form Designer provides the abilities to interactively place,
move and scale objects on a form, also the abilities to set all attributes of an object. Once
satisfactory forms are constructed, the Form Designer generates a piece of C-code that can
then be included in the application program. This piece of code will contain one procedure
create form xxx() for each form, where xxx indicates the form name. The application only
needs to call it to generate the form designed. The code produced is easily readable. The
Form Designer also lets the user identify each object with C variables for later reference in
the application program and allows advanced object callback bindings all within the Form
Designer. All actions are performed with the mouse or the function keys. It uses a large
number of forms itself to let the user make choices, set attributes, etc. Most of these forms
were designed using the Form Designer itself. It is important to note that the Form Designer
only helps you in designing the layout of your forms. It does not allow you to specify the
actions that have to be taken when, e.g., a button is pushed. You can indicate the callback
routine to call but the application program has to supply this callback routine. Also, the
current version is mostly a layout tool and not a programming environment, not yet anyway.
This means that the Form Designer does not allow you to initialize all your objects. You
can, however, initialize some objects, e.g., you can set the bounds of a slider inside the Form
Designer. Eventually full support of object initialization will be implemented.

Chapter 8: Getting Started 84

8 Getting Started

To start up the Form Designer simply type fdesign without any arguments. (If nothing
happens, check whether the package has been installed correctly.) A black window (the
main window) will appear on the screen. This is the window in which you can create your
forms. Next the control panel appears on the screen. No form is shown yet.

The control panel consists of five parts. The first part is the menu bar, consisting of several
groups of menus from which you can make selections or give commands to the program.

Directly below the menu you have a row of buttons for alignment, testing and getting help,
see below.

Then there’s a panel with three browsers. At the left there is a list of all existing forms.
When the program is started without an already existing file as an argument the list is
empty, indicating that there are no forms yet. There’s no upper limit to the number of
forms that can be created but you can only work on exactly one form at a time. Use this
list to switch between the different forms. Below the forms list is another list showing all
groups in the form you’re currently working on. It will be empty for a new form because
there are no groups yet. Ignore this at the moment as we will come back to groups and
their uses later.

Just right of those two lists you find a list of all the different classes of objects that can be
placed into the form. Use the mouse to select the class of a new object you want to add to
the form.

On the right side beside the panel with the browsers you find a number of buttons to give
commands to the program. Each of these buttons is bound to a function key. You can
either press the buttons with the mouse or press the corresponding function keys on the
keyboard (while the keyboard focus is on the window with the form). The functions of
these keys will be described below.

Chapter 8: Getting Started 85

To create a new form select the "New Form" entry in the "Form" menu. A little popup
box will appear, prompting you for the name of the new form. This is the name under
which the program you’re going to write will know the form. Thus you will have to provide
a name which must be a legal C variable name. Type in the name and press <Ok>. Now
the color of the window for showing the form you’re working on changes to that of the
default background color of forms. (Actually, each new form gets created with a box
already covering its entire area, what you see is the color of this box. You can change
most properties of this box using the methods described below. Just its size is fixed to
the size of the form, which can be simply changed by resizing the window.) Note that the
form’s name is added to the list of forms in the control panel.

To add an object to the form select its class in the control panel by selecting an item the
list of object classes. Then move the mouse into the window with the form you are working
on and drag the mouse while pressing the left mouse button. By keeping the mouse button
pressed you create a box that has the size of the object to be created. Release the button
and the object will appear. Note that a red outline appears around the new object. This
indicates that the object is selected. In this way you can put all kinds of objects on the
form.

Object already created can be modified in several ways. You can move them around, change
their sizes or their attributes. To this end first select the object by left-clicking on it. But
this only works if there isn’t an obkect class selected in the object class browser in the
control panel. To get rid of such a selection either click on the selected entry in this browser
or by right-click somewhere in the window with the new form. When the object is selected
a red outline appears around it. You now will be able to drag the object around with the
mouse. By grabbing the object at one of the four red corners you can change its size. It is
also possible to select multiple objects and move or scale them simultaneously. See below
for details.

To change the object’s attributes, e.g., its label, simply double-click on it with the left
mouse button. Or single-click on it and then press the function key <F1> (or click on the
button labeled "F1 attribs" in the control panel or select "Object attributes" from the
"Object" menu). A new form appears in which you can change all the different attributes.
Their meanings should be clear (if you have read the documentation on the Forms Library).
Change the attributes you want to change and finally press the button labeled "Accept".
To reset all attributes to their original values press "Restore" (or "Cancel" if you also want
to close the window for modifying the attributes). See below for more information about
changing attributes.

In this way you can create the forms you want to have. Note that you can have more than
one form. Just add another form in the way described above and use the list of forms to
switch between them. After you have created all your forms select "Save" or "Save As"from
the "File" menu to save them to disk. It will ask you for a file name using the file selector.
In this file selector you can walk through the directory tree to locate the place where you
want to save the file. Next, you can type in the name of the file (or point to it when you
want to overwrite an existing file). The name should end with .fd. So for example, choose
‘ttt.fd’. The program now creates three files: ‘ttt.c’, ‘ttt.h’ and ‘ttt.fd’. ‘ttt.c’
contains a readable piece of C code that creates the forms you designed. The file ‘ttt.h’
contains the corresponding header file for inclusion in your application program. The file
‘ttt.fd’ contains a description of the forms in such a way that the Form Designer can read

Chapter 8: Getting Started 86

it back in later. The application program now simply has to call the routines with names
like create_form_xxx() (replace xxx with the names you gave to the forms) to create the
different forms you designed.

These are the basic ideas behind the Form Designer. In the following chapters we describe
the program in more detail.

Chapter 9: Command Line Arguments 87

9 Command Line Arguments

To start the Form Designer simply type

fdesign [-xformoptions] [-fdesignoptions] [files[.fd]]

An initial window will be created and mapped. Depending on the window manager, you
may have the option to interactively select where to place the window if the -geometry

option is not given. Next the program places the control panel on the screen. You can move
this panel, if required, to the place you want (you can also change the default placement of
the control panel via resources).

fdesign accepts all of the XForms command line options as well as the following

-geometry geom

This option specifies the initial placement and size of the working area.

-convert fd-file-list

Normally fdesign does its work interactively. This option causes it to simply
read a list of fdesign output files (the .fd files) and emit the corresponding
C-routines and header files. This can be useful e.g., in automatically compiling
packages in Makefiles. Note that the input .fd will only be read but never
modified when this option is used.

-migrate fd-file-list

When fdesign is invoked with the -convert option it just creates new .c and
.h files but leaves the .fd files unmodified. In some situations, e.g., if you also
want to automatically upgrade .fd files created with older versions of fdesign,
you can instead use the -migrate option which does all what the -convert

option does but also writes out a new version of the .fd file it just read in. It
also does a few extra checks, e.g., it will test if XBM and XPM image files used
for bitmaps and pixmaps actually exist (if they don’t the newly generated .fd

file won’t reference them anymore, so carefully look out for error messages and,
if necessary, restore it from the generated .fd.bak backup file).

-version Prints current version and quits.

-help Prints a brief help message on command line options.

-altformat

Generates an alternative output format.

-border Forces decorations on some types of windows so that you can move them (only
necessary with some window managers).

-unit point|pixel|mm|cp|cmm

Outputs object sizes in units other than pixels. cp and cmm stand for centi-
point (1/100 of a point) and centi-mm (1/100 of a milli-meter). For typical
displays, pixel and mm are too coarse and subject to round-off errors.

-nocode Suppresses the output of UI code. Sometimes useful if the UI code is not to be
generated interactively, but rather generated by the make process using "fdesign
-convert".

Chapter 9: Command Line Arguments 88

-I header

Changes the output include file from <forms.h> to header. Per default, the
header file name will be enclosed in angle brackets (’<’ and ’>’) unless the name
of the include file specified is already enclosed in double quote (’"’). Useful
on systems where ‘forms.h’ is renamed to something else or if you need an
application header file with e.g., definitions of constants/defines for the UI that
itself includes the forms.h file.

-main Emits a main program with callback stubs. Can be useful for simple programs.

-callback

Emits callback function template in a separate file.

-lax Suppresses checking of variable and callback function names for being aceptable
C variable names

-bw borderwidth

Changes the default border width of the forms created.

Note that -help, -version and -convert do not require a connection to an X server. If
an output unit other than the default (pixel) is selected, all object sizes in the output file
will be in the unit requested. This kind of UI has a fixed and device resolution independent
size (in theory at least) and can be useful for drawing applications.

fdesign recognizes the following resources:

workingArea.geometry string Geometry
control.border bool XForms borderwidth
control.geometry string (position

only)
Control window geometry

attributes.geometry string (position
only)

Attributes window Geometry

attributes.background string (e.g.,
gray80)

Attributes window background

align.geometry string (position
only)

Align window geometry

help.geometry string (position
only)

Help window geometry

convert bool Convert
unit string Unit
altformat bool AltFormat
xformHeader string Header file name
helpFontSize int Help font size
main bool Main

Note that resource specification of convert requires an X connection. In addition, all
XForms’s resources specification can be used to influence the appearance of various panels.
The most useful ones are the font sizes

*XForm.FontSize all label font sizes
XForm.PupFontSize all pup font sizes

Chapter 10: Creating Forms 89

10 Creating Forms

10.1 Creating and Changing Forms

To create a new form use the "New Form" entry in the "Form" menu at the top. When
asked for the new form’s name enter a (unique) name that is a valid C identifier. The form
is shown in the main window and objects can be added to it.

There are two ways to change the size of a form. The easiest way is to simply change the
size of the main window displaying the form and the form will resize itself to fit the new
size. Otherwise you can use the "Resize Form" entry in the "Form" menu, in which case
you can enter the width and height of the form manually.

To change the name of the current visible form use the "Rename Form" entry in the "Form"

menu. You will be prompted for the new form name.

To delete a form use the "Delete Form" entry in the "Form" menu . The current form will
be removed after a box asking you if you’re sure had been shown.

10.2 Adding Objects

To add an object choose the class of the new object from the list of object classes in the
middle of the control panel. Next drag the left mouse button within the main form. A
rubber box outlining the size of the new object will appear. When the size is correct release
the mouse button.

Note that the position and size of the object is rounded to multiples of 10 pixels per default.
How to change the default is described below in the context of alignments.

10.3 Selecting Objects

To perform operations on objects that are already visible in the form, we first have to select
them. Any mouse button can be used for selecting objects. Simply single-click on the
object you want to select. A red outline will appear, indicating that the object is selected.
Another way of selecting objects is to use the <Tab> or <F11> keys or the button labeled
F11, all of which iterates over the object list and selects the next object upon each press
(the only object not selected this way is the backface object).

It is also possible to select multiple objects. To this end draw a box by dragging the mouse
around all the objects you want to select. All objects that lie fully inside the box will be
selected. Each selected object will get a red outline and a red bounding box is drawn around
all of them.

To add objects to an already existing selection, hold down the <Shift> key and press the
left mouse button inside the object. You can remove objects from the selection by doing
the same on an already selected object.

It is possible to select all objects (except for the backface object) at once using the function
key <F4>. One note on the backface of the form: Although this is a normal object it can not
be treated in the same way as the other objects. It can be selected, but never in combination
with other objects. Only changing its attributes is allowed.

Chapter 10: Creating Forms 90

10.4 Moving and Scaling

To move an object (or a collection of objects) to a new place, first select it (them) as
described above. Next press the left mouse button inside the bounding box (not too near
to one of the corners) and move the box to its new position.

To scale the object or objects, pick up the bounding box near one of its corners (inside the
red squares) and scale it by dragging the mouse.

When holding the <Shift> key while moving an object or group of objects, first a copy of
the object(s) is made and the copy is moved. This allows for a very fast way of duplicating
(cloning) objects on the form: First put one on the form, change the attributes as required
and next copy it.

For precise object movement the cursor keys can be used. Each press of the four directional
cursors keys moves the selected object by 10 pixels per default. To change the step sizepress
one of the numbers from 0 to 9 with 0 indicating 10 pixels.

If the <Shift> key is kept pressed down instead of moving the object its size is increased
or decreased by the step size.

10.5 Aligning Objects

Sometimes you have a number of objects and you want to align them in some way, e.g.,
centered or all starting at the same left position, etc. To this end press the button labeled
"Align". A special form will appear in the top right corner. You can leave this form visible
as long as you want. You can hide it using the button labeled "Dismiss" on the form or by
clicking the "Align" button again.

First select the objects you want to align. Next, press one of the alignment buttons in the
form. The buttons in the top row have the following meaning: flush left, center horizontally,
flush right, and make the objects have equal distances in horizontal direction (see below).
The buttons in the bottom row mean: align to bottom, center vertically, align to top, and
make all objects have the same vertical distance. Note that alignments are relative to the
selection box, not to the form. Equal distance alignment means that between all the objects
an equal sized gap is placed. The objects are kept in the same left to right or bottom to
top order.

The "Undo" button undoes the last alignment change. It is an undo with a depth of 1,
i.e., you can only undo the last change and an undo after an undo will undo itself. Note
however, that any modification to the selected objects invalidates the undo buffer.

In the alignment form you can also indicate the "snapping size" when moving or resizing
objects, using the counter at the bottom. Default snapping is 10 pixels. Snapping helps in
making objects of the same size and aligning them nicely.

Chapter 10: Creating Forms 91

10.6 Raising and Lowering

The objects in a form are drawn in the order in which they are added. Sometimes this
is undesirable. For example, you might decide at a later stage to put a box around some
buttons. Because you add this box later it will be drawn over the buttons, thus hiding the
buttons (if you put a framebox over a button, the button will be visible but appears to be
inactive!). This is definitely not what you want. The Form Designer makes it possible to
raise objects (bring them to the top) or lower them (put them at the bottom). So you can
lower e.g., a box to move it under some buttons. Raising or lowering objects is very simple.
First select the objects and next press the function key <F2> to lower the selection or <F3>
to raise it.

Another use of raising and lowering is to change the order in which input field receive focus
via the <Tab> key. Input fields focus order is the same as the order in which they were added
to the form. This can become a problem if another input field is needed after the form is
designed because this extra input field will always be the last among all input field on the
form. Raising the objects becomes handy to solve this problem. What really happens when
a object is raised is that the raised object becomes the last object added to the form. This
means you can re-arrange the focus order by raising all input fields one by one in the exact
order you want the focus order to be, and they will be added to the form in the order you
raised them, thus the input focus order is what you intended.

10.7 Setting Attributes

To set attributes like type, color, label, etc., of an object first select it (using the left
mouse button) and next press the function key <F1> (or click on the button labeled "F1").
Also a double click (with the left mouse button) selects the object and opens up the form
for changing the objects attributes. If only one object is selected you can change all its
attributes, including its label, name, etc. It is also possible to change the attributes of
multiple objects as long as they all are of the same object class. In this case you cannot
change the labels, names, etc. because you probably want them to remain different for the
different objects.

The form for changing object attributes allows you to modify all the different settings.
Before we continue, the organization of the attributes form and classification of attributes
needs a little explanation. Attributes of an object are divided into two categories. The
generic attributes are shared by all objects. These include type, colors, label, callback
function etc. The other class of attributes are those that are specific to a particular object
class, such as slider bounds, precision etc. When the attribute form is first shown, only the
generic attributes are shown. Press on the tab rider "Spec" to get to a second form for the
object class specific attributes (press the tab rider "Generic" to switch back to the generic
attributes part).

10.8 Generic Attributes

The form for setting generic attributes contains four fields for setting different groups of
generic properties, discussed in the following. Once you are satisfied with the settings, press
the button labeled "Accept" and the form will disappear. If you don’t want to change the
attributes after all press the button labeled "Cancel". You may also reset the values to
what they were when you started editing them by clicking on the "Undo" button.

Chapter 10: Creating Forms 92

10.8.1 Basic Attributes

The basic attributes include the type, boxtype, name, label string, the callback function
with its arguments associated with the object and a shortcut.

For most object classes several different types exist. The type of the object under consid-
eration can be selected via a choice object.

Most objects can also be drawn using different boxtypes. Normally, the default should do,
but using the choice object labeled "BoxType" you can switch to a different box type (but
note that not all choices may result in a different way the object is drawn and some may
look rather ugly).

Nearly all objects have a label that can be drawn at different positions within or outside of
the object. The input field labeled "Label" lets you set the label string (it may also include
return characters, i.e., \n, for line breaks).

An object may have a name by which it can be accessed within the program. This name
must be a valid C (or simple C++) variable identifier and can be set via the input field
labeled "Name". You need to make sure that there are no objects with the same name!

If instead of having e.g., the function [fl_do_forms()], page 297 return when an object is
triggered a callback may be invoked instead. You can set the name of the callback function
in the input field labeled "Callback". Obviously, this must be a valid C or C++ function
name. When a callback function is set you must also specify the argument passed to the
callback function together with the object’s address via the input field labeled "Argument".
This normally will be a (long) integer (defaulting to 0 if not specified). Using this value
it is e.g., possible to distinguish between different objects when all use the same callback
function.

Chapter 10: Creating Forms 93

10.8.2 Font

In the field labeled "Font" you can set properties of the font to be used for the label of
the object. You can select between different types of fonts, the style the label is drawn in
(normal, shadowed, engraved or embossed) and the size of the font to be used. All three
types of properties can be selected via choice objects.

10.8.3 Misc. Attributes

The field labeled "Misc. Attributes" allows the setting of a number of attributes that don’t
fit into any other category.

First you can set the alignment of the object’s label. It can be placed inside the object or
outside of it and in 9 different positions. Use the choice objects labeled "Label/Align" and
"In/Out" for this purpose.

Another important property of an object is how it reacts if the size of the form it belongs
to is changed. It may keep its original size or may be resized in x- or y-direction or both.
The details are controlled via its resize and gravity properties as described in chapter 4.

With the choice objects labeled "Resize" you can control if an object is to be resized in x- or
y-direction or both or none. You may also specify if the object’s upper left hand corner or its
lower right hand corner is supposed to keep a fixed distance from the form’s borders via the
choice objects labeled "NW Gravity" and "SE Gravity". Please note that these properties
aren’t orthogonal, with the NWGravity and SEGravity overriding the resize property if
necessary (also see the program ‘grav’ in the ‘demo’ directory that lets you experiment with
these properties).

10.8.4 Colors

Within the "Color" field you can set three colors for the object. The colors of the object
itself are controlled via the buttons labeled "Color 1" and "Color 2", while the button
labeled "LabelColor" is for setting the color the label is drawn in.

Clicking on any of the three buttons will result in a new form being shown in which you can
select one of the predefined colors from the internal colormap. You also can select one of
the "free" colors but since these colors aren’t set yet they will appear as black in the form
for selecting the color.

While it’s rather obvious what the label color is, the meaning of "Color 1" and "Color 2"
varies a bit with the class and type of the object. E.g., for (normal buttons the first color
is the normal color of the button while the second one is the color it’s drawn in while the
button is pressed, while for a browser that allows selection the first color is the background
color and the second color is the color selected lines are highlighted with. Since there are
too many combinations of object classes and types to be discussed here comprehensively
please refer to a following chapter where the exact properties of all objects are described in
detail.

10.9 Object Specific Attributes

Many objects have attributes that are specific to its object class, such as slider bounds,
precision etc. You can access these attributes (if existent) via the tab rider labeled "Spec".
In most cases the meaning of these attributes hopefully is self-explanatory (otherwise see
the detailed description of the different object classes in Part III) and all changes made

Chapter 10: Creating Forms 94

are shown immediately so you can see what effects the changes have on the object. Once
satisfactory results have been achieved the press button labeled "Accept" to accept the
settings (clicking on the tab rider "Generic" has the same effect). Two additional buttons,
"Cancel" and "Restore", are available to cancel the changes (and quit the attribute settings
form) and restore the defaults, respectively.

One particular aspect of the pixmap/bitmap button initialization needs a little more ex-
planation as the setting of button labeled "Use data" has no effect on the appearance of
the button in fdesign but nonetheless affects the generated code. By default, the "Use
data" button is off, indicating the pixmap/bitmap file specified is to be loaded dynamically
at run time via [fl_set_pixmapbutton_file()], page 125 (or the bitmap counterpart
function). If "Use data" is on, the specified file and its associated data will be #include’d
at compile time so the data becomes part of the code. Depending on the application setup,
you may choose one method over the other. In general, including the data in the code
will make the code slightly larger, but it avoids problems with finding the specified file at
runtime. The button labeled "Full Path" only applies if "Use Data" is on. If "Full Path" is
also on, the pixmap file will be #include’d using the full path, otherwise only the filename
is used, presumably the compile process will take care of the path via the -I flag in some
system dependent way.

10.10 Cut, Copy and Paste

You can remove objects from the form by first selecting them and then pressing the <F12>
function key or simply by double-clicking on it with the right mouse button. The object(s)
will disappear but in fact will be saved in a buffer. You can put it back into the form (or in
another form) by pasting, using <F10>. Note that only the last collection of deleted objects
is saved in the buffer.

It is also possible to put a copy of the selection (i.e., without removing the original object(s))
into the buffer using <F9>. The content of the bufer can now be put into the same or another
form. This allows for a simple mechanism of making multiple copies of a set of objects and
for moving information from one form to another.

To clone the currently selected object, hold down the <Shift> key and then drag the
selected object to a new position. The cloned object will have exactly the same attributes
as the original object except for its name and shortcut keys (would these also be cloned,
the generated code would not be compilable or cause runtime misbehavior).

When you copy objects belonging to a common group just the individual objects of the
group will be copied, but they won’t belong to a common group anymore.

10.11 Groups

As described in the tutorial about the Forms Library, sets of radio buttons must be placed
inside groups. Groups are also useful for other purposes. E.g., you can hide a group inside
an application program with one command. Hence, the Form Designer has some mechanism
to deal with groups.

In the control panel there is a list of groups in the current form. As long as you don’t have
groups, this list will be empty. To create a group, select the objects that should become
members of the group and press the function key <F7>. You will be prompted for the name
of the group. This should be a legal C variable name (under which the group will be known

Chapter 10: Creating Forms 95

to the application program) or should be left empty. This name will be added to the list.
In this way you can create many groups. Note that each object can be member of only one
group. So if you select it again and put it in a new group, it will be removed from its old
group. Groups that become empty this way automatically disappear from the list. (When
putting objects in a group they will be raised. This is unavoidable due to the structure of
groups.)

In the list of groups it is always indicated which groups are part of the current selection.
(Only the groups that are fully contained in the selection are indicated, not those that are
only partially contained in it.) It is also possible to add or delete groups in the current
selection by pushing the mouse on their name in the list. A simple click on a groups name
will select this group and deselect all objects not belonging to it. Clicking on a groups name
while the <Shift> key is pressed down adds the group to the cuurent selection.

Note that there is no mechanism to add an object to a group directly. This can, however,
be achieved using the following procedure: select the group and the new object and press
<F7> to group them. The old group will be discarded and a new group will be created. You
only have to type in the group name again.

You can use the menu "Rename group" from the "Group" menu to change the name of a
selected group. Only a single group may be selected when changing the name.

10.12 Hiding and Showing Objects

Sometimes it is useful to temporarily hide some objects in your form, in particular when
you have sets of overlapping objects. To this end, select the objects you want to hide and
press <F6>. The objects (though still selected) are now invisible. To show them again press
<F5>. A problem might occur here: when you press <F5> only the selected objects will be
shown again. But once an object is invisible it can no longer be selected. Fortunately, you
can always use <F4> to select all objects, including the invisible ones, and then press <F5>.
A possibly better way is to first group the objects before hiding them. Now you can select
them by pressing the mouse on the group name in the group browser and then ’unhide’
them.

10.13 Testing Forms

To test the current form, press the button labeled "Test". The form will be displayed in the
center of the screen anf a panel appears at the top right corner of the screen. This panel
shows you the objects returned and callback routines invoked when working with the form.
In this way you can verify whether the form behaves correctly and whether all objects have
either callback routines or names (or both) associated with them. You can also resize the
form (if the backface of the form allows resizing) to test the gravity and resizing behaviour.
You can play with the form as long as you want. When ready, press the "Stop Testing"
button.

Note that any changes you made to the form while testing (including its size) do not show
up when saving the form. E.g., filling in an input field or setting a slider does not mean
that in the saved code the input field will be filled in or the slider’s preset value.

Chapter 11: Saving and Loading Forms 96

11 Saving and Loading Forms

To save the set of forms created select the item "Save" or "Save As" from the "File" menu.
You will be prompted for a file name using the file selector if the latter is selected. Choose
a name that ends with .fd, e.g., ‘ttt.fd’.

The program will now generate three files: ‘ttt.c’, ‘ttt.h’ and ‘ttt.fd’. If these files
already exist, backup copies of them are made (by appending .bak to the already existing
file names). ‘ttt.c’ contains a piece of C-code that builds up the forms and ‘ttt.h’ contains
all the object and form names as indicated by the user. It also contains declaration of the
defined callback routines.

Depending on the options selected from the "Options"menu, two more files may be emitted,
namely the main program and callback function templates. They are named ‘ttt_main.c’
and ‘ttt_cb.c’ respectively.

There are two different kind of formats for the C-code generated. The default format allows
more than one instance of the form created and uses no global variables. The other format,
activated by the altformat option given on the command line or switched on via the
"Options" menu by selecting "Alt Format", uses global variables and does not allow more
than one instantiation of the designed forms. However, this format has a global routine that
creates all the forms defined, which by default is named create_the_forms() but that can
be changed (see below).

Depending on which format is output, the application program typically only needs to
include the header file and call the form creation routine.

To illustrate the differences between the two output formats and the typical way an ap-
plication program is setup, we look at the following hypothetical situation: We have two
forms, foo and bar, each of which contains several objects, say fnobj1, fnobj2 etc. where
n = 1, 2. The default output format will generate the following header file (‘foobar.h’):

#ifndef FD_foobar_h_

#define FD_foobar_h_

/* call back routines if any */

extern void callback(FL_OBJECT *, long);

typedef struct {

FL_FORM * foo;

void * vdata;

char * cdata;

long ldata;

FL_OBJECT * f1obj1;

FL_OBJECT * f1obj2;

} FD_foo;

typedef struct {

FL_FORM * bar;

void * vdata;

Chapter 11: Saving and Loading Forms 97

char * cdata;

long ldata;

FL_OBJECT * f2obj1;

FL_OBJECT * f2obj2;

} FD_bar;

extern FD_foo *create_form_foo(void);

extern FD_bar *create_form_bar(void);

#endif /* FD_foobar_h */

and the corresponding C file:

#include <forms.h>

#include "foobar.h"

FD_foo *create_form_foo(void) {

FD_foo *fdui = fl_calloc(1, sizeof *fdui);

fdui->foo = fl_bgn_form(....);

fdui->f1obj1 = fl_add_aaaa(....);

fdui->f1obj1 = fl_add_bbbb(....);

fl_end_form();

fdui->foo->fdui = fdui;

return fdui;

}

FD_bar *create_form_foo(void) {

FD_bar *fdui = fl_calloc(1, sizeof *fdui);

fdui->bar = fl_bgn_form(....);

fdui->f2obj1 = fl_add_cccc(....);

fdui->f2obj2 = fl_add_dddd(....);

fl_end_form();

fdui->bar->fdui = fdui;

return fdui;

}

The application program would look something like the following:

#include <forms.h>

#include "foobar.h"

/* add call back routines here */

int main(int argc, char *argv[]) {

FD_foo *fd_foo;

FD_bar *fd_bar;

Chapter 11: Saving and Loading Forms 98

fl_initialize(...);

fd_foo = create_form_foo();

init_fd_foo(fd_foo); /* application UI init routine */

fd_bar = create_form_bar();

init_fd_bar(fd_bar) /* application UI init routine */

fl_show_form(fd_foo->foo, ...);

/* rest of the program */

}

As you see, fdesign generates a structure that groups together all objects on a particular
form and the form itself into a structure for easy maintenance and access. The other benefit
of doing this is that the application program can create more than one instance of the form
if needed.

It is difficult to avoid globals in an event-driven callback scheme with most difficulties
occurring inside the callback function where another object on the same form may need to
be accessed. The current setup makes it possible and relatively painless to achieve this.

There are a couple of ways to do this. The easiest and most robust way is to use the member
form->fdui, which fdesign sets up to point to the FD_ structure of which the form (pointer)
is a member. To illustrate how this is done, let’s take the above two forms and try to access
a different object from within a callback function.

fd_foo = create_form_foo();

...

and in the callback function of ob on form foo, you can access other objects as follows:

void callback(FL_OBJECT *obj, long data) {

FD_foo *fd_foo = obj->form->fdui;

fl_set_object_dddd(fd_foo->f1obj2,);

}

Of course this setup still leaves the problems accessing objects on other forms unsolved
although you can manually set the form->u_vdata to the other FD_ structure:

fd_foo->form->u_vdata = fd_bar;

or use the vdata field in the FD_ structure itself:

fd_foo->vdata = fd_bar;

The other method, not as easy as using form->fdui (because you get no help from fdesign),
but just as workable, is simply using the u_vdata field in the FD_ structure to hold the
address of the object that needs to be accessed. In case of need to access multiple objects,
there is a field u_vdata in both the FL_FORM and FL_OBJECT structures you can use. You
simply use the field to hold the FD_ structure:

fd_foo = create_form_foo();

fd_foo->foo->u_vdata = fd_foo;

...

and in the callback function you can access other objects as follows:

Chapter 11: Saving and Loading Forms 99

void callback(FL_OBJECT *obj, long data) {

FD_foo *fd_foo = obj->form->u_vdata;

fl_set_object_dddd(fd_foo->f1obj2,);

}

Not pretty, but adequate for practical purposes. Note that the FD_ structure always has a
pointer to the form as the first member, followed by vdata, cdata and ldata. There’s also
a typedef for a structure of type FD_Any in forms.h:

typedef struct {

FL_FORM * form;

void * vdata;

char * cdata;

long ldata;

} FD_Any;

you can use a cast to a specific FD_ structure to get at vdata etc. Another alternative is to
use the FD_ structure as the user data in the callback1

fl_set_object_callback(obj, callback, (long) fdui);

and use the callback as follows

void callback(FL_OBJECT *obj, long arg) {

FD_foo *fd_foo = (FD_foo *) arg;

fl_set_object_lcolor(fd + foo->f1obj1, FL_RED);

...

}

Avoiding globals is, in general, a good idea, but as everything else, also an excess of a good
things can be bad. Sometimes simply making the FD_ structure global makes a program
clearer and more maintainable.

There still is another difficulty that might arise with the current setup. For example,
in f1obj1’s callback we change the state of some other object, say, f1obj2 via [fl_

set_button()], page 123 or [fl_set_input()], page 152. Now the state of f1obj2
is changed and it needs to be handled. You probably don’t want to put much code for
handling f1obj2 in f1obj1’s callback. In this situation, the following function is handy

void fl_call_object_callback(FL_OBJECT *obj);

fl_call_object_callback(fdfoo->f1obj2) will invoke the callback for f1obj2 callback
in exactly the same way the main loop would do and as far as f1obj2 is concerned, it just
handles the state change as if the user changed it.

The alternative format outputs something like the following:

/* callback routines */

extern void callback(FL_OBJECT *, long);

extern FL_FORM *foo,

*bar;

extern FL_OBJECT *f1obj1,

*f1obj2,

1 Unfortunately, this scheme isn’t legal C as a pointer may be longer than a long, but in practice, it should
work out ok on virtually all platforms.

Chapter 11: Saving and Loading Forms 100

...;

extern FL_OBJECT *f2obj1,

*f2obj2,

...;

extern void create_form_foo(void);

extern create_form_bar(void);

extern void create_the_forms(void);

The C-routines:

FL_FORM *foo,

*bar;

FL_OBJECT *f1obj1,

*f1obj2,

...;

FL_OBJECT *f2obj1,

*f2obj2,

...;

void create_form_foo(void) {

if (foo)

return;

foo = fl_bgn_form(....);

...

}

void create_form_bar(void) {

if (bar)

return;

bar = fl_bgn_form(....);

...

}

void create_the_forms(void) {

create_form_foo();

create_form_bar();

}

Normally the application program would look something like this:

#include <forms.h>

#include "foobar.h"

/* Here go the callback routines */

....

int main(int argc, char *argv[]) {

fl_initialize(....);

Chapter 11: Saving and Loading Forms 101

create_the_forms();

/* rest of the program follows*/

...

}

Note that although the C-routine file in both cases is easily readable, editing it is strongly
discouraged. If you were to do so, you will have to redo the changes whenever you call
fdesign again to modify the layout.

The third file created, ‘ttt.fd’, is in a format that can be read in by the Form Designer. It
is easy readable ASCII but you had better not change it because not much error checking is
done when reading it in. To load such a file select the "Open" item from the "File" menu.
You will be prompted for a file name using the file selector. Press your mouse on the file
you want to load and press the button labeled "Ready". The current set of forms will be
discarded, and replaced by the new set. You can also merge the forms in a file with the
current set. To this end select "Merge" from the "File" menu.

Chapter 12: Language Filters 102

12 Language Filters

Please note: This chapter is probably completely outdated!

This chapter discusses the language filter support in Form Designer, targeted primarily to
the developers of bindings to other language. As of this writing, the authors are aware of
the following bindings

ada95 by G. Vincent Castellano gvc@ocsystems.com

perl by Martin Bartlett martin@nitram.demon.co.uk

Fortran by G. Groten zdv017@zam212.zam.kfa-juelich.de and Anke Haeming
A.Haeming@kfa-juelich.de

pascal by Michael Van Canneyt michael@tfdec1.fys.kuleuven.ac.be

scm/guile

by Johannes Leveling Johannes.Leveling@Informatik.Uni-Oldenburg.DE

python by Roberto Alsina ralsina@ultra7.unl.edu.ar. It would appear that author
of python binding is no longer working on it.

These bindings are of varying degree of beta-ness and support. It appears to the authors
that the most convenient and flexible way of getting output in the targeted language is
through external filters that are invoked transparently by fdesign. This way, developers of
the binding would have complete control over the translation of the default output from the
fdesign to the target language and at the same time have the translation done transparently.

12.1 External Filters

An external filter is a stand-alone program that works on the output of Form Designer and
translates the output to the target language. The filter can elect to work on the .fd or
the C output or both simultaneously. However, in non-testing situations, the c output from
Form Designer probably should be deleted by the filter once the translation is complete.

By default, Form Designer only outputs the .fd and C files. If the presence of -ada, -perl,
-python, -fortran, -pascal or -scm command line options to Form Designer is detected,
then after emitting the default output, Form Designer invokes the the external filter with
the root filename (without the .fd extension) as an argument, together with possible other
flags, to the filter. Any runtime error messages are presented to the user in a browser. The
filter name by default is fd2xxxx where xxxx is the language name (such as fd2perl etc.),
which can be changed using the -filter command line option (or equivalent resources).

The resources that are relevant to the filter are listed below

Resource Type Default
language string C
filter string None

mailto:gvc@ocsystems.com
mailto:martin@nitram.demon.co.uk
mailto:zdv017@zam212.zam.kfa-juelich.de
mailto:A.Haeming@kfa-juelich.de
mailto:michael@tfdec1.fys.kuleuven.ac.be
mailto:Johannes.Leveling@Informatik.Uni-Oldenburg.DE
mailto:ralsina@ultra7.unl.edu.ar

Chapter 12: Language Filters 103

12.2 Command Line Arguments of the Filter

Form Designer passes along the options that affect the output format to the filter. These
options may or may not apply to the filter, most likely not if the filter works on the C file.
For those that do not apply, the filter can simply ignore them, but shouldn’t stop running
because of these options.

-callback

callback stubs are generated

-main main stub is generated

-altformat

output in alternate format

-compensate

emit size compensation code

Chapter 13: Generating Hardcopies 104

13 Generating Hardcopies

A variety of tools are available that can be used to turn your carefully constructed (and
hopefully pleasing) user interfaces into printed hardcopies or something appropriate for
inclusion in your program document. Most of these involves saving a snapshot of your
interface on the screen into a file. Then this file is translated into something that a printer
can understand, such as PostScript.

Another approach is to design the printing capabilities into the objects themselves so the
GUI is somewhat output device independent in that it can render to different devices and
X or the printer is just one of the devices. While this approach works better than screen
snapshot, in general, it bloats the library unnecessarily. It is our observation that most
of the time when a hardcopy of the interface is desired, it is for use in the application
documentation. Thus we believe that there are ways to meet the needs of wanting hardcopies
without bloating the library. Of course, some object classes, such as xyplot, charts and
possibly canvas (if vector graphics), that are dynamic in nature, probably should have some
hardcopy output support in the library, but even then, the relevant code should only be
loaded when these specific support is actually used. This fattening problem is becoming
less troublesome as computers get faster and typically have more RAMs nowadays.

fd2ps was designed to address the need of having a hardcopy of the interface for appli-
cation documentation development. Basically, fd2ps is a translator that translates the
Form Designer output directly into PostScript or Encapsulated PostScript in full vec-
tor graphics. The result is a small, maybe even editable, PostScript file that you can print
on a printer or include into other documents.

The translation can be done in two ways. One way is to simply give the Form Designer
the command line option -ps to have it output PostScript directly. or you can run fd2ps

stand alone using the command

fd2ps fdfile

where fdfile is the Form Designer output with or without the .fd extension. The output
is written into a file named ‘fdfile.ps’.

fd2ps accepts the following command line options when run as a stand-alone program

-h This option prints a brief help message.

-p This option requests Portrait output. By default, the orientation is switched to
landscape automatically if the output would not fit on the page. This option
overrides the default.

-l This option requests landscape orientation.

-gray This option requests all colors be converted to gray levels. By default, fd2ps
outputs colors as specified in the .fd file.

-bw width

This option specifies the object border width. By default, the border width
specified in the .fd file is used.

-dpi res This option specifies the screen resolution on which the user interface was de-
signed. You can use this flag to enlarge or shrink the designed size by giving a
DPI value smaller or larger than the actual screen resolution. The default DPI

Chapter 13: Generating Hardcopies 105

is 85. If the .fd file is specified in device independent unit (point, mm etc),
this flag has no effect. Also this flag does not change text size.

-G gamma This option specifies a value (gamma) that will be used to adjust the builtin
colors. The larger the value the brighter the colors. The default gamma is 1.

-rgb file

The option specifies the path to the colorname database ‘rgb.txt’. (It is used in
parsing the colornames in XPM file). The default is ‘/usr/lib/X11/rgb.txt’.
The environment variable RGBFile can be used to change this default.

-pw width

This option changes the paper width used to center the GUI on a printed
page. By default the width is that of US Letter (i.e., 8.5 inches) unless the
environment variable PAPER is defined.

-ph height

This option changes the paper height used to center the output on the printed
page. The default height is that of US Letter (i.e., 11 inches) unless the envi-
ronment variable PAPER is defined.

-paper format

This option specifies one of the standard paper names (thus setting the paper
width and height simultaneously). The current understood paper formats are

Letter 8.5 x 11 inch.

Legal 8.5 x 14 inch

A4 210 x 295mm

B4 257 x 364mm

B5 18 x 20 cm

B 11 x 17 inch

Note 4 x 5inch

The fd2ps program understands the environment variable PAPER, which should
be one of the above paper names.

Part III - Object Classes 106

Part III - Object Classes

Chapter 14: Introduction 107

14 Introduction

This part describes all different object classes that are available in the Forms Library. All
available object classes are summarized in a table below. For each class there is a section in
this document that describes it. The section starts with a short description of the object,
followed by the routine(s) to add it to a form. For (almost) all classes this routine has the
same form

FL_OBJECT *fl_add_CLASS(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

Here type is the type of the object in its class. Most classes have many different types.
They are described in the section. x, y, w and h give the left upper corner and the width
and height of the bounding box of the object. label is the label that is placed inside or
next to the object. For each object class the default placement of the label is described.
When the label starts with the character @ the label is not printed but replaced by a symbol
instead.

For each object class there is also a routine

FL_OBJECT *fl_create_CLASS(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

that only creates the object but does not put it in the form. This routine is useful for
building hierarchical object classes. The routine is not described in the following sections.

An important aspect of objects is how interaction is performed with them. First, there is
the way in which the user interacts with the object, and second there’s the question under
which circumstances an object changes its state and how this is returned to the application
program. All this is described in detail in the following sections.

Object attributes can be divided into generic and object specific ones. For generic attributes
(e.g., the object label size), the routines that change them always start with fl_set_

object_xxx() where xxx is the name of the attribute. When a specific object is created
and added to a form, it inherits many aspects of the generic object or initializes the object
attributes to its needed defaults.

Object classes can be roughly divided into static object classes (Box, Frame, LabelFrame,
Text, Bitmap, Pixmap, Clock and Chart), Buttons, valuator objects classes (Slider, Scroll-
bar, Dial, Positioner, Counter, Thumbwheel), Inputs, choice object classes (Menu, Choice,
Browser), container object classes (Tabbed Folder, Form Browser, Menu bar) and, finally,
other object classes (Timer, XYPlot, Canvas, Popup).

Box Rectangular areas to visually group objects.

Frame A box with an empty inside region.

LabelFrame
A frame with label on the frame.

Text Simple one line labels.

Bitmap Displays an X11 bitmap.

Pixmap Displays a pixmap using the XPM library.

Clock A clock.

Chapter 14: Introduction 108

Chart Bar-charts, pie-charts, strip-charts, etc.

Button Many different kinds and types of buttons that the user can push.

Slider
ValSlider Both vertical and horizontal sliders to let the user indicate some float value,

possibly with a field showing the currently set value.

Scrollbar Sliders plus two directional buttons.

Dial A dial to let the user indicate a float value.

Positioner Lets the user indicate an (x, y) position with the mouse.

Counter A different way to let a user step through values.

Thumbwheel
Rolling a wheel to indicate float values.

Input Lets the user type in an input string.

Menu Both pop-up and drop-down menus can be created.

Choice Can be used to let the user make a choice from a set of items.

Browser A text browser with a slider. Can be used for making selections from sets of
choices.

Folder A (tabbed) folder is a compound object capable of holding multiple groups of
objects.

FormBrowser
A browser you can drop forms into.

Timer A timer that runs from a set time towards 0. Can e.g., be used to do default
actions after some time has elapsed.

XYPlot Shows simple 2D xy-plot from a tabulated function or a datafile. Data points
can be interactively manipulated and retrieved.

Canvas Canvases are managed plain X windows. It differs from a raw application win-
dow only in the way its geometry is managed, not in the way various interaction
is set up.

Popups Popup are mostly used by menus and choices, but they can also be used stand-
alone to isplay context menus etc.

Thus, in the following sections, only the object specific routines are documented. Routines
that set generic object attributes are documented in Part V.

When appropriate, the effect of certain (generic) attributes of the objects on the specific
object is discussed. In particular, it is described what effect the routine [fl_set_object_

color()], page 287 has on the appearance of the object. Also some remarks on possible
boxtypes are made.

Chapter 15: Static Objects 109

15 Static Objects

15.1 Box Object

Boxes are simply used to give the dialogue forms a nicer appearance. They can be used to
visually group other objects together. The bottom of each form is a box.

15.1.1 Adding Box Objects

To add a box to a form you use the routine

FL_OBJECT *fl_add_box(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is per default placed in the center of
the box.

15.1.2 Box Types

The following types are available:

FL_UP_BOX

A box that comes out of the screen.

FL_DOWN_BOX

A box that goes down into the screen.

FL_FLAT_BOX

A flat box without a border.

FL_BORDER_BOX

A flat box with just a border.

FL_FRAME_BOX

A flat box with an engraved frame.

FL_SHADOW_BOX

A flat box with a shadow.

FL_ROUNDED_BOX

A rounded box.

FL_RFLAT_BOX

A rounded box without a border.

FL_RSHADOW_BOX

A rounded box with a shadow.

FL_OVAL_BOX

An elliptic box.

FL_NO_BOX

No box at all, only a centered label.

15.1.3 Box Attributes

The first color argument (col1) to [fl_set_object_color()], page 287 controls the color
of the box, the second (col2) is not used.

Chapter 15: Static Objects 110

15.1.4 Remarks

No interaction takes place with boxes.

Do not use FL_NO_BOX type if the label is to change during the execution of the program.

15.2 Frame Object

Frames are simply used to give the dialogue forms a nicer appearance. They can be used
to visually group other objects together. Frames are almost the same as a box, except that
the interior of the bounding box is not filled. Use of frames can speed up drawing in certain
situations. For example, to place a group of radio buttons within an FL_ENGRAVED_FRAME.
If we were to use an FL_FRAME_BOX to group the buttons, visually they would look the same.
However, the latter is faster as we don’t have to fill the interior of the bounding box and
can also reduce flicker. Frames are useful in decorating free objects and canvases.

15.2.1 Adding Frame Objects

To add a frame to a form you use the routine

FL_OBJECT *fl_add_frame(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual except that the frame is drawn outside of the
bounding box (so a flat box of the same size just fills the inside of the frame without any
gaps). The label is by default placed centered inside the frame.

15.2.2 Frame Types

The following types are available:

FL_NO_FRAME

Nothing is drawn.

FL_UP_FRAME

A frame appears coming out of the screen.

FL_DOWN_FRAME

A frame that goes down into the screen.

FL_BORDER_FRAME

A frame with a simple outline.

FL_ENGRAVED_FRAME

A frame appears to be engraved.

FL_EMBOSSED_FRAME

A frame appears embossed.

FL_ROUNDED_FRAME

A rounded frame.

FL_OVAL_FRAME

An elliptic box.

Chapter 15: Static Objects 111

15.2.3 Frame Attributes

The first color argument (col1) of [fl_set_object_color()], page 287 controls the color
of the frame if applicable, the second (col2) is not used. The boxtype attribute does not
apply to the frame class.

15.2.4 Remarks

No interaction takes place with frames.

It may be faster to use frames instead of boxes for text that is truly static. See ‘freedraw.c’
for an example use of frame objects.

15.3 LabelFrame Object

A label frame is almost the same as a frame except that the label is placed on the frame
(See Fig. 15.1) instead of inside or outside of the bounding box as in a regular frame.

15.3.1 Adding LabelFrame Objects

To add a labelframe to a form you use the routine

FL_OBJECT *fl_add_labelframe(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual except that the frame is drawn outside of the
bounding box (so a flat box of the same size just fills the inside of the frame without any
gaps). The label is by default placed on the upper left hand part of the frame. Its position
can changed (within limits) via calls of [fl_set_object_lalign()], page 289.

15.3.2 LabelFrame Types

The following types are available:

FL_NO_FRAME

Nothing is drawn.

FL_UP_FRAME

A frame appears coming out of the screen.

FL_DOWN_FRAME

A frame that goes down into the screen.

FL_BORDER_FRAME

A frame with a simple outline.

FL_ENGRAVED_FRAME

A frame appears to be engraved.

Chapter 15: Static Objects 112

FL_EMBOSSED_FRAME

A frame appears embossed.

FL_ROUNDED_FRAME

A rounded frame.

FL_OVAL_FRAME

An elliptic box.

15.3.3 Attributes

The first color in the call of [fl_set_object_color()], page 287 controls the color of the
frame if applicable. The second color controls the background color of the label. Boxtype
attribute does not apply to the labelframe class

15.3.4 Remarks

No interaction takes place with labelframes.

You can not draw a label inside or outside of the frame box. If you try, say, by requesting
FL_ALIGN_CENTER, the label is drawn using FL_ALIGN_TOP_LEFT.

15.4 Text Object

Text objects simply consist of a label possibly placed in a box.

15.4.1 Adding Text Objects

To add a text to a form you use the routine

FL_OBJECT *fl_add_text(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is by default placed flushed left in
the bounding box.

15.4.2 Text Types

Only one type of text exists: FL_NORMAL_TEXT.

15.4.3 Text Attributes

To set or change the text shown, use [fl_set_object_label()], page 289 or [fl_set_
object_label_f()], page 289.

Any boxtype can be used for text.

The first color argument (col1) of [fl_set_object_color()], page 287 controls the color
of the box the text is placed into, the second (col2) is not used. The color of the text itself
is controlled by calls of [fl_set_object_lcolor()], page 289 as usual.

If the text is to change dynamically, boxtype NO_BOX should not be used for the object.

15.4.4 Remarks

No interaction takes place with text objects.

Don’t use boxtype FL_NO_BOX if the text is to change dynamically. Note that there is almost
no difference between a box with a label and a text. The only difference lies in the position

Chapter 15: Static Objects 113

where the text is placed and the fact that text is clipped to the bounding box. Text is
normally placed inside the box at the left side. This helps you putting different lines of
text below each other. Labels inside boxes are default centered in the box. You can change
the position of the text inside the box using the routine [fl_set_object_lalign()],

page 289. In contrast to boxes different alignments for text always place the text inside
the box rather than outside the box.

15.5 Bitmap Object

A bitmap is a simple bitmap shown on a form.

15.5.1 Adding Bitmap Objects

To add a bitmap to a form you use the routine

FL_OBJECT *fl_add_bitmap(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is by default placed below the bitmap.
The bitmap is empty on creation.

15.5.2 Bitmap Types

Only the type FL_NORMAL_BITMAP is available.

15.5.3 Bitmap Interaction

No interaction takes place with a bitmap. For bitmaps that interact see Section 16.1 [Adding
Button Objects], page 120, on how to create a button with a bitmap on top of it. (You
can also place a hidden button over it if you want something to happen when pressing the
mouse on a static bitmap.)

15.5.4 Other Bitmap Routines

To set the actual bitmap being displayed use

void fl_set_bitmap_data(FL_OBJECT *obj, int w, int h,

unsigned char *bits);

void fl_set_bitmap_file(FL_OBJECT *obj, const char *file);

bits contains the bitmap data as a character string. file is the name of the file that con-
tains the bitmap data. A number of bitmaps can be found in ‘/usr/include/X11/bitmaps’
or similar places. The X program bitmap can be used to create bitmaps.

Two additional routines are provided to make a Bitmap from a bitmap file or data

Pixmap fl_read_bitmapfile(Window win, const char *filename,

unsigned *width, unsigned *height,

int *hotx, int *hoty)

Pixmap fl_create_from_bitmapdata(Window win, const char *data,

int width, int height);

where win is any window ID in your application and the other parameters have the obvious
meanings. If there is no window created yet, the return value of [fl_default_window()],
page 254 may be used.

Note: bitmaps created by the above routines have a depth of 1 and should be displayed
using XCopyPlane().

Chapter 15: Static Objects 114

15.5.5 Bitmap Attributes

The label color as set by [fl_set_object_lcolor()], page 289 controls both the fore-
ground color of the bitmap and the color of the label (i.e., they are always identical).

The first color argument (col1) to [fl_set_object_color()], page 287 sets the back-
ground color of the bitmap (and the color of the box), the second (col2) is not used.

15.5.6 Remarks

See ‘demo33.c’ for a demo of a bitmap.

15.6 Pixmap Object

A pixmap is a simple pixmap (color icon) shown on a form.

15.6.1 Adding Pixmap Objects

To add a pixmap to a form use the routine

FL_OBJECT *fl_add_pixmap(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label)

The meaning of the parameters is as usual. The label is by default placed below the pixmap.
The pixmap is empty on creation.

15.6.2 Pixmap Types

Only the type FL_NORMAL_PIXMAP is available.

15.6.3 Pixmap Interaction

No interaction takes place with a pixmap. For pixmap that interacts see Section 16.1
[Adding Button Objects], page 120, on how to create a button with a pixmap on top of it.
(You can also place a hidden button over it if you want something to happen when pressing
the mouse on a static pixmap.)

15.6.4 Other Pixmap Routines

A pixmap file (usually with extension .xpm) is an ASCII file that contains the definition of
the pixmap as a char pointer array that can be included directly into a C (or C++) source
file.

To set the actual pixmap being displayed, use one of the following routines:

void fl_set_pixmap_file(FL_OBJECT *obj, const char *file);

void fl_set_pixmap_data(FL_OBJECT *obj, char **data);

In the first routine, you specify the pixmap by the filename file that contains it. In the
second routine, you #include the pixmap at compile time and use the pixmap data (an
array of char pointers) directly. Note that both of these functions do not free the old
pixmaps associated with the object. If you’re writing a pixmap browser type applications,
be sure to free the old pixmaps by calling

void fl_free_pixmap_pixmap(FL_OBJECT *obj);

on the pixmap object prior to calling these two routines. This function, in addition to
freeing the pixmap and the mask, also frees the colors the pixmap allocated.

To obtain the pixmap ID currently being displayed, the following routine can be used

Chapter 15: Static Objects 115

Pixmap fl_get_pixmap_pixmap(FL_OBJECT *obj, Pixmap *id,

Pixmap *mask);

In some situations, you might already have a pixmap resource ID, e.g., from [fl_read_

pixmapfile()], page 115 (see below in the "Remarks" subsection). Then you can use
the following routine to change the the pixmap

void fl_set_pixmap_pixmap(FL_OBJECT *obj, Pixmap id,

Pixmap mask);

where mask is used for transparency (see [fl_read_pixmapfile()], page 115). Use 0 for
mask if no special clipping attributes are desired.

This routine does not free the pixmap ID nor the mask already associated with the object.
Thus if you no longer need the old pixmaps, they should be freed prior to changing the
pixmaps using the function [fl_free_pixmap_pixmap()], page 114.

Pixmaps are by default displayed centered inside the bounding box. However, this can be
changed using the following routine

void fl_set_pixmap_align(FL_OBJECT *obj, int align,

int dx, int dy);

where align is the same as that used for labels, see Section 3.11.3 [Label Attributes and
Fonts], page 28 for a list. dx and dy are extra margins to leave in addition to the object
border width. By default, dx and dy are set to 3. Note that although you can place a
pixmap outside of the bounding box, it probably is not a good idea.

15.6.5 Pixmap Attributes

By default if a pixmap has more colors than that available in the colormap, the library
will use substitute colors that are judged "close enough". This closeness is defined as the
difference between the requested color and the color found being smaller than some pre-
set threshold values between 0 and 65535 (0 means exact match). The default thresholds
are 40000 for red, 30000 for green and 50000 for blue. To change these defaults, use the
following routine

void fl_set_pixmap_colorcloseness(int red, int green, int blue);

15.6.6 Remarks

The following routines may be handy for reading a pixmap file into a pixmap

Pixmap fl_read_pixmapfile(Window win, const char *filename,

unsigned *width, unsigned *height,

Pixmap *shape_mask, int *hotx, int *hoty,

FL_COLOR tran);

where win is the window in which the pixmap is to be displayed. If the window is yet to be
created, you can use the default window, returned by a call of [fl_default_window()],
page 254. Parameter shape_mask is a pointer to an already existing Pixmap, which, if not
NULL, is used as a clipping mask to achieve transparency. hotx and hoty are the center of
the pixmap (useful if the pixmap is to be used as a cursor). Parameter tran is currently
not used.

If you already have the pixmap data in memory, the following routine can be used

Chapter 15: Static Objects 116

Pixmap fl_create_from_pixmapdata(Window win, char **data,

unsigned *width, unsigned *height,

Pixmap *shape_mask, int *hotx,

int *hoty, FL_COLOR tran);

All parameters have the same meaning as for fl_read_pixmapfile.

Note that the Forms Library handles transparency, if specified in the pixmap file or data,
for pixmap and pixmapbutton objects. However, when using [fl_read_pixmapfile()],

page 115 or [fl_create_from_pixmapdata()], page 115, the application programmer is
responsible to set the clip mask in an appropriate GC.

Finally there is a routine that can be used to free a Pixmap

void fl_free_pixmap(Pixmap id);

You will need the XPM library (version 3.4c or later)m developed by Arnaud Le
Hors and Groupe Bull, to use pixmaps. The XPM library is avalialble as a package
for most distributions, but can also be obtained from many X mirror sites, e.g., via
anonymous FTP from (ftp://ftp.x.org/contrib/libraries/. Its home page is
http://old.koalateam.com/lehors/xpm.html.

15.7 Clock Object

A clock object simply displays a clock on the form

15.7.1 Adding Clock Objects

To add a clock to a form you use the routine

FL_OBJECT *fl_add_clock(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, char label[])

The meaning of the parameters is as usual. The label is placed below the clock by default.

15.7.2 Clock Types

The following types are available:

FL_ANALOG_CLOCK

An analog clock complete with the second hand.

FL_DIGITAL_CLOCK

A digital clock.

15.7.3 Clock Interaction

No interaction takes place with clocks.

15.7.4 Other Clock Routines

To get the displayed time (local time as modified by the adjustment described below) use
the following routine

void fl_get_clock(FL_OBJECT *obj, int *h, int *m, int *s);

Upon function return the parameters are set as follows: h is between 0-23, indicating the
hour, m is between 0-59, indicating the minutes, and s is between 0-59, indicating the
seconds.

To display a time other than the local time, use the following routine

ftp://ftp.x.org/contrib/libraries/
http://old.koalateam.com/lehors/xpm.html

Chapter 15: Static Objects 117

long fl_set_clock_adjustment(FL_OBJECT *obj, long adj);

where adj is in seconds. For example, to display a time that is one hour behind the local
time, an adjustment of 3600 can be used. The function returns the old adjustment value.

By default, the digital clock uses 24hr system. You can switch the display to 12hr system
(am-pm) by using the following routine

void fl_set_clock_ampm(FL_OBJECT *obj, int yes_no)

15.7.5 Clock Attributes

Never use FL_NO_BOX as the boxtype for a digital clock.

The first color argument (col1) of [fl_set_object_color()], page 287 controls the color
of the background, the second (col2) is the color of the hands.

15.7.6 Remarks

See ‘flclock.c’ for an example of the use of clocks. See Section 33.1 [Misc. Functions],
page 304, for other time related routines.

15.8 Chart Object

The chart object gives you an easy way to display a number of different types of charts like
bar-charts, pie-charts, line-charts etc. They can either be used to display some fixed chart
or a changing chart (e.g., a strip-chart). Values in the chart can be changed and new values
can be added which makes the chart move to the left, i.e., new entries appear at the right
and old entries disappear at the left. This can be used to e.g., monitor processes.

15.8.1 Adding Chart Objects

To add a chart object to a form use the routine

FL_OBJECT *fl_add_chart(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

It shows an empty box on the screen with the label below it.

15.8.2 Chart Types

The following types are available:

FL_BAR_CHART

A bar-chart

FL_HORBAR_CHART

A horizontal bar-chart

FL_LINE_CHART

A line-chart

FL_FILLED_CHART

A line-chart but the area below curve is filled

FL_SPIKE_CHART

A chart with a vertical spike for each value

Chapter 15: Static Objects 118

FL_PIE_CHART

A pie-chart

FL_SPECIALPIE_CHART

A pie-chart with displaced first item

All charts except pie-charts can display positive and negative data. Pie-charts will ignore
values that are less then or equal to 0. The maximum number of values displayed in the
chart can be set using the routine [fl_set_chart_maxnumb()], page 119. The argument
must be not larger than FL_CHART_MAX which currently is 512. Switching between different
types can be done without any complications.

15.8.3 Chart Interaction

No interaction takes place with charts.

15.8.4 Other Chart Routines

There are a number of routines to change the values in the chart and to change its behavior.
To clear a chart use the routine

void fl_clear_chart(FL_OBJECT *obj);

To add an item to a chart use

void fl_add_chart_value(FL_OBJECT *obj, double val,

const char *text, FL_COLOR col);

Here val is the value of the item, text is the label to be associated with the item (can be
empty) and col is an index into the colormap (FL_RED etc.) that is the color of this item.
The chart will be redrawn each time you add an item. This might not be appropriate if
you are filling a chart with values. In this case put the calls between calls of [fl_freeze_
form()], page 290 and [fl_unfreeze_form()], page 290.

By default, the label is drawn in a tiny font in black. You can change the font style, size or
color using the following routine

void fl_set_chart_lstyle(FL_OBJECT *obj, int fontstyle);

void fl_set_chart_lsize(FL_OBJECT *obj, int fontsize);

void fl_set_chart_lcolor(FL_OBJECT *obj, FL_COLOR color);

Note that [fl_set_chart_lcolor()], page 118 only affects the label color of subsequent
items, not the items already created.

You can also insert a new value at a particular place using

void fl_insert_chart_value(FL_OBJECT *obj, int index,

double val, const char *text,

FL_COLOR col);

index is the index before which the new item should be inserted. The first item is number
1. So, for example, to make a strip-chart where the new value appears at the left, each time
insert the new value before index 1.

To replace the value of a particular item use the routine

void fl_replace_chart_value(FL_OBJECT *obj, int index,

double val, const char *text,

FL_COLOR col);

Chapter 15: Static Objects 119

Here index is the index of the value to be replaced. The first value has an index of 1, etc.

Normally, bar-charts and line-charts are automatically scaled in the vertical direction such
that all values can be displayed. This is often not wanted when new values are added from
time to time. To set the minimal and maximal value displayed use the routine

void fl_set_chart_bounds(FL_OBJECT *obj, double min, double max)’

To return to automatic scaling call it with both min and max being set to 0.0. To obtain
the current bounds, use the following routine

void fl_get_chart_bounds(FL_OBJECT *obj, double *min, double *max)’

Also the width of the bars and distance between the points in a line-chart are normally
scaled. To change this use

void fl_set_chart_autosize(FL_OBJECT *obj, int autosize);

with autosize being set to false (0). In this case the width of the bars will be such that the
maximum number of items fits in the box. This maximal number (defaults to FL_CHART_

MAX) can be changed using

void fl_set_chart_maxnumb(FL_OBJECT *obj, int maxnumb);

where maxnumb is the maximal number of items to be displayed, which may not be larger
than FL_CHART_MAX.

15.8.5 Chart Attributes

Don’t use boxtype FL_NO_BOX for a chart object if it changes value.

Normally, for bar and line chart a baseline is drawn at 0. This can be switched on and off
by the function

void fl_set_chart_baseline(FL_OBJECT *ob, int yes_no);

The first color argument (col1) to [fl_set_object_color()], page 287 controls the
(background) color of the box, the second (col2) the color of the baseline.

15.8.6 Remarks

See ‘chartall.c’ and ‘chartstrip.c’ for examples of the use of chart objects.

Chapter 16: Button-like Objects 120

16 Button-like Objects

A very important set of object classes are those for buttons. Buttons are placed on the form
such that the user can push them with the mouse. The different button classes mostly are
distinguished by the way they are displayed. Differences in behaviour can be achieved by
using different types for a button: there exist button types that make them return to their
normal state when the user releases the mouse, types for buttons that stay pushed until the
user pushes them again, a radio button type for buttons that are grouped with other radio
buttons and of which only one can be in the on state at a time and a touch button type for
buttons that "fire" repeatedly while being pressed.

Also different shapes of buttons exist. Normal buttons are rectangles that come out of the
background. When the user pushes them they go into the background (and possibly change
color). Lightbuttons have a small light inside them. Pushing these buttons switches the
light on. Round buttons are simple circles and, when pushed, a colored circle appears inside
of them. Bitmap and pixmap buttons are buttons with an image in addition to a text label.

16.1 Adding Button Objects

Adding an object To add buttons use one of the following routines:

FL_OBJECT *fl_add_button(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

FL_OBJECT *fl_add_lightbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

FL_OBJECT *fl_add_roundbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

FL_OBJECT *fl_add_round3dbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

FL_OBJECT *fl_add_checkbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

Chapter 16: Button-like Objects 121

const char *label);

FL_OBJECT *fl_add_bitmapbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

FL_OBJECT *fl_add_pixmapbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

FL_OBJECT *fl_add_labelbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

FL_OBJECT *fl_add_scrollbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

These finctions create buttons of the following classes:

FL_BUTTON

A standard normal button.

FL_LIGHTBUTTON

A button with a small embedded, colored area that changes color when the
button is in the on state.

FL_ROUNDBUTTON

A circular button (with a label beside). The inner area of the circle changes
color when the button is on. Often used for radio buttons.

FL_ROUND3DBUTTON

Just like the [FL_ROUNDBUTTON], page 121 but the circle is dran in a 3D-
fashion.

FL_CHECKBUTTON

Button shaped in the form of a rhombus slightly raised above the forms plane
when off and slightly embossed (ypically with a different color) when on.

FL_BITMAPBUTTON

Button decorated with a bitmap (often read in from an X bitmap file with
extension xbm) in additional to a label.

FL_PIXMAPBUTTON

Button decorated with a pixmap (often read in from an X pixmap file with
extension xpm) in additional to a label. An additonal pixmap can be set for the
case that the mouse hoovers over the button.

FL_LABELBUTTON

A button that does not appear to be a button, only its label is shown, can be
used e.g., for hyperlinks.

FL_SCROLLBARBUTTON

A button mostly used at the ends of scrollbars - instead of a label it can only
contain a triangle pointing up, down, left or right.

The meaning of the parameters is as usual. The label is by default placed inside the
button for button and lightbutton. For roundbutton, round3dbutton, bitmapbutton and

Chapter 16: Button-like Objects 122

pixmapbutton, it is placed to the right of the circle and to the bottom of the bitmap/pixmap
respectively. For scrollbutton, the label must be of some pre-determined string that indicates
the direction of the scroll arrow.

16.2 Button Types

The following types of buttons are available:

FL_NORMAL_BUTTON

Returned to [fl_do_forms()], page 297 (or having its callback funtion in-
voked) when released.

FL_PUSH_BUTTON

Stays pushed until user pushes it again.

FL_MENU_BUTTON

Returned when pushed, useful e.g., for opening a popup when pushed.

FL_TOUCH_BUTTON

Returned at regulat intervals as long as the user pushes it.

FL_RADIO_BUTTON

Push button that switches off other radio buttons.

FL_HIDDEN_BUTTON

Invisible normal button.

FL_INOUT_BUTTON

Returned both when pushed and when released.

FL_RETURN_BUTTON

Like a normal button but also reacts to the <Return> key.

FL_HIDDEN_RET_BUTTON

Invisible return button.

Except for the [FL_HIDDEN_BUTTON], page 122 and [FL_HIDDEN_RET_BUTTON],

page 122, which are invisible, there’s not much visible indication of the button type
but the function is quite different. For each of the types the button gets pushed down
when the user presses the mouse on top of it. What actually happens when the user
does so then depends on the type of the button. An [FL_NORMAL_BUTTON], page 122,
[FL_TOUCH_BUTTON], page 122 and [FL_INOUT_BUTTON], page 122 gets released when
the user releases the mouse button. Their difference lies in the moment at which the
interaction routines return them (see below). A [FL_PUSH_BUTTON], page 122 remains
pushed and is only released when the user pushes it again. A [FL_RADIO_BUTTON],

page 122 is a push button with the following extra property: whenever the user pushes
a radio button, all other pushed radio buttons in the same form (or in the same group)
are released. In this way the user can make its choice among several possibilities. A
[FL_RETURN_BUTTON], page 122 behaves like a normal button, but it also reacts when
the <Return> key on the keyboard is pressed. When a form contains such a button (of
course there can only be one) the <Return> key can no longer be used to move between
input fields. For this the <Tab> key must be used.

Chapter 16: Button-like Objects 123

A [FL_HIDDEN_BUTTON], page 122 behaves like a normal button but is invisible. A [FL_

HIDDEN_RET_BUTTON], page 122 is like a hidden button but also reacts to <Return> key
presses.

16.3 Button Interaction

[FL_NORMAL_BUTTON], page 122s, [FL_PUSH_BUTTON], page 122s, [FL_RADIO_BUTTON],
page 122s, [FL_RETURN_BUTTON], page 122s and [FL_HIDDEN_BUTTON], page 122s are
returned at the moment the user releases the mouse after having pressed it on the button.
A [FL_MENU_BUTTON], page 122, in contrast, is returned already on a mouse press. A
[FL_INOUT_BUTTON], page 122 is returned both when the user presses it and when the
user releases it. A [FL_TOUCH_BUTTON], page 122 is returned all the time as long as the
user keeps the mouse button pressed while the mouse is on top of it. A [FL_RETURN_

BUTTON], page 122 and a [FL_HIDDEN_RET_BUTTON], page 122 are also returned when
the user presses the <Return> key.

As for other “active” objects, you can control under which conditions a button object gets
returned or its callback invoked by using the function

int fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where reasonable values for when are

[FL_RETURN_NONE], page 46

Never return object or invoke callback.

[FL_RETURN_END_CHANGED], page 45

Return object or invoke callback when mouse button is released and at the
same moment the state of the button changed.

[FL_RETURN_CHANGED], page 45

Return object or invoke callback whenever the state of the button changes.

[FL_RETURN_END], page 45

Return object or invoke callback when mouse button is released

[FL_RETURN_ALWAYS], page 46

Return object or invoke callback on all of the above condtions.

Most buttons will always return [FL_RETURN_END], page 45 and [FL_RETURN_CHANGED],

page 45 at the same time. Exceptions are [FL_INOUT_BUTTON], page 122s and [FL_

TOUCH_BUTTON], page 122s. The former returns [FL_RETURN_CHANGED], page 45 when
pushed and both [FL_RETURN_END], page 45 and [FL_RETURN_CHANGED], page 45 to-
gether when released. [FL_TOUCH_BUTTON], page 122s return when pressed, then [FL_

RETURN_CHANGED], page 45 at regular time intervals while being pressed and finally [FL_

RETURN_END], page 45 when released.

See demo ‘butttypes.c’ for a feel of the different button types.

16.4 Other Button Routines

The application program can also set a button to be pushed or not itself without a user
action. To this end use the routine

Chapter 16: Button-like Objects 124

void fl_set_button(FL_OBJECT *obj, int pushed);

pushed indicates whether the button should be set to be pushed (1) or released (0). When
setting a [FL_RADIO_BUTTON], page 122 to be pushed this automatically releases the cur-
rently pushed radio button in the same form (or group). Also note that this routine only
simulates the visual appearance but does not affect the program flow in any way, i.e., setting
a button as being pushed does not invoke its callback or results in the button becoming
returned to the program. For that follow up the call of [fl_set_button()], page 123

with a call of [fl_trigger_object()], page 291 (or [fl_call_object_callback()],

page 291).

To figure out whether a button is pushed or not use1

int fl_get_button(FL_OBJECT *obj);

Sometimes you want to give the button a different meaning depending on which mouse
button gets pressed on it. To find out which mouse button was used at the last push (or
release) use the routine

int fl_get_button_numb(FL_OBJECT *obj);

It returns one of the constants [FL_LEFT_MOUSE], page 243, [FL_MIDDLE_MOUSE],

page 243, [FL_RIGHT_MOUSE], page 243, [FL_SCROLLUP_MOUSE], page 243 or
[FL_SCROLLDOWN_MOUSE], page 243 (the latter two are from the scroll wheel of the
mouse). If the last push was triggered by a shortcut (see below), the function returns the
keysym (ASCII value if the key used is between 0 and 127) of the key plus [FL_SHORTCUT],
page 244. For example, if a button has <Ctrl>-C as its shortcut the button number
returned upon activation of the shortcut will be FL_SHORTCUT + 3 (the ASCII value of
<Ctrl>-C is 3).

It can also be controlled which mouse buttons a buttons reacts to (per default a button
reacts to all mouse buttons, including the scroll wheel). To set which mouse buttons the
button reacts to use

void fl_set_button_mouse_buttons(FL_OBJECT *obj, int mbuttons);

mbuttons is the bitwise OR of the numbers 1 for the left mouse button, 2 for the middle, 4
for the right mouse button, 8 for moving the scroll wheel up "button" and 16 for scrolling
down "button". Per default a button reacts to all mouse buttons.

To determine which mouse buttons a button is reacting to use

void fl_get_button_mouse_buttons(FL_OBJECT *obj,

unsigned int *mbuttons);

The value returned via mbuttons is the same value as would be used in [fl_set_button_

mouse_buttons()], page 124.

In a number of situations it is useful to define a keyboard equivalent for a button. You might
e.g., want to define that <Ctrl>Q has the same meaning as pressing the "Quit" button. This
can be achieved using the following call:

void fl_set_button_shortcut(FL_OBJECT *obj, const char *str,

int showUL);

Note that str is a string, not a single character. This string is a list of all the characters
to become keyboard shortcuts for the button. E.g., if you use string "^QQq" the button

1 [fl_mouse_button()], page 51 can also be used.

Chapter 16: Button-like Objects 125

will react on the keys q, Q and <Ctrl>Q. (As you see you can use the symbol ^ to indicate
the control key. Similarly you can use the symbol # to indicate the <Alt> key.) Be careful
with your choices. When the form also contains input fields you probably don’t want to
use the normal printable characters because they can no longer be used for input in the
input fields. Shortcuts are always evaluated before input fields. Other special keys, such as
<F1> etc., can also be used as shortcuts. See Section 26.1 [Shortcuts], page 245, for details.
Finally, keep in mind that a button of type FL_RETURN_BUTTON is in fact nothing more
than a normal button, just with the <Return> key set as the shortcut. So don’t change the
shortcuts for such a button.

If the third parameter showUL is true and one of the letters in the object label matches the
shortcut the matching letter will be underlined. This applies to non-printable characters
(such as #A) as well in the sense that if the label contains the letter a or A it will be underlined
(i.e., special characters such as # and ^ are ignored when matching). A false value (0) for
showUL turns off underlining without affecting the shortcut. Note that although the entire
object label is searched for matching character to underline of the shortcut string itself only
the first (non-special) character is considered, thus a shortcut string of "Yy" for the label
"Yes" will result in the letter Y becoming underlined while for "yY" it won’t.

To set the bitmap to use for a bitmap button the following functions can be used:

void fl_set_bitmapbutton_data(FL_OBJECT *obj, int w, int h,

unsigned char *bits);

void fl_set_bitmapbutton_file(FL_OBJECT *obj, const char *filename);

Similarly, to set the pixmap to use for a pixmap button the following routines can be used:

void fl_set_pixmapbutton_data(FL_OBJECT *obj, unsigned char **bits);

void fl_set_pixmapbutton_file(FL_OBJECT *obj, const char *file);

void fl_set_pixmapbutton_pixmap(FL_OBJECT *obj, Pixmap id,

Pixmap mask);

To use the first routine, you #include the pixmap file into your source code and use the
pixmap definition data (an array of char pointers) directly. For the second routine the
filename file that contains the pixmap definition is used to specify the pixmap. The last
routine assumes that you already have a X Pixmap resource ID for the pixmap you want
to use. Note that these routines do not free a pixmap already associated with the button.
To free the pixmaps use the function

void fl_free_pixmapbutton_pixmap(FL_OBJECT *obj);

This function frees the pixmap and mask together with all the colors allocated for them.

To get the pixmap and mask that is currently being displayed, use the following routine

Pixmap fl_get_pixmapbutton_pixmap(FL_OBJECT *obj,

Pixmap &pixmap, Pixmap &mask);

Pixmaps are by default displayed centered inside the bounding box. However, this can be
changed using the following routine

void fl_set_pixmapbutton_align(FL_OBJECT *obj, int align,

int xmargin, int ymargin);

where align is the same as that used for labels. See Section 3.11.3 [Label Attributes and
Fonts], page 28, for a list. xmargin and ymargin are extra margins to leave in addition

Chapter 16: Button-like Objects 126

to the object border width. Note that although you can place a pixmap outside of the
bounding box, it probably is not a good idea.

When the mouse enters a pixmap button an outline of the button is shown. If required,
a different pixmap (the focus pixmap) can also be shown. To set such a focus pixmap the
following functions are available:

void fl_set_pixmapbutton_focus_data(FL_OBJECT *obj,

unsigned char **bits);

void fl_set_pixmapbutton_focus_file(FL_OBJECT *obj,

const char *file);

void fl_set_pixmapbutton_focus_pixmap(FL_OBJECT *obj, Pixmap id,

Pixmap mask);

The meanings of the parameters are the same as that in the regular pixmap routines.

Finally, there’s a function that can be used to enable or disable the focus outline

void fl_set_pixmapbutton_focus_outline(FL_OBJECT *obj, int yes_no);

See also Section 15.6 [Pixmap Object], page 114, for pixmap color and transparency han-
dling.

To get rid of a focus pixmap of a pixmap button use the function

void fl_free_pixmap_focus_pixmap(FL_OBJECT *obj);

16.5 Button Attributes

For normal buttons the first color argument (col1) to [fl_set_object_color()],

page 287 controls the normal color and the second (col2) the color the button has when
pushed. For lightbuttons col1 is the color of the light when off and col2 the color when
on. For round buttons, col1 is the color of the circle and col2 the color of the circle that
is placed inside it when pushed. For round3dbutton, col1 is the color of the inside of the
circle and col2 the color of the embedded circle. For bitmapbuttons, col1 is the normal
box color (or bitmap background if boxtype is not FL_NO_BOX) and col2 is used to indicate
the focus color. The foreground color of the bitmap is controlled by label color (as set via
[fl_set_object_lcolor()], page 289. For scrollbutton, col1 is the overall boundbox
color (if boxtype is not FL_NO_BOX), col2 is the arrow color. The label of a scrollbutton
must be a string with a number between 1 and 9 (except 5), indicating the arrow direction
like on the numerical key pad. The label can have an optional prefix # to indicate uniform
scaling. For example, the label "#9" tells that the arrow should be pointing up-right and
the arrow has the identical width and height regardless the overall bounding box size.

16.6 Remarks

See all demo programs, in particular ‘pushbutton.c’ and ‘buttonall.c’ for the use of
buttons.

Chapter 17: Valuator Objects 127

17 Valuator Objects

17.1 Slider Object

Sliders are useful for letting the user indicate a value between some fixed bounds. Both
horizontal and vertical sliders exist. They have a minimum, a maximum and a current value
(all floating point values). The user can change the current value by shifting the slider with
the mouse. Whenever the value changes, this is reported to the application program.

17.1.1 Adding Slider Objects

Adding an object To add a slider to a form use

FL_OBJECT *fl_add_slider(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

or

FL_OBJECT *fl_add_valslider(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is by default placed below the slider.
The difference between a normal slider and a valslider is that for the second type its value
is displayed above or to the left of the slider.

17.1.2 Slider Types

The following types of sliders are available:

FL_VERT_SLIDER

A vertical slider.

FL_HOR_SLIDER

A horizontal slider.

FL_VERT_FILL_SLIDER

A vertical slider, filled from the bottom.

FL_HOR_FILL_SLIDER

A horizontal slider, filled from the left.

FL_VERT_NICE_SLIDER

A nice looking vertical slider.

FL_HOR_NICE_SLIDER

A nice looking horizontal slider.

FL_VERT_BROWSER_SLIDER

A different looking vertical slider.

FL_HOR_BROWSER_SLIDER

A different looking horizontal slider.

FL_VERT_PROGRESS_BAR

A vertical progress bar

Chapter 17: Valuator Objects 128

FL_HOR_PROGRESS_BAR

A horizontal progress bar

Please note that except for [FL_VERT_PROGRESS_BAR], page 127 and [FL_HOR_PROGRESS_

BAR], page 127 the label will always drawn on the outside of the slider (even if you attempt
to set an inside alignment).

17.1.3 Slider Interaction

Whenever the user changes the value of the slider using the mouse, the slider is returned
(unless there’s callback function associated with the object) by the interaction routines.
The slider position is changed by moving the mouse inside the slider area. For fine control,
hold down the <Shift> key while moving the slider.

Please note: the [FL_VERT_PROGRESS_BAR], page 127 and [FL_HOR_PROGRESS_BAR],

page 127 aren’t actually valuator objects (they don’t react to any user interaction) but are
vor visualization only (i.e., showing a progress bar that is changed by the program only),
they appear hear because they are directly derived from the [FL_VERT_FILL_SLIDER],

page 127 and [FL_VERT_FILL_SLIDER], page 127 slider. Thus the only way to change
the value of objects of these types is by calling [fl_set_slider_value()], page 129! To
obtain the correct "progress bar" behaviour you should also update the label accordingly.

In some cases you might not want the slider to be returned or its callback called each time
its value changes. To change the default, call the following routine:

Chapter 17: Valuator Objects 129

void fl_set_object_return(FL_OBJECT *obj, unsigned int when)

where the parameter when can be one of the four values:

[FL_RETURN_NONE], page 46

Never return or invoke callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback at end (mouse release) if value is changed since last
return.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever the slider value is changed. This is the
default.

[FL_RETURN_END], page 45

Return or invoke callback at end (mouse release) regardless if the value is
changed or not.

[FL_RETURN_ALWAYS], page 46

Return or invoke callback when the value changed or at end (mouse release).

See the demo program ‘objreturn.c’ for an example use of this.

17.1.4 Other Slider Routines

To change the value and bounds of a slider use the following routines

void fl_set_slider_value(FL_OBJECT *obj, double val);

void fl_set_slider_bounds(FL_OBJECT *obj, double min, double max);

By default, the minimum value for a slider is 0.0, the maximum is 1.0 and the value is 0.5.
For vertical sliders the slider position for the minimum value is at the left, for horizontal
sliders at the top of the slider. By setting nin to a larger value than max in a call of
[fl_set_slider_bounds()], page 129 this can be reversed.

If in a call of [fl_set_slider_bounds()], page 129 the actual value of a slider isn’t
within the range of the new bounds, its value gets adjusted to the nearest limit. When the
requested new slider value in a call of [fl_set_slider_value()], page 129 is outside the
range of bounds it gets adjusted to the nearest boundary value.

To obtain the current value or bounds of a slider use

double fl_get_slider_value(FL_OBJECT *obj);

void fl_get_slider_bounds(FL_OBJECT *obj, double *min, double *max);

17.1.5 Slider Attributes

Never use FL_NO_BOX as the boxtype for a slider. For FL_VERT_NICE_SLIDERs and FL_HOR_

NICE_SLIDERs it’s best to use a FL_FLAT_BOX in the color of the background to get the
nicest effect.

The first color argument (col1) to [fl_set_object_color()], page 287 controls the color
of the background of the slider, the second (col2) the color of the slider itself.

You can control the size of the slider inside the box using the routine

void fl_set_slider_size(FL_OBJECT *obj, double size);

Chapter 17: Valuator Objects 130

size should be a floating point value between 0.0 and 1.0. The default is FL_SLIDER_WIDTH,
which is 0.1 for regular sliders and 0.15 for browser sliders. With a value for size of 1.0, the
slider covers the box completely and can no longer be moved. This function does nothing
if applied to sliders of type NICE_SLIDER and FILL_SLIDER.

To obtain the current setting of the slider size use

double fl_get_slider_size(FL_OBJECT *obj);

The routine

void fl_set_slider_precision(FL_OBJECT *obj, int prec);

sets the precision with which the value of the slider is shown. This only applies to sliders
showing their value, i.e., valsliders. The argument must be between 0 and FL_SLIDER_MAX_

PREC (currently set to 10).

By default, the value shown by a valslider is the slider value in floating point format. You
can override the default by registering a filter function using the following routine

void fl_set_slider_filter(FL_OBJECT *obj,

const char *(*filter)(FL_OBJECT *,

double value,

int prec));

where value and prec are the slider value and precision respectively. The filter function
filter should return a string that is to be shown. The default filter is equivalent to the
following

const char *filter(FL_OBJECT *obj, double value, int prec) {

static char buf[32];

sprintf(buf, "%.*f", prec, value);

return buf;

}

Finally, the function

int fl_get_slider_repeat(FL_OBJECT *obj);

void fl_set_slider_repeat(FL_OBJECT *obj, int millisec)

allows to determine and control the time delay (in milliseconds) between jumps of the sliders
knob when the mouse button is kept pressed down on the slider outside of the knobs area.
The default value is 100 ms. The delay for the very first jump is twice that long in order
to avoid jumping to start too soon when only a single click was intended but the user is a
bit slow in releasing the mouse button.

17.1.6 Remarks

See the demo program ‘demo05.c’ for an example of the use of sliders. See demo programs
‘sldsize.c’ and ‘sliderall.c’ for the effect of setting slider sizes and the different types
of sliders.

17.2 Scrollbar Object

Scrollbars are similar to sliders (as a matter of fact, scrollbars are made with sliders and
scrollbuttons), and useful in letting the user indicate a value between some fixed bounds.

Chapter 17: Valuator Objects 131

Both horizontal and vertical scrollbars exist. They have a minimum, maximum and current
value (all floating point values). The user can change this value by dragging the sliding bar
with the mouse or press the scroll buttons. Whenever the value changes, it is reported to
the application program via the callback function.

17.2.1 Adding Scrollbar Objects

To add a scrollbar to a form use

FL_OBJECT *fl_add_scrollbar(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is by default placed below the
scrollbar.

17.2.2 Scrollbar Types

The following types of scrollbar are available:

FL_VERT_SCROLLBAR

A vertical scrollbar.

FL_HOR_SCROLLBAR

A horizontal scrollbar.

FL_VERT_THIN_SCROLLBAR

A different looking vertical scrollbar.

FL_HOR_THIN_SCROLLBAR

A different looking horizontal scrollbar.

FL_VERT_NICE_SCROLLBAR

A vertical scrollbar using FL_NICE_SLIDER.

FL_HOR_NICE_SCROLLBAR

A horizontal scrollbar using FL_NICE_SLIDER.

FL_VERT_PLAIN_SCROLLBAR

Similar to FL_THIN_SCROLLBAR.

Chapter 17: Valuator Objects 132

FL_HOR_PLAIN_SCROLLBAR

Similar to FL_HOR_THIN_SCROLLBAR.

17.2.3 Scrollbar Interaction

Whenever the user changes the value of the scrollbar, the scrollbar’s callback is called (if
one is associated with the scrollbar). The scrollbar position can be changed in several ways.
The most simple one is to left-click on the knob of the scrollbar and move the know while
the left mouse button is kept pressed down. Left-clicking beside the know will move the
knob in large steps toward the current position of the mouse, clicking with the middle or
right mouse button in smaller steps. Small shifts can also be obtained by clicking on one
of the buttons at the side of the scrollbar or by using the scroll-wheel somehwere over the
scrollbar.

You can control under which conditions the scrollbar gets returned to your application or
its callback invoked. To change the default, call

void fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where the parameter when can be one of the following four values:

[FL_RETURN_NONE], page 46

Never return or invoke callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback at end (mouse release) if value is changed (since last
return).

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever the scrollbar value is changed. This is the
default.

[FL_RETURN_END], page 45

Return or invoke callback at end (mouse release) regardless if the value is
changed or not.

[FL_RETURN_ALWAYS], page 46

Return or invoke callback whenever value changed or mouse button was re-
leased.

The default setting for when for a scrollbar object is [FL_RETURN_CHANGED], page 45 (un-
less during the build of XForms you set the configuration flag --enable-bwc-bs-hack in
which case the default is [FL_RETURN_NONE], page 46 to keep backward compatibility with
earlier releases of the library).

See demo program ‘objreturn.c’ for an example use of this.

17.2.4 Other Scrollbar Routines

To change the value and bounds of a scrollbar use the following routines:

void fl_set_scrollbar_value(FL_OBJECT *obj, double val);

void fl_set_scrollbar_bounds(FL_OBJECT *obj, double min, double max);

By default, the minimum value for a slider is 0.0, the maximum is 1.0 and the value is 0.5.
For vertical sliders the slider position for the minimum value is at the left, for horizontal

Chapter 17: Valuator Objects 133

sliders at the top of the slider. By setting min to a larger value than max in a call of
[fl_set_scrollbar_bounds()], page 132 this can be reversed.

If in a call of [fl_set_scrollbar_bounds()], page 132 the actual value of a scrollbar
isn’t within the range of the new bounds, its value gets adjusted to the nearest limit. When
the requested new scrollbar value in a call of [fl_set_scrollbar_value()], page 132 is
outside the range of bounds it gets adjusted to the nearest boundary value.

To obtain the current value and bounds of a scrollbar use

double fl_get_scrollbar_value(FL_OBJECT *obj);

void fl_get_scrollbar_bounds(FL_OBJECT *obj, double *min, double *max);

By default, if the mouse is pressed beside the the sliding bar, the bar starts to jumps in the
direction of the mouse position. You can use the following routine to change this size of the
steps being made :

void fl_set_scrollbar_increment(FL_OBJECT *obj, double lj, double rj);

where lj indicates how much to increment if the left mouse button is pressed and rj

indicates how much to jump if the middle mouse button pressed. For example, for the
scrollbar in the browser class, the left mouse jump is made to be one page and middle mouse
jump is made to be one line. The increment (decrement) value when the scrollbuttons are
pressed is set to the value of the right jump. The default values for lj and rj are 0.1 and
0.02.

To obtain the current increment settings, use the following routine

void fl_get_scrollbar_increment(FL_OBJECT *obj, double *lj, double *sj);

17.2.5 Scrollbar Attributes

Never use FL_NO_BOX as the boxtype for a scrollbar. For FL_VERT_NICE_SCROLLBARs and FL_
HOR_NICE_SCROLLBARs it’s best to use a FL_FLAT_BOX boxtype in the color of the background
to get the nicest effect.

The first color argument (col1 to [fl_set_object_color()], page 287 controls the color
of the background of the scrollbar, the second (col2) the color of the sliding bar itself.

You can control the size of the sliding bar inside the box using the routine

void fl_set_scrollbar_size(FL_OBJECT *obj, double size);

size should be a value between 0.0 and 1.0. The default is FL_SLIDER_WIDTH, which is
0.15 for all scrollbars With size set to 1.0, the scrollbar covers the box completely and can
no longer be moved. This function does nothing if applied to scrollbars of type FL_NICE_

SCROLLBAR.

The function

double fl_get_scrollbar_size(FL_OBJECT *obj);

returns the current setting of the scrollbar size.

17.2.6 Remarks

See the demo program ‘scrollbar.c’ for an example of the use of scrollbars.

Chapter 17: Valuator Objects 134

17.3 Dial Object

Dial objects are dials that the user can put in a particular position using the mouse. They
have a minimum, maximum and current value (all floating point values). The user can
change this value by turning the dial with the mouse. Whenever the value changes, this is
reported to the application program.

17.3.1 Adding Dial Objects

To add a dial to a form use

FL_OBJECT *fl_add_dial(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is by default placed below the dial.

17.3.2 Dial Types

The following types of dials are available:

FL_NORMAL_DIAL

A dial with a knob indicating the position.

FL_LINE_DIAL

A dial with a line indicating the position.

FL_FILL_DIAL

The area between initial and current is filled.

17.3.3 Dial Interaction

By default, the dial value is returned to the application when the user releases the mouse.
It is possible to change this behavior using the following routine

void fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where when can be one of the following

[FL_RETURN_NONE], page 46

Never report or invoke callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback at end (mouse release) and only if the dial value is
changed. This is the default setting.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever the dial value is changed.

Chapter 17: Valuator Objects 135

[FL_RETURN_END], page 45

Return or invoke callback at the end regardless if the dial value is changed or
not.

[FL_RETURN_ALWAYS], page 46

Return or invoke callback when value has changed or mouse button has been
released.

17.3.4 Other Dial Routines

To change the value of the dial and its bounds use

void fl_set_dial_value(FL_OBJECT *obj, double val);

void fl_set_dial_bounds(FL_OBJECT *obj, double min, double max);

By default, the minimum value is 0.0, the maximum is 1.0 and the value is 0.5.

To obtain the current values of the dial and its bounds use

double fl_get_dial_value(FL_OBJECT *obj);

void fl_get_dial_bounds(FL_OBJECT *obj, double *min, double *max);

Sometimes, it might be desirable to limit the angular range a dial can take or choose an
angle other than 0 to represent the minimum value. For this purpose, use the following
routine

void fl_set_dial_angles(FL_OBJECT *obj, double thetai, double thetaf)

where thetai maps to the minimum value of the dial and thetaf to its maximum value.
The angles are relative to the origin of the dial, which is by default at 6 o’clock and rotates
clock-wise. By default, the minimum angle is 0 and the maximum angle is 360.

To obtain the start and end angles use

void fl_get_dial_angles(FL_OBJECT *obj, double *thetai, double *thetaf)

By default, crossing from 359.9 to 0 or from 0 to 359.9 is not allowed. To allowing crossing
over, use the following routine

void fl_set_dial_crossover(FL_OBJECT *obj, int yes_no);

where a true value for yes_no indicates that cross-over is allowed.

In a number of situations you might want dial values to be rounded to some values, e.g., to
integer values. To this end use the routine

void fl_set_dial_step(FL_OBJECT *obj, double step);

After this call dial values will be rounded to multiples of step. Use a value of 0.0 for step
to switch off rounding.

To get the current setting for the rounding steps use

double fl_get_dial_step(FL_OBJECT *obj);

By default, clock-wise rotation increases the dial value. To change, use the following routine

void fl_set_dial_direction(FL_OBJECT *obj, int dir);

where dir can be either FL_DIAL_CCW or FL_DIAL_CW.

To obtain the direction use

int fl_get_dial_direction(FL_OBJECT *obj);

Chapter 17: Valuator Objects 136

17.3.5 Dial Attributes

You can use any boxtype you like, but the final dial face always appears to be circular
although certain correlation between the requested boxtype and actual boxtype exists (for
example, FL_FRAME_BOX is translated into a circular frame box.)

The first color argument (col1 to [fl_set_object_color()], page 287 controls the color
of the background of the dial, the second col2) the color of the knob or the line or the fill
color.

17.3.6 Remarks

The resolution of a dial is about 0.2 degrees, i.e., there are only about 2000 steps per 360
degrees and, depending on the size of the dial, it is typically less.

The dial is always drawn with a circular box. If you specify a FL_UP_BOX, a FL_OVAL3D_

UPBOX will be used.

See the demo programs ‘ldial.c’, ‘ndial.c’ and ‘fdial.c’ for examples of the use of dials.

17.4 Positioner Object

A positioner is an object in which the user can indicate a position with an x- and a y-
coordinate. It displays a box with a cross-hair cursor in it (except an invisble positioner,
of course). Clicking the mouse inside the box changes the position of the cross-hair cursor
and, hence, the x- and y-values.

17.4.1 Adding Positioner Objects

A positioner can be added to a form using the call

FL_OBJECT *fl_add_positioner(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is placed below the box by default.

17.4.2 Positioner Types

The following types of positioner exist:

FL_NORMAL_POSITIONER

Cross-hair inside a box.

FL_OVERLAY_POSITIONER

Cross-hair inside a transparent box (i.e.,drawn in in XOR mode).

FL_INVISIBLE_POSITIONER

Completely invisible positioner, to be used just for the side effect of obtaining
a position (typically an object is below below it that otherwise would receive
user events).

17.4.3 Positioner Interaction

The user changes the setting of the positioner using the mouse inside the box. Per default
whenever the values changes, the object is returned by the interaction routines or its callback
invoked (if one exists.

To change the default use the function

Chapter 17: Valuator Objects 137

void fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where when can be one of the following

[FL_RETURN_NONE], page 46

Never report or invoke callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback at end (mouse release) and only when the positioner
ended in a different position than the one it started from.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever the positioners value is changed, default
setting.

[FL_RETURN_END], page 45

Return or invoke callback at the end only but regardless if the positioners value
changed or not.

[FL_RETURN_ALWAYS], page 46

Return or invoke callback when value has changed or mouse button has been
released.

Per default a positioner only reacts to the left mouse button. But sometimes it can be
useful to modify which mouse buttons it will reacts to. To set this use

void fl_set_positioner_mouse_buttons(FL_OBJECT *obj,

int mbuttons);

mbuttons is the bitwise OR of the numbers 1 for the left mouse button, 2 for the middle, 4
for the right mouse button, 8 for moving the scroll wheel up "button" and 16 for scrolling
down "button". Per default a button reacts to all mouse buttons.

To determine which mouse buttons a positioner reacts to use

void fl_get_positioner_mouse_buttons(FL_OBJECT *obj,

unsigned int *mbuttons);

The value returned via mbuttons is the same value as would be used in [fl_set_

positioner_mouse_buttons()], page 137.

Sometimes you may want to assign different meanings to the mouse buttons used to interact
with the positioner. To find out which one has been used there’s the function

int fl_get_positioner_numb(FL_OBJECT *obj);

It returns one of the constants [FL_LEFT_MOUSE], page 243, [FL_MIDDLE_MOUSE],

page 243, [FL_RIGHT_MOUSE], page 243, [FL_SCROLLUP_MOUSE], page 243 or
[FL_SCROLLDOWN_MOUSE], page 243 (the latter two are from the scroll wheel of the
mouse).

17.4.4 Other Positioner Routines

To set the value of the positioner and the boundary values use the routines:

void fl_set_positioner_xvalue(FL_OBJECT *obj, double val);

void fl_set_positioner_xbounds(FL_OBJECT *obj, double min, double max);

void fl_set_positioner_yvalue(FL_OBJECT *obj, double val);

void fl_set_positioner_ybounds(FL_OBJECT *obj, double min, double max);

Chapter 17: Valuator Objects 138

By default the minimum values are 0.0, the maximum values are 1.0 and the actual values
are 0.5. For boundaries in x-direction min and max should be taken to mean the left- and
right-most position, respectively, and for the y-boundaries min and max should be taken to
mean the value at the bottom and value at the top of the positioner.

To obtain the current values of the positioner and the bounds use

double fl_get_positioner_xvalue(FL_OBJECT *obj);

void fl_get_positioner_xbounds(FL_OBJECT *obj,

double *min, double *max);

double fl_get_positioner_yvalue(FL_OBJECT *obj);

void fl_get_positioner_ybounds(FL_OBJECT *obj,

double *min, double *max);

In a number of situations you might like positioner values to be rounded to some values,
e.g., to integer values. To this end use the routines

void fl_set_positioner_xstep(FL_OBJECT *obj, double step);

void fl_set_positioner_ystep(FL_OBJECT *obj, double step);

After these calls positioner values will be rounded to multiples of step. Use a value of 0.0
for step to switch off rounding.

Sometimes, it makes more sense for a positioner to have an icon/pixmap as the background
that represents a minified version of the area where the positioner’s values apply. Type
FL_OVERLAY_POSITIONER is specifically designed for this by drawing the moving cross-hair
in XOR mode as not to erase the background. A typical creation procedure might look
something like the following

obj = fl_add_pixmap(FL_NORMAL_PIXMAP, x, y, w, h, label);

fl_set_pixmap_file(obj, iconfile);

pos = fl_add_positioner(FL_OVERLAY_POSITIONER, x, y, w, h, label);

Of course, you can overlay this type of positioner on objects other than a pixmap. See the
demo program ‘positionerXOR.c’ for an example.

17.4.5 Positioner Attributes

Never use FL_NO_BOX as the boxtype for a positioner of type. FL_NORMAL_POSITIONER (but
the other two types will have a box type of FL_NO_BOX per default).

The first color argument (col1) to [fl_set_object_color()], page 287 controls the color
of the box, the second (col2) the color of the cross-hair.

17.4.6 Remarks

A demo can be found in ‘positioner.c’.

17.5 Counter Object

A counter provides a different mechanism for the user to select a value. In consists of a box
displaying a value with one or two buttons on each side. The user can press these buttons to
change the value (and while the mouse button is kept pressed down the value will continue
to change, slow at first and faster after some time). If the counter has four buttons, the
left- and right-most button make the value change in large steps, the other buttons make
it change in small steps.

Chapter 17: Valuator Objects 139

17.5.1 Adding Counter Objects

To add a counter to a form use

FL_OBJECT *fl_add_counter(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label)

The meaning of the parameters is as usual. The label is by default placed below the counter.

17.5.2 Counter Types

The following types of counters are available:

FL_NORMAL_COUNTER

A counter with two buttons on each side.

FL_SIMPLE_COUNTER

A counter with one button on each side.

17.5.3 Counter Interaction

The user changes the value of the counter by keeping his mouse pressed on one of the
buttons. Per default whenever the mouse is released and the counter value is changed the
counter is returned to the application program or its callback is invoked.

In some applications you might want the counter to be returned to the application program
(or the callback invoked) e.g., whenever the value changes and not only when the mouse is
released. To this end use

void fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where when can be either

[FL_RETURN_NONE], page 46

Never report or invoke callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback at end (mouse release) and only if the counter value
is changed.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever the counter value is changed. This is the
default setting.

[FL_RETURN_END], page 45

Return or invoke callback at the end regardless if the counter value is changed
or not.

Chapter 17: Valuator Objects 140

[FL_RETURN_ALWAYS], page 46

Return or invoke callback when the counter value has changed or mouse button
has been released.

17.5.4 Other Counter Routines

To change the value of the counter, it’s bounds and stp size use the routines

void fl_set_counter_value(FL_OBJECT *obj, double val);

void fl_set_counter_bounds(FL_OBJECT *obj, double min, double max);

void fl_set_counter_step(FL_OBJECT *obj, double small, double large);

The first routine sets the value (default is 0) of the counter, the second routine sets the
minimum and maximum values that the counter will take (default are -1000000 and 1000000,
respectively) and the third routine sets the sizes of the small and large steps (defaults to
0.1 and 1). (For simple counters only the small step is used.)

For conflicting settings, bounds take precedence over value, i.e., if setting a value that is
outside of the current bounds, it is clamped. Also changing the bounds in a way that the
current counter value isn’t within the new bounds range anymore will result in its value
being adjusted to the nearest of the new limits.

To obtain the current value of the counter use

double fl_get_counter_value(FL_OBJECT *obj);

To obtain the current bounds and steps, use the following functions

void fl_get_counter_bounds(FL_OBJECT *obj, double *min, double *max);

void fl_get_counter_step(FL_OBJECT *obj, double *small, double *large);

To set the precision (number of digits after the dot) with which the counter value is displayed
use the routine

void fl_set_counter_precision(FL_OBJECT *obj, int prec);

To determine the current value of the precision use

int fl_get_counter_precision(FL_OBJECT *obj);

By default, the value shown is the counter value in floating point format. You can override
the default by registering a filter function using the following routine

void fl_set_counter_filter(FL_OBJECT *obj,

const char *(*filter)(FL_OBJECT *,

double value,

int prec));

where value and prec are the counter value and precision respectively. The filter function
filter should return a string that is to be shown. Note that the default filter is equivalent
to the following

const char *filter(FL_OBJECT *obj, double value, int prec) {

static char buf[32];

sprintf(buf, "%.*f",prec,value);

return buf;

}

By default the counter value changes first slowly and the rate of change then accelerates
until a final speed is reached. The default delay between the value changing is 600 ms at

Chapter 17: Valuator Objects 141

the start and the final delay is 50 ms. You can change the initial delay by a call of the
function

void fl_set_counter_repeat(FL_OBJECT *obj, int millisec);

and the final delay by using

void fl_set_counter_min_repeat(FL_OBJECT *obj, int millisec);

where in both cases the argument millisec is the delay in milli-seconds. The current
settings for the initial and final delay can be obtained by calling the functions

int fl_get_counter_repeat(FL_OBJECT *obj);

int fl_get_counter_min_repeat(FL_OBJECT *obj);

Until version 1.0.91 of the library the delay between changes of a counter was constant (with
a default value of 100 ms). To obtain this traditional behaviour simple set the initial and
final delay to the same value.

As a third alternative you can also request that only the first change of the counter has a
different delay from all the following ones. To achieve this call

void fl_set_counter_speedjump(FL_OBJECT *obj, int yes_no);

with a true value for yes_no. The delay for the first change of the counter value will then
be the one set by [fl_set_counter_repeat()], page 141 and the following delays last as
long as set by [fl_set_counter_min_repeat()], page 141.

To determine the setting for "speedjumping" call

int fl_get_counter_speedjump(FL_OBJECT *obj);

17.5.5 Counter Attributes

Never use FL_NO_BOX as the boxtype for a counter.

The first color argument (col1) t [fl_set_object_color()], page 287 controls the color
of the background of the counter, the second (col2) sets the color of the arrow buttons of
the counter.

17.5.6 Remarks

See demo program ‘counter.c’ for an example of the use of counters.

17.6 Spinner Object

A spinner object is a combination of a (numerical) input field with two (touch) buttons
that allow to increment or decrement the value in the (editable) input field. I.e., the user
can change the spinners value by either editing the value of the input field or by using the
up/down buttons shown beside the input field.

There are two types of spinner objects, one for integer and one for floating point values.
You can set limits on the values that can be input and you can also set the amount of
increment/decrement achieved when clicking on its buttons.

17.6.1 Adding Spinner Objects

To add a spinner to a form use

Chapter 17: Valuator Objects 142

FL_OBJECT *fl_add_spinner(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is by default placed on the left of the
spinner object.

17.6.2 Spinner Types

There are two types of spinners, one for input of integer and one for floating point values:

FL_INT_SPINNER

A spinner that allows input of integer values.

FL_FLOAT_SPINNER

A spinner that allows input of floating point values.

The way a spinner looks like depends on its dimensions. If it’s at least as wide as it’s high
the two buttons are drawn above each other to the right of the input field (and are marked
with and up and down pointing triangle), while when the object is higher than it’s wide
they are drawn beside each other and below the input field (and the markers are then left
and right pointing arrows).

17.6.3 Spinner Interaction

The user can change the value of a spinner in two ways. She can either edit the value
in the spinner directly (exactly the same as for an integer or floating point input object
(Chapter 18 [Part III Input Objects], page 147) or by clicking on one of the buttons that
will increment or decrement the value.

Per default the spinner object gets returned to the application (or the associated callback
is called) whenever the value changed and the interaction seems to have ended. If you want
it returned under different circumstances use the function

void fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where the parameter when can be one of the four values

[FL_RETURN_NONE], page 46

Never return or invoke callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback at end of interaction (when either the input field loses
the focus or one of the buttons was released) and the spinner’s value changed
during the interaction.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever the spinner’s value changed. This is the
default.

[FL_RETURN_END], page 45

Return or invoke callback at end of interaction regardless of the spinner’s value
having changed or not.

[FL_RETURN_ALWAYS], page 46

Return or invoke callback whenever the value changed or the interaction ended.

Chapter 17: Valuator Objects 143

17.6.4 Other Spinner Routines

Probably the most often used spinner functions are

double fl_get_spinner_value(FL_OBJECT *obj);

double fl_set_spinner_value(FL_OBJECT *obj, double val);

The first one returns the value of a spinner. The type of the return value is a double
for both integer and floating point spinners, so you have to convert it for integer spinners
appropriately, e.g: using the FL_nint() macro, that converts a double to the nearest integer
value.

You can set or retrieve the upper and lower limit the value a spinner can be set to using
the functions

void fl_set_spinner_bounds(FL_OBJECT *obj, double min, double max);

void fl_get_spinner_bounds(FL_OBJECT *obj, double *min, double *max);

Since this function is to be used for integer as well as floating point spinner objects the
double type values must be converted as necessary for [FL_INT_SPINNER], page 142.

The default limits are -10000 and 10000, but can be set to up to INT_MIN and INT_MIN

for [FL_INT_SPINNER], page 142s and -DBL_MAX and DBL_MAX for [FL_FLOAT_SPINNER],
page 142s.

To set or determine the step size by which a spinner will be incremented or decremented
when one of the buttons is clicked on use

void fl_set_spinner_step(FL_OBJECT *obj, double step);

double fl_get_spinner_step(FL_OBJECT *obj);

The default step size is 1 for both [FL_INT_SPINNER], page 142 and [FL_FLOAT_

SPINNER], page 142 objects.

For [FL_FLOAT_SPINNER], page 142 objects you can set (or determine) how many digits
after the decimal point are shown by using

void fl_set_spinner_precision(FL_OBJECT *obj, int prec);

int fl_get_spinner_precision(FL_OBJECT *obj);

This is per default set to 6 digits after the decimal point. The function for setting the
precision has no effect on [FL_INT_SPINNER], page 142 objects and the other one returns
0 for this type of spinners.

17.6.5 Spinner Attributes

Please don’t change the boxtype from [FL_NO_BOX], page 109.

The label color and font can be set using the normal [fl_set_object_lcolor()],

page 289, [fl_set_object_lsize()], page 289 and [fl_set_object_lstyle()],

page 289 functions. The color of the input field of a spinner object can be set via using
[fl_set_object_color()], page 287 where the first color argument (col1) controls the
color of the input field when it is not selected and the second (col2) is the color when
selected.

Instead of creating a plethora of functions to influence all the other aspects of how the
spinner is drawn (colors, font types etc.) the user is given direct access to the sub-objects
of a spinner. To this end three functions exist:

Chapter 17: Valuator Objects 144

FL_OBJECT *fl_get_spinner_input(FL_OBJECT *obj);

FL_OBJECT *fl_get_spinner_up_button(FL_OBJECT *obj);

FL_OBJECT *fl_get_spinner_down_button(FL_OBJECT *obj);

They return the addresses of the objects the spinner object is made up from, i.e., that of
the input field and the buttons for increasing and decreasing the spinner’s value. These
then can be used to set or query the way the individual component objects are drawn. The
addresses of these sub-objects shouldn’t be used for any other purposes, especially their
callback function may never be changed!

17.7 Thumbwheel Object

Thumbwheel is another valuator that can be useful for letting the user indicate a value
between some fixed bounds. Both horizontal and vertical thumbwheels exist. They have a
minimum, a maximum and a current value (all floating point values). The user can change
the current value by rolling the wheel.

17.7.1 Adding Thumbwheel Objects

To add a thumbwheel to a form use

FL_OBJECT *fl_add_thumbwheel(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is by default placed below the
thumbwheel.

17.7.2 Thumbwheel Types

The following types of thumbwheels are available:

FL_VERT_THUMBWHEEL

A vertical thumbwheel.

FL_HOR_THUMBWHEEL

A horizontal thumbwheel.

17.7.3 Thumbwheel Interaction

Whenever the user changes the value of the thumbwheel using the mouse or keyboard, the
thumbwheel is returned (or the callback called) by the interaction routines. You change the

Chapter 17: Valuator Objects 145

value of a thumbwheel by dragging the mouse inside the wheel area or, for vertical thumb-
wheels also by using the scroll wheel of the mouse. Each pixel of movement changes the
value of the thumbwheel by 0.005, which you can change using the [fl_set_thumbwheel_

step()], page 146 function.

The keyboard can be used to change the value of a thumbwheel. Specifically, the <Up> and
<Down> cursor keys can be used to increment or decrement the value of a vertical thumbwheel
and the <Right> and <Left> cursor keys can be used to increment or decrement the value
of horizontal thumbwheel. Each pressing of the cursor key changes the thumbwheel value
by the current step value. The <Home> key can be used to set the thumbwheel to a known
value, which is the average of the minimum and the maximum value of the thumbwheel.

In some applications you might not want the thumbwheel to be returned all the time. To
change the default, call the following routine:

void fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where the parameter when can be one of the four values

[FL_RETURN_NONE], page 46

Never return or invoke callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback at end (mouse release) if value is changed since last
return.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever the thumbwheel value is changed.

[FL_RETURN_END], page 45

Return or invoke callback at end (mouse release) regardless if the value is
changed or not.

[FL_RETURN_ALWAYS], page 46

Return or invoke callback whenever the value changes or the mouse button is
released.

See demo program ‘thumbwheel.c’ for an example use of this.

17.7.4 Other Thumbwheel Routines

To change the value and bounds of a thumbwheel use the following routines

double fl_set_thumbwheel_value(FL_OBJECT *obj, double val);

void fl_set_thumbwheel_bounds(FL_OBJECT *obj, double min, double max);

By default, the minimum value is 0.0, the maximum is 1.0 and the value is 0.5.

To obtain the current value or bounds of a thumbwheel use

double fl_get_thumbwheel_value(FL_OBJECT *obj);

void fl_get_thumbwheel_bounds(FL_OBJECT *obj, double *min, double *max);

By default, the bounds are "hard", i.e., once you reach the minimum or maximum, the
wheel would not turn further in this direction. However, if desired, you can make the
bounds to turn over such that it crosses over from the minimum to the maximum value and
vice versa. To this end, the following routine is available

Chapter 17: Valuator Objects 146

int fl_set_thumbwheel_crossover(FL_OBJECT *obj, int yes_no);

In a number of situations you might like thumbwheel values to be rounded to some values,
e.g., to integer values. To this end use the routine

void fl_set_thumbwheel_step(FL_OBJECT *obj, double step);

After this call thumbwheel values will be rounded to multiples of step. Use a value 0.0 for
step to switch off rounding.

To get the current setting for this call

double fl_set_thumbwheel_step(FL_OBJECT *obj);

17.7.5 Thumbwheel Attributes

Setting colors via [fl_set_object_color()], page 287 has no effect on thumbwheels.

17.7.6 Remarks

See the demo program ‘thumbwheel.c’ for an example of the use of thumbwheels.

Chapter 18: Input Objects 147

18 Input Objects

It is often required to obtain textual input from the user, e.g., a file name, some fields in a
database, etc. To this end input fields exist in the Forms Library. An input field is a field
that can be edited by the user using the keyboard.

18.1 Adding Input Objects

Adding an object To add an input field to a form you use the routine

FL_OBJECT *fl_add_input(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label)

The meaning of the parameters is as usual. The label is by default placed in front of the
input field.

18.2 Input Types

The following types of input fields exist:

FL_NORMAL_INPUT

Any type of text can be typed into this field.

FL_FLOAT_INPUT

Only a floating point numbers can be typed in (e.g., -23.2e12). The resulting
string will be accepted by strtod() in its entirety (but may be too big to be
represented by an int or long).

FL_INT_INPUT

Only an integers can be typed in (e.g., -86). The resulting string will be accepted
by strtol() in its entirety (but may be too big to be represented by an float

or double).

FL_DATE_INPUT

Only a date (MM/DD/YY or DD/MM/YY) can be typed in (and limited per
default to 10 characters).

FL_MULTILINE_INPUT

An input field allowing for multiple lines.

FL_SECRET_INPUT

A normal input field that does not show the text (and limited per default to a
maximum length of 16 characters).

FL_HIDDEN_INPUT

A normal input field but invisible.

A normal input field can contain one line of text, to be typed in by the user. A float input
field can only contain a float number. If the user tries to type in something else than a float,
it is not shown and the bell is sounded. Similarly, an int input field can only contain an
integer number and a date input field can only contain a valid date (see below). A multi-line
input field can contain multiple lines of text. A secret input field works like a normal input
field but the text is not shown (or scrambled). Only the cursor is shown which does move
while text is being entered. This can for example be used for getting passwords. Finally, a

Chapter 18: Input Objects 148

hidden input field is not shown at all but does collect text for the application program to
use.

18.3 Input Interaction

Whenever the user presses the mouse inside an input field a cursor will appear in it (and
the field will change color to indicate that it received the input focus). Further input will
be directed into this field. The user can use the following keys (as in emacs(1)) to edit or
move around inside the input field:

delete previous char
<Backspace>, <Ctrl>h

delete next char
<Delete>

delete previous word
<Ctrl><Backspace>

delete next word
<Ctrl><Delete>

delete from cursor position to end of line
<Ctrl>k

delete from cursor position to begin of line
<Meta>h

jump to begin of line
<Ctrl>a

jump to end of line
<Ctrl>e

move char backward
<Ctrl>b

move char forward
<Ctrl>f

move to next line
<Ctrl>n, <Down>

move to previous line
<Ctrl>p, <Up>

move word backward
<Meta>b

move word forward
<Meta>f

move to begin of field
<Home>

move to end of field
<End>

Chapter 18: Input Objects 149

clear input field
<Ctrl>u

paste <Ctrl>y

It is possible to remap the the bindings, see below for details.

A single click into the input field positions the cursor at the position of the mouse click.

There are three ways to select part of the input field. Dragging, double-click and triple-
click. A double-click selects the word the mouse is on and a triple-click selects the entire
line the mouse is on. The selected part of the input field is removed when the user types
the <Backspace> or <Delete> key or replaced by what the user types in.

One additional property of selecting part of the text field is that if the selection is done
with the left mouse button the selected part becomes the primary (XA PRIMARY) selection of
the X Selection mechanism, thus other applications, e.g., xterm, can request this selection.
Conversely, the cut-buffers from other applications can be pasted into the input field. Use
the middle mouse button for pasting. Note that <Ctrl>y only pastes the cut-buffer gener-
ated by <Ctrl>k and is not related to the X Selection mechanism, thus it only works within
the same application. When the user presses the <Tab> key the input field is returned to
the application program and the input focus is directed to the next input field. This also
happens when the user presses the <Return> key but only if the form does not contain a
return button. The order which input fields get the focus when the <Tab> is pressed is the
same as the order the input fields were added to the form. From within Form Designer,
using the raising function you can arrange (re-arrange) the focus order, see Section 10.6
[Raising and Lowering], page 91, in Part II for details. If the <Shift> key is pressed down
when the <Tab> is pressed, the focus is directed to the previous input field.

Leaving an input field using the <Return>) key does not work for multi-line input fields
since the <Return> key is used to start a new line.

Per default the input object gets returned to the application (or the callback set for the
input object is invoked) when the input field is left and has been changed. Depending on the
application, other options might be useful. To change the precise condition for the object
to be returned (or its callback to become invoked), the following function can be used:

void fl_set_input_return(FL_OBJECT *obj, int when);

Where when can take one of the following values:

[FL_RETURN_NONE], page 46

Never return or invoke callback

[FL_RETURN_END_CHANGED], page 45

Default, object is returned or callback is called at the end if the field had been
modified.

[FL_RETURN_CHANGED], page 45

Return or invoke the callback function whenever the field had been changed.

[FL_RETURN_END], page 45

Return or invoke the callback function at the end regardless if the field was
modified or not.

Chapter 18: Input Objects 150

[FL_RETURN_ALWAYS], page 46

Return or invoke the callback function upon each keystroke and at the end
(regardless if the field was changed or not)

See demo ‘objreturn.c’ for an example use of this.

A few additional notes: when you read "the fields has been changed" this includes the
case that the user e.g., deleted a character and then added it back again. Also this case is
reported as a "change" (a delete alone isn’t) so the term "changed" does not necessarily
mean that the content of the field has changed but that the user made changes (but which
still might result in the exact same content as before).

Another term that may be understood differently is "end". In the versions since 1.0.91
it means that the users either hits the <Tab> or the <Return> key (except for multi-line
inputs) or that she clicks onto some other object that in principle allows user interaction.
These events are interpreted as an indication the user is done editing the input field and
thus are reported back to the program, either by returning the input object or invoking its
callback. But unless the user goes to a different input object the input field edited retains
the focus.

Up to version 1.0.90 this was handled a bit differently: an "end of edit" event was not
reported back to the program when the user clicked on a non-input object, i.e., changed to
a different input object. This let to some problems when the interaction with the clicked-on
non-input object dependet on the new content of the input object, just having been edited,
but which hadn’t been been reported back to the caller. On the other hand, some programs
rely on the "old" behaviour. These programs can switch back to the traditional behaviour
by calling the new function (available since 1.0.93)

fl_input_end_return_handling(int type);

where type can be either FL_INPUT_END_EVENT_ALWAYS, which is now the default, or FL_
INPUT_END_EVENT_CLASSIC, which switches back to the type of handing used in versions
up and including to 1.0.90. The function can be used at any time to change between the
two possible types of behaviour. The function returns the previous setting.

There is a routine that can be used to limit the number of characters per line for input
fields of type [FL_NORMAL_INPUT], page 147

void fl_set_input_maxchars(FL_OBJECT *obj, int maxchars);

To reset the limit to unlimited, set maxchars to 0. Note that input objects of type [FL_

DATE_INPUT], page 147 are limited to 10 characters per default and those of type [FL_

SECRET_INPUT], page 147 to 16.

Although an input of type [FL_RETURN_ALWAYS], page 46 can be used in combination with
the callback function to check the validity of characters that are entered into the input field,
use of the following method may simplify this task considerably:

typedef int (*FL_INPUTVALIDATOR)(FL_OBJECT *obj, const char *old,

const char *cur, int c);

FL_INPUTVALIDATOR fl_set_input_filter(FL_OBJECT *obj,

FL_INPUTVALIDATOR filter);

The function filter() is called whenever a new (regular) character is entered. old is the
string in the input field before the newly typed character c was added to form the new
string cur. If the new character is not an acceptable character for the input field, the filter

Chapter 18: Input Objects 151

function should return FL_INVALID otherwise FL_VALID. If FL_INVALID is returned, the
new character is discarded and the input field remains unmodified. The function returns
the old filter. While the built-in filters also sound the keyboard bell, this don’t happpens
if a custom filter only returns FL_INVALID. To also sound the keyboard bell logically or it
with FL_INVALID | FL_RINGBELL.

This still leaves the possibility that the input is valid for every character entered, but the
string is invalid for the field because it is incomplete. For example, 12.0e is valid for a
float input field for every character typed, but the final string is not a valid floating point
number. To guard against this, the filter function is also called just prior to returning the
object with the argument c (for the newly entered character) set to zero. If the validator
returns FL_INVALID the object is not returned to the application program, but input focus
can change to the next input field. If the return value FL_INVALID | FL_RINGBELL, the
keyboard bell is sound and the object is not returned to the application program and the
input focus remains in the object.

To facilitate specialized input fields using validators, the following validator dependent
routines are available

void fl_set_input_format(FL_OBJECT *obj, int attrib1, int attrib2);

void fl_get_input_format(FL_OBJECT *obj, int *attrib1, int *attrib2);

These two routines more or less provide a means for the validator to store and retrieve
some information about user preference or other state dependent information. attrib1

and attrib2 can be any validator defined variables. For the built-in class, only the one of
type [FL_DATE_INPUT], page 147 utilizes these to store the date format: for attrib1, it
can take FL_INPUT_MMDD or FL_INPUT_DDMM and attrib2 is the separator between month
and day. For example, to set the date format to dd/mm, use

fl_set_input_format(obj, FL_INPUT_DDMM, ’/’);

For the built-in type [FL_DATE_INPUT], page 147 the default is FL_INPUT_MMDD and the
separator is ’/’. There is no limit on the year other than it must be an integer and appear
after month and day.

The function

int fl_validate_input(FL_OBJECT *obj);

can be used to test if the value in an input field is valid. It returns [FL_VALID], page 150

if the value is valid or if there is no validator function set for the input, otherwise [FL_

INVALID], page 150.

There are two slightly different input modes for input objects. In the "normal" mode, when
the input field is entered not using the mouse (e.g., by using of the <Tab> key) the cursor is
placed again at the position it was when the field was left (or at the end of a possibly existing
string when it’s entered for the first time). When an input object has a maximum number
of allowed characters set (via the [fl_set_input_maxchars()], page 150 function) and
there’s no room left no new input is accepted until at least one character has been deleted.

As an alternative there’s an input mode that is similar to the way things were handle in
DOS forms etc. Here, when the field is entered by any means but clicking into it with the
mouse, the cursor is placed at the start of the text. And for fields with a maximum capacity,
that contain already as many characters as possible, the character at the end of the field
are removed when a new one is entered.

To switch between the two modes use the function

Chapter 18: Input Objects 152

int fl_set_input_mode(int mode);

where mode is one of

FL_NORMAL_INPUT_MODE

The default. Use it to switch to the "normal" input mode

FL_DOS_INPUT_MODE

For selecting the DOS-like input mode

The function returns the previous setting. Note that the function changes the input mode
for all input fields in your application.

18.4 Other Input Routines

Note that the label is not the default text in the input field. To set the contents of the
input field use one of these routines:

void fl_set_input(FL_OBJECT *obj, const char *str);

void fl_set_input_f(FL_OBJECT *obj, const char *fmt, ...);

The first one takes a simple string while the second expects a format string with format
specifiers just like printf() etc. and as many (appropriate) arguments as there are format
specifiers.

Only a limited check on the string passed to the function is done in that only printable char-
acters (according to the isprint() function) and, in the case of [FL_MULTILINE_INPUT],
page 147 objects, new-lines (’\n’) are accepted (i.e., all that don’t fit are skipped). Use
an empty string (or a NULL pointer as the second argument) to clear an input field.

Setting the content of an input field does not trigger an object event, i.e., the object callback
is not called. In some situations you might want to have the callback invoked. For this, you
may use the function [fl_call_object_callback()], page 291.

To obtain the string in the field (when the user has changed it) use:

const char *fl_get_input(FL_OBJECT *obj);

This function returns a char pointer for all input types. Thus for numerical input types
e.g., strtol(3), atoi(3), strtod(3), atof(3) or sscanf(3) should be used to convert the
string to the proper data type you need. For multiline input, the returned pointer points to
the entire content with possibly embedded newlines. The application may not modify the
content pointed to by the returned pointer, it points to the internal buffer.

To select or deselect the current input or part of it, the following two routines can be used

void fl_set_input_selected(FL_OBJECT *obj, int flag);

void fl_set_input_selected_range(FL_OBJECT *obj, int start, int end);

where start and end are measured in characters. When start is 0 and end equals the
number of characters in the string, [fl_set_input_selected()], page 152 makes the
entire input field selected. However, there is a subtle difference between this routine and
[fl_set_input_selected()], page 152 when called with flag set to 1: [fl_set_input_
selected()], page 152 always places the cursor at the end of the string while [fl_set_

input_selected_range()], page 152q places the cursor at the beginning of the selection.

To obtain the currently selected range, either selected by the application or by the user, use
the following routine

Chapter 18: Input Objects 153

const char *fl_get_input_selected_range(FL_OBJECT *obj,

int *start, int *end);

where start and end, if not NULL, are set to the begining and end position of the selected
range, measured in characters. For example, if start is 5 after the function returned and
end is 7, it means the selection starts at character 6 (str[5]) and ends before character 8
(str[7]), so a total of two characters are selected (i.e., character 6 and 7). The function
returns the selected string (which may not be modified). If there is currently no selection,
the function returns NULL and both start and end are set to -1. Note that the char pointer
returned by the function points to (kind of) a static buffer, and will be overwritten by the
next call.

It is possible to obtain the cursor position using the following routine

int fl_get_input_cursorpos(FL_OBJECT *obj, int *xpos, int *ypos);

The function returns the cursor position measured in number of characters (including new-
line characters) in front of the cursor. If the input field does not have input focus (thus does
not have a cursor), the function returns -1. Upon function return, ypos is set to the number
of the line (starting from 1) the cursor is on, and xpos set to the number of characters in
front of the cursor measured from the beginning of the current line as indicated by ypos.
If the input field does not have input focus the xpos is set to -1.

It is possible to move the cursor within the input field programmatically using the following
routine

void fl_set_input_cursorpos(FL_OBJECT *obj, int xpos, int ypos);

where xpos and ypos are measured in characters (lines). E.g., given the input field "an

arbitrary string" the call

fl_set_input_cursorpos(ob, 4, 1);

places the the cursor after the first character of the word "arbitrary", i.e., directly after
the first a.

By default, if an input field of type [FL_MULTILINE_INPUT], page 147 contains more text
than can be shown, scrollbars will appear with which the user can scroll the text around
horizontally or vertically. To change this default, use the following routines

void fl_set_input_hscrollbar(FL_OBJECT *obj, int how);

void fl_set_input_vscrollbar(FL_OBJECT *obj, int how);

where how can be one of the following values

FL_AUTO The default. Shows the scrollbar only if needed.

FL_ON Always shows the scrollbar.

FL_OFF Never show scrollbar.

Note however that turning off scrollbars for an input field does not turn off scrolling, the
user can still scroll the field using cursor and other keys.

To completely turn off scrolling for an input field (for both multiline and single line input
field), use the following routine with a false value for yes_no

void fl_set_input_scroll(FL_OBJECT *obj, int yes_no);

There are also routines that can scroll the input field programmatically. To scroll vertically
(for input fields of type [FL_MULTILINE_INPUT], page 147 only), use

Chapter 18: Input Objects 154

void fl_set_input_topline(FL_OBJECT *obj, int line);

where line is the new top line (starting from 1) in the input field. To programmatically
scroll horizontally, use the following routine

void fl_set_input_xoffset(FL_OBJECT *obj, int pixels);

where pixels, which must be a positive number, indicates how many pixels to scroll to the
left relative to the nominal position of the text lines.

To obtain the current xoffset, use

int fl_get_input_xoffset(FL_OBJECT *obj);

It is possible to turn off the cursor of the input field using the following routine with a false
value for yes_no:

void fl_set_input_cursor_visible(FL_OBJECT *obj, int yes_no);

To obtain the number of lines in the input field, call

int fl_get_input_numberoflines(FL_OBJECT *obj);

To obtain the current topline in the input field, use

int fl_get_input_topline(FL_OBJECT *obj);

To obtain the number of lines that fit inside the input box, use

int fl_get_input_screenlines(FL_OBJECT *obj);

For secret input field, the default is to draw the text using spaces. To change the character
used to draw the text, the following function can be used

int fl_set_input_fieldchar(FL_OBJECT *obj, int field_char);

The function returns the old field char.

18.5 Input Attributes

Never use [FL_NO_BOX], page 109 as the boxtype.

The first color argument (col1) to [fl_set_object_color()], page 287 controls the color
of the input field when it is not selected and the second (col2) is the color when selected.

To change the color of the input text or the cursor use

void fl_set_input_color(FL_OBJECT *obj, FL_COLOR tcol, FL_COLOR ccol);

Here tcol indicates the color of the text and ccol is the color of the cursor.

If you want to know the colors of the text and cursor use

void fl_get_input_color(FL_OBJECT *obj, FL_COLOR *tcol, FL_COLOR *ccol);

By default, the scrollbar size is dependent on the initial size of the input box. To change
the size of the scrollbars, use the following routine

void fl_set_input_scrollbarsize(FL_OBJECT *obj, int hh, int vw);

where hh is the horizontal scrollbar height and vw is the vertical scrollbar width in pixels.

To determine the current settings for the horizontal scrollbar height and the vertical scrollbar
width use

void fl_get_input_scrollbarsize(FL_OBJECT *obj, int *hh, int *vw);

The default scrollbar types are [FL_HOR_THIN_SCROLLBAR], page 131 and [FL_VERT_

THIN_SCROLLBAR], page 131. There are two ways you can change the default. One

Chapter 18: Input Objects 155

way is to use [fl_set_defaults()], page 280 or [fl_set_scrollbar_type()],

page 282 to set the application wide default (preferred); another way is to use
[fl_get_object_component()], page 289 to get the object handle to the scrollbars
and change the the object type forcibly. Although the second method of changing the
scrollbar type is not recommended, the object handle obtained can be useful in changing
the scrollbar colors etc.

As mentioned earlier, it is possible for the application program to change the default edit
keymaps. The editing key assignment is held in a structure of type FL_EditKeymap defined
as follows:

typedef struct {

long del_prev_char; /* delete previous char */

long del_next_char; /* delete next char */

long del_prev_word; /* delete previous word */

long del_next_word; /* delete next word */

long del_to_eol; /* delete from cursor to end of line */

long del_to_bol; /* delete from cursor to begin of line */

long clear_field; /* delete all */

long del_to_eos; /* not implemented */

long backspace; /* alternative for del_prev_char */

long moveto_prev_line; /* one line up */

long moveto_next_line; /* one line down */

long moveto_prev_char; /* one char left */

long moveto_next_char; /* one char right */

long moveto_prev_word; /* one word left */

long moveto_next_word; /* one word right */

long moveto_prev_page; /* one page up */

long moveto_next_page; /* one page down */

long moveto_bol; /* move to begining of line */

long moveto_eol; /* move to end of line */

long moveto_bof; /* move to begin of file */

long moveto_eof; /* move to end of file */

long transpose; /* switch two char positions*/

long paste; /* paste the edit buffer */

} FL_EditKeymap;

To change the default edit keymaps, the following routine is available:

void fl_set_input_editkeymap(const FL_EditKeymap *km);

with a filled or partially filled [FL_EditKeymap], page 155 structure. The unfilled mem-
bers must be set to 0 so the default mapping is retained. Change of edit keymap is global
and affects all input field within the application.

Calling [fl_set_input_editkeymap()], page 155 with km set to NULL restores the default.
All cursor keys (<Left>, <Home> etc.) are reserved and their meanings hard-coded, thus
can’t be used in the mapping. For example, if you try to set del_prev_char to <Home>,
pressing the <Home> key will not delete the previous character.

Chapter 18: Input Objects 156

To obtain the current map of the edit keys use the function

void fl_get_input_editkeymap(FL_EditKeymap *km);

with the km argument pointing of a user supplied structure which after the call will be set
up with the current settings for the edit keys.

In filling the keymap structure, ASCII characters (i.e., characters with values below 128,
including the control characters with values below 32) should be specified by their ASCII
codes (<Ctrl> C is 3 etc.), while all others by their Keysyms (XK_F1 etc.). Control and special
character combinations can be obtained by adding FL_CONTROL_MASK to the Keysym. To
specify Meta add FL_ALT_MASK to the key value.

FL_EditKeymap ekm;

memset(&ekm, 0, sizeof ekm); /* zero struct */

ekm.del_prev_char = 8; /* <Backspace> */

ekm.del_prev_word = 8 | FL_CONTROL_MASK; /* <Ctrl><Backspace> */

ekm.del_next_char = 127; /* <Delete> */

ekm.del_prev_word = ’h’ | FL_ALT_MASK; /* <Meta>h */

ekm.del_next_word = 127 | FL_ALT_MASK; /* <Meta><Delete> */

ekm.moveto_bof = XK_F1; /* <F1> */

ekm.moveto_eof = XK_F1 | FL_CONTROL_MASK; /* <Ctrl><F1> */

fl_set_input_editkeymap(&ekm);

Note: In earlier versions of XForms (all version before 1.2) the default behaviour of the
edit keys was slightly different which doesn’t fit modern user expectations, as was the way
the way the edit keymap was to be set up. If you use XForms for some older application
that makes massive use of the "classical" behaviour you can compile XForms to use the old
behaviour by using the --enable-classic-editkeys option when configuring the library
for compilation.

18.6 Remarks

Always make sure that the input field is high enough to contain a single line of text. If the
field is not high enough, the text may get clipped, i.e., become unreadable.

See the program ‘demo06.c’ for an example of the use of input fields. See ‘minput.c’ for
multi-line input fields. See ‘secretinput.c’ for secret input fields and ‘inputall.c’ for all
input fields.

Chapter 19: Choice Objects 157

19 Choice Objects

19.1 Select Object

A select object is a rather simple object that allows the user to pick alternatives from a
linear list that pops up when he clicks on the object. It remembers the last selected item,
which is also shown on top of the select object.

The select object internally uses a popup (see Chapter 22 [Part III Popups], page 202) and
thus it can be helpful to understand at lest some aspects of how popups work to fully grasp
the functionality of select objects.

19.1.1 Adding Select Objects

To add a select object to a form use

FL_OBJECT *fl_add_select(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label)

There are currently three types which just differ by the way they look:

FL_NORMAL_SELECT

Per default this type is drawn as a rounded, flat box (but you can change that
by setting a different boxtype for the object) with the text of the currently
selected item in its center.

FL_MENU_SELECT

This select object looks like a button with a little extra box at its right side (just
like a FL_MENU_BUTTON) and the text of the currently selected item is drawn on
the button-like object.

FL_DROPLIST_SELECT

This type looks like a button with the text of the currently selected item on top
of it and a second square button directly beside it with an downward pointing
arrow on it.

Per default label is drawn outside and to the left of the object.

Once a new select object has been created items have to be added to it. For this the
following function exists:

FL_POPUP_ENTRY *fl_add_select_items(FL_OBJECT *obj,

const char items,...);

items is a string with the items to add, separated by the | character. In the simplest case
you would just use something like "Item 1|Item 2|Item 3" to add three items to the list.
If there weren’t any items before the first item will be automatically shown as the selected
one.

As also described in the documentation for the similar function [fl_popup_add_

entries()], page 202 (see Section 22.1 [Adding Popups], page 202) the text for an item
may contain "special sequences" that start with the character % and the may require an
additional argument passed to the function after the items argument:

%x Set a value of type long int that’s passed to all callback routines for the item.
The value must be given in the arguments following the items string.

Chapter 19: Choice Objects 158

%u Set a user_void pointer that’s passed to all callbacks of the item. The pointer
must be specified in the arguments following the items string.

%f Set a callback function that gets called when the item is selected. The function
is of type

int callback(FL_POPUP_RETURN *r);

Information about the item etc. gets passed to the callback function via the
[FL_POPUP_RETURN], page 206 structure and the return value of the function
can be used to keep the selection from becoming reported back to the user made
by returning a value of FL_IGNORE (-1). The function’s address must be given
in the arguments following the items string.

%E Set a callback routine that gets called each time the mouse enters the item (as
long as the item isn’t disabled or hidden). The type of the function is the same
as that of the callback function for the selection of the item but it’s return value
is never used. The functions address must be given in the arguments following
the items string.

%L Set a callback routine that gets called each time the mouse leaves the item.
The type of the function is the same that as of the callback function for the
selection of the item but it’s return value is never used. The functions address
must be given in the arguments following the items string.

%d Marks the item as disabled, i.e., it can’t be selected and its text is per default
drawn in a different color

%h Marks the item as hidden, i.e., it is not shown while in this state.

%S For items with shortcut keys it’s quite common to have them shown on the right
hand side. Using "%S" you can split the items text into two parts, the first one
(before "%S") being drawn flushed left and the second part flushed right. Note
that using this special sequence doesn’t automatically sets a shortcut key, this
still has to be done using "%s".

%s Sets one or more shortcut keys for an item. Requires a string with the short-
cuts in the arguments following the items string. See Section 26.1 [Shortcuts],
page 245, for details on how to define shortcuts. Please note that the character
in the label identical to the shortcut character is only shown as underlined if
"%S" isn’t used.

%% Use this to get a ’%’ within the text of an item.

If you compare this list of "special sequences" with those listed for the [fl_popup_add_

entries()], page 202 function you will find that aome are missing. This is because a select
object is a simple linear list of items that uses only parts of the popups functionalities.

Another way to set up the popup of a select object is to use the function

long fl_set_select_items(FL_OBJECT *obj, FL_POPUP_ITEM *item);

Here item is an array of structures of type [FL_POPUP_ITEM], page 209 with the text

member of the very last element of the array being set to NULL, indicating the end of the
array.

Chapter 19: Choice Objects 159

The text member is the text of the item. It may only contain one "special sequence", "%S"
to indicate that the string is to be split at that position into the part of the item label to be
drawn to the left and on the right side (also prepending the string with ’_’ or ’/’ has no
effect). callback is a callback function to be invoked on selection of the item. shortcut

is a string for setting keybord shortcuts for the item. type has no function at all here
(there can be only items of type [FL_POPUP_NORMAL], page 207 in a select objects popup)
and state can be set to [FL_POPUP_DISABLED], page 207 and/or [FL_POPUP_HIDDEN],

page 207.

Please note: when the select object already had items before the call of [fl_set_select_
items()], page 158 then they are removed before the new ones are set. The values as-
signed to the items start at 0.

A third way to "populate" a select object is to create a popup directly and then associate
it with the select object using

int fl_set_select_popup(FL_OBJECT *obj, FL_POPUP *popup);

If the select object already had a popup before this will be deleted and replaced by the
new popup passed as the second argument. Please note that the popup the argument
popup points to may not contain any entries other than those of type [FL_POPUP_NORMAL],
page 207 (and, of course, the popup can’t be a sub-popup of another popup).

19.1.2 Select Interaction

The simplest interaction with a select object consists of clicking onto the object and then
selecting an item in the popup that gets shown directly beside the mouse position.

If you click with the left or right mouse button onto the select object previous or next item,
respectively, will be selected. If youl keep the left or mouse button pressed down for a longer
time slowly all alternatives are selected, one after each other.

You finally can also use the scroll wheel of your mouse to select the next or previous item
(scrolling down selects the next, scrolling up the previous item).

On every selection of an item (also if the already selected item is re-selected) a callback that
may have been associated with the item is executed. The callback receives as its argument
a pointer to a structure of type [FL_POPUP_RETURN], page 206.

Its val member is a integer value associated with the entry. It can be set explicitely on
creation of the item using the "%x" "special sequence". If not given then first item gets
the value 0, the next 1 etc. user_data is a pointer to some user data, which can be set on
creation of the item using "%u". text is the string used in creating the item, including all
"special sequences", while label is the string shown in the popup for the item. If there was
a special sequence of "%S" in the string that was used to create the item accel is the text
that appears right-flushed in the popup for the item. entry is a pointer to the popup entry
that represents the item in the select object and, finally, popup is the popup associated with
the select object.

Normally, when a new item is selected this is reported back to the caller either by calling
the select objects callback (if one exists) or by returning the object as the result of a call of
e.g., [fl_do_forms()], page 297. But if the callback for the item itself returns FL_IGNORE
then the latter doesn’t happen. This can be useful for cases where all work for a change of
the selection can already be done within the items callback and the "main loop" shouldn’t
get involved anymore.

Chapter 19: Choice Objects 160

As for all other normal objects the condition under which a FL_SELECT object gets returned
to the application (or an associate callback is called) can be influenced by calling the function

int fl_set_object_return(FL_OBJECT *obj, unsigned int when)

where when can have the following values

[FL_RETURN_NONE], page 46

Never return or invoke a callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback if end of interaction and selection of an item coincide.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever an item is selected (this is the default).

[FL_RETURN_END], page 45

Return or invoke callback on end of an interaction.

[FL_RETURN_ALWAYS], page 46

Return (or invoke callback) whenever the interaction ends and/or an item is
selected.

Per default the popup of a select objects remains shown when the user releases the mouse
somewhere outside the popup window (or on its title area). The alternative is to close the
popup immediately when the user releases the mouse, independent of where it is. Using the
function

int fl_set_select_policy(FL_OBJECT *obj, int policy);

the program can switch between these two modes of operation, where policy can be on of
two values:

FL_POPUP_NORMAL_SELECT

Keeps the popup opened when the mouse isn’t released on one of the selectable
items.

FL_POPUP_DRAG_SELECT

Close the popup immediately when the mouse button is released.

The function returns on success the previous setting of the "policy" and -1 on error.

19.1.3 Other Select Routines

To find out which item is currently selected use

FL_POPUP_RETURN *fl_get_select_item(FL_OBJECT *obj);

It returns a pointer to a structure of type [FL_POPUP_RETURN], page 206 as already de-
scribed above, containing all needed information about the selected item.

For some actions, e.g., deletion of an item etc., it is necessary to know the popup entry that
represents it. Therefore it’s possible to search the list of items according to several criteria:

FL_POPUP_ENTRY *fl_get_select_item_by_value(FL_OBJECT *obj, long val);

FL_POPUP_ENTRY *fl_get_select_item_by_label(FL_OBJECT *obj,

const char *label);

FL_POPUP_ENTRY *fl_get_select_item_by_label_f(FL_OBJECT *obj,

Chapter 19: Choice Objects 161

const char *fmt, ...);

FL_POPUP_ENTRY *fl_get_select_item_by_text(FL_OBJECT *obj,

const char *text);

FL_POPUP_ENTRY *fl_get_select_item_by_text_f(FL_OBJECT *obj,

const char *fmt, ...);

The first function, [fl_get_select_item_by_value()], page 160, searches through the
list of items and returns the first one with the val associated with the item (or NULL if
none is found). The second and third, [fl_get_select_item_by_label()], page 160 and
[fl_get_select_item_by_label_f()], page 160 searches for a certain label as displayed
for the item in the popup. The last two, [fl_get_select_item_by_text()], page 160

and [fl_get_select_item_by_text_f()], page 160 searches for the text the item was
created by (that might be the same as the label text in simple cases). The difference
between the second and third and the forth and the last is the way the text is passed to
the functions, it’s either a simple string or the result of the expansion of a format string as
used for printf() etc. using the following unspecified arguments.

Please note that all these functions return a structure of type [FL_POPUP_ENTRY], page 206

(and not [FL_POPUP_RETURN], page 206, which gives you direct access to the entry in the
popup for the item.

Using e.g., the result of one of the functions above you can also set the currently selected
item via your program using

FL_POPUP_RETURN *fl_set_select_item(FL_OBJECT *obj,

FL_POPUP_ENTRY *entry);

Or you could use the result to delete an item:

int fl_delete_select_item(FL_OBJECT *obj, FL_POPUP_ENTRY *entry);

Please note that the values associated with items won’t change due to removing an item.

Alternatively, you can replace an item by one or more new ones. To do that use

FL_POPUP_ENTRY *fl_replace_select_item(FL_OBJECT *obj,

FL_POPUP_ENTRY *old,

const char *new_items, ...);

old designates the item to be removed and new_items is a string exactly like it would be
used in [fl_add_select_items()], page 157 for the items argument, that defines the
item(s) to replace the existing item. Please note that, unless values to be associated with
the items (see the val member of the [FL_POPUP_RETURN], page 206 structure) there’s a
twist here. When items get created they per default receive increasing values, starting at 0.
This also holds for items that get created in the process of replacement. The result is that
the ordering of those values in that case wont represent the order in which they appear in
the select objects popup.

Another sometimes useful function allows insertion of new items somewhere in the middle
of a list of already existing items:

FL_POPUP_ENTRY *fl_insert_select_items(FL_OBJECT *obj,

FL_POPUP_ENTRY *after,

const char *new_items, ...);

after is the entry after which the new item(s) are to be inserted (if it’s NULL the new
items are inserted at the very start). The rest of the arguments are the same as for [fl_

Chapter 19: Choice Objects 162

replace_select_item()], page 161 and the same caveats about the values associated
automatically with the new items holds.

It’s possible to remove all items from a select object by calling

int fl_clear_select(FL_OBJECT *obj);

Afterwards you have to call again e.g., [fl_add_select_items()], page 157 to set new
entries. Note that if you used [fl_set_select_popup()], page 159 to set a popup for the
select object then that popup gets deleted automatically on calling [fl_clear_select()],
page 162! The values automatically associated with items when calling [fl_add_select_

items()], page 157 will start at 0 again.

19.1.4 Select Attributes

The two color arguments, clo1 and col2, of the function [fl_set_object_color()],

page 287 set the background color of the object normally and when the mouse is hovering
over it, respectively.

With the functions

FL_COLOR fl_set_selection_text_color(FL_OBJECT *obj, FL_COLOR color);

FL_COLOR fl_get_selection_text_color(FL_OBJECT *obj);

the color of the text of the currently selected item on top of the object can be set or queried.

To control (or determine) the alignment of the text with the currently selected item on top
of the select object use

int fl_set_select_text_align(FLOBJECT *obj, int align);

int fl_get_select_text_align(FLOBJECT *obj);

Please note that the [FL_ALIGN_INSIDE], page 31 flag should be set with align since the
text always will be drawn within the boundaries of the object. On success the function
return the old setting for the alignment or -1 on error.

Finally, the font style and size of the text can be set or obtained using

int fl_set_select_text_font(FL_OBJECT *obj, int style, int size);

int fl_get_select_text_font(FL_OBJECT *obj, int *style, int *size);

The rest of the appearance of a select object concerns the popup that is used. To avoid
bloating the API unnecessarily no functions for select objects were added that would just
call popup functions. The popup belonging to a select object can be easily found from
either a [FL_POPUP_ENTRY], page 206 structure as returned by the functions for searching
for items or the [FL_POPUP_RETURN], page 206 structure passed to all callbacks and also
returned by [fl_get_select_item()], page 160. Both structures have a member called
popup that is a pointer to the popup associated with the select object. For popup functions
operation on indiviual items just use the pointer to the [FL_POPUP_ENTRY], page 206

structure itself or the entry member of the [FL_POPUP_RETURN], page 206 structure.

There’s also a convenience function for finding out the popup used for a select object:

FL_POPUP *fl_get_select_popup(FL_OBJECT *obj);

During the lifetime of a select object the popup never changes as long as [fl_set_select_
popup()], page 159 isn’t called.

Per default the popup of a select object does not have a title drawn on top of it. To change
that use [fl_popup_set_title()], page 215.

Chapter 19: Choice Objects 163

To change the various colors and fonts used when drawing the popup use the functions
[fl_popup_set_color()], page 216 and [fl_popup_entry_set_font()], page 216

(and [fl_popup_set_title_font()], page 215).

To change the border width or minimum width of the popup use [fl_popup_set_bw()],

page 216 and [fl_popup_set_min_width()], page 216.

To disable or hide (or do the reverse) an item use the functions [fl_popup_entry_set_

state()], page 214 and [fl_popup_entry_get_state()], page 214.

The keyboard shortcut for an entry can be set via [fl_popup_entry_set_shortcut()],

page 217.

The callback functions (selection, enter and leave callback) for individual items can be
set via [fl_popup_entry_set_callback()], page 213, [fl_popup_entry_set_enter_

callback()], page 213 and [fl_popup_entry_set_leave_callback()], page 213, a
callback for the whole popup with [fl_popup_set_callback()], page 213.

Finally, to assign a different (long) value to an item or set a pointer to user data use
[fl_popup_entry_set_value()], page 217 and [fl_popup_entry_set_user_data()],

page 217.

19.1.5 Remarks

See the demo program ‘select.c’ for an example of the use of select objects.

19.2 Nmenu Object

Another object type that heavily depends on popups is the "nmenu" object type. It is
meant to be used for menus and the "n" in front of the name stands for "new" since this is
a re-implementation of the old menu object type (which is now deprecated since it is based
on Section 23.3 [XPopup], page 227).

19.2.1 Adding Nmenu Objects

To add a nmenu object use

FL_OBJECT *fl_add_nmenu(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

There are currently three types:

FL_NORMAL_NMENU

Probably the most often used type: shown as text on a borderless background,
popup gets opened when clicked on.

FL_NORMAL_TOUCH_NMENU

Also shown as text on a borderless background, but popup gets opened when
the mouse is moved on top of it without any further user action required.

FL_BUTTON_NMENU

When not active shown as text on borderless background, when clicked on
popup is shown and the object itself being displayed as a button.

FL_BUTTON_TOUCH_NMENU

When not active shown as text on borderless background, when mouse is moved
onto it the popup is shown and the object itself is displayed as a button.

Chapter 19: Choice Objects 164

Once a new nmenu object has been created items have to be added to it. For this the
following function exists:

FL_POPUP_ENTRY *fl_add_nmenu_items(FL_OBJECT *obj,

const char items, ...);

(The function can also be used to append new items to a nmenu object that already has
items.)

The function returns a pointer to the first menu entry added on success and NULL on failure.
items is a string with the items to add, separated by the ’|’ character. In the simplest
case you would just use something like "Item 1|Item 2|Item 3" to add three items to the
list.

As also described in the documentation for the similar function [fl_popup_add_

entries()], page 202 the text for an item may contain "special sequences" that start
with the character ’%’ and then may require an additional argument passed to the
function after the items argument. All of those described in detail in the documentation
for the [fl_popup_add_entries()], page 202 function can also be used for nmenus.

Another way to set up the popup of a select object, using an array of [FL POPUP ITEM],
page 209 structures, is via the function

FL_POPUP_ENTRY *fl_set_nmenu_items(FL_OBJECT *obj, FL_POPUP_ITEM *item);

The function returns a pointer to the first menu item on success and NULL on failure. The
function expects as arguments a pointer to the nmenu object and an array of [FL_POPUP_
ITEM], page 209 structuress, with the very last element having NULL as the text member
to mark the end of the array.

The text member of the structure may contain the character sequence "%S" to have the
text drawn for the item split up at that position and with everything before "%S" drawn
left-flushed and the rest right-flushed. Moreover, text may start with the character ’/’

and/or ’_’. For an underline character a line is drawn above the item. And if there’s
a slash this item marks the begin of a sub-menu with all further items belonging to the
sub-menu until a structure with member text being set to NULL is found in the array. (The
’/’ and ’_’ characters are, of course, not drawn.)

type indicates the type of the item. It can be

FL_POPUP_NORMAL

A normal, plain item.

FL_POPUP_TOGGLE

An item that represents one of two states and is drawn with a check-marker
when in "on" state.

FL_POPUP_RADIO

A radio item, i.e., it belongs to a group of items of which only one can be in
"on" state at a time. They are drawn with a circle to the left with the circle
for the "selected" item being filled with a color.

Please note that if text starts with a ’/’ the type must be FL_POPUP_NORMAL.

The state member per default is [FL_POPUP_NONE], page 207. It can be set to

FL_POPUP_NONE

No special flags are set for the state of the item.

Chapter 19: Choice Objects 165

FL_POPUP_DSABLED

The item is disabled and can’t be selected.

FL_POPUP_HIDDEN

The item is hidden, i.e., does not get shown (and thus can’t be selected).

FL_POPUP_CHECKED

Only relevant for toggle or radio items, marks it as in "on" state.

callback is a function that will be called if the item is selected. The callback function has
the following type:

typedef int (*FL_POPUP_CB)(FL_POPUP_RETURN *);

It receives a pointer to a structure that contains all information about the entry selected
by the user:

typedef struct {

long int val; /* value assigned to entry */

void *user_data; /* pointer to user data */

const char *text; /* text of selected popup entry */

const char *label; /* text drawn on left side */

const char *accel; /* text drawn on right side */

const FL_POPUP_ENTRY *entry; /* selected popup entry */

const FL_POPUP *popup; /* (sub-)popup it belongs to */

} FL_POPUP_RETURN;

val is a value that has been associated with the entry and user_data is a pointer that
can be used to store the location of further information. text is the text that was used to
create the entry (including all "special" characters), while label and accel are the texts
shown for the entry on the left and right. entry is the pointer to the structure for the
entry selected and popup to the (sub-) popup the entry belongs to (see Chapter 22 [Part
III Popups], page 202 for more details on these structures).

If the callback function already does all the work required on selection of the item have it
return the value FL_IGNORE to keep the selection from being reported back to the main loop
of the program.

Finally, shortcut is a string encoding the keybord shortcut to be used for the item.

There’s also a third method to "populate" a menu. If you already created a popup than
you can set it as the menu’s popup via a call of

int fl_set_nmenu_popup(FL_POPUP *popup);

Of course, the popup you associate with the nmenu object in this way can’t be a sub-popup.

19.2.2 Nmenu Interaction

There are, if seen interaction-wise, two types of nmenu objects, normal ones and touch
nmenus. For normal nmenus a popup is opened when the user clicks on the area of the
nmenu object while for touch nmenus the popup already is shown when the user moves the
mouse unto the area. In other respects they behave identical: the user just selects one of
the items in the popup (or one of the sub-popups) and then the popup is closed again. The
selection can now be handled within a callback function and/or reported back to the main
loop of the program.

Chapter 19: Choice Objects 166

The popup is always shown directly below the nmenu object (except for the case that the
popup is that long that it wouldn’t fit on the screen, in which case the popup is drawn
above the nmenu’s area.

The most natural way to deal with a selection by the user is probably via a callback for the
item that was selected. But also a callback for the popup as a whole or the object itself
can be used. Item and popup callback functions are of type [FL_POPUP_CB], page 205

described above (and in even more detail in Chapter 22 [Part III Popups], page 202), while
object callbacks are "normal" XForms callback functions.

The condition under which a FL_NMENU object gets returned to the application (or an
associate callback is invoked) can be influenced by calling the function

int fl_set_object_return(FL_OBJECT *obj, unsigned int when)

where when can have the following values

[FL_RETURN_NONE], page 46

Never return or invoke a callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback if end of interaction and selection of an item coincide.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever an item is selected (this is the default).

[FL_RETURN_END], page 45

Return or invoke callback on end of an interaction.

[FL_RETURN_ALWAYS], page 46

Return (or invoke callback) whenever the interaction ends and/or an item is
selected.

One detail of the interaction that can be adjusted is under which conditions the nmenu’s
popup gets closed. Per default the popup is closed when an item is selected or (without a
selection) when the user clicks somehwere outside of the popups area. This can be changed
so that the popup also gets closed (without a selection) when the mouse button is clicked
or released on a non-selectable item (giving the impression of a "pull-down" menu). For
this purpose there’s the

int fl_set_nmenu_policy(FL_OBJECT *obj, int policy);

function where policy can be one of two values:

FL_POPUP_NORMAL_SELECT

Default, popup stays open until mouse button is released on a selectable entry
or button is clicked outside the popups area.

FL_POPUP_DRAG_SELECT

Popup is closed when the mouse button is released.

The function returns on success the previous setting of the "policy" and -1 on error.

19.2.3 Other Nmenu Routines

To find out which item of a nmenu object was selected last use

Chapter 19: Choice Objects 167

FL_POPUP_RETURN *fl_get_nmenu_item(FL_OBJECT *obj);

The function returns either a pointer to a [FL_POPUP_RETURN], page 206 structure with
informations about the selected item (as already discussed above when talking about call-
backs) or NULL if no selection was made the last time the nmenu object was used.

For some actions, e.g., deletion of an item etc., it is necessary to know the popup entry that
represents it. Therefore it’s possible to search the list of items according to several criteria:

FL_POPUP_ENTRY *fl_get_nmenu_item_by_value(FL_OBJECT *obj, long val);

FL_POPUP_ENTRY *fl_get_nmenu_item_by_label(FL_OBJECT *obj,

const char *label);

FL_POPUP_ENTRY *fl_get_nmenu_item_by_label(FL_OBJECT *obj,

const char *text);

The first function, [fl_get_nmenu_item_by_value()], page 167, searches through the
list of all items (including items in sub-popups) and returns the first one with the val

associated with the item (or NULL if none is found). The second, [fl_get_nmenu_item_by_
label()], page 167 searches for a certain label as displayed for the item in the popup.
The third, [fl_get_nmenu_item_by_text()], page 167 searches for the text the item was
created by (that might be the same as the label text in simple cases). Please note that all
functions return a structure of type [FL_POPUP_ENTRY], page 206 (and not [FL_POPUP_

RETURN], page 206, which gives you direct access to the entry in the popup for the item.

Using e.g., the results of the above searches a nmenu item can be deleted:

int fl_delete_nmenu_item(FL_OBJECT *obj, FL_POPUP_ENTRY *item);

Alternatively, an item can be replaced by one or more items:

FL_POPUP_ENTRY *fl_replace_nmenu_item(FL_OBJECT *obj,

FL_POPUP_ENTRY *old,

const char *new_items, ...);

where old is the item to replace and new_items is a string exactly as used for [fl_add_
nmenu_items()], page 164 with informations about the new item(s).

One also may insert additional items using

FL_POPUP_ENTRY *fl_insert_nmenu_items(FL_OBJECT *obj,

FL_POPUP_ENTRY *after,

const char *new_items, ...);

where after is the item after which the new items are to be inserted (use NULL to insert
at the very start) and new_items is a string just like used with [fl_add_nmenu_items()],

page 164 with informations about the additional item(s).

As you may remember, there are two different ways to "populate" a nmenu object. In one
case you pass a kind of format string plus a variable number of arguments and in the other
case an array of [FL_POPUP_ITEM], page 209 structures. The previously listed functions
for inserting and replacing used the first "interface". But there are also three functions for
using the alternative interface:

FL_POPUP_ENTRY *fl_add_nmenu_items2(FL_OBJECT *obj,

FL_POPUP_ITEM *items);

FL_POPUP_ENTRY *fl_insert_nmenu_items2(FL_OBJECT *obj,

FL_POPUP_ENTRY *after,

Chapter 19: Choice Objects 168

FL_POPUP_ITEM *items);

FL_POPUP_ENTRY *fl_replace_nmenu_items2(FL_OBJECT *obj,

FL_POPUP_ENTRY *old_item,

FL_POPUP_ITEM *items);

All three functions return a pointer to the first new entry in the nmenu’s popup on success
and NULL on failure. The all take a pointer to the nmenu object as their first argument.

[fl_add_nmenu_items2()], page 167 appends the items given by the list specified via the
second argument to the nmenu’s popup. [fl_insert_nmenu_items2()], page 167 inserts
one or more new items (as given by the last argument) after the entry specified by after (if
after is NULL the new items are inserted before all existing items). Finally, [fl_replace_
nmenu_items2()], page 167 replaces the existing entry old_item with a new (or a list of
new items specified by items.

Finally, there’s a function to remove all items from a nmenu object at once:

in fl_clear_nmenu(FL_OBJECT *obj);

19.2.4 Nmenu Attributes

While not "active" the background of the nmenu object is drawn in the color that can
be controlled via the first color argument, col1, of [fl_set_object_color()], page 287.
When "active" (i.e., while the popup is shown) its background is drawn in the color of
second color argument, col2, of the same function. The color of the label when "inactive"
is controlled via [fl_set_object_lcolor()], page 289. When in "active" state the color
use for the label can be set via the function

FL_COLOR fl_set_nmenu_hl_text_color(FL_OBJECT *obj, FL_COLOR color);

The function returns the old color on success or [FL_MAX_COLORS], page 26 on failure. Per
default this color is FL_BLACK for nmenus that are shown as a button while being "active"
while for normal nmenus it’s the same color that is used items in the popup when the mouse
is hovering over them.

The size and style of the font used for the label of the nmenu object can be set via [fl_

set_object_lsize()], page 289 and [fl_set_object_lstyle()], page 289.

The rest of the appearance of a nmenu object is given by the appearance of the popup.
These can be directly set via the functions for setting the popup appearance as described
in Section 22.4 [Popup Attributes], page 215. To find out which popup is associated with
the nmenu object use the function

FL_POPUP *fl_get_nmenu_popup(FL_OBJECT *obj);

and then use the popup specific functions to set the appearance. The same also holds for
the appearance etc. of the items of the popup, a lot of functions exist that allow to set the
attributes of entries of a popup, see Section 22.4 [Popup Attributes], page 215.

19.2.5 Remarks

See the demo program ‘menu.c’.

19.3 Browser Object

The browser object class is probably the most powerful that currently exists in the Forms
Library. A browser is a box that contains a number of lines of text. If the text does not fit

Chapter 19: Choice Objects 169

inside the box, a scrollbar is automatically added so that the user can scroll through it. A
browser can be used for building up a help facility or to give messages to the user.

It is possible to create a browser from which the user can select lines. In this way the user
can make its selections from a (possible) long list of choices. Both single lines and multiple
lines can be selected, depending on the type of the browser.

19.3.1 Adding Browser Objects

To add a browser to a form use the routine

FL_OBJECT *fl_add_browser(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is placed below the box by default.

19.3.2 Browser Types

The following types of browsers exist (see below for more information about them):

FL_NORMAL_BROWSER

A browser in which no selections can be made.

FL_SELECT_BROWSER

In this type of browser the user can make single line selections which get reset
immediately when the mouse button is released.

FL_HOLD_BROWSER

Same as FL_SELECT_BROSER but the selection remains visible till the next se-
lection.

FL_DESELECTABLE_HOLD_BROWSER

Same as the FL_HOLD_BROWSER but the user can deselect the selected line.

FL_MULTI_BROWSER

Multiple selections can be made and remain visible till de-selected.

Hence, the differences only lie in how the selection process works.

19.3.3 Browser Interaction

The user can change the position of the slider or use keyboard cursor keys (including <Home>,
<PageDown>, etc.) to scroll through the text. When he/she presses the left mouse below
or above the slider, the browser scrolls one page up or down. Any other mouse button
scrolls one line at a time (except wheel mouse buttons). When not using an [FL_NORMAL_

BROWSER], page 169 the user can also make selections with the mouse by pointing to a line
or by using the cursor keys.

For [FL_SELECT_BROWSER], page 169’s, as long as the user keeps the left mouse button
pressed, the current line under the mouse is highlighted. Whenever she releases the left
mouse button the highlighting disappears and the browser is returned to the application
program. The application program can now figure out which line was selected using a call
of [fl_get_browser()], page 173 to be described below. It returns the number of the
last selected line (with the topmost line being line 1).

Chapter 19: Choice Objects 170

A [FL_HOLD_BROWSER], page 169 works exactly the same except that, when the left
mouse button is released, the selection remains highlighted. A [FL_DESELECTABLE_HOLD_

BROWSER], page 169 additionally allows the user to undo a selection (by clicking on it
again).

An [FL_MULTI_BROWSER], page 169 allows the user to select and de-select multiple lines.
Whenever he selects or de-selects a line the browser object is returned to the application
program (or a callback is executed when installed) that then can figure out which line was
selected using [fl_get_browser()], page 173 (described in more detail below). That
function returns the number of the last line to be selected or de-selected. When a line was
de-selected the negation of the line number gets returned. I.e., if line 10 was selected the
routine returns 10 and if line 10 was de-selected -10. When the user presses the left mouse
button on a non-selected line and then moves it with the mouse button still pressed down,
he will select all lines he touches with his mouse until he releases it. All these lines will
become highlighted. When the user starts pressing the mouse on an already selected line
he de-selects lines rather than selecting them.

Per default a browser only gets returned (or a possibly associated callback gets invoked) on
selection of a line (and, in the case of [FL_MULTI_BROWSER], page 169, on deselections).
This behaviour can be changed by using the function

int fl_set_object_return(FL_OBJECT *obj, unsigned int when)

where when can have the following values

[FL_RETURN_NONE], page 46

Never return or invoke callback.

[FL_RETURN_SELECTION], page 46

Return or invoke callback on selection of a line. Please note that for [FL_MULTI_
BROWSER], page 169 the browser may be returned just once for a number of
lines having been selected.

[FL_RETURN_DESELECTION], page 46

Return or invoke a callback on deselection of a line. This only happens for
[FL_DESELECTABLE_HOLD_BROWSER], page 169 and [FL_MULTI_BROWSER],

page 169 objects and, for the latter, the browser may get returned (or the
callback invoked) just once for a number of lines having been deselected.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback at end (mouse release) if the text in the browser has
been scrolled.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever the text in the browser has been scrolled.

[FL_RETURN_END], page 45

Return or invoke callback on end of an interaction for scrolling the text in the
browser regardless if the text was scrolled or not.

[FL_RETURN_ALWAYS], page 46

Return or invoke callback on selection, deselection or scrolling of text or end of
scrolling.

Chapter 19: Choice Objects 171

The default setting for when for a browser object is [FL_RETURN_SELECTION],

page 46|[FL_RETURN_DESELECTION], page 46 (unless during the built of XForms
you set the configuration flag --enable-bwc-bs-hack in which case the default is
[FL_RETURN_NONE], page 46 to keep backward compatibility with earlier releases of the
library).

19.3.4 Other Browser Routines

There are a large number of routines to change the contents of a browser, select and de-select
lines, etc.

To remove all lnes from a browser use

void fl_clear_browser(FL_OBJECT *obj);

To add a line to a browser use one of

void fl_add_browser_line(FL_OBJECT *obj, const char *text);

void fl_add_browser_line_f(FL_OBJECT *obj, const char *fmt, ...);

The first function receives a simple string as the argument, the second one expects a format
string just like for printf() etc. and followed by the appropriate number of arguments of
the correct types. The line to be added may contain embedded newline characters (’\n’).
These will result in the text being split up into several lines, separated at the newline
characters.

A second way of adding a line to the browser is to use calls of

void fl_addto_browser(FL_OBJECT *obj, const char *text);

The difference to [fl_add_browser_line()], page 171 and [fl_add_browser_line_

f()], page 171 is that with these calls the browser will be shifted such that the newly
appended line is visible. This is useful when e.g., using the browser to display messages.

Sometimes it may be more convenient to add characters to a browser without starting of a
new line. To this end, the following routines exists

void fl_addto_browser_chars(FL_OBJECT *obj, const char *text);

void fl_addto_browser_chars_f(FL_OBJECT *obj, const char *fmt, ...);

These functions appends text to the last line in the browser without advancing the line
counter. The to functions differ in that the first one takes a simple string argument while
the second expects a format string just as for printf() etc., followed by a corresponding
number of arguments. Again the text may contain embedded newline characters (’\n’).
In that case, the text before the first embedded newline is appended to the last line, and
everything afterwards is put onto new lines. As in the case of [fl_addto_browser()],
page 171 the last added line will be visible in the browser.

You can also insert a line in front of a given line. All lines after it will be shifted. Note that
the top line is numbered 1 (not 0).

void fl_insert_browser_line(FL_OBJECT *obj, int line,

const char *text);

void fl_insert_browser_line_f(FL_OBJECT *obj, int line,

const char *fmt, ...);

The first function takes a simple string argument while the second one expects a format
string as used for printf() etc. and the appropriate number of arguments (of the types
specified in the format string).

Chapter 19: Choice Objects 172

Please note that on insertion (as well as replacements, see below) embedded newline charac-
ters don’t result in the line being split up as it’s done in the previous functions. Instead they
will rather likely appear as strange looking characters in the text shown. The only excep-
tion is when inserting into an empty browser or after the last line, then this function works
exactly as if you had called [fl_add_browser_line()], page 171 or [fl_add_browser_
line_f()], page 171.

To delete a line (shifting the following lines) use:

void fl_delete_browser_line(FL_OBJECT *obj, int line);

One can also replace a line using one of

void fl_replace_browser_line(FL_OBJECT *obj, int line,

const char *text);

void fl_replace_browser_line_f(FL_OBJECT *obj, int line,

const char *fmt, ...);

The first one takes a simple string for the replacement text while for the second it is
to be specified by a format string exactly as used in printf() etc. and the appro-
priate number of arguments of the types specifed in the format string. \ As in the
case of [fl_insert_browser_line()], page 171 and [fl_insert_browser_line_f()],

page 171 newline characters embedded into the replacement text don’t have any special
meaning, i.e., they don’t result in replacement of more than a single line.

Making many changes to a visible browser after another, e.g., clearing it and then adding
a number of new lines, is slow because the browser is redrawn on each and every change.
This can be avoided by using calls of [fl_freeze_form()], page 290 and [fl_unfreeze_

form()], page 290. So a piece of code that fills in a visible browser should preferably look
like the following

fl_freeze_form(browser->form);

fl_clear_browser(browser);

fl_add_browser_line(browser, "line 1");

fl_add_browser_line(browser, "line 2");

...

fl_unfreeze_form(brow->form);

where browser->form is the form that contains the browser object named browser.

To obtain the contents of a particular line in the browser, use

const char *fl_get_browser_line(FL_OBJECT *obj, int line);

It returns a pointer to the text of that line, exactly as it were passed to the function that
created the line.

It is possible to load an entire file into a browser using

int fl_load_browser(FL_OBJECT *obj, const char *filename);

The routine returns 1 when file could be successfully loaded, otherwise 0. If the file name
is an empty string (or the file could not be opened for reading) the browser is just cleared.
This routine is particularly useful when using the browser for a help facility. You can create
different help files and load the needed one depending on context.

The application program can select or de-select lines in the browser. To this end the
following calls exist with the obvious meaning:

Chapter 19: Choice Objects 173

void fl_select_browser_line(FL_OBJECT *obj, int line);

void fl_deselect_browser_line(FL_OBJECT *obj, int line);

void fl_deselect_browser(FL_OBJECT *obj);

The last call de-selects all lines.

To check whether a line is selected, use the routine

int fl_isselected_browser_line(FL_OBJECT *obj, int line);

The routine

int fl_get_browser_maxline(FL_OBJECT *obj);

returns the number of lines in the browser. For example, when the application program
wants to figure out which lines in a [FL_MULTI_BROWSER], page 169 are selected code
similar to the following can be used:

int total_lines = fl_get_browser_maxline(browser);

for (i = 1; i <= total_lines; i++)

if (fl_isselected_browser_line(browser, i))

/* Handle the selected line */

Sometimes it is useful to know how many lines are visible in the browser. To this end, the
following call can be used

int fl_get_browser_screenlines(FL_OBJECT *obj);

Please note that this count only includes lines that are shown completely in the browser,
lines that are partially obscured aren’t counted in.

To obtain the last selection made by the user, e.g., when the browser is returned, the
application program can use the routine

int fl_get_browser(FL_OBJECT *obj);

It returns the line number of the last selection being made (0 if no selection was made).
When the last action was a de-selection (only for [FL_MULTI_BROWSER], page 169) the
negative of the de-selected line number is returned.

The following function allows to find out the (unobscured) line that is currently shown at
the top of the browser:

int fl_get_browser_topline(FL_OBJECT *obj);

Note that the index of the top line is 1, not 0. A value of 0 is returned if the browser doesn’t
contain any lines.

Finally, the function

void fl_show_browser_line(FL_OBJECT *obj, int ln);

shifts the browsers content so that (as far as possible) the line indexed by ln is shown at
the center of the browser.

It is possible to register a callback function that gets called when a line is double-clicked
on. To do so, the following function is available:

void fl_set_browser_dblclick_callback(FL_OBJECT *obj,

void (*cb)(FL_OBJECT *, long),

‘ long data);

Of course, double-click callbacks make most sense for [FL_HOLD_BROWSER], page 169s.

The part if the text visible within the browser can be set programmatically in a number of
ways. With the functions

Chapter 19: Choice Objects 174

void fl_set_browser_topline(FL_OBJECT *obj, int line);

void fl_set_browser_bottomline(FL_OBJECT *obj, int line);

the line shown at the top or the bottom can be set (note again that line numbers start with
1).

Instead of by line number also the amount the text is scrolled in horizontal and vertical
direction can be set with the functions

void fl_set_browser_xoffset(FL_OBJECT *obj, FL_Coord xoff);

void fl_set_browser_rel_xoffset(FL_OBJECT *obj, double xval);

void fl_set_browser_yoffset(FL_OBJECT *obj, FL_Coord yoff);

void fl_set_browser_rel_yoffset(FL_OBJECT *obj, double yval);

where xoff and yoff indicate how many pixels to scroll horizontally (relative to the left
margin) or vertically (relative to the top of the text), while xval and yval stand for positions
relative to the total width or height of all of the text and thus have to be numbers between
0.0 and 1.0.

There are also a number of functions that can be used to obtain the current amount of
scrolling:

FL_Coord fl_get_browser_xoffset(FL_OBJECT *obj);

FL_Coord fl_get_browser_rel_xoffset(FL_OBJECT *obj);

FL_Coord fl_get_browser_yoffset(FL_OBJECT *obj);

FL_Coord fl_get_browser_rel_yoffset(FL_OBJECT *obj);

Finally, there’s a function that tells you the vertical position of a line in pixels:

int fl_get_browser_line_yoffset(FL_OBJECT *obj, imt line);

The return value is just the value that would have to be passed to [fl_set_browser_

yoffset()], page 174 to make the line appear at the top of the browser. If the line does
not exist it returns -1 instead.

19.3.5 Browser Attributes

Never use the boxtype [FL_NO_BOX], page 109 for browsers.

The first color argument (col1) to [fl_set_object_color()], page 287 controls the color
of the browser’s box, the second (col2) the color of the selection. The text color is the same
as the label color, obj->lcol.

To set the font size used inside the browser use

void fl_set_browser_fontsize(FL_OBJECT *obj, int size);

To set the font style used inside the browser use

void fl_set_browser_fontstyle(FL_OBJECT *obj, int style);

See Section 3.11.3 [Label Attributes and Fonts], page 28, for details on font sizes and styles.

It is possible to change the appearance of individual lines in the browser. Whenever a line
starts with the symbol ’@’ the next letter indicates the special characteristics associated
with this line. The following possibilities exist at the moment:

f Fixed width font.

n Normal (Helvetica) font.

t Times-Roman like font.

Chapter 19: Choice Objects 175

b Boldface modifier.

i Italics modifier.

l Large (new size is [FL_LARGE_SIZE], page 28).

m Medium (new size is [FL_MEDIUM_SIZE], page 28).

s Small (new size is [FL_SMALL_SIZE], page 28).

L Large (new size = current size + 6)

M Medium (new size = current size + 4)

S Small (new size = current size - 2).

c Centered.

r Right aligned.

_ Draw underlined text.

- An engraved separator. Text following ’-’ is ignored.

C The next number indicates the color index for this line.

N Non-selectable line (in selectable browsers).

’ ’ (a space character) Does nothing, can be used to separate between the digits
specifying a color (following "@C", see above) and the text of a line starting
with a digit.

@@ Regular ’@’ character.

The modifiers (bold and itatic) work by adding [FL_BOLD_STYLE], page 29 and [FL_

ITALIC_STYLE], page 29 to the current active font index to look up the font in the font
table (you can modify the table using [fl_set_font_name()], page 284 or [fl_set_

font_name_f()], page 284).

More than one option can be used by putting them next to each other. For example,
"@C1@l@f@b@cTitle" will give you the red, large, bold fixed font, centered word "Title".
As you can see the font change requests accumulate and the order is important, i.e.,
"@f@b@i" gives you a fixed bold italic font while "@b@i@f" gives you a (plain) fixed font.

Depending on the font size and style lines may have different heights.

In some cases the character ’@’ might need to be placed at the beginning of the lines
without introducing the special meaning mentioned above. In this case you can use "@@"

or change the special character to something other than ’@’ using the following routine

void fl_set_browser_specialkey(FL_OBJECT *obj, int key);

To align different text fields on a line, tab characters (’\t’) can be embedded in the text.
See [fl_set_tabstop()], page 283 on how to set tabstops.

There are two functions to turn the scrollbars on and off:

void fl_set_browser_hscrollbar(FL_OBJECT *obj, int how);

void fl_set_browser_vscrollbar(FL_OBJECT *obj, int how);

how can be set to the following values:

FL_ON Always on.

Chapter 19: Choice Objects 176

FL_OFF Always off.

FL_AUTO On only when needed (i.e., there are more lines/chars than could be shown at
once in the browser).

FL_AUTO is the default.

Please note that when you switch the scrollbars off the text can’t be scrolled by the user
anymore at all (i.e., also not using methods that don’t use scrollbars, e.g., using the cursor
keys).

Sometimes, it may be desirable for the application to obtain the scrollbar positions when
they change (e.g., to use the scrollbars of one browser to control other browsers). There are
two ways to achieve this. You can use these functions:

typedef void (*FL_BROWSER_SCROLL_CALLBACK)(FL_OBJECT *, int, void *);

void fl_set_browser_hscroll_callback(FL_OBJECT *obj,

FL_BROWSER_SCROLL_CALLBACK cb,

void *cb_data);

void fl_set_browser_vscroll_callback(FL_OBJECT *obj,

FL_BROWSER_SCROLL_CALLBACK cb,

void *cb_data);

After scroll callbacks are set whenever the scrollbar changes position the callback function
is called as

cb(ob, offset, cb_data);

The first argument to the callback function cb is the browser object, the second argument
is the new xoffset for the horizontal scrollbar or the new top line for the vertical scrollbar.
The third argument is the callback data specified as the third argument in the function calls
to install the callback.

To uninstall a scroll callback, use a NULL pointer as the callback function.

As an alternative you could request that the browser object gets returned (or a callback
invoked) when the the scrollbar positions are changed. This can be done e.g., by passing
[FL_RETURN_CHANGED], page 45 (if necessary OR’ed with flags for also returning on selec-
tion/deselections). Within the code for dealing with the event you could check if this is a
change event by using the function

int fl_get_object_return_state(FL_OBJECT *obj);

and test if [FL_RETURN_CHANGED], page 45 is set in the return value (by just logically
AND’ing both) and then handle the change.

By default, the scrollbar size is based on the relation between the size of the browser and
the size of the text. To change the default, use the following routine

void fl_set_browser_scrollbarsize(FL_OBJECT *obj, int hh, int vw);

where hh is the horizontal scrollbar height and vw is the vertical scrollbar width. Use 0 to
indicate the default.

The default scrollbar type is FL_THIN_SCROLLBAR. There are two ways you can change
the default. One way is to use [fl_set_defaults()], page 280 or [fl_set_scrollbar_
type()], page 282 to set the application wide default, another way is to use [fl_get_

object_component()], page 289 to get the object handle to the scrollbars and change
the the object type forcibly. The first method is preferable because the user can override

Chapter 19: Choice Objects 177

the setting via resources. Although the second method of changing the scrollbar type is not
recommended, the object handle obtained can be useful in changing the scrollbar colors etc.

Finally there is a routine that can be used to obtain the browser size in pixels for the text
area

void fl_get_browser_dimension(FL_OBJECT *obj, FL_Coord *x, FL_Coord *y,

FL_COORD *w, FL_COORD *h);

where x and y are measured from the top-left corner of the form (or the smallest enclosing
window). To establish the relationship between the text area (a function of scrollbar size,
border with and text margin), you can compare the browser size and text area size.

Finally, the functions

int fl_get_browser_scrollbar_repeat(FL_OBJECT *obj);

void fl_set_browser_scrollbar_repeat(FL_OBJECT *obj, int millisec);

allows to determine and control the time delay (in milliseconds) between jumps of the
scrollbar knob when the mouse button is kept pressed down on the scrollbar outside of the
knobs area. The default value is 100 ms. The delay for the very first jump is twice that
long in order to avoid jumping to start too soon when only a single click was intended but
the user is a bit slow in releasing the mouse button.

19.3.6 Remarks

Since version 1.0.92 there isn’t a limit on the maximum length of lines in a browser any-
more. (The macro FL_BROWSER_LINELENGTH still exists and is set to 2048 for backward
compatibility but has no function anymore).

See ‘fbrowse1.c’ for an example program using a [FL_NORMAL_BROWSER], page 169 to
view files. ‘browserall.c’ shows all different browsers. ‘browserop.c’ shows the insertion
and deletion of lines in a [FL_HOLD_BROWSER], page 169.

For the browser class, especially multi browsers, interaction via callbacks is strongly recom-
mended.

Chapter 20: Container Objects 178

20 Container Objects

20.1 Folder Object

A tabbed folder is a special container class that is capable of holding multiple groups of
objects (folders) to maximize the utilization of the screen real estate. Each folder has its
own tab the user can click on to call up a specific folder from which option can be selected.

20.1.1 Adding Folder Objects

To add a tabbed folder to a form use the routine

FL_OBJECT *fl_add_tabfolder(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The geometry indicated by x, y, w, and h is the total area of the tabbed folders, including
the area used for the tab riders.

20.1.2 Folder Types

The following types are available:

FL_TOP_TABFOLDER

Tabs on top of the folders.

FL_BOTTOM_TABFOLDER

Tabs at the bottom of the folders.

20.1.3 Folder Interaction

The folders displayed by the tabbed folder class are simply regular forms (of type FL_FORM),
which in turn contain objects. Each folder is associated with a name (shown on the tab
rider). The folder interacts with the user just like any other form. Different from other
top-level forms is that only one folder is active at any time. The user selects different folders
by clicking on the tab rider associated with a folder.

To set up when the application is notified about events of the tabfolder or the tabfolders
callback is invoked (if installed) use

Chapter 20: Container Objects 179

void fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where the when argument can be one of

[FL_RETURN_NONE], page 46

Never report or invoke callback even if the selected folder has been changed.

[FL_RETURN_CHANGED], page 45

[FL_RETURN_END_CHANGED], page 45

Result in a notification when a folder other that the currently active one has
been selected (this is the default).

[FL_RETURN_END], page 45

[FL_RETURN_ALWAYS], page 46

Notify when either a new or the already active folder has been selected.

In the releases before version 1.0.92 of the library only a callback for the folder was executed
(if one was installed) on change of the selected folder bur not via e.g., [fl_do_forms()],
page 297 etc. This has changed with version 1.0.92. To get the old behaviour you have to
build XForms with the --enable-bwc-bs-hack being set.

To find out which folder is currently active the following routines the tab riders are available

FL_FORM *fl_get_active_folder(FL_OBJECT *obj);

int fl_get_active_folder_number(FL_OBJECT *obj);

const char *fl_get_active_folder_name(FL_OBJECT *obj);

All three functions essentially perform the same task, i.e., return a handle of the active
folder, but the kind of handle returned is different. The first function returns the form
associated with the folder, the second function the folder sequence number starting from 1
on the left, and the third the folder name. Depending on the application setup, one routine
might be more convenient than the other two.

To find out what the previous active folder was (which may be of similar interest as the
currently active one) the following functions can be used:

FL_FORM *fl_get_folder(FL_OBJECT *obj)

int fl_get_folder_number(FL_OBJECT *obj)

const char *fl_get_folder_name(FL_OBJECT *obj)

Again, depending on the application, one might prefer one routine to the other two.

20.1.4 Other Folder Routines

To populate a tabbed folder, use the following routine

FL_OBJECT *fl_addto_tabfolder(FL_OBJECT *obj, const char *tab_name,

FL_FORM *folder)

where tab_name is a string (with possible embedded newlines in it) indicating the text
of the tab rider and folder is a regular form created between calls of [fl_bgn_form()],
page 286 and [fl_end_form()], page 286. Only the pointer to the form is required. This
means that the application program should not destroy a form that has been added to a
tabbed folder. The function returns the folder tab object, which is an object of class FL_
BUTTON. The initial object color, label color, and other attributes (gravities, for example) of
the tab button are inherited from the tabbed folder object obj and the location and size of

Chapter 20: Container Objects 180

the tab are determined automatically. You can change the attributes of the returned object
just like any other objects, but not all possibilities result in a pleasing appearance. Note
that although there is no specific requirement of what the backface of the folder/form should
be, a boxtype other than FL_FLAT_BOX or FL_NO_BOX may not look nice. If the backface of
the form is of FL_FLAT_BOX the associated tab will take on the color of the backface when
activated.

One thing to note is that each tab must have its own form, i.e., you should not associate
the same form with two different tabs. However, you can create copies of a form and use
these copies.

To access the individual forms on the tabfolder, e.g., in order to modify something on it,
use the following routines

FL_FORM *fl_get_tabfolder_folder_bynumber(FL_OBJECT *obj, int num);

FL_FORM *fl_get_tabfolder_folder_byname(FL_OBJECT *obj,

const char *name);

FL_FORM *fl_get_tabfolder_folder_byname_f(FL_OBJECT *obj,

const char *fnt, ...);

The functions take either the sequence number (the first tab on the left has a sequence
number 1, the second 2 etc) or the tab name, which can either be passed directly as a string
or via a format string like for printf() etc. and the corresponding (unspecified) arguments.
The functions return the form associated with the number or the name. If the requested
number or name is invalid, NULL is returned.

If there are more tabs than that can be shown, the right-most tab will be shown as "broken".
Clicking on the "broken" tab scrolls the tab to the right one per each click. To scroll to
the left (if there are tabs scrolled-off screen from the left), clicking on the first tab scrolls
right. How many tabs are "hidden" on the left can be determined and also set using the
functions

int fl_get_tabfolder_offset(FL_OBJECT *ojb);

int gl_set_tabfolder_offset(FL_OBJECT *obj, int offset);

where offset is the number of tabs hidden on the left.

Although a regular form (top-level) and a form used as a folder behave almost identically,
there are some differences. In a top-level form, objects that do not have callbacks bound
to them will be returned, when their states change, to the application program via [fl_

do_forms()], page 297 or [fl_check_forms()], page 297. When a form is used as a
folder, objects that do not have a callback are ignored even when their states changes. The
reason for this behavior is that presumably the application does not care while the changes
take place and they only become relevant when the the folder is switched off and at that
time the application program can decide what to do with these objects’ states (apply or
ignore for example). If immediate reaction is desired, just use callback functions for these
objects.

To obtain the number of folders in the tabfolder, the following routine can be used

int fl_get_tabfolder_numfolders(FL_OBJECT *obj);

To remove a folder, the following routine is available

void fl_delete_folder(FL_OBJECT *obj, FL_FORM *folder);

void fl_delete_folder_bynumber(FL_OBJECT *obj, int num);

Chapter 20: Container Objects 181

void fl_delete_folder_byname(FL_OBJECT *obj, const char *name);

void fl_delete_folder_byname_f(FL_OBJECT *obj, const char *fmt, ...);

(the last two function differ in the way the tab names gets passed, the first is to be called
with a simple string while the second expects a format string as used for printf() etc. and
the appropriate number of arguments, from which the tab name gets constructed). wNote
that after deletion, the number of folders in the tabfolder as well as the sequence numbers
are updated. This means if you want to delete all folders after the second folder, you can
do that by deleting the third folder repeatedly.

The application program can select which folder to show by using the following routines

void fl_set_folder(FL_OBJECT *obj, FL_FORM *folder);

void fl_set_folder_bynumber(FL_OBJECT *obj, int num);

void fl_set_folder_byname(FL_OBJECT *obj, const char *name);

void fl_set_folder_byname_f(FL_OBJECT *obj, const char *fmt, ...);

(The latter two functions only differ in the way the tab name gets passed top them, the
first accepts a simple string while the second expects a format string as used for printf()
etc. and the appropriate number of (unspecified arguments, from which the tab name is
constructed.)

Since the area occupied by the tabbed folder contains the space for tabs, the following
routine is available to obtain the actual folder size

void fl_get_folder_area(FL_OBJECT *obj, FL_Coord *x, FL_Coord *y,

FL_OBJECT *w, FL_OBJECT *h)

where x and y are relative to the (top-level) form the tabbed folder belongs to. The size
information may be useful for resizing the individual forms that has to go into the tabbed
folder. Note that the folder area may not be constant depending on the current tabs (For
example, adding a multi-line tab will reduce the area for the folders).

Since tab size can vary depending on monitor/font resolutions, it is in general not possible
to design the forms (folders) so they fit exactly into the folder area. To dynamically adjust
the sizes of the folders so they fit, the following routine is available

int fl_set_tabfolder_autofit(FL_OBJECT *obj, int how);

where how can be one of the following constants:

FL_NO Do not scale the form.

FL_FIT Always scale the form.

FL_ENLARGE_ONLY

Scale the form only if it is smaller than the folder area.

The function returns the old setting.

20.1.5 Remarks

By default, the tab for each folder is drawn with a corner of 3 pixels so it appears to be a
trapezoid rather than a square. To change the appearance of the tabs, you can adjust the
corner pixels using the following routine

int fl_set_default_tabfolder_corner(int n);

where n is the number of corner pixels. A value of 1 or 0 makes the tabs appear to be
squarish. The function returns the old value.

Chapter 20: Container Objects 182

A tabbed folder is a composite object consisting of a canvas and several foldertab buttons.
Each individual form is shown inside the canvas. Folder switching is accomplished by some
internal callbacks bound to the foldertab button. Should the application change the callback
functions of the foldertab buttons, these new callback functions must take the responsibility
of switching the active folder.

Some visual effects like colors and label font of the tab rider buttons can be set all at
once by calling the corresponding functions (i.e., [fl_set_object_color()], page 287,
[fl_set_object_lstyle()], page 289 etc.) with the tabbed folder object as the first
argument. Individual tab rider buttons can also be modified by calling those function
with the corresponding return value of [fl_addto_tabfolder()], page 179 as the first
argument.

fl_free_object(tabfolder) does not free the individual forms that make up the tabfolder.

See the demo program ‘folder.c’ for an example use of tabbed folder class.

A nested tabfolder might not work correctly at the moment.

20.2 FormBrowser Object

A form browser is another container class that is capable of holding multiple forms, the
height of which in aggregate may exceed the screen height. The form browser also works
obviously for a single form that has a height that is larger than the screen height.

This object class was developed with contributed code from Steve Lamont of UCSD and
the National Center for Microscopy and Imaging Research (spl@ucsd.edu).

20.2.1 Adding FormBrowser Objects

Adding an object To add a formbrowser object to a form use the routine

FL_OBJECT *fl_add_formbrowser(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

The geometry indicated by x, y, w and h is the total area of the formbrowser, including
scrollbars.

20.2.2 FormBrowser Types

There’s only a single type of formbrowser available, the FL_NORMAL_FORMBROWSER.

20.2.3 FormBrowser Interaction

Once a formbrowser is populated with forms, you can scroll the forms with the scrollbars
and interact with any of the forms. All objects on the forms act, for the most part, the
same way as they would if they were on separate forms, i.e., if there are callback functions
bound to the objects, they will be invoked by the main loop when the states of the objects
change. However, objects on the form that do not have callbacks bound to them will not
be returned by [fl_do_forms()], page 297 or [fl_check_forms()], page 297.

Your application can be notified about changes of the scrollbars of the formbrowser. To
set up under which conditions the application is notified or the formbrowsers callback is
invoked (if installed) use

mailto:spl@ucsd.edu

Chapter 20: Container Objects 183

void fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where the when argument can be one of

[FL_RETURN_NONE], page 46

Never report or invoke callback (this is the default for the formbrowser object)

[FL_RETURN_CHANGED], page 45

Result in a notification whenever the position of one of the scrollbars has
changed.

[FL_RETURN_END_CHANGED], page 45

Notification is sent if the position of a scrollbar has changed and the mouse
button has been released.

[FL_RETURN_END], page 45

Notification on release of the mouse button.

[FL_RETURN_ALWAYS], page 46

Notify if the position of a scrollbar has changed or the mouse button has been
released.

20.2.4 Other FormBrowser Routines

To populate a formbrowser, use the following routine

int fl_addto_formbrowser(FL_OBJECT *obj, FL_FORM *form);

where form is a pointer to a regular form created between calls of [fl_bgn_form()],

page 286 and [fl_end_form()], page 286. Only the form pointer is passed to the func-
tion, which means that the form should be valid for the duration of the formbrowser and
the application program should not destroy a form that is added to a formbrowser before
deleting the form from the formbrowser first. The function returns the total number of
forms in the formbrowser. Note that although there is no specific requirement on what the
backface of the form should be, not all boxtypes look nice.

The form so added is appended to the list of forms that are already in the formbrowser.
You can also use the following routine to obtain the total number of forms in a formbrowser

int fl_get_formbrowser_numforms(FL_OBJECT *formbrowser);

Although a regular form (top-level) and a form used inside a formbrowser behave almost
identically, there are some differences. In a top-level form, objects that do not have callbacks
bound to them will be returned to the application program when their states change via
[fl_do_forms()], page 297 or [fl_check_forms()], page 297. When a form is used as
member of a formbrowser those objects that do not have callbacks are ignored even when
their states change.

To remove a form from the formbrowser, the following routine is available

int fl_delete_formbrowser(FL_OBJECT *obj, FL_FORM *form);

FL_FORM* fl_delete_formbrowser_bynumber(FL_OBJECT *obj, int num);

In the first function you specify the form to be removed from the formbrowser by a pointer to
the form. If the form was removed successfully the function returns the remaining number
of forms in the formbrowser, otherwise -1.

Chapter 20: Container Objects 184

In the second function, you indicate the form to be removed with a sequence number,
an integer between 1 and the number of forms in the browser. The sequence number is
basically the order in which forms were added to the formbrowser. After a form is removed,
the sequence numbers are re-adjusted so they are always consecutive. The function returns
NULL if num was invalid, otherwise it returns address of the form that was removed.

To replace a form in formbrowser, the following routine is available

FL_FORM *fl_replace_formbrowser(FL_OBJECT *obj, int num,

FL_FORM *form);

where num is the sequence number of the form that is to be replaced by form. For example,
to replace the first form in the browser with a different form, you should use 1 for num. The
function returns the form that has been replaced on success, otherwise NULL is returned.

You can also insert a form into a formbrowser at arbitrary locations using the following
routine

int fl_insert_formbrowser(FL_OBJECT *obj, int num, FL_FORM *form);

where num is the sequence number before which the new form form is to be inserted into
the formbrowser. If successful the function returns the number of forms in the formbrowser,
otherwise -1.

To find out the sequence number of a particular form, the following routine is available

int fl_find_formbrowser_form_number(FL_OBJECT *obj, FL_FORM *form);

The function returns a number between 1 and the number of forms in the formbrowser on
success, otherwise 0.

To obtain the form handle from the sequence number, use the following routine

int fl_get_formbrowser_form(FL_OBJECT *obj, int num);

By default, if the size of the forms exceeds the size of the formbrowser, scrollbars are added
automatically. You can use the following routines to control the scrollbars

void fl_set_formbrowser_hscrollbar(FL_OBJECT *obj, int how);

void fl_set_formbrowser_vscrollbar(FL_OBJECT *obj, int how);

where how can be one of the following

FL_ON Always on.

FL_OFF Always off.

FL_AUTO On when needed. This is the default.

The vertical scrollbar by default scrolls a fixed number of pixels. To change it so each action
of the scrollbar scrolls to the next forms, the following routine is available

void fl_set_formbrowser_scroll(FL_OBJECT *obj, int how)

where how can be one of the following

FL_SMOOTH_SCROLL

The default.

FL_JUMP_SCROLL

Scrolls in form increments.

To obtain the form that is currently the first form in the formbrowser visible to the user,
the following can be used

Chapter 20: Container Objects 185

FL_FORM *fl_get_formbrowser_topform(FL_OBJECT *obj);

You can also set which form to show by setting the top form using the following routine

int fl_set_formbrowser_topform(FL_OBJECT *obj, FL_FORM *form);

FL_FORM* fl_set_formbrowser_topform_bynumber(FL_OBJECT *obj, int num);

The first function returns the sequence number of the form and the second function returns
the form with sequence number num.

Since the area occupied by the formbrowser contains the space for the scrollbars, the fol-
lowing routine is available to obtain the actual size of the forms area

void fl_get_formbrowser_area(FL_OBJECT *obj, int *x, int *y,

int *w, int *h);

where x and y are relative to the (top-level) form the formbrowser belongs to.

To programatically scroll within a formbrowser in horizontal and vertical direction, the
following routines are available

int fl_set_formbrowser_xoffset(FL_OBJECT *obj, int offset);

int fl_set_formbrowser_yoffset(FL_OBJECT *obj, int offset);

where offset is a positive number, measuring in pixels the offset from the the natural
position from the left and the top, respectively. In other words, 0 indicates the natural
position of the content within the formbrowser. An x-offset of 10 means the content is
scrolled 10 pixels to the left. Similarly an y-offset of 10 means the content is scrolled by 10
pixels upwards.

To obtain the current offsets, use the following routines

int fl_get_formbrowser_xoffset(FL_OBJECT *obj);

int fl_get_formbrowser_yoffset(FL_OBJECT *obj);

20.2.5 Remarks

A call of fl_free_object(formbrowser) does not free the individual forms, it only frees
the formbrowser object itself.

See the demo program ‘formbrowser.c’ for an example use of formbrowser class. A nested
formbrowser might not work correctly at the moment.

Chapter 21: Other Objects 186

21 Other Objects

21.1 Timer Object

Timer objects can be used to make a timer that runs down toward 0 or runs up toward a
pre-set value after which it starts blinking and returns itself to the application program.
This can be used in many different ways, for example, to give a user a certain amount of
time for completing a task, etc. Also hidden timer objects can be created. In this case the
application program can take action at the moment the timer expires. For example, you
can use this to show a message that remains visible until the user presses the "OK" button
or until a certain amount of time has passed.

The precision of the timer is not very high. Don’t count on anything better than, say, 50
milli-seconds. Run demo ‘timerprec.c’ for an actual accuracy measurement.

21.1.1 Adding Timer Objects

To add a timer to a form you use the routine

FL_OBJECT *fl_add_timer(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual.

21.1.2 Timer Types

There are at the moment three types of timers:

FL_NORMAL_TIMER

Visible, Shows a label in a box which blinks when the timer expires.

FL_VALUE_TIMER

Visible, showing the time left or the elapsed time. Blinks if the timer expires.

FL_HIDDEN_TIMER

Not visible.

21.1.3 Timer Interaction

When a visible timer expires it starts blinking. The user can stop the blinking by pressing
the mouse on it or by resetting the timer to 0.

The timer object is returned to the application program or its callback called when the
timer expired per default. You can also switch off reporting the expiry of the timer by
calling

int fl_set_object_return(FL_OBJECT *obj, unsigned int when)

with when set to [FL_RETURN_NONE], page 46. To re-enable reporting call it with one
of [FL_RETURN_CHANGED], page 45, [FL_RETURN_END], page 45, [FL_RETURN_END_

CHANGED], page 45 or [FL_RETURN_ALWAYS], page 46.

21.1.4 Other Timer Routines

To set the timer to a particular value use

Chapter 21: Other Objects 187

void fl_set_timer(FL_OBJECT *obj, double delay);

delay gives the number of seconds the timer should run. Use 0.0 to reset/de-blink the
timer.

To obtain the time left in the timer use

double fl_get_timer(FL_OBJECT *obj);

By default, a timer counts down toward zero and the value shown (for FL_VALUE_TIMERs)
is the time left until the timer expires. You can change this default so the timer counts up
and shows elapsed time by calling

void fl_set_timer_countup(FL_OBJECT *obj, int yes_no);

with a true value for the argument yes_no.

A timer can be temporarily suspended (stopwatch) using the following routine

void fl_suspend_timer(FL_OBJECT *obj);

and later be resumed by

void fl_resume_timer(FL_OBJECT *obj);

Unlike [fl_set_timer()], page 186 a suspended timer keeps its internal state (total de-
lay, time left etc.), so when it is resumed, it starts from where it was suspended.

Finally there is a routine that allows the application program to change the way the time
is presented in FL_VALUE_TIMER:

typedef char *(FL_TIMER_FILTER)(FL_OBJECT *obj, double secs);

FL_TIMER_FILTER fl_set_timer_filter(FL_OBJECT *obj,

FL_TIMER_FILTER filter);

The function filter receives the timer ID and the time left for count-down timers
and the elapsed time for up-counting timers (in units of seconds) and should
return a string representation of the time. The default filter returns the time in a
hour:minutes:seconds.fraction format.

21.1.5 Timer Attributes

Never use FL_NO_BOX as the boxtype for FL_VALUE_TIMERs.

The first color argument (col1) to [fl_set_object_color()], page 287 controls the color
of the timer, the second (col2) is the blinking color.

21.1.6 Remarks

Although having different APIs and the appearance of a different interaction behaviour,
the way timers and timeout callbacks work is almost identical with one exception: you can
deactivate a timer by deactivating the form it belongs to. While the form is deactivated,
the timers callback will not be called, even if it expires. The interaction will only resume
when the form is activated again.

See ‘timer.c’ for the use of timers.

21.2 XYPlot Object

A xyplot object gives you an easy way to display a tabulated function generated on the fly
or from an existing data file. An active xyplot is also available to model and/or change a
function.

Chapter 21: Other Objects 188

21.2.1 Adding XYPlot Objects

To add an xyplot object to a form use the routine

FL_OBJECT *fl_add_xyplot(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

It shows an empty box on the screen with the label per default below it.

21.2.2 XYPlot Types

The following types are available:

FL_NORMAL_XYPLOT

A solid line is drawn through the data points.

FL_SQUARE_XYPLOT

Data drawn as a solid line plus squares at data points.

FL_CIRCLE_XYPLOT

Data drawn as a solid line plus circles at data points.

FL_FILL_XYPLOT

Data drawn as a solid line with the area under the curve filled.

FL_POINTS_XYPLOT

Only data points are drawn with. per default, stars.

FL_LINEPOINTS_XYPLOT

Data drawn as a solid line plus, per default, stars at data point.

FL_DASHED_XYPLOT

Data drawn as a dashed line.

FL_DOTTED_XYPLOT

Data drawn as a dotted line.

FL_DOTDASHED_XYPLOT

Data drawn as a dash-dot-dash line.

FL_IMPULSE_XYPLOT

Data drawn by vertical lines.

FL_ACTIVE_XYPLOT

Data drawn as a solid line plus squares at data points, accepting manipulations.

FL_EMPTY_XYPLOT

Only the axes are drawn.

All xyplots per default display the curve auto-scaled to fit the plotting area. Although there
is no limitation on the actual data, a non-monotonic increasing (or decreasing) x-axis might
be plotted incorrectly.

XYPlots of type FL_POINTS_XYPLOT and FL_LINEPOINTS_XYPLOT are special in that the
application can change the symbol drawn on the data point.

Chapter 21: Other Objects 189

21.2.3 XYPlot Interaction

Only FL_ACTIVE_XYPLOT report mouse events by default. Clicking and dragging the data
points (marked with little squares) will change the data and result in the object getting
returned to the application (or the object’s callback getting invoked). By default, the
reporting happens only when the mouse is released. In some situations, reporting changes
as soon as they happen might be desirable. To control when mouse events are returned use
the function

int fl_set_object_return(FL_OBJECT *obj, unsigned int when);

where when can have the folowing values:

[FL_RETURN_NONE], page 46

Never return or invoke callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback at end (mouse release) if one of the points has been
moved to a different place. This is the default.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever a point has been moved.

[FL_RETURN_END], page 45

Return or invoke callback at end (mouse release) regardless if a point has been
moved is changed or not.

[FL_RETURN_ALWAYS], page 46

Return or invoke callback when a point has been moved or the mouse button
has been release).

Please note: an object can also be in inspect mode (see function [fl_set_xyplot_

inspect()], page 190 below). In this case the object gets returned (or its callback
invoked) for all of the above settings except ([FL_RETURN_NONE], page 46) when the
mouse was released on top of one of the points.

To obtain the current value of the point that has changed, use the routine

void fl_get_xyplot(FL_OBJECT *obj, float *x, float *y, int *i);

where via i the data index (starting from 0) is returned while via x and y the actual data
point gets returned. If no point has changed i will be set to -1.

It is possible tp switch drawing of the squares that mark an active plot on and off (default
is on) using the following routine

void fl_set_xyplot_mark_active(FL_OBJECT *obj, int yes_no);

with yes_no being set to false (0).

To set or replace the data for an xyplot, use

void fl_set_xyplot_data(FL_OBJECT *obj, float *x, float *y, int n,

const char *title, const char *xlabel,

const char *ylabel);

void fl_set_xyplot_data_double(FL_OBJECT *obj, double *x, double *y, int n,

const char *title, const char *xlabel,

const char *ylabel);

Chapter 21: Other Objects 190

(The fl_set_xyplot_data_double() function allows to pass data of type double but which
get "demoted" to float type when assigned to the xyplot object.) Here x, y is the tabulated
function, and n is the number of data points. If the xyplot object being set already exists
old data will be cleared. Note that the tabulated function is copied internally so you can
free or do whatever you want with the x and y arrays after the function has returned. title
is a title that is drawn above the XYPlot and xlabel and ylabel are the labels drawn at
the x- and y-axes.

You can also load a tabulated function from a file using the routine

int fl_set_xyplot_file(FL_OBJECT *obj, const char *filename,

const char *title, const char *xlabel,

const char *ylabel);

The data file should be an ASCII file consisting of data lines. Each data line must have two
columns, indicating the (x,y) pair with a space, tab or comma separating the two columns.
Lines that start with any of !, ; or # are considered to be comments and are ignored. The
functions returns the number of data points successfully read or 0 if the file couldn’t be
opened.

To get a copy of the current XYPLot data, use

int fl_get_xyplot_data_size(FL_OBJECT *obj);

void fl_get_xyplot_data(FL_OBJECT *obj, float *x, *float y, int *n);

The first function returns the number of data points which the second will return. The
caller must supply the space for the data returned by fl_get_xyplot_data(). The last
argument of that function is again the number of points that got returned.

All XYPlot objects can be made aware of mouse clicks by using the following routine

void fl_set_xyplot_inspect(FL_OBJECT *obj, int yes_no);

Once an XYPlot is in inspect mode, whenever the mouse is released and the mouse position
is on one of the data point, the object is returned to the caller or its callback is invoked.
You then can use [fl_get_xyplot()], page 189 to find out which point the mouse was
clicked on.

Another, perhaps even more general, way to obtain the values from an XYPlot is to use a
posthandler or an overlay positioner. See demo ‘xyplotall.c’ for the use of posthandler
and ‘positionerXOR.c’ for an example of reading-out xyplot values using an overlayed
positioner.

21.2.4 Other XYPlot Routines

There are several routines to change the appearance of an XYPlot. First of all, you can
change the number of tic marks using the following routine

void fl_set_xyplot_xtics(FL_OBJECT *obj, int major, int minor);

void fl_set_xyplot_ytics(FL_OBJECT *obj, int major, int minor);

where major and minor are the number of tic marks to be placed on the axis and the
number of divisions between major tic marks. In particular, -1 suppresses the tic marks
completely while 0 restores the default settings (which is 5 for the major and 2 for the minor
tic arguments).

Chapter 21: Other Objects 191

Note that the actual scaling routine may choose a value other than that requested if it
decides that this would make the plot look nicer, thus major and minor are only taken as a
hint to the scaling routine. However, in almost all cases the scaling routine will not generate
a major tic that differs from the requested value by more than 3.

Normally the minor tics of logarithmic scales are drawn equidistant. To have them also
drawn logarithmically use the functions

int fl_set_xyplot_log_minor_xtics(FL_OBJECT *obj, int yesno);

int fl_set_xyplot_log_minor_ytics(FL_OBJECT *obj, int yesno);

With this enabled e.g., the minor tics between 1 and 10 (when the interval is to be divided
into 5 subintervals) will be drawn at the positions 2, 4, 6, and 8 instead of at 10^0.2, 10^0.4,
10^0.6 and 10^0.8. The functions return the previous setting.

It is possible to label the major tic marks with alphanumerical characters instead of numer-
ical values. To this end, use the following routines

void fl_set_xyplot_alphaxtics(FL_OBJECT *obj, const char *major,

const char *minor);

void fl_set_xyplot_alphaytics(FL_OBJECT *obj, const char *major,

const char *minor);

where major is a string specifying the labels with the embedded character | that specifies
major divisions. For example, to label a plot with Monday, Tuesday etc, major should be
given as "Monday|Tuesday|...".

Parameter minor is currently unused and the minor divisions are set to 1, i.e, no divi-
sions between major tic marks. Naturally the number of major/minor divisions set by
this routine and [fl_set_xyplot_xtics()], page 190 and [fl_set_xyplot_ytics()],

page 190 can’t be active at the same time and the one that gets used is the one that was
set last.

The above two functions can also be used to specify non-uniform and arbitary major divi-
sions. To achieve this you must embed the major tic location information in the alphanu-
merical text. The location information is introduced by the @ symbol and followed by a float
or integer number specifying the coordinates in world coordinates. The entire location info
should follow the label. For example, "Begin@1|3/4@0.75|1.9@1.9" will produce three
major tic marks at 0.75, 1.0, and 1.9 with labels "3/4", "begin" and "1.9".

To get a gridded XYPlot use the following routines

void fl_set_xyplot_xgrid(FL_OBJECT *obj, int xgrid);

void fl_set_xyplot_ygrid(FL_OBJECT *obj, int ygrid);

where xgrid and ygrid can be one of the following

FL_GRID_NONE

No grid.

FL_GRID_MAJOR

Grid for the major divisions only.

FL_GRID_MINOR

Grid for both the major and minor divisions.

The grid line by default is drawn using a dotted line, which you can change using the routine

Chapter 21: Other Objects 192

int fl_set_xyplot_grid_linestyle(FL_OBJECT *obj, int style);

where style is the line style (FL_SOLID, FL_DASH etc. See Chapter 28 [Drawing Objects],
page 254, for a complete list). The function returns the old grid linestyle.

By default, the plotting area is automatically adjusted for tic labels and titles so that a
maximum plotting area results. This can in certain situations be undesirable. To control
the plotting area manually, the following routines can be used

void fl_set_xyplot_fixed_xaxis(FL_OBJECT *obj, const char *lm,

const char *rm)

void fl_set_xyplot_fixed_yaxis(FL_OBJECT *obj, const char *bm,

const char *tm)

where lm and rm specify the right and left margin, respectively, and bm and tm the bottom
and top margins. The pixel amounts are computed using the current label font and size.
Note that even for y-axis margins the length of the string, not the height, is used as the
margin, thus to leave space for one line of text, a single character (say m) or two narrow
characters (say ii) should be used.

To restore automatic margin computation, set all margins to NULL.

To change the size of the symbols drawn at data points, use the following routine

void fl_set_xyplot_symbolsize(FL_OBJECT *obj, int size);

where size should be given in pixels. The default is 4.

For FL_POINTS_XYPLOT and FL_LINEPOINTS_XYPLOT (main plot or overlay), the application
program can change the symbol using the following routine

typedef void (*FL_XYPLOT_SYMBOL)(FL_OBJECT *, int id,

FL_POINT *p, int n, int w, int h);

FL_XYPLOT_SYMBOL fl_set_xyplot_symbol(FL_OBJECT *obj, int id,

FL_XYPLOT_SYMBOL symbol);

where id is the overlay id (0 means the main plot, and you can use -1 to indicate all), and
symbol is a pointer to the function that will be called to draw the symbols on the data
point. The parameters passed to this function are the object pointer, the overlay id, the
center of the symbol (p->x, p->y), the number of data points (n) and the preferred symbol
size (w, h). If the type of the XYPlot corresponding to id is not FL_POINTS_XYPLOT or
FL_LINESPOINTS_XYPLOT, the function will not be called.

To change for example a FL_LINEPOINTS_XYPLOT XYPlot to plot filled small circles instead
of the default crosses, the following code could be used

void drawsymbol(FL_OBJECT *obj, int id,

FL_POINT *p, int n, int w, int h) {

int r = (w + h) / 4;

FL_POINT *ps = p + n;

for (; p < ps; p++)

fl_circf(p->x, p->y, r, FL_BLACK);

}

...

fl_set_xyplot_symbol(xyplot, 0, drawsymbol);

Chapter 21: Other Objects 193

...

If a Xlib drawing routine is used it should use the current active window (FL_ObjWin(obj))
and the current GC. Take care not to call routines inside the drawsymbol() function that
could trigger a redraw of the XYPlot (such as [fl_set_object_color()], page 287, [fl_
set_xyplot_data()], page 189 etc.).

To use absolute bounds (as opposed to the bounds derived from the data), use the following
routines

void fl_set_xyplot_xbounds(FL_OBJECT *obj, double min, double max);

void fl_set_xyplot_ybounds(FL_OBJECT *obj, double min, double max);

Data that fall outside of the range set this way will be clipped. To restore autoscaling, call
the function with max and min set to exactly the same value. To reverse the axes (e.g., min
at right and max at left), set min > max for that axis.

To get the current bounds, use the following routines

void fl_get_xyplot_xbounds(FL_OBJECT *obj, float *min, float *max);

void fl_get_xyplot_ybounds(FL_OBJECT *obj, float *min, float *max);

To replace the value of a particular point use the routine

void fl_replace_xyplot_point(FL_OBJECT *obj, int index,

double x, double y);

Here index is the index of the value to be replaced. The first value has an index of 0.

It is possible to overlay several plots together by calling

void fl_add_xyplot_overlay(FL_OBJECT *obj, int id, float *x, float *y,

int npoints, FL_COLOR col);

where id must be between 1 and FL_MAX_XYPLOTOVERLAY (currently 32). Again, the data
are copied to an internal buffer (old data are freed if necessary).

As for the base data, a data file can be used to specify the (x,y) function

int fl_add_xyplot_overlay_file(FL_OBJECT *obj, int ID,

const char *file, FL_COLOR col);

The function returns the number of data points successfully read. The type (FL_NORMAL_
XYPLOT etc.) used in overlay plot is the same as the object itself.

To change an overlay style, use the following call

void fl_set_xyplot_overlay_type(FL_OBJECT *obj, int id, int type);

Note that although the API of adding an overlay is similar to adding an object, an XYPlot
overlay is not a separate object. It is simply a property of an already existing XYPlot
object.

To get the data of an overlay, use the following routine

void fl_get_xyplot_overlay_data(FL_OBJECT *obj, int id,

float x[], float y[], int *n);

where id specifies the overlay number between 1 and FL_MAX_XYPLOTOVERLAY or the number
set via [fl_set_xyplot_maxoverlays()], page 194 (see below). (Actually, when id is
zero, this function returns the base data). The caller must supply the storage space for the
data. Upon function return, n will be set to the number of data points retrieved.

Sometimes it may be more convenient and efficient to get the pointer to the data rather
than a copy of the data. To this end, the following routine is available

Chapter 21: Other Objects 194

void fl_get_xyplot_data_pointer(FL_OBJECT *obj, int id,

float **x, float **y, int *n);

Upon function return, x and y are set to point to the data storage. You’re free to modify
the data and redraw the XYPlot (via [fl_redraw_object()], page 298). The pointers
returned may not be freed.

If needed, the maximum number of overlays an object can have (which by default is 32)
can be changed using the following routine

int fl_set_xyplot_maxoverlays(FL_OBJECT *obj, int maxoverlays);

The function returns the previous maximum number of overlays.

To obtain the number of data points, use the routine

int fl_get_xyplot_numdata(FL_OBJECT *obj, int id);

where id is the overlay ID (with 0 being the base data set).

To insert a point into an xyplot, use the following routine

void fl_insert_xyplot_data(FL_OBJECT *obj, int id, int n,

double x, double y);

where id is the overlay ID; n is the index of the point after which the data new point
specified by x and y is to be inserted. Set n to -1 to insert the point in front. To append to
the data, set n to be equal or larger than the return value of fl_get_xyplot_numdata(obj,
id).

To delete an overlay, use the following routine

void fl_delete_xyplot_overlay(FL_OBJECT *obj, int id);

It is possible to place inset texts on an XYPlot using the following routine (up to FL_MAX_

XYPLOTOVERLAY or the value set via [fl_set_xyplot_maxoverlays()], page 194 of such
insets can be accommodated):

void fl_add_xyplot_text(FL_OBJECT *obj, double x, double y,

const char *text, int align, FL_COLOR col);

where x and y are the (world) coordinates where text is to be placed and align specifies
the placement options relative to the specified point (See [fl_set_object_lalign()],

page 289 for valid options). If you for example specify FL_ALIGN_LEFT, the text will appear
on the left of the point and flushed toward the point (see Fig. 21.1). This is mostly
consistent with the label alignment except that now the bounding box (of the point) is of
zero dimension. Normal text interpretation applies, i.e., if text starts with @ a symbol is
drawn.

To remove an inset text, use the following routine

void fl_delete_xyplot_text(FL_OBJECT *obj, const char *text);

Another kind of inset is the "keys" to the plots. A key is the combination of drawing a
segment of the plot line style with a piece of text that describes what the corrsponding
line represents. Obviously, keys are most useful when you have more than one plot (i.e.,
overlays). To add a key to a particular plot, use the following routine

void fl_set_xyplot_key(FL_OBJECT *obj, int id, const char *keys);

where id again is the overlay ID. To remove a key, set the key to NULL. All the keys will
be drawn together inside a box. The position of the keys can be set via

Chapter 21: Other Objects 195

void fl_set_xyplot_key_position(FL_OBJECT *obj, float x, float y,

int align)

where x and y should be given in world coordinates. align specifies the alignment of the
entire key box relative to the given position (see Fig.21.1).

The following routine combines the above two functions and may be more convenient to use

void fl_set_xyplot_keys(FL_OBJECT *obj, char *keys[],

float x, float y, int align);

where keys specifies the keys for each plot. The last element of the array must be NULL to
indicate the end. The array index is the plot id, i.e., key[0] is the key for the base plot,
key[1] the key for the the first overlay etc.

To change the font the key text uses, the following routine is available

void fl_set_xyplot_key_font(FL_OBJECT *obj, int style, int size);

Data may be interpolated using an nth order Lagrangian polynomial:

void fl_set_xyplot_interpolate(FL_OBJECT *obj, int id, int degree,

double grid);

where id is the overlay ID (use 0 for the base data set); degree is the order of the polynomial
to use (between 2 and 7) and grid is the working grid onto which the data are to be
interpolated. To restore the default linear interpolation, use degree set to 0 or 1.

To change the line thickness of an xyplot (base data or overlay), the follow routine is
available:

void fl_set_xyplot_linewidth(FL_OBJECT *obj, int id, int width);

Again, use a id of value 0 to indicate the base data. Setting width to zero restores the
server default and typically is the fastest.

By default, a linear scale in both the x and y direction is used. To change the scaling, use
the following call

void fl_set_xyplot_xscale(FL_OBJECT *obj, int scale, double base);

void fl_set_xyplot_yscale(FL_OBJECT *obj, int scale, double base);

where the valid scaling options for scale are qFL_LINEAR and FL_LOG, and base is used only
for FL_LOG and in that case is the base of the logarithm to be used.

Use the following routine to clear an xyplot

void fl_clear_xyplot(FL_OBJECT *obj);

This routine frees all data associated with an XYPlot, including all overlays and all inset
texts. This routine does not reset all plotting options, such as line thickness, major/minor
divisions etc. nor does it free all memories associated with the XYPlot, for this [fl_free_
object()], page 287 is needed.

The mapping between the screen coordinates and data can be obtained using the following
routines

void fl_get_xyplot_xmapping(FL_OBJECT *obj, float *a, float *b);

void fl_get_xyplot_xmapping(FL_OBJECT *obj, float *a, float *b);

where a and b are the mapping constants and are used as follows:

Chapter 21: Other Objects 196

screenCoord = a * data + b (linear scale)

screenCoord = a * log(data) / log(p) + b (log scale)

where p is the base of the requested logarithm.

If you need to do conversions only occasionally (for example, converting the position of a
mouse click to a data point or vice versa) the following routines might be more convenient

void fl_xyplot_s2w(FL_OBJECT *obj, double sx, double sy,

float *wx, float *wy);

void fl_xyplot_w2s(FL_OBJECT *obj, double wx, double wy,

float *sx, float *sy);

where sx and sy are the screen coordinates and wx and wy are the world coordinates.

Finally, there’s a function for returning the coordinates of the area of the object used for
drawing the data (i.e., the area, when axes are displayed, which is enclosed by the axes):

void fl_get_xyplot_screen_area(FL_OBJECT *obj,

FL_COORD *llx, FL_COORD *lly,

FL_COORD *urx, FL_COORD *ury);

void fl_get_xyplot_world_area(FL_OBJECT *obj,

float *llx, float *lly,

float *urx, float *ury);

where via llx and lly the coordinates of the lower left hand corner and via urx and ury

those of the upper right hand corner are returned. The first function returns the corner
positions in screen coordinates (relative to the object), while the secoind returns them in
"world" coordinates.

21.2.5 XYPlot Attributes

Don’t use FL_NO_BOX as the boxtype of an XYPlot object that is to be changed dynamically.
To change the font size and style for the tic labels, inset text etc., use [fl_set_object_

lsize()], page 289 and [fl_set_object_lstyle()], page 289.

The first color argument (col1) to [fl_set_object_color()], page 287 controls the color
of the box and the second (col2) the actual XYPlot color.

21.2.6 Remarks

The interpolation routine is public and can be used in the application program

int fl_interpolate(const float *inx, const float *iny, int num_in,

float *outx, float *outy, double grid, int ndeg);

If successful, the function returns the number of points in the interpolated function
((inx[num_in - 1] - inx[0]) / grid + 1.01), otherwise it returns -1. Upon return, outx
and outy are set to the interpolated values. The caller must allocate the storage for outx
and outy.

See ‘xyplotall.c’ and xyplotactive.c for examples of the use of XYPlot objects. There
is also an example program called ‘xyplotover.c’, which shows the use of overlays. In
addition, xyplotall.c shows a way of getting all mouse clicks without necessarily using an
active XYPlot.

It is possible to generate a PostScript output of an XYPlot. See the function [fl_object_

ps_dump()], page 292 documented in Part V.

Chapter 21: Other Objects 197

21.3 Canvas Object

A canvas is a managed plain X (sub)window. It it different from the free object in that
a canvas is guaranteed to be associated with a window that is not shared with any other
object, thus an application program has more freedom in utilizing a canvas, such as using
its own colormap or rendering double-buffered OpenGL in it etc. A canvas is also different
from a raw application window because a canvas is decorated differently and its geometry is
managed, e.g., you can use [fl_set_object_resize()], page 290 to control its position
and size after its parent form is resized.

You also should be aware that when using a canvas you’ll probably mostly program directly
using basic Xlib functions, XForms doesn’t supply much more than a few helper functions.
You’ll rather likely draw to it with Xlib functions and will be dealing with XEvents yourself
(instead having them taken care of by XForms and cenverted to some simpler to use events
that then just return the object from [fl_do_forms()], page 297 or invoke an associated
callback function. Thus you will typically need a basic knowledge of how to program via
the X11 Xlib.

21.3.1 Adding Canvas Objects

Adding an object To add a canvas to a form you use the routine

FL_OBJECT *fl_add_canvas(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

The meaning of the parameters is as usual. The label is not drawn but used as the window
name for possible resource and playback purposes. If label is empty, the window name will
be generated on the fly as flcanvasn, where n = 0, 1,....

21.3.2 Canvas Types

The only types of canvases currently available is FL_NORMAL_CANVAS.

21.3.3 Canvas Interaction

The canvas class is designed to maximize the programmer’s ability to deal with situations
where standard form classes may not be flexible enough. With canvases, the programmer
has complete control over everything that can happen to a window. It thus doesn’t work like
other objects that get returned by [fl_do_forms()], page 297 etc. or have their callbacks
invoked.

Instead the user can request that for specific X events (not XForms object events like FL_

PRESS, FL_KEYPRESS etc.!) callbacks are invoked that receive all information about the
XEvent that led to their invocation. This obviously requires some understanding of how the
X Window system works.

The interaction with a canvas is typically set up as follows. First, you register the X events
you’re interested in and their handlers using the following routine

typedef int (*FL_HANDLE_CANVAS)(FL_OBJECT *obj, Window win,

int win_width, int win_height,

XEvent *xev, void *user_data);

void fl_add_canvas_handler(FL_OBJECT *obj, int event,

FL_HANDLE_CANVAS handler, void *user_data);

Chapter 21: Other Objects 198

where event is the XEvent type, e.g., Expose etc. The [fl_add_canvas_handler()],

page 197 function first registers a procedure with the event dispatching system of the
Forms Library, then it figures out the event masks corresponding to the event event and
invokes [fl_addto_selected_xevent()], page 54 to solicit the event from the server.
Other book keeping (e.g., drawing the box that encloses the canvas, etc.) is done by the
object handler.

When a canvas handler is installed the library tries to set the correct mask for the the
XEvent (which then tells the X Window system which events to pass on to the Forms
Library). But since translation from an XEvent to an XEvent mask is not unique, the
default translation of the XEvent to a mask may or may not match exactly the intention of
the application. Two events, namely MotionNotify and ButtonPress, are likely candidates
that need further clarification from the application. There are two functions to add or delete
from the mask, [fl_addto_selected_xevent()], page 54 and [fl_remove_selected_

xevent()], page 54.

By default, when a mouse motion handler (i.e., for the MotionNotify events) is registered,
it is assumed that, while the application wants to be informed about mouse movements, it’s
not interested in a continous motion monitoring (tracking), thus per default MotionNotify
events are requested with PointerMotionHintMask being set in the mask to reduce the
number of events generated. If this is not the case and in fact the application wants to
use the mouse motion as some type of graphics control, the default behavior would appear
"jerky" as not every mouse motion is reported. To change the default behavior so that every
mouse motion is reported, you need to call [fl_remove_selected_xevent()], page 54

with mask set to PointerMotionHintMask. Furthermore, the mouse motion is reported
regardless if a mouse button is pressed or not. If the application is interested in mouse
motion only when a mouse button is pressed [fl_remove_selected_xevent()], page 54

should be called with a mask of PointerMotionMask|PointerMotionHintMask.

With ButtonPress events you need to call [fl_addto_selected_xevent()], page 54

with a mask of OwnerGrabButtonMask if you are to add or remove other canvas handlers in
the button press handler.

To remove a registered handler, use

void fl_remove_canvas_handler(FL_OBJECT *obj, int event,

FL_CANVAS_HANDLER handler);

After this function call the canvas ceases to receive the events for event. The corresponding
default bits in the XEvent mask as were set by [fl_add_canvas_handler()], page 197

are cleared. If you added extra ones with [fl_addto_selected_xevent()], page 54 you
should reset them using [fl_remove_selected_xevent()], page 54.

To obtain the window ID of a canvas, use

Window fl_get_canvas_id(FL_OBJECT *obj);

or use the generic function (macro) (recommended)

Window FL_ObjWin(FL_OBJECT *obj);

Of course, the window ID only has a meaning after the form/canvas is shown. When the
canvas or the form the canvas is on is hidden (via [fl_hide_object()], page 291 or [fl_
hide_form()], page 297), the canvas window may be destroyed. If the canvas is shown
again, a new window ID for the canvas may be created. Thus recording the canvas window

Chapter 21: Other Objects 199

ID in a static variable is not the right thing to do. It is much safer (and it doesn’t add
any run-time overhead) to obtain the canvas window ID via [FL_ObjWin()], page 198

whenever it’s needed. If your application must show and hide the canvas/form repeatedly,
you might consider to "unmap" the window, a way of removing the window from the
screen without actually destroying it and later re-mapping the window to show it. The
Xlib API functions for doing this are XUnmapWindow() and XMapWindow(). Both require
two arguments. the display, which you can determine by calling [fl_get_display()],

page 255 and the window ID, which can be obtained by using form->window if you want
to (un)map a form or FL_ObjWin(obj) for a canvas.

21.3.4 Other Canvas Routines

Upon canvas creation, all its window related attributes, e.g., visual, depth and colormap
etc., are inherited from its parent (i.e., the window of the form the canvas belongs to). To
modify any attributes of the canvas, use the following routine

void fl_set_canvas_attributes(FL_OBJECT *obj, unsigned mask,

XSetWindowAttributes *xswa);

See XSetWindowAttributes() for the definition of the structure members. Note that this
routine should not be used to manipulate events.

Other functions exists that can be used to modify the color/visual property of a canvas:

void fl_set_canvas_colormap(FL_OBJECT *obj, Colormap map);

Colormap fl_get_canvas_colormap(FL_OBJECT *obj);

void fl_set_canvas_visual(FL_OBJECT *obj, Visual *vi);

void fl_set_canvas_depth(FL_OBJECT *obj, int depth);

int fl_get_canvas_depth(FL_OBJECT *obj);

Note that changing visual or depth does not generally make sense once the canvas window
is created (which happens when the parent form is shown). Also, typically if you change
the canvas visual, you probably should also change the canvas depth to match the visual.

Caution should also applied when using [fl_set_canvas_colormap()], page 199: when
the canvas window goes away, e.g., as a result of a call of [fl_hide_form()], page 297,
the colormap associated with the canvas is freed (destroyed). This likely will cause problems
if a single colormap is used for multiple canvases as each canvas will attempt to free the
same colormap, resulting in an X error. If your application works this way, i.e., the same
colormap is used on multiple canvases (via [fl_set_canvas_colormap()], page 199), you
should use the following routine to prevent the canvas from freeing the colormap:

void fl_share_canvas_colormap(FL_OBJECT *obj, Colormap colormap);

This function works the same way as [fl_set_canvas_colormap()], page 199 except
that it also sets a internal flag so the colormap isn’t freed when the canvas goes away.

By default, canvases are decorated with an FL_DOWN_FRAME. To change the decoration,
change the the boxtype of the canvas and the boxtype will be translated into a frame that
best approximates the appearance of the request boxtype (e.g., a FL_DOWN_BOX is translated
into a FL_DOWN_FRAME etc). Note that not all frame types are appropriate for decorations.

The following routine is provided to facilitate the creation of a colormap appropriate for a
given visual to be used with a canvas:

Colormap fl_create_colormap(XVisualInfo *xvinfo, int n_colors);

Chapter 21: Other Objects 200

where n_colors indicates how many colors in the newly created colormap should be filled
with XForms’ default colors (to avoid flashing effects). Note however, that the colormap
entry 0 is allocated with either black or white even if you specify 0 for n_colors. To
prevent this from happening (so you get a completely empty colormap), set n_colors to
-1. See Chapter 28 [Drawing Objects], page 254, on how to obtain the XVisualInfo for the
window. Depending on the window manager, a colormap other than the default may not get
installed correctly. If you’re working with such a window manager, you may have to install
the colormap yourself when the mouse pointer enters the canvas using XInstallColormap().

By default, objects with shortcuts appearing on the same form as the canvas will "steal"
keyboard inputs if they match the shortcuts. To disable this feature, use the following
routine with a false (0) value for yes_no:

void fl_canvas_yield_to_shortcut(FL_OBJECT *obj, int yes_no);

To clear the canvas use

void fl_clear_canvas(FL_OBJECT *obj);

If [fl_set_object_color()], page 287 gas been called on the object the first color passed
to the function will be used to draw the background of the color, otherwise it’s drawn in
black.

21.3.5 Canvas Attributes

Some of the attributes, such as boxtype, do not apply to the canvas class.

The first color argument (col1) to [fl_set_object_color()], page 287 can be used to
set the background color of the canvas (by default, a canvas has no background color). The
second argument (col2) controls the decoration color (if applicable).

21.3.6 OpenGL Canvas

Deriving specialized canvases from the general canvas object is possible. See the next
subsection for general approaches how this is done. The following routines work for OpenGL
(under X) as well as Mesa, a free OpenGL clone.

To add an OpenGL canvas to a form, use the following routine

FL_OBJECT *fl_add_glcanvas(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

where type is the same as for a normal canvas. A "glcanvas" created this way will have the
following attributes by default

GLX_RGBA,

GLX_DEPTH_SIZE: 1,

GLX_RED_SIZE: 1, GLX_GREEN_SIZE: 1, GLX_BLUE_SIZE: 1,

GLX_DOUBLEBUFFER

The application program can modify these defaults using the following routine (before the
creation of glcanvases)

void fl_set_glcanvas_defaults(const int *attributes);

See glXChooseVisual() for a list of valid attributes.

To get the current defaults use

Chapter 21: Other Objects 201

void fl_get_glcanvas_defaults(int *attributes);

It is also possible to change the attributes on a canvas by canvas basis by utilizing the
following routine:

void fl_set_glcanvas_attributes(FL_OBJECT *obj, const int *attributes);

Note that this routine can be used to change a glcanvas attributes on the fly even if the
canvas is already visible and active.

To obtain the attributes of a particular canvas, use the following routine

void fl_get_glcanvas_attributes(FL_OBJECT *obj, int attributes[]);

The caller must supply the space for the attribute values.

To obtain the the glx context (for whatever purposes), use

GLXContext fl_get_glcanvas_context(FL_OBJECT *obj);

Note that by default the rendering context created by a glcanvas uses direct rendering (i.e.,
by-passing the Xserver). To change this default, i.e., to always render through the Xserver,
use the following routine:

void fl_set_glcanvas_direct(FL_OBJECT *obj, int yes_no);

with the argument yes_no set to false (0).

Remember that OpenGL drawing routines always draw into the window the current context
is bound to. For application with a single canvas, this is not a problem. In case of multiple
canvases, the canvas driver takes care of setting the proper context before invoking the
expose handler. In some cases, the application may want to draw into canvases actively. In
this case, explicit drawing context switching may be required. To this end, use the following
routine

void fl_activate_glcanvas(FL_OBJECT *obj);

before drawing into glcanvas object.

Finally there is a routine that can be used to obtain the XVisual information that is used
to create the context

XVisualInfo *fl_get_glcanvas_xvisualinfo(FL_OBJECT *obj);

See demo program gl.c for an example use of a glcanvas.

Chapter 22: Popups 202

22 Popups

Popup is not an object class. In contrast to normal objects popups are only shown for
a short time in their own window and, while they are shown, no interaction with other
objects is possible. So they don’t fit directly into the normal event loop where one waits
for user actions via [fl_do_forms()], page 297. Instead, when used stand-alone (e.g.,
for a context menu) they are shown on a call of the function [fl_popup_do()], page 211,
which returns when the the user is done with the popup and it has been removed from the
screen. Only idle callbacks and timers etc. are executed in the background while a popup
is being shown.

Popups are the building blocks for menu and selector objects, which internally create and
use popups. Thus it might be helpful to understand how popups work to get the most out
of these objects.

All functions dealing with popups have names starting with ’fl_popup_’, functions for
individual entries start with ’fl_popup_entry_’ and typedefs as well as macros with ’FL_

POPUP_’.

22.1 Adding Popups

There are two ways to create and populate a popup with entries. The first method, that
allows more fine-grained control consists of first generating a popup and then adding entries.
Using this method all the properties of entries can be set immediately. The second method,
to be discussed later, is simpler and may be sufficient for many applications, and internally
uses the first method.

To define a new popup using the more general interface call

FL_POPUP *fl_popup_add(Window win, const char *title);

The function returns the address of the new popup on success and NULL on failure. win is
the window of a parent object (use [FL_ObjWin()], page 198 to find out about it). You
can also use [fl_root], page 302 for the root window, with None having the same effect
. title is an optional string that gets shown at the top of the popup in a framed box. If
not wanted pass an empty string or NULL. The function returns a pointer to a new popup
or NULL on failure.

The title may contain embedded newline characters, this allows to create titles that span
more than one line.)

There is no built-in limit to the number of popups that can be created.

Once you have popup you may add one or more entries by using

FL_POPUP_ENTRY *fl_popup_add_entries(FL_POPUP *popup,

const char *entries, ...);

On success the return value is the address of the first entry created and NULL on failure.
The first argument, entries, is a pointer to the popup the new entry (or entries) is added
to. The second argument, entries, encodes information about the entries to add. In
the most simple case it consists just of the entries texts, separated by | characters, e.g.,
"Item 1|Item 2|Item 3". This would create three simple entries in the popup with labels
"Item 1", "Item 2" and "Item 3".

Chapter 22: Popups 203

The entries string may contain newline characters which allows to create entries that span
more than a single line.

There’s no built-in limit to the number of entries than be added to a popup. [fl_popup_

add_entries()], page 202 can be called repeatedly to append further entries to a popup.

It often is necessary to have more complex entries. E.g., one may want to have keyboard
shortcuts for entries, which are shown on the right hand side of an entry, one may want to
have sub-popups or set callbacks etc. This can be achieved by embedding special character
sequences within the string describing the entries and passing further arguments to the
function, similar to the use of a format string in e.g., printf(3). All special sequences
start with a %.

The following sequences are recognized:

%x Set a value of type long int that’s passed to all callback routines for the entry.
The value must be given in the arguments following the entries string.

%u Set a user_void pointer that’s passed to all callbacks of the entry. The pointer
must be specified in the arguments following the entries string.

%f Set a callback function that gets called when the entry is selected. The function
is of type

int callback(FL_POPUP_RETURN *r);

Information about the entry etc. gets passed to the callback function via the
FL_POPUP_RETURN structure (see below) and the return value of the function
can be used to keep the selection being reported back to the caller of [fl_
popup_do()], page 211 by returning a value of FL_IGNORE (-1). The functions
address must be given in the arguments following the entries string.

%E Set a callback routine that gets called each time the mouse enters the entry (as
long as the entry isn’t disabled or hidden). The type of the function is the same
as that of the callback function for the selection of the item but it’s return value
is never used. The functions address must be given in the arguments following
the entries string.

%L Set a callback routine that gets called each time the mouse leaves the entry.
The type of the function is the same as that of the callback function for the
selection of the entry but it’s return value is never used. The functions address
must be given in the arguments following the entries string.

%m When this is specified a sub-popup gets opened when the mouse enters the entry
(the entry itself thus can’t be selected). The sub-popup to be opened must be
an already existing popup and its address must be given in the arguments
following the entries string. A triangle will be drawn on the right of the entry
to indicate that it’s an entry for a sub-popup.

Mutually exclusive with %t, %T, %r, %R and %l.

%t

%T This makes the entry a "toggle" entry, an entry that represents binary states
and gets a check-mark drawn on its left if in "on" state. If created with %t

its in "off" state at the start, if created with "T" its in "on" state. Switching
states happens automatically when the entry is selected.

Chapter 22: Popups 204

Mutually exclusive with %m, %r, %R and %l.

%r

%R This makes the entry a "radio" entry, i.e., it becomes part of a group of entries
of which only one can be "on" at a time. The group, an integer value (don’t use
INT_MIN and INT_MIN), must be given in the arguments following the entries
string.

Radio entries are drawn with a small circle to the left, with the one for the
entry in "on" state filled with a color (blue per default). When a radio entry is
selected by the user that was in "off" state the entry of the group that was is
"on" state before is automatically switched to "off" state.

If the entry gets created with %r the entry is in "off" state, if created with %R

it’s in "on" state (in that case all entries created before in "on" state are reset
to "off" state, i.e., the one created last "wins").

Mutually exclusive with %m, %t, %T and %l.

%l This creates not a real entry but indicates that a line is to be drawn to visually
group other entries. While other properties can be set for such an "entry" only
the "hidden" property (see below) is taken into acount.

Mutually exclusive with %m, %t, %T, % and %R.

%d Marks the entry as disabled, i.e., it can’t be selected and its text is per default
drawn in a different color

%h Marks the entry as hidden, i.e., it is not shown while in this state.

%S For entries with shortcut keys it’s quite common to have them shown on the
right hand side. Using %S you can split the entrys text into two parts, the first
one (before %S) being drawn flushed left and the second part flushed right. Note
that using this special sequence doesn’t automatically sets a shortcut key, this
still has to be done using %s.

%s Sets one or more shortcut keys for an entry. Requires a string with the shortcuts
in the arguments following the entries string, see Section 26.1 [Shortcuts],
page 245 for details on how to define shortcuts. Please note that the character
in the label identical to the shortcut character is only shown as underlined if
%S isn’t used.

%% Use this to put a % character within the text of an entry.

Please note that since [fl_popup_add_entries()], page 202 is a variadic function (i.e.,
it takes a variable number of arguments) only very limited error checking is possible and
thus it is of importance that the arguments passed to the function have exactly the required
types!

The return value of [fl_popup_add_entries()], page 202 is a pointer to the first of the
entries created. Since entries are stored as a linked list this value can be used to iterate over
the list (see below for more information about the [FL_POPUP_ENTRY], page 206 structure).
If the function returns NULL no entries were created.

A typical piece of code creating a popup may look like this:

Chapter 22: Popups 205

int save_cb(FL_POPUP_RETURN *result) {

...

}

int main(int argc, char *argv[]) {

FL_POPUP *popup;

File *fp;

...

popup = fl_popup_add(None, NULL);

fl_popup_add_entries(popup,

"Save%SCtrl+S%s%f%u|"

"Quit%SEsc%s|"

"%l|"

"Work Offline%SCtrl+O%T%s",

"^S", save_cb, (void *) fp,

"^[",

"^O");

...

}

This creates a popup with three entries. The first one has the label "Save" shown at the left
and "Ctrl+S" at the right can be selected by pressing <Ctrl>S, in which case the function
save_cb() will be invoked with a pointer to a structure that, beside other informations,
contains the file pointer fp. The second entry has the labels "Quit" and "Esc" and it’s
shortcut key is set to <Esc>. Below this entry a separator line is drawn, followed by the
third entry with labels "Work Offline" and "Ctrl+O" and shortcut key <Ctrl>O. This
label is a "toggle" entry in "on" state, thus a check-marker is shown beside it.

A few remarks about the callback routines. All have a type of FL_POPUP_CB as given by
this typedef:

typedef int (*FL_POPUP_CB)(FL_POPUP_RETURN *);

There are three kinds of callbacks, all with the same type. Whenever an item is entered (by
moving the mouse on top of it or with the keyboard) its enter callback function is invoked
(if one is set). Exceptions are entries that are disabled or hidden or entries, that just stand
for separator lines. When an entry that can receive enter callbacks is left, its leave callback
is invoked.

Leave callbacks are not called when a selection has been made. Instead, only the selection
callback for the selected entry is invoked.

A "sub-popup entry", i.e., an entry that when entered results in a sub-popup to open, also
can have an enter callback. Its leave callback is not called when the user moves the mouse
onto the sub-popup but only once the sub-popup has been closed again and the mouse has
been moved off the sub-popup entry.

While enter and leave callback functions are defined to return an integer value, it’s never
used. But for the third kind of callback, invoked on selection of an entry, this isn’t true.
Instead, the callbacks return value is important: if it is FL_IGNORE (-1), the selection isn’t

Chapter 22: Popups 206

reported back to the caller (and following callbacks also aren’t called). This can be useful
when the callback function already does everything required and nothing is left to be done.

All callbacks receive a pointer to a structure of the type FL_POPUP_RETURN:

typedef struct {

long int val; /* value assigned to entry */

void *user_data; /* pointer to user data */

const char *text; /* text of selected popup entry */

const char *label; /* text drawn on left */

const char *accel; /* text drawn on right */

const FL_POPUP_ENTRY *entry; /* selected popup entry */

const FL_POPUP *popup; /* (sub-) popup it belongs to */

} FL_POPUP_RETURN;

val is the value set by "%x". If "%x" wasn’t given, it’s an automatically generated value:
when a popup is created with [fl_popup_add_entries()], page 202 a counter is inital-
ized to 0. Whenever an entry gets added the value of the counter is assigned to the entry
and then incremented. Unless a different value is set explicitely via "%x" the first entry
added to a popup thus gets a value val of 0, the second one gets 1 etc. This even holds for
entries that just stand for separator lines. In simple situations the value of val is probably
sufficient to identify which entry got selected.

Please note: it is possible that by setting the val members two or more structures for items
of the same popup get the same value. It is the programmers responsibility to avoid that
(unless, of course, that’s just what you intended).

The user_data member of the structure is the user_void pointer set via "%u". It allows to
pass more complex data to the callback function (or have returned on selection of an entry.

The text member is exactly the string used to create the entry, including all the special se-
quences starting with ’%’. label is what’s left after all those sequences as well as backspace
characters have been removed, tabs replaced by single spaces and the string is split at "%S".
I.e., it’s exactly what’s drawn left-flushed for the entry in the popup. accel is then what’s
left after clean-up and came after "%S", i.e., it’s what appears as the right-flushed text of
the entry. Please note that one or more of these pointers could under some circumstances
be NULL.

Finally, the two member entry and popup are pointers to the entry itself and the popup
the callback function is invoked for - to find out the popup the selected entry itself belongs
to use the popup member of the entrys [FL_POPUP_ENTRY], page 206 structure.

Please note: while in a callback you are only allowed to change the values of the val and
user_data members. This can be useful in the case of a cascade of selection callback calls
since all the selection callbacks receive the same structure (and this is also the structure
that finally gets passed back to the caller of [fl_popup_do()], page 211) at the end in
order to implement more complex information interchange between the callbacks involved.

The elements of a FL_POPUP_ENTRY structure that might be of interest) are

typedef {

FL_POPUP_ENTRY *prev; /* previous popup entry */

FL_POPUP_ENTRY *next; /* next popup entry */

int type; /* normal, toggle, radio, sub-popup, line*/

unsigned int state; /* disabled, hidden, checked */

Chapter 22: Popups 207

int group; /* group (for radio entries only) */

FL_POPUP *sub; /* sub-popup bound to entry */

...

} FL_POPUP_ENTRY;

Note that you should not change the members of a [FL_POPUP_ENTRY], page 206 structure
directly! Use the appropriate functions documented below to modify them instead.

prev and next are pointers to the previous and the following popup entry (or NULL if none
exists).

type tells what kind of popup entry this is. There are five different types:

FL_POPUP_NORMAL

Normal popup entry with no special properties

FL_POPUP_TOGGLE

"Toggle" or "binary" entry, drawn with a check-mark to its left if in "on" state

FL_POPUP_RADIO

Radio entry, drawn with a circle to its left (color-filled when "on". The group

member of the [FL_POPUP_ENTRY], page 206 structure determines to which
group the entry belongs.

FL_POPUP_SUB

Entry for a sub-popup. The sub member of its [FL POPUP ENTRY], page 206
structure is a pointer to the sub-popup that gets shown when the mouse enters
the entry.

FL_POPUP_LINE

Not a "real" entry, just indicates that a separator line is to be drawn between
the previous and the next entry.

Finally, the state member can have the following values:

FL_POPUP_NONE

No special state is set for the entry, the default.

FL_POPUP_DISABLED

The entry is disabled, i.e., isn’t selectable (and normally is drawn in a way to
indicate this).

FL_POPUP_HIDDEN

The entry is not drawn at all (and thus can’t be selected).

FL_POPUP_CHECKED

Only relevant for toggle and radio entries. Indicates that the state of a toggle
entry is "on" (drawn with a check-marker) and for a radio entry that it is the
one in "on" state of its group.

The state can be a combination of the above constants by using a bitwise OR.

The more interesting members of a FL_POPUP structure are

typedef struct {

FL_POPUP *next; /* previously created popup */

Chapter 22: Popups 208

FL_POPUP *prev; /* later created popup */

FL_POPUP *parent; /* for sub-popups: direct parent */

FL_POPUP *top_parent; /* and top-most parent */

Window win; /* window of the popup */

FL_POPUP_ENTRY *entries; /* pointer to list of entries */

char *title; /* title string of the popup */

...

} FL_POPUP;

Note again that you are not supposed to change the members of the structure.

Like popup entries also popups are stored in a (doubly) linked list. Thus the prev and next

members of the structure are pointers to popups created earlier or later. If a popup is a
sub-popup of another popup then parent points to the next higher level popup (otherwise
it’s NULL). In case there’s a cascade of popups the top_parent member points to the "root"
popup (i.e., the top-level popup), while for popups that aren’t sub-popups it always points
back to the popup itself (in that case parent is NULL).

win is the window created for the popup. It’s None (0) while the popup isn’t shown, so it
can be used to check if the popup is currently visible.

The entries member points to the first element of the list of entries of the popup. See
the [FL_POPUP_ENTRY], page 206 structure documented above on how to iterate over all
entries.

Finally, title is the title shown at the top of the popup (if one is set). Never try to change
it directly, there ars the functions [fl_popup_set_title()], page 215 and [fl_popup_

set_title_f()], page 215, described below, to do just that.

To remove a popup entry use

int fl_popup_entry_delete(FL_POPUP_ENTRY *entry);

The function return 0 on success and -1 if it failed for some reasons. Note that the function
for a sub-popup entry also deletes the popup that was associated with the entry!

You may also insert one or more entries into a popup at arbitrary places using

FL_POPUP_ENTRY *fl_popup_insert_entries(FL_POPUP *popup,

FL_POPUP_ENTRY *after,

const char *entries, ...);

popup is the popup the entries are to be inserted in, after is the entry after which the
new entries are to be added (use NULL if the new entries are to be inserted at the very
first position), and entries is the same kind if string as already used in [fl_popup_add_

entries()], page 202, including all the available special sequences. The arguments indi-
cated by ... have to be given according to the entries string.

Finally, when you don’t need a popup anymore simply call

int fl_popup_delete(FL_POPUP *popup);

The function returns 0 on success and -1 on failure. It’s not possible to call the function
while the popup is still visible on the screen. Calling it from any callback function is
problematic unless you know for sure that the popup to be deleted (and sub-popups of it)
won’t be used later and thus normally should be avoided.

Chapter 22: Popups 209

Above was described how to first generate a popup and then populate it. But there’s also a
(though less general) method to create and populate a popup in a single function call. For
this use

FL_POPUP *fl_popup_create(Window win, const char *title,

FL_POPUP_ITEM *items);

The win and title arguments are the same as used in [fl_popup_add()], page 202, i.e.,
they are parent window for the popup (or [fl_root], page 302 or None) and the (optional,
can be NULL) title for the popup.

items is a pointer to an array of structures of the following form:

typedef struct {

const char *text; /* text of entry */

FL_POPUP_CB callback; /* (selection) callback */

const char *shortcut; /* keyboard shortcut description */

int type; /* type of entry */

int state; /* disabled, hidden, checked */

} FL_POPUP_ITEM;

The array must contain one structure for each entry of the popup and must end in a
structure where at least the text member is set to NULL.

The text member describes the text of the entry. If it contains the string "%S" the text
is split up at this position and the first part is used as the label drawn left-flushed for the
entry and the second part for the right-flushed part (for showing accelerator keys etc.). Two
more characters have a special meaning if they appear at the very start of the string (and
which then do not become part of the label shown):

’_’ Draw a separator line above this entry.

’/’ This entry is a sub-popup entry and the following elements of the items array
(until the first element with text set to NULL define the entries of the sub-popup.

Both ’_’ and ’/’ can appear at the start of the string, it doesn’t matter which one comes
first.

The callback member is a function to be invoked when the entry is selected (irrelevant
for sub-popup entries). shortcut is a string, encoding which keyboard shortcut keys can
be used to select the item (see Section 26.1 [Shortcuts], page 245 for details on how such a
string has to be assembled).

type describes the type of the entry and must be one of [FL_POPUP_NORMAL], page 207,
[FL_POPUP_RADIO], page 207 (all radio entries automatically belong to the same group
(numbered INT_MIN). You can’t use [FL_POPUP_LINE], page 207 or [FL_POPUP_SUB],

page 207. If you want a sub-popup entry use [FL_POPUP_NORMAL], page 207 and set ’/’
as the first character of the text member of the structure. If you need a separator line put
a ’_’ at the start of the text member string of the entry which comes after the separator
line.

Finally, the state member can be 0 or the bitwise or of [FL_POPUP_DISABLED], page 207,
[FL_POPUP_HIDDEN], page 207 and [FL_POPUP_CHECKED], page 207. The first one makes
the entry appear disabled and non-selectable, the second will keep the entry from being
drawn at all, and the third one puts the entry into "on" state (relevant for toggle and radio

Chapter 22: Popups 210

entries only). If you try to set [FL_POPUP_CHECKED], page 207 for more than a single radio
entry the last one you set if for "wins", i.e., only this one will be in "on" state. See below
for a more detailed discussion of these entry properties.

[fl_popup_create()], page 209 does not allow to associate values or pointers to user
data to individual entries, set titles for sub-popups, have radio entries belong to different
groups or set enter or leave callback functions (though there exist a number of functions to
remedy the situation in case such things are needed).

The function returns a pointer to the newly created popup (or NULL on failure). You are
guaranteed that each entry has been assigned a unique value, starting at 0 and which is
identical to the index of corresponding element in the items array, i.e., the first element
results in an entry assigned 0, the second entry gets 1 etc.

All functions working on popups or entries can, of course, be used on popups and their
entries generated via [fl_popup_create()], page 209. They can be employed to remedy
some of the limitations imposed by the simpler popup creation API.

Here’s an example of how to create a popup using fl_popup_create():

FL_POPUP *popup;

FL_POPUP_ITEMS items[] = {

{"Item 1%S^1", NULL, "^1", FL_POPUP_NORMAL, FL_POPUP_NONE },

{"Item 2%S^2", NULL, "^2", FL_POPUP_RADIO, FL_POPUP_CHECKED },

{"Item 3%S^3", NULL, "^3", FL_POPUP_RADIO, FL_POPUP_NONE },

{"_/Item 4", NULL, NULL, FL_POPUP_NORMAL, FL_POPUP_NONE },

{"Sub-item A", cbA, "^A", FL_POPUP_NORMAL, FL_POPUP_DISABLED},

{"Sub-item B", cbB, "^B", FL_POPUP_TOGGLE, FL_POPUP_NONE },

{NULL, NULL, NULL, 0, 0 },

{"Item 5", NULL, NULL, FL_POPUP_NORMAL, FL_POPUP_NONE },

{NULL, NULL, NULL, 0, FL_POPUP_NONE }

};

popup = fl_popup_create(None, "Test", items);

This creates a new popup with the title "Test" and 5 entries as well as a a sub-popup with
two entries, that gets opened when the mouse is over the entry labeled "Item 4".

The first entry in the main popup has the label "Item 1" on the left and "^1" of the right
side. It has no callback routine and can be selected via the <Crtl>1 shortcut. It’s just a
normal menu entry.

The second entry has the label "Item 2" on the left and "^2" of the right side, also no
callack and <Crtl>2 as its keyboard shortcut. It’s a radio entry that is in "on" state.
The third entry is like the second, labels are "Item 3" and "^3" and it reacts to <Crtl>3,
except that it’s in "off" state. The second and third label belong to the same group (with
the group number set to INT_MIN), i.e., when the third entry gets selected the second one
gets switched to "off" state (and vice versa).

Before the fourth entry a separator line will be drawn (that’s the effect of its text starting
with ’_’. It’s a sub-popup entry (due to the ’/’ at the start of its text). It’s label is
simply "Item 4" and no right hand label (but that isn’t supposed to indicate that sub-

Chapter 22: Popups 211

entries couldn’t have shortcuts!). It has no selection callback (which wouldn’t sense make
sense for a sub-popup entry anyway).

The following three elements of the items array are for the sub-popup that gets opened
when the mouse is over the fourth item of the main popup. In the sub-popup we first have
an normal entry with label "Sub-item A". The function cbA() will be called when this
entry of the sub-popup is selected. Then we have a second entry, labled "Sub-item B",
which is a currently disabled toggle entry in "off" state. If it weren’t disabled its selection
would result in the callback function cbB() getting called. The next element of the items

array, having NULL as its text member, signifies the end of the sub-popup.

Now that we’re done with the sub-popup another entry in the main popup follows, a normal
entry with just a left-label of Item 5. The final element of items, where text is set to NULL

then signifies that this is the end of the popup.

As there are functions to append to and insert entries into a popup with a kind of format
string, followed by a variable list of arguments, there are also functions for adding and
inserting entries using an array of [FL_POPUP_ITEM], page 209. These are

FL_POPUP_ENTRY *fl_popup_add_items(FL_POPUP *popup,

FL_POPUP_ITEM *items);

FL_POPUP_ENTRY *fl_popup_insert_items(FL_POPUP *popup,

FL_POPUP_ENTRY *after,

FL_POPUP_ITEM *items);

Both functions return the address of the first entry created on success and NULL on error.
The first argument is the popup the entries are to be appended to or inserted into, the
last argument the array of items (as in the case of [fl_popup_create()], page 209 at
least the text member of the last element must be a NULL pointer to indicate the end).
fl_popup_insert_items() takes another argument, after, the entry after which the new
entries are to be inserted (if called with after set to NULL the new entries are inserted at
the very start of the popup).

22.2 Popup Interaction

A popup will be drawn on the screen when the function

FL_POPUP_RETURN *fl_popup_do(FL_POPUP *popup);

is called. It only returns when the user either selects an entry or closes it in some other way
(e.g., by clicking outside the popup’s area). When a selection was made the function returns
a pointer to a [FL_POPUP_RETURN], page 206 structure with information about the entry
that was selected (please note that the structure is internal storage belonging to the Forms
Library and is re-used when the popup is shown again, so copy out all data you may need
to keep). If no selection was made (or one of the invoked callback routines returned a value
of FL_IGNORE (-1) NULL is returned.

While the popup is shown the user can interact with the popup using the mouse or the
keyboard. When the mouse is hovering over a selectable entry of the popup the entry is
highlighted, when the mouse reaches an entry for a sub-popup, the associated sub-popup
automatically gets opened. A selection is made by clicking on an entry (or, in case that
the popup was opened while a mouse button was pressed down, when the mouse button is
released). Clicking outside the popups window (or, depending on the "policy", see below,

Chapter 22: Popups 212

releasing the mouse button somewhere else than over a selectable item) closes the popup
without a selection being made.

Popups also can be controlled via the keyboard. First of all, on pressing a key, the shortcuts
set for items are evaluated and, if a match is found, the corresponding entry is returned as
selected (if the popup currently shown is a sub-popup, first the shortcuts for this sub-popup
are checked, then those of its parent etc. until the top-most popup has been reached and
checked for). The user can also navigate through the selectable entires using the <Up> and
<Down> arrow keys and open and close sub-popups with the <Right> and <Left> cursor
keys. Pressing the <Home> key highlights the first (selectable) entry in the popup, <End>
the last one. By using the <Esc> key (or <Cancel> if available) the currently shown popup
is closed (if an entry in a sub-popup was highlighted just this sub-popup is closed). Finally,
pressing <Return> while on a selectable entry results in this entry being reported as selected.

Once the user has selected an entry its callback function is invoked with a [FL_POPUP_

RETURN], page 206 structure as the argument. When this function returns, the callback
for the popup the entry belongs to is called with exactly the same structure. If the popup
is a sub-popup, next the callback for its "parent" popup is invoked, again with the same
structure (except that the popup member is changed each time to indicate which popup the
call is made for). Repeat until the callback for the top-most popup has been called. Finally
the structure used in all those callback invocations is returned from [fl_popup_do()],

page 211. This chain of callback calls is interrupted when one of the callbacks returns a
value of FL_IGNORE (-1). In that case no further callbacks are invoked and [fl_popup_

do()], page 211 returns NULL, i.e., from the callers perspective it looks as if no selection
has been made. This can be useful when one of the callbacks was already was able to do
all the work required on a selection.

Per default a popup stays open when the user releases the mouse button anywhere else
than on a selectable entry. It only gets closed when the user either selects an entry or clicks
somewhere outside of the popup area. An alternative is a "drag-down" popup that gets
closed whenever the mouse button is released, even if the mouse isn’t on the area of the
popup or a selectable entry. To achieve this effect you can change the "policy" using the
function

int fl_popup_set_policy(FL_POPUP *popup, int policy);

There are two values policy can have:

FL_POPUP_NORMAL_SELECT

Default, popup stays open until mouse button is released on a selectable entry
or button is clicked outside the popups area.

FL_POPUP_DRAG_SELECT

Popup is closed when the mouse button is released anywhere.

The function can be called with either a (valid) popup address, in which case the policy for
that popup is changed, or with a NULL pointer to change the default setting of the policy,
used in the creation of new popups. The function returns the previous policy value or -1
on errors.

It’s also possible to determine the policy setting by using

int fl_popup_get_policy(Fl_POPUP *popup);

Chapter 22: Popups 213

If called with the address of a (valid) popup the policy for this popup (or its parent if one
exists) gets returned. If called with a NULL pointer the default policy used in creating new
popups is returned. On error -1gets returned.

Calling the function with NULL as the popup argument changes the default setting for the
popups created afterwards.

If the popup is partially off-screen the user can push the mouse at the screen borders in
the direction of the currently invisible popup entries. This results in the popups window
getting moved so that previosuly invisible entries become accessible. The popup window
gets shifted vertically in single entry steps, in horizontal direction by a tenth of the screen
width. The delay between shifts is about 100 ms.

22.3 Other Popup Routines

When [fl_popup_do()], page 211 is called the popup per default is shown with its left
upper corner at the mouse position (unless the popup wouldn’t fit onto the screen). Using

void fl_popup_set_position(FL_POPUP *popup, int x, int y);

the position where the popup is drawn can be changed (but if it wouldn’t fit onto the
screen at that position it will also changed automatically). x and y. to be given relative
to the root window, define the position of the upper left hand corner. Using this function
for sub-popups is useless, they always get opened as near as possible to the corresponding
sub-popup entry.

When setting the position of a popup it can be useful to know the exact sizes of its window
in advance. These can be obtained by calling

int fl_popup_get_size(FL_POPUP *popup, unsigned int *w, unsigned int

*h);

The function returns 0 on success and -1 on error (in case the supplied popup argument
isn’t valid). Please note that the reported values are only valid until the popup is changed,
e.g., by adding, deleting or changing entries or changing the appearance of the popup.

A callback function cb() of type [FL_POPUP_CB], page 205, to be called when a entry (or
an entry of a sub-popup) is selected, can be associated with a popup (or changed) using

typedef int (*FL_POPUP_CB)(FL_POPUP_RETURN *);

FL_POPUP_CB fl_popup_set_callback(FL_POPUP *popup, FL_POPUP_CB cb);

The function returns the old setting of the callback routine (on error NULL is returned, which
may indistinguishable from the case that no callback was set before).

For an entry all three associated callback functions can be set via

FL_POPUP_CB fl_popup_entry_set_callback(FL_POPUP_ENTRY *entry,

FL_POPUP_CB cb);

FL_POPUP_CB fl_popup_entry_set_enter_callback(FL_POPUP_ENTRY *entry,

FL_POPUP_CB enter_cb)

FL_POPUP_CB fl_popup_entry_set_leave_callback(FL_POPUP_ENTRY *entry,

FL_POPUP_CB leave_cb);

The first function sets the callback invoked when the entry is selected, the second when the
mouse enters the area of the entry and the third, when the mouse leaves that area. All
function return the previously set callback or NULL when none was set or an error occured.
NULL also gets returned on errors.

Chapter 22: Popups 214

There are three properties that can be set for a popup entry

FL_POPUP_DISABLED

The entry is is shown as disabled and can’t be selected.

FL_POPUP_HIDDEN

The entry is not shown when the popup is opened.

FL_POPUP_CHECKED

Relevant only for toggle and redio entries. When set beside the label of a toggle
entry a check-marker is drawn while the circle beside a radio button is drawn
colored.

The "state" of an entry is the binary OR of these values which can be set and queried using
the functions

unsigned int fl_popup_entry_set_state(FL_POPUP_ENTRY *entry,

unsigned int state);

unsigned int fl_popup_entry_get_state(FL_POPUP_ENTRY *entry);

[fl_popup_entry_set_state()], page 214 returns the previous state on success and
UINT_MAX (a value with all bits set) on failure.

Note that when setting [FL_POPUP_CHECKED], page 207 for a radio entry all other radio
entries belonging to the same group automatically lose their "on" (checked) property.

There are also three convenience function for clearing, raising and toggling bits in the state
of an entry. Normally to clear a certain bit of the state you have to first call [fl_popup_
entry_get_state()], page 214, then clear the bit in the return value and finally call
[fl_popup_entry_set_state()], page 214 with the result to set the new state. Use of
these convenience functions allows to change state bits in a single call.

unsigned int fl_popup_entry_clear_state(FL_POPUP_ENTRY *entry,

unsigned int what);

unsigned int fl_popup_entry_raise_state(FL_POPUP_ENTRY *entry,

unsigned int what);

unsigned int fl_popup_entry_toggle_state(FL_POPUP_ENTRY *entry,

unsigned int what);

The what argument can be any value resulting from a bitwise OR of [FL_POPUP_DISABLED],
page 207, [FL_POPUP_HIDDEN], page 207 and [FL_POPUP_CHECKED], page 207 (thus you
can clear, set or toggle one or more bits of the state in a single call). The functions all return
the original value of the state.

You may search for an entry in a popup by different criteria (please note that the search also
includes sub-popups of the popup, you can identify them by checking the popup member
of the [FL POPUP ENTRY], page 206 structure). The search obviously will only deliver
reasonable results if what you’re searching for is unique between all the entries.

First, you can ask for the entry that had been created with a certain text, including all the
special sequences, by calling

FL_POPUP_ENTRY *fl_popup_entry_get_by_text(FL_POPUP *popup,

const char *text);

FL_POPUP_ENTRY *fl_popup_entry_get_by_text_f(FL_POPUP *popup,

const char *fmt, ...);

Chapter 22: Popups 215

The functions returns either a pointer to the entry found or NULL on failure (because either
no entry with this text was found or the popup doesn’t exist). (The functions differ in
that the first one accepts just a simple string while the second assembles the text from a
format string, just as it’s used for printf() etc., and an appropriate number of following
arguments.)

You may as well search by the left-flushed label parts of the entries as shown on the screen
(note that tab characters ’\t’ originally embedded in the text used when creating the label
have been replaced by single spaces and backspace characters ’\b’ were removed as well as
all special sequences)

FL_POPUP_ENTRY *fl_popup_entry_get_by_label(FL_POPUP *popup,

const char *label);

FL_POPUP_ENTRY *fl_popup_entry_get_by_label_f(FL_POPUP *popup,

const char *fmt, ...);

Thus, since an entry created via a string like "I\bt%Tem\t1%SCtrl+X" will shown with a
left-flushed label part of "Item 1", this will be found when searching with either this string
or a format string fo e.g., "Item %d" and a following integer argument of 1.

Another way to search for an entry is by its value as either specified via the "%x" special
sequence or assigned automatically by

FL_POPUP_ENTRY *fl_popup_entry_get_by_value(FL_POPUP *popup,

long value);

Also the user_data pointer associated with the entry can be used as the search criterion:

FL_POPUP_ENTRY *fl_popup_entry_get_by_user_data(FL_POPUP *popup,

void *user_data);

Finally one can try to find an entry by its current position in the popup (note that here
sub-popups aren’t taken into consideration since that would make the meaning of "position"
rather hard to define) by

FL_POPUP_ENTRY *fl_popup_entry_get_by_position(FL_POPUP *popup,

long position);

where posistion is starting with 0, so when called with 0 the first entry will be returned,
when called with 1 you get the second entry etc. Note that separator lines aren’t counted
but entries currently being hidden are.

22.4 Popup Attributes

Using

void fl_popup_set_title(FL_POPUP *popup, const char *title);

void fl_popup_set_title_f(FL_POPUP *popup, const char *fmt, ...);

const char *fl_popup_set_title(FL_POPUP *popup);

the title of a popup can be changed or the currently set title determined. (The two functions
for setting the title are just different in the way the title is passed: the first one receives a
simple string while the second one assembles the title from a format string just like the one
used with printf() etc. and an appropriate number of following arguments.)

To query or set the font the popups title is drawn in use

Chapter 22: Popups 216

void fl_popup_get_title_font(FL_POPUP *popup, int *size, int *style);

void fl_popup_set_title_font(FL_POPUP *popup, int size, int style);

See Section 3.11.3 [Label Attributes and Fonts], page 28, for details about the sizes and styles
that should be used. The default size and style are [FL_NORMAL_SIZE], page 28 and [FL_

EMBOSSED_STYLE], page 29. This setting also applies to sub-popups of the popup, thus
setting a title font for sub-popups is useless.

When called with the popup argument set to NULL the default settings for popups generated
later are returned or set.

Also the font for the entries of a popup can be queried or and set via

void fl_popup_entry_get_font(FL_POPUP *popup, int *style, int *size);

void fl_popup_entry_set_font(FL_POPUP *popup, int style, int size);

The defalt size is [FL_NORMAL_SIZE], page 28 and the default style is [FL_NORMAL_

STYLE], page 29. Again, the returned or set values also apply to all sub-popups, so
calling the function for sub-popups doesn’t make sense.

When called with popup set to NULL the default settings for popups are returned or changed.

The width of a popup is calculated using the widths of the title and the entries. You can
influence this width by setting a minimum width a popup should have. There are two
functions for the minimum width:

int fl_popup_get_min_width(FL_POPUP *popup);

int fl_popup_set_min_width(FL_POPUP *popup, int min_width);

The first one returns the currently set minimum width (a negative return value indicates
an error). The second allows sets a new minimum width. Setting the minimum width to
0 or a negative value switches the use of the minimum width off. It returns the previous
value (or a negative value on error).

You can query or set the border width popups are drawn width (per default it’s set to 1).
To this purpose call

int fl_popup_get_bw(FL_POPUP *popup);

int fl_popup_set_bw(FL_POPUP *popup, int bw);

Please note that the border width setting is automatically applied also to sub-popups, so
there’s no good reason to call these functions for sub-popups. The default border width is
the same as that for objects.

The functions can also be called with popup set to NULL in which case the default setting
for the border width is returned or set, respectively.

To change the cursor that is displayed when a popup is shown use

void fl_popup_set_cursor(FL_POPUP *popup, int cursor_name);

Use one of the symbolic cursor names (shapes) defined by standard X or the integer value
returned by [fl_create_bitmap_cursor()], page 308 or one of the Forms Library’s pre-
defined symbolic names for the cursor_name argument.

Per default the cursor named "XC_sb_right_arrow" is used. If the function is called with
popup set to NULL the default cursor for popups generated afterwards is changed.

There are several colors used in drawing a popup. These can be set or queried with the
functions

Chapter 22: Popups 217

FL_COLOR fl_popup_set_color(FL_POPUP *popup, int type,

FL_COLOR color);

FL_COLOR fl_popup_get_color(FL_POPUP *popup, int type);

where type can be one of the following values:

FL_POPUP_BACKGROUND_COLOR

Background color of the popup, default is FL_MCOL.

FL_POPUP_HIGHLIGHT_COLOR

Backgroud color an entry is drawn with when it’s selectable and the mouse is
on top of it, default is FL_BOTTOM_BCOL.

FL_POPUP_TITLE_COLOR

Color used for the title text of a popup, default is FL_BLACK.

FL_POPUP_TEXT_COLOR

Color normal used for entry texts, default is FL_BLACK.

FL_POPUP_HIGHLIGHT_TEXT_COLOR

Color of the entry text when it’s selectable and the mouse is on top of it, default
is FL_WHITE.

FL_POPUP_DISABLED_TEXT_COLOR

Color for drawing the text of disabled entries, default is FL_INACTIVE_COL.

FL_POPUP_RADIO_COLOR

Color the circle drawn for radio entris in "on" state is drawn in.

When setting a new color the color previously used is returned by [fl_popup_set_

color()], page 216. Calling these functions for sub-popups doesn’t make sense since
sub-popups are always drawn in the colors set for the parent popup.

When called with popup set to NULL the functions return or set the default colors of popups
created afterwards.

To change the text of a popup entry call

int fl_popup_entry_set_text(FL_POPUP_ENTRY *entry, const char *text);

Please note that in the text no special sequences except "%S" (at which place the text is
split to make up the left- and right-flushed part of the label drawn) are recognized.

The shortcut keys for a popup label can be changed using

void fl_popup_entry_set_shortcut(FL_POPUP_ENTRY *entry,

const char *shortcuts);

See Section 26.1 [Shortcuts], page 245, for details on how such a string has to look like.

The value assigned to a popup entry can be changed via

long fl_popup_entry_set_value(FL_POPUP_ENTRY *entry, long value);

The function returns the previous value.

Also the user data pointer associated with a popup entry can be modified by calling

void *fl_popup_entry_set_user_data(FL_POPUP_ENTRY *entry,

void *user_data);

The function returns the previous setting of user_data.

To determine to which group a radio entry belongs call

Chapter 22: Popups 218

int fl_popup_entry_get_group(FL_POPUP_ENTRY *entry);

Obviously, this function only makes much sense when applied to radio entries. It returns
the group number on success and INT_MAX on failure (that’s why INT_MAX shouldn’t be used
for group numbers).

To assign a radio entry to a different group call

int fl_popup_entry_set_group(FL_POPUP_ENTRY *entry, int group);

Again, for obvious reasons, the function should normally only be called for radio entries. It
returns the previous group number on success and INT_MAX on failure. If one of the entries
of the new group was in "on" state the entries state will be reset to "off" if necessary.

For entries other than radio entries the group isn’t used at all. So, theoretically, it could be
used to store a bit of additional information. If that would be good programming practice
is another question...

Finally, the sub-popup associated with a sub-popup-entry can be queried or changed using
the functions

FL_POPUP *fl_popup_entry_get_subpopup(FL_POPUP_ENTRY *entry);

FL_POPUP *fl_popup_entry_get_subpopup(FL_POPUP_ENTRY *entry,

FL_POPUP *subpopup);

Obviously, calling these functions only makes sense for sub-popup entries.

[fl_popup_entry_get_subpopup()], page 218 returns the address of the sub-popup as-
sociated with the entry or NULL on failure.

To change the sub-popup of an entry a valid sub-popup must be passed to [fl_popup_

entry_set_subpopup()], page 218, i.e., the sub-popup must not already be a sub-popup
of another entry or the popup the entry belongs to itself. You also can’t set a new sub-
popup while the old sub-popup associated with the entry or the popup to become the new
sub-popup is shown. On success the address of the new sub-popup is returned, on failure
NULL.

Note that this function deletes the old sub-popup that was associated with the popup.

Chapter 23: Deprecated Objects 219

23 Deprecated Objects

In this chapter describes object types that have been replaced by newer ones. But they will
remain part of XForms and also can be used in new programs. But there probably will be
not more support for these objects than bug fixes etc.

23.1 Choice Object

A choice object is an object that allows the user the choose among a number of choices. The
current choice is shown in the box of the choice object. The user can either cycle through
the list of choices using the middle or right mouse button or get the list as a menu using
the left mouse button.

23.1.1 Adding Choice Objects

To add a choice object to a form use the routine

FL_OBJECT *fl_add_choice(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

It shows a box on the screen with the label to the left of it and the current choice (empty
in the beginning), centered in the box.

23.1.2 Choice Types

The following types are available:

FL_NORMAL_CHOICE

Middle/right mouse button shortcut.

FL_NORMAL_CHOICE2

Same as FL_NORMAL_CHOICE except drawn differently.

FL_DROPLIST_CHOICE

Menu is activated only by pressing and releasing the mouse on the arrow.

23.1.3 Choice Interaction

Beside simply opening up the popup behind the choice object and selecting an entry with
the left mouse button you can also use the middle and right mouse buttons and the scroll
wheel: a short click with the middle mouse button selects the entry before the currently
selected one, a click with the right mouse button the next. Keeping the middle or right
mouse button pressed down slowly cycles trough the entries, backward or forward. The
same can be down with the sroll wheel.

In both cases, whenever a choice entry is selected (even when it is the original one) the
object is returned to the application program. But you can control the condition under
which the choice object gets returned to the application by using the function

int fl_set_object_return(FL_OBJECT *obj, unsigned int when)

where when can have the following values

[FL_RETURN_NONE], page 46

Never return or invoke callback.

Chapter 23: Deprecated Objects 220

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback if end of interaction and selection of an item coincide.

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever an item is selected (this is the default).

[FL_RETURN_END], page 45

Return or invoke callback on end of an interaction.

[FL_RETURN_ALWAYS], page 46

Return (or invoke callback) whenever the interaction ends and/or an item is
selected.

23.1.4 Other Choice Routines

There are a number of routines to change the list of possible choices. To add a line to a
choice object use

int fl_addto_choice(FL_OBJECT *obj, const char *text);

int fl_addto_choice_f(FL_OBJECT *obj, const char *fmt, ...);

The function returns the number of the new item. The items in the list are numbered in the
order in which they were inserted. The first item has number 1, etc. The two functions differ
in that the first one accepts just a simple string while for the second the text is assembled
from a format string as used by printf() etc. and the following arguments.

Note that, because a choice object uses a popup, the string passed with [fl_addto_

choice()], page 220 cann also contain some additional information not directly shown
in the entries text. E.g., you can create several entries as once if the string you pass to
[fl_addto_choice()], page 220 contains ’|’ characters - these aren’t shown but instead
are treated as separators between the strings for the entries. Some extra control sequences,
starting with the character ’%’ can also be embedded (see Section 23.3.1 [Creating XPop-
ups], page 227), thus a literal ’%’ in a string must be escaped by doubling it.

To delete a line use:

void fl_delete_choice(FL_OBJECT *obj, int line);

Whenever the application program wants to clear the complete list of choices it should use
the routine

void fl_clear_choice(FL_OBJECT *obj)

One can also replace a line using

void fl_replace_choice(FL_OBJECT *obj, int line, const char *text);

void fl_replace_choice(FL_OBJECT *obj, int line, const char *fmt, ...);

(The second function assembles the new text from a format string as used for printf()

etc. and the following arguments.)

To obtain the currently selected item in the choice object use the call

int fl_get_choice(FL_OBJECT *obj);

The function returns the number of the current choice (0 if there is no choice).

You can also obtain the text of the currently selected choice item using the call

const char *fl_get_choice_text(FL_OBJECT *obj);

NULL is returned when there is no current choice.

To obtain the text of an arbitrary choice item, use the following routine

Chapter 23: Deprecated Objects 221

const char *fl_get_choice_item_text(FL_OBJECT *obj, int n);

To obtain the total number of choice items, use the following function

int fl_get_choice_maxitems(FL_OBJECT *obj);

One can set various attributes of an item using the following routine

void fl_set_choice_item_mode(FL_OBJECT *obj, int numb, int mode);

Here mode is the same as that used for menu objects (see above). See also Section 23.3
[XPopup], page 227, for details.

To find about those settings use

int fl_get_choice_item_mode(FL_OBJECT *obj, int numb);

You can use the follow routine to populate a choice object at once, including mode and
shortcut, by using

int fl_set_choice_entries(FL_OBJECT *obj, FL_PUP_ENTRY *entries);

where entries is a pointer to a FL_PUP_ENTRY structure (terminated by a NULL text field)
as already described above for the function [fl_set_menu_entries()], page 224. Also
see Section 23.3 [XPopup], page 227, for more details. Please note that for choice objects
no nested entries are permitted and the item callback functions are ignored. The function
returns the number of items added to the choice object.

Finally, the application program can set the currently selected entry of the choice using a
call of

void fl_set_choice(FL_OBJECT *obj, int line);

void fl_set_choice_text(FL_OBJECT *obj, const char *txt)

void fl_set_choice_text_f(FL_OBJECT *obj, const char *fmt, ...)

where txt (for fl_set_choice_text() or the text resulting from the expansion of the
printf()-compatible format string and the following arguments for fl_set_choice_text_
f() must must be the text of exactly one of the choice items. For example, after the
following choice is created

fl_addto_choice(obj,"item1|item2|item3");

You can select the second item by using any of the following lines

fl_set_choice(obj, 2);

fl_set_choice_text(obj, "item2");

fl_set_choice_text_f(obj, "item%d", 2);

23.1.5 Choice Attributes

Don’t use FL_NO_BOX as the boxtype for a choice object.

The first color argument (col1 to [fl_set_object_color()], page 287 controls the color
of the box and the second (col2) the color of the text in the box.

The current choice by default is shown centered in the box. To change the alignment of the
choice text in the box, use the following routine

void fl_set_choice_align(FL_OBJECT *obj, int align);

To set the font size used inside the choice object use

void fl_set_choice_fontsize(FL_OBJECT *obj, int size);

To set the font style used inside the choice object use

Chapter 23: Deprecated Objects 222

void fl_set_choice_fontstyle(FL_OBJECT *obj, int style);

Note that the above functions only change the font inside the choice object, not the font
used in the popup. To change the font used in the popup, use the XPopup functions [fl_
setpup_default_fontsize()], page 235 and [fl_setpup_default_fontstyle()],

page 235. Note that these functions influence the font settings of all popups! See
Section 3.11.3 [Label Attributes and Fonts], page 28, for details on font sizes and styles.

Normally the pop-up shown for the choice objects will be displayed at the current mouse
position or, for those of type FL_DROPLIST_CHOICE, directly below the choice object. This
can be modified by a call of the function

int fl_set_choice_align_bottom(GL_OBJECT *obj, int flag);

If flag is 0 the normal behaviour is used, but when flag is 1 the popup will be displayed
with its lower right hand corner at the current mouse position or, for objects of type FL_

DROPLIST_CHOICE above the choise object. The function returns the previously set value
for flag.

23.1.6 Remarks

See ‘choice.c’ for an example of the use of choice objects.

23.2 Menu Object

Also menus can be added to forms. These menus can be used to let the user choose from
many different possibilities. Each menu object has a box with a label in it in the form.
Whenever the user presses the mouse inside the box (or moves the mouse on top of the box)
a pop-up menu appears. The user can then make a selection from the menu.

23.2.1 Adding Menu Objects

To add a menu to a form use the routine

FL_OBJECT *fl_add_menu(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

It shows a box on the screen with the label centered in it.

23.2.2 Menu Types

The following types are available:

FL_PUSH_MENU

The menu appears when the user presses a mouse button on it.

FL_PULLDOWN_MENU

The menu appears when the user presses a mouse button on it.

FL_TOUCH_MENU

The menu appears when the user move the mouse inside it.

FL_PUSH_MENU and FL_PULLDOWN_MENU behave rather similar. When you click on a FL_

PUSH_MENU per default a pop-up window gets opened on top of the FL_PUSH_MENU menu’s
box that has a label at the top, indicating the currently selected menu item. The pop-
up window stays open until you either select an item or press a mouse button somewhere
outside the pop-up window.

Chapter 23: Deprecated Objects 223

When you click on FL_PULLDOWN_MENU also a pop-up window is shown, but directly below
the menu’s box. This pop-up window has no label and it only stays open until you release
the mouse button.

FL_PUSH_MENU and FL_PULLDOWN_MENU can be made even more similar by using the [fl_

set_menu_notitle()], page 227 function (see below). This changes it’s properties so
that the pop-up window also appears below the menu’s box and that no label is shown in
the pop-up window. The only remaining difference then is that a FL_PUSH_MENU only gets
closed when a menu item is selected or the user presses the mouse outside of the pop-up
window while a FL_PULLDOWN_MENU also gets closed when the mouse button is released.

23.2.3 Menu Interaction

When the menu appears the user can make a selection using the left mouse button or make
no selection by clicking outside the menu (or by simply releasing the mouse button in case
of a FL_PULLDOWN_MENU type menu. Normally when he makes a selection the menu object
is returned by the interaction routines.

You can control the condition under which the menu object gets returned to the application
by using the function

int fl_set_object_return(FL_OBJECT *obj, unsigned int when)

where when can have the following values

[FL_RETURN_NONE], page 46

Never return the object or invoke its callback.

[FL_RETURN_END_CHANGED], page 45

Return or invoke callback if end of interaction and selection of an item coincide
(this is the default for all menu objects except those of type FL_TOUCH_MENU).

[FL_RETURN_CHANGED], page 45

Return or invoke callback whenever an item is selected (this is the default for
all menu objects of type FL_TOUCH_MENU).

[FL_RETURN_END], page 45

Return or invoke callback on end of an interaction.

[FL_RETURN_ALWAYS], page 46

Return (or invoke callback) whenever the interaction ends and/or an item is
selected.

23.2.4 Other Menu Routines

There are two ways to populate a menu, i.e., add items. The first one is a bit more complex
but allows for more flexibility, e.g., later adding and removing items, associating callbacks
with individual items etc. For the more simple (and in many cases sufficient) method see
the function [fl_set_menu_entries()], page 224.

To set the actual menu for a menu object, use the routine

void fl_set_menu(FL_OBJECT *obj, const char *menustr, ...);

menustr describes the menu in the form used by XPopups (see Section 23.3 [XPopup],
page 227). In the simplest case it just contains the texts for the menu items, separated by
a bar (’|’), e.g., "First|Second|Third". But it’s also possible to employ special tags (see

Chapter 23: Deprecated Objects 224

Section 23.3.1 [Creating XPopups], page 227) that can be used to indicate special attributes
(radio, toggle and greyed-out, for example). For this usage the unspecified arguments (the
... in the function call) can be used t add neceassary information. Whenever the user
selects a menu item, a pointer to the menu object it belongs to is returned to the application
program.

Please note that if you call [fl_set_menu()], page 223 on a menu that already contains
items those items are removed. The function calls [fl_clear_menu()], page 225 inter-
nally before the new items are added.

If you explicitely assign a menu item ID to a menu, using the special tag %x, it is your
responsibility to make sure that this ID isn’t already used by a different menu item in the
same menu. Failure to do so may make it impossible to use the menu properly. All functions
working on items expect the menu item ID as one of their arguments.

In case you don’t set menu item IDs they are assigned automatically with the first item
obtaining the menu item ID 1, the next 2 etc., i.e., it directly reflects the position of the
item in the menu.

It is also possible to add menu items to an existing menu using a call of

int fl_addto_menu(FL_OBJECT *obj, const char *menustr, ...);

where menustr is a string of the same form as used in [fl_set_menu()], page 223 (you
can add one or more new menu items this way).

Also routines exist to delete a particular menu item or change it:

void fl_delete_menu_item(FL_OBJECT *obj, int miid);

void fl_replace_menu_item(FL_OBJECT *obj, int miid,

const char *menustr, ...);

miid is the menu item ID. menustrmust be a string as used in [fl_set_menu()], page 223

with the only difference that only a single menu item can be specified.

Please note: when deleting a menu item all other items keep their menu item IDs. The menu
item ID of the deleted menu item isn’t re-used when new items are added later. Instead
for each menu an internal counter exists that gets incremented for each menu item added
and which value is used for the menu item ID unless one is explicitely assigned to the menu
item. The counter oly gets reset to 1 when the menu is cleared used [fl_clear_menu()],

page 225.

The menu item ID of a menu item changed by using [fl_replace_menu_item()],

page 224 does not change unless the library is explicitely asked to via %x in menustr.

For most applications, the following routine may be easier to use at the expense of somewhat
restrictive value a menu item can have as well as a loss of the ability to delete menu items
or associate callbacks with menu items.

int fl_set_menu_entries(FL_OBJECT *obj, FL_PUP_ENTRY *ent);

where ent is a pointer to an array of structure of the following type, terminated by an
element, where at least the text member is a NULL pointer:

typedef struct {

const char *text;

FL_PUP_CB callback;

const char *shortcut;

Chapter 23: Deprecated Objects 225

int mode;

} FL_PUP_ENTRY;

The meaning of each member is explained in Section 21.3. For menus, item callback func-
tion can be NULL if the menu callback handles the interaction results. See demo program
‘popup.c’ for an example use of [fl_set_menu_entries()], page 224.

The function [fl_set_menu_entries()], page 224 works by creating and associating a
popup menu with the menu object. The popup ID is returned by the function. Whenever
the function is called, the old popup associated with the object (if one exists) is freed and a
new one is created. Although you can manipulate the menu either through the menu API
(but adding and removing menu items is not supported for menus created this way) or
popup API, the application should not free the popup directly and use [fl_clear_menu()],
page 225 instead.

To clear the whole menu use

void fl_clear_menu(FL_OBJECT *obj);

To find the menu item selected by the user use

int fl_get_menu(FL_OBJECT *obj);

The the function returns the menu item ID. In the simplest possible case this is just the
position of the menu item (starting at 1). This stops to be true when either IDs have been
explicitely assigned to items or items have been deleted. In that case the following rules
apply:

1. A menu item ID may have been assigned to a menu item using %xn in the string for
the text of the menu item.

2. Menu items can get associated with a callback function that is executed when the menu
item is selected. The callback function is of type [FL_PUP_CB], page 233 and receives
the menu item ID of the selected menu. If such a callback is set for a menu item
the return value of [fl_get_menu()], page 225 is the return value of this function
instead of the menu item ID that would have been returned otherwise.

To obtain the text of any item, use the following routine

const char *fl_get_menu_item_text(FL_OBJECT *obj, int miid);

where miid is the menu item ID. If n isn’t a valid menu iem ID item NULL is returned.

To obtain the text of the selected enu item use

const char *fl_get_menu_text(FL_OBJECT *obj);

To obtain the total number of menu items, use the function

int fl_get_menu_maxitems(FL_OBJECT *obj);

One can change the appearance of different menu items. In particular, it is sometimes
desirable to make grey-out menu items and make them unselectable or to put boxes with
and without checkmarks in front of them. This can be done using the routine:

void fl_set_menu_item_mode(FL_OBJECT *obj, int miid, unsigned mode);

miid is the menu index ID of the memu item you want to change. mode represents the
special properties you want to apply to the chosen item. You can specify more than one at
a time by adding or bitwise OR-ing these values together. For this parameter, the following
symbolic constants exist:

Chapter 23: Deprecated Objects 226

FL_PUP_NONE

No special display characteristic, the default.

FL_PUP_BOX

"Binary" entry, i.e., an entry that stands for a choice that can be switched on
and off. Displayed with an unchecked box to the left.

FL_PUP_RADIO

"Radio" item belonging to a group, so that gets automatically switched off
when another item of the group is selected. Displayed with a diamoned-shaped
box at the left.

FL_PUP_GREY

To be OR-ed with one of the above to make that item appear greyed-out and
disable it (i.e., not selectable anymore).

FL_PUP_CHECK

To be OR-ed with one of FL_PUP_BOX and FL_PUP_RADIO to make the box to
the left appear checked or pushed.

There is also a routine that can be used to obtain the current mode of an item after
interaction, mostly useful for toggle or radio items:

unsigned int fl_get_menu_item_mode(FL_OBJECT *obj, int miid);

While a callback associated with a menu entry can be set when it is created it can also set
later on or be changed. For this use the function

FL_PUP_CB fl_set_menu_item_callback(FL_OBJECT *ob,

int numb, FL_PUP_CB cb);

where numb is the menu entries ID and cb is the callback function of type [FL_PUP_CB],

page 233 (or NULL to disable a callback). The return value is a pointer to the previously
used callback function (or NULL).

It is often useful to define keyboard shortcuts for particular menu items. For example, it
would be nice to have <Alt>s behave like selecting "Save" from a menu. This can be done
using the following routine:

void fl_set_menu_item_shortcut(FL_OBJECT *obj, int miid,

const char *str);

miid is the menu item ID of the menu item under consideration. str contains the shortcut
for the item. (Actually, it can contain more shortcuts for the same item.) See Section 26.1
[Shortcuts], page 245, for more information about shortcuts.

Finally there is the routine:

void fl_show_menu_symbol(FL_OBJECT *obj, int yes_no);

With this routine you can indicate whether to show a menu symbol at the right of the menu
label. By default no symbol is shown.

23.2.5 Menu Attributes

Any boxtype can be used for a menu except for those of type FL_PULLDOWN_MENU, for which
FL_NO_BOX should not be used.

Using the functiond

Chapter 23: Deprecated Objects 227

The first color argument (col1) to [fl_set_object_color()], page 287 controls the color
of the menu’s box when not open and the second (col2) is the color when the menu is shown.

To change the font style and size used in the popup menus (not the menu label), use the
following routines

void fl_setpup_default_fontstyle(int style);

void fl_setpup_default_fontsize(int size);

These settings apply to all menus at once.

If desired, you can attach an external popup to a menu object via the following routine

void fl_set_menu_popup(FL_OBJECT *obj, int pupID);

where pupID is the ID returned by [fl_newpup()], page 227 or [fl_defpup()],

page 227. See Section 23.3 [XPopup], page 227, for more details on popup creation.

For a menu created this way only [fl_get_menu()], page 225 and [fl_get_menu_

text()], page 225 work as expected. Other services such as mode setting and query etc.
should be done via the popup routines.

To obtain the popup ID associated with a menu, use the following routine

int fl_get_menu_popup(FL_OBJECT *obj);

The function returns the popup ID if the menu was created using [fl_set_menu_popup()],
page 227 or [fl_set_menu_entries()], page 224, otherwise it returns -1.

The callback associated with a menu

Normally in the popup opened for a menu a title is shown. This can be switched off (and
back on again by using the function

fl_set_menu_notitle(FL_OBJECT *obj, int off);

23.2.6 Remarks

See ‘menu.c’ for an example of the use of menus. You can also use FL_MENU_BUTTON to
initiate a callback and use an XPopup directly within the callback. See ‘pup.c’ for an
example of this approach.

23.3 XPopup

XPopup is not really an object class, but because it is used by menu and choice objects and
can function stand-alone, it is documented here.

XPopups are simple transient windows that show a number of choices the user can click on
to select the desired option.

23.3.1 Creating XPopups

To define a new popup, use the following routines

int fl_newpup(Window parent);

int fl_defpup(Window parent, const char *str, ...);

Both functions allocate and initialize a new popup menu and return the XPopup identifier
(or -1 on failure). [fl_defpup()], page 227 in addition accepts a pointer str to the texts
for menu items (optionally also some more arguments, see below). More than one item can
be specified by using a vertical bar (|) between the items, e.g., "foo|bar" adds two menu

Chapter 23: Deprecated Objects 228

items. The parent parameter specifies the window to which the XPopup belongs. In a
situation where the XPopup is used inside an object callback FL_ObjWin(obj) will do. If
parent is None the root window will be used.

Calling [fl_defpup()], page 227 with the str argument set to NULL is equivalent to
calling [fl_newpup()], page 227.

It is possible to specify XPopup and item properties, such as shortcuts, callbacks etc., to-
gether with the items texts using a format string system similar as used for e.g., oprint(3).
If XPopup or item properties require arguments, they must be passed to [fl_defpup()],

page 227 following the str argument.

The following item properties are supported:

%t Marks the item text as the XPopup title string.

%F Binds a callback function to the XPopup as a whole that is called for every
selection made from this XPopup. You must specify the function to be invoked
in the parameters following str. The value of the selected item is passed as the
only argument to the invoked callback function. The callback function must
return a non-negative integer. If such a callback function has been registered
for a XPopup and you select its third item, in the simplest case 3 will be passed
as a parameter to the callback function (more complicated situations would
involve that the item had been assigned a different value. e.g., using %x, see
below, or that there’s also a callback bound to the item itself, in which case
the global XPopup callback would receive the return value of the items callback
function).

%f Binds a callback to this particular item which is invoked if the item is selected.
The routine must be supplied in the parameters following str. It has to return a
non-negative integer. The value of the selected item is passed as a parameter to
this function. If you have also bound the entire XPopup to a callback function
via %F, then the function specified via %f is called first with the items value
and its return value (if larger then 0 is then passed as the parameter to to the
function bound to the whole XPopup (as set via %F).

%i Disables and greys-out the item. %d can be used instead of %i.

%l Adds a line under the current entry. This is useful in providing visual clues to
groups of entries

%m Whenever this item is selected another (already defined) XPopup is bound to
the item so that the sub-XPopup is opened when the user moves the mouse
onto the item, This can be used to create cascading menus. The identifier of
the sub-XPopup to be shown must be provided in the arguments following str.
It is the programmers responsibility to make sure that the item values of the
sub-XPopup don’t clash with those of the higher-level XPopup or it may be
impossible to determine which item was selected.

%h Specify a "hotkeys" that can be used to select this item. Hotkeys must be given
in the arguments following str as a pointer to a string. Use # to specify that a
key must be pressed together with the <Alt> key, ^ for simultaneous pressing
of <Ctrl> and &n for the function key Fn.

Chapter 23: Deprecated Objects 229

%s can be used instead of %h.

%xn Assigns a numerical value to this item. This value must be positive. This new
value overrides the default position-based value assigned to this item. Different
from most other flags, the value n must be entered as part of the text string
(i.e., do not try to use the arguments following str to specify this value!) and
must be number larger than 0. It is the programmers responsibility to make
sure that the items value does not clash with those of other items of the XPopup
or determining which item was selected may be impossible.

%b Indicates this item is "binary item" (toggle), currently in off state. When
displayed, binary items will be drawn with a small box to the left. See also
FL_PUP_BOX.

%B Same as %b except that it also signifies that this item is in on or "true" state
and consequently is drawn with a checked box on the left. See also FL_PUP_BOX

| FL_PUP_CHECK.

%rg Specifies this menu item is a "radio item" belonging to group with number g,
currently not being selected. The group number g, that must be part of the
string directly following %r (and not specified via the arguments following the
string), must be a non-zero, positive number. Radio items are drawn with a
small diamond box to the left (empty while not active). See also FL_PUP_RADIO.

%Rg Same as %rg except that it also sets the state of the radio item as selected or
"pushed", the item is drawn with a filled diamond box to the left. See also [fl_
setpup_selection()], page 234. See also FL_PUP_RADIO | FL_PUP_CHECK.

%% Use this if you need a % character in the string.

<Ctrl>H (\010)

Same as %l except that the character must precede the item label, i.e., use
"\010Abc" and not "Abc\010".

Due to the use of variable arguments error checking can only be minimal. Also note that if
%x is used to specify a value that happens to be identical to a position-based value, the result
is unpredictable when subsequent references to these items are made. There is currently a
limit of FL_MAXPUPI (64) items per popup.

Tabs characters (’\t’) can be embedded in the item string to align different fields.

You can add more items to an existing XPopup using the following routine

int fl_addtopup(int popup_id, const char *str, ...);

where popup_id is the value returned by [fl_newpup()], page 227 or [fl_defpup()],

page 227 for the XPopup. Again, str can contain information for one or more new items,
including the special sequences described earlier. The function returns -1 if invalid argu-
ments are detected (as far as possible for a function with a variable number of arguments).

To display a popup, use

int fl_dopup(int popup_id);

This function displays the specified XPopup until the user makes a selection or clicks some-
where outside of the XPopups box. The value returned is the value of the item selected
or -1 if no item (or a disabled one) was selected. However, if there is a function bound

Chapter 23: Deprecated Objects 230

to the XPopup as a whole or to the selected item itself, this function is invoked with the
item value as the argument and the value returned by [fl_dopup()], page 229 is then
the return value of this function. If a callback function for both the selected item and the
XPopup as a whole exists, the callback function for the item is called first with the item
value as the argument and then the return value of this item specific callback function is
passed to the XPopups callback function. [fl_dopup()], page 229 then finally returns
the return value of this second function call.

Normally a XPopup get opened when the left mouse button has been pressed down and
get closed again when the left mouse button is released. But there are a number of ways
to achieve a "hanging" XPopup, i.e., that the XPopup that says open, even though the
left mouse button isn’t pressed down anymore. This happens e.g., when the user releases
the mouse button in the title area of the XPopup or when the XPopup was opened via a
keyboard shortcut. In that case it’s also possible to navigate through the items and select
via the keyboard.

A typical procedure may look as follows:

int item3_cb(int n) {

return n + 7;

}

/* define the menu */

int menu = fl_newpup(parent);

fl_addtopup(menu, "Title %t|Item1%rg1|Item2%Rg1|Item3%x10%f|Item4",

item3_cb);

switch (fl_dopup(menu)) {

case 1: /* item1 is selected */

/* handle it */

break;

case 2:

/* handle it */

break;

case 4:

/* handle it */

case 17:

/* item 3 call back has been executed */

}

Here callback function item3_cb() is bound to the third item and this item has been
assigned the number 10. Thus, when it is selected [fl_dopup()], page 229 does not return
3 or 10. Instead the callback function item3_cb() is invoked with 10 as its argument. And
this function in turn returns 10 + 7, which is the value [fl_dopup()], page 229 finally
returns.

Note also that items 1 and 2 both are radio items, belonging to the same group (numbered
1). Item 2 is currently the active item of this group.

Chapter 23: Deprecated Objects 231

Sometimes it might be necessary to obtain the popup ID inside an item callback function.
To this end, the following function available:

int fl_current_pup(void);

If no popup is active, the function returns -1. Until all callback functions have been run
the function returns the ID of the XPopup the items belong to.

To destroy a popup menu and release all memory used, use the following routine

void fl_freepup(int popup_id);

For most applications, the following simplified API may be easier to use

void fl_setpup_entries(int popup_id, FL_PUP_ENTRIES *entries);

where popup_id is the popup ID returned by [fl_newpup()], page 227 or
[fl_defpup()], page 227 and entries is an array of the following structures

typedef struct {

const char * item_text; /* item text label */

FL_PUP_CB callback; /* item callback routine */

const char * shortcut; /* shortcut for this item */

unsigned int mode; /* item mode */

} FL_PUP_ENTRY;

The meaning of each member of the structure is as follows:

text This is the text of a XPopup item. If text is NULL, it signifies the end of this
popup menu. The first letter of the text string may have a special meaning if
it is one of the following:

’/’ This indicates the beginning of a sub-popup, starting with the next
item and ending with the next item with text being NULL.

’_’ Indicates that a line should be drawn below this item (typically as
a visual reminder of logical groupings of items).

callback This is the callback function that will be called when this particular item is
selected by the user. [fl_dopup()], page 229 returns the value returned by
this callback. If the callback is NULL, the item number will be returned directly
by [fl_dopup()], page 229.

shortcut Specifies the keyboard shortcut.

mode Specifies special attributes of this item. This can be one or a combination by
bitwise OR of one of the following:

FL PUP NONE

No special characteristics, the default.

FL_PUP_GREY

Item is greyed-out an can’t be selected. Trying to select it results
in [fl_dopup()], page 229 returning -1.

FL_PUP_BOX

"Binary item", drawn with a little box to its left.

Chapter 23: Deprecated Objects 232

FL_PUP_RADIO

"Radio item", drawn with a little diamond-shaped box to its left.
All radio items of the XPopup belong to the same group.

FL_PUP_CHECK

OR this value with FL_PUP_BOX or FL_PUP_RADIO to have the box
to the left drawn as checked or pushed.

With this simplified API, popup item values start from 1 and are the index in the entries
array for the item plus 1. For example, the third element (with index 2) of the array of
structure has an item value of 3. Please note that also elements of the array that end a
submenu and thus don’t appear as visible items in the XPopup get counted. This way,
the application can relate the value returned by fl dopup() to the array easily. See demo
program ‘popup.c’ for an example use of the API.

To illustrate the usage of [fl_setpup_entries()], page 231, Fig 21.2 shows the popup
created with the array of structures defined in the following code example:

FL_PUP_ENTRY entries[] = {

{"Top item1", callback}, /* item number 1 */

{"Top item2", callback},

{"Top item3", callback},

{"/Top item4", callback},

{"Sub1 item1", callback}, /* item number 5 */

{"Sub1 item2", callback},

{"Sub1 item3", callback},

{"Sub1 item4", callback},

{"/Sub1 item5", callback},

{"Sub2 item1", callback}, /* item number 10 */

{"Sub2 item2", callback},

{"Sub2 item3", callback},

{NULL, NULL }, /* end of level2, item number 13 */

{NULL, NULL }, /* end of sublevel1, item nuber 14 */

{"Top item5", callback}, /* item number 15 */

{NULL, NULL } /* end of popup */

};

23.3.2 XPopup Interaction

To select an item, move the mouse to the item to be selected while keeping the mouse
button pressed down and then release the mouse button on top of the item to be selected.
If you don’t want to make a selection release the mouse button somewhere outside the area
of the XPopup.

If you have a "hanging" XPopup, i.e., a XPopup that’s open even though the mouse button
isn’t pressed anymore you can select by clicking on an item or use the cursor Up and Down

keys to navigate through the items and select by pressing the <Return> key. The <Home>

and <End> keys allow you to jump to the first or last selectable item, respectively. Use
<Esc> to close the popup without selecting an item.

It is also possible to use convenience functions to bind keyboard keys to items (the
"hotkeys") instead of using %s with [fl_defpup()], page 227:

Chapter 23: Deprecated Objects 233

void fl_setpup_shortcut(int popup_id, int item_val,

const char *hotkeys);

where item_val is the value associated with the item (either due to its position or set
with %x) and hotkeys is a string specifying all the hotkey combinations. See Section 26.1
[Shortcuts], page 245, for details. Briefly, within that string # and ^ denote the <Alt> and
<Ctrl> keys, respectively. &n with n = 1, 2 etc. can be used to denote the function key
numbered n. Thus if hotkeys is set to "#a^A, both <Ctrl>A and <Alt>A are bound to the
item. One additional property of the hotkey is the underlining of corresponding letters in
the item string. Again, only the first key in the hotkey string is used. Therefore, the hotkey
strings "Cc", "#C" and "^C" will result in the character C in the item string "A Choice"

being underlined, while the the hotkey strings "cC" and "#c" will not since there’s no c in
the item string. There is a limit of maximum 8 shortcut keys.

Two convenience functions are available to set the callback functions for items of a XPopup
and the XPopup as a whole (called whenever a selection is made):

typedef int (*FL_PUP_CB)(int);

FL_PUP_CB fl_setpup_itemcb(int popup_id, int item_val, FL_PUP_CB cb);

FL_PUP_CB fl_setpup_menucb(int popup_id, FL_PUP_CB cb);

These functions thus allow to change the popup and item callback functions set at creation
of the popup with %F and %f. As usual, popup_id is the ID of the XPopup, item_val the
value associated with the item (position or value set via %x), and cb is the address of the
callback function.

Please note that Xpopup objects are a bit special in XForms. Normal objects get returned
by e.g., [fl_do_forms()], page 297 (or an associated callback gets invoked). But since
Xpopup objects are meant to be sub-objects of other objects (like FL_CHOICE and L_MENU

objects) and don’t get invoked directly by a call of e.g., [fl_do_forms()], page 297 but
instead by a call of [fl_dopup()], page 229 they can’t get returned to the application.
Instead the caller of [fl_dopup()], page 229 (normally some internal function of a FL_

CHOICE or FL_MENU object) has to deal with the return value.

Furthermore, also callback functions can be set that get invoked whenever an item in the
XPopup is entered or left, even without a selection being made. The following functions
can be used to register these item enter/leave callbacks:

typedef void (*FL_PUP_ENTERCB)(int item_val, void *data);

typedef void (*FL_PUP_LEAVECB)(int item_val, void *data);

FL_PUP_ENTERCB fl_setpup_entercb(int popup_id,

FL_PUP_ENTERCB cb, void *data);

FL_PUP_LEAVECB fl_setpup_leavecb(int popup_id,

FL_PUP_LEAVECB cb, void *data);

The function cb will be called when the mouse enters or leaves an (non-disabled) item of
the XPopup popup_id. Two parameters are passed to the callback function. The first
parameter is the item number enter/leave applies to and the second parameter is a data
pointer. To remove an enter/leave callback, call the functions with the callback function
argument cb set to NULL.

There is also a function to associate a XPopup item with a sub-XPopup

Chapter 23: Deprecated Objects 234

void fl_setpup_submenu(int popup_id, int item_val, int subpopup_id);

If a sub-XPopup is associated with item item_val that item can’t be selected anymore
(releasing the mouse button on this item makes [fl_dopup()], page 229 return -1 but
instead a new XPopup is opened beside the item and you can now make selections within
this sub-XPopup. It is the programmers responsibility to make sure that the item values of
the sub-XPopup don’t clash with those of the higher-level XPopup or it may be impossible
to determine which item was selected.

23.3.3 Other XPopup Routines

Note that most of the setpup/getpup routines are recursive in nature and the function will
search the menu and all its submenus for the item.

It is possible to modify the display characteristics of a given XPopup item after its creation
using the following routine

void fl_setpup_mode(int popup_id, int item_val, unsigned mode);

As usual popup_id is the XPopup ID as returned by [fl_newpup()], page 227 or [fl_
defpup()], page 227 and item_val the value of the item. mode is one of FL PUP NONE,
FL PUP GREY, FL PUP BOX or FL PUP RADIO (one of the later two can be bitwise ORed with
FL_PUP_CHECK, as already discussed above.

To obtain the mode of a particular menu item, use the following routine

unsigned int fl_getpup_mode(int popup_id, int item_val)

This comes in handy to check if a binary or radio item is set

if (fl_getpup_mode(popupd, item_val) & FL_PUP_CHECK)

/* item is set */

There exists also a routine that can be used to obtain an items text

const char *fl_getpup_text(int popup_id, int item_val);

In some situations, especially when the popup is activated by non-pointer events (e.g., as
a result of a keyboard shortcut), the default placement of popups based on mouse loca-
tion might not be adequate or appropriate, thus XPopup provides the following routine to
override the default placement

void fl_setpup_position(int x, int y);

where x and y specify the location where the top-left corner of the popup should be. x and
y must be given in screen coordinates (i.e., relative to the root window) with the origin at
the top-left corner of the screen. This routine should be used immediately before invoking
[fl_dopup()], page 229, the position is not remembered afterwards.

If x or y is negative, the absolute value is taken to mean the desired location relative to the
right or bottom corner of the popup (not the screen!).

Another function exists for controlling the positon of the popup. When the fuunction

void fl_setpup_align_bottom(void);

then the pop-up will appear with its lower right hand corner aligned aligned with the mouse
position or, if also [fl_setpup_position()], page 234 is active, the postion set this way
will be interpreted to mean the lower right hand position of the popu-up.

A radio item in a group can be initialized to be in "pushed" state by using %R. But you
can also switch a such a radio item to "pushed state also programmatically using

Chapter 23: Deprecated Objects 235

void fl_setpup_selection(int popup_id, int item_val);

Of course, other radio items of the XPopup belonging to the same group are reset to
"unpushed" state.

To obtain the number of items in a popup, use the following routine

int fl_getpup_items(int popup_id)

23.3.4 XPopup Attributes

The title of a XPopup can be set using the functions

void fl_setpup_title(int popup_id, const char *title);

void fl_setpup_title_f(int popup_id, const char *fmt, ...);

They only differ in the way the new title is passed to the function, the first one accepts a
simple string while the second expects a format string as used for printf() etc., followed
by the appropriate number of (unspecified) arguments.

Use the following routines to modify the default popup font style, font size and border
width:

int fl_setpup_default_fontsize(int size);

int fl_setpup_default_fontstyle(int style);

int fl_setpup_default_bw(int bw);

The functions return the old size, style or border width value, respectively.

All XPopups by default use a right arrow cursor. To change the default cursor, use

Cursor fl_setpup_default_cursor(int cursor);

where you can use for cursor any of the standard cursors defined in <X11/cursorfont.h>

like XC_watch etc. The function returns the previously cursor.

To change the cursor of a particular XPopup only , use the following routine

Cursor fl_setpup_cursor(int popup_id, int cursor);

For example, after the following sequence,

id = fl_defpup(win, "item1|item2");

fl_setpup_cursor(id, XC_hand2);

the popup with ID id will use a "hand" instead of the default arrow cursor.

In versions before 1.0.91 XPopups were drawn with a heavy shadow around the box. Draw-
ing of this shadow could be controlled via

void fl_setpup_shadow(int popup_id, int yes_no);

Nowadays this function still exists for backward-compatibility but does nothing.

The appearance of XPopups (and their associated sub-popups) can be change by the fol-
lowing routines:

void fl_setpup_bw(int popup_id, int bw);

void fl_setpup_softedge(int pupup_id, int yes_no);

The first sets the border width for a XPopup. Calling [fl_setpup_softedge()], page 235

with a true argument for yes_no has the same effect as using a negative border width while
using a false (0) argument is equivalent to using a positive one (so this function isn’t very
useful).

The background color and text color of a popup can be changed using

Chapter 23: Deprecated Objects 236

void fl_setpup_default_color(FL_COLOR bgcolor, FL_COLOR tcolor);

By default, the background color bgcolor is FL_COL1 and the text color tcolor is FL_BLACK.

For "binary" or radio items, that have check box associated with them, the "checked" or
"pushed" color (default is FL_BLUE) can be changed with the following routine

void fl_setpup_default_checkcolor(FL_COLOR checkcolor);

There is by default a limit of 32 XPopups per process. To enlarge the number of XPopups
allowed, use the following routine

int fl_setpup_maxpups(int new_max);

The function returns the previous limit.

It is possible to use XPopups as a message facility using the following routines

void fl_showpup(int popup_id);

void fl_hidepup(int popup_id);

No interaction takes place with a XPopup shown by [fl_showpup()], page 236 and it can
only be removed from the screen programmatically via [fl_hidepup()], page 236.

23.3.5 Remarks

Take care to make sure all items, including the items on submenus, of a XPopup have
unique values and are positive.

XPopups are used indirectly in the demo programs ‘menu.c’, ‘boxtype.c’, ‘choice.c’ and
others. For a direct pop-up demo see ‘popup.c’.

Part IV - Designing Object Classes 237

Part IV - Designing Object Classes

Chapter 24: Introduction 238

24 Introduction

Earlier chapters discussed ways to build user interfaces by combining suitable objects from
the Forms Library, defining a few object callbacks and using Xlib functions. However, there
is always a possibility that the built-in objects of the Forms Library might not be enough.
Although free objects in principle provide all the flexibility a programmer needs, there can
be situations where it is beneficial to create new types of objects, for example switches or
joysticks or other types of sliders, etc. In these cases, a programmer can use the architecture
defined by the Forms Library to create a new object class that will work smoothly with the
built-in or user-created object classes.

Creating such new object classes and adding them to the library is simpler than it sounds.
In fact it is almost the same as making a free object. This part gives you all the details of
how to add new classes. In chapter 24 a global architectural overview is given of how the
Forms Library works and how it communicates with the different object classes by means
of events (messages). Chapter 25 describes in detail what type of events objects can receive
and how they should react to them. Chapter 26 describes in detail the structure of the type
FL_OBJECT which plays a crucial role, a role equivalent to a superclass (thus all other object
classes have FL_OBJECT as their parent class) in object-oriented programming.

One of the important aspects of an object is how to draw it on the screen. Chapter 27 gives
all the details on drawing objects. The Forms Library contains a large number of routines
that help you draw objects. In this chapter an overview is given of all of them. Chapter 28
gives an example illustrating on how to create a new object class. Due to the importance of
button classes, special routines are provided by the Forms Library to facilitate the creation
of this particular class of objects. Chapter 29 illustrates by two examples the procedures of
creating new button classes using the special services. One of the examples is taken from
the Forms Library itself and the other offers actual usability.

Sometimes it might be desirable to alter the behavior of a built-in class slightly. Obviously
a full-blown (re)implementation from scratch of the original object class is not warranted.
Chapter 30.1 discusses the possibilities of using the pre-emptive handler of an object to
implement derived objects.

Chapter 25: Global Structure 239

25 Global Structure

The Forms Library defines the basic architecture of an object class. This architecture
allows different object classes developed by different programmers to work together without
complications.

The Forms Library consists of a main module and a number of object class modules. The
object class modules are completely independent from the main module. So new object
class modules can be added without any change (nor recompilation) of the main module.
The main module takes care of all the global bookkeeping and the handling of events. The
object class modules have to take care of all the object specific aspects, like drawing the
object, reacting to particular types of user actions, etc. For each class there exists a file
that contains the object class module. For example, there are files ‘slider.c’, ‘box.c’,
‘text.c’, ‘button.c’, etc.

The main module communicates with the object class modules by means of events (messages
if you prefer). Each object has to have a handle routine known to the main module so that
it can be called whenever something needs to be done. One of the arguments passed to the
handle routine is the type of event, e.g., FL_DRAW, indicating that the object needs to be
redrawn.

Each object class consists of two components. One component, both its data and functions,
is common to all object classes in the Forms Library. The other component is specific to
the object class in question and is typically opaque. So for typical object classes, there
should be routines provided by the object class to manipulate the object class specific
data. Since C lacks inheritance as a language construct, inheritance is implemented in the
Forms Library by pointers and the global function [fl_make_object()], page 2521. It is
helpful to understand the global architecture and the object-oriented approach of the Forms
Library, it makes reading the C code easier and also adds perspective on why some of the
things are implemented the way they are.

In this chapter it is assumed that we want to create a new class with the name NEW. Creating
a new object class mainly consists of writing the handle routine. There also should be a
routine that adds an object of the new class to a form and associates the handle routine to
it. This routine should have the following basic form:

FL_OBJECT *fl_add_NEW(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label);

This routine must add an object of class NEW to the current form. It receives the parameters
type, indicating the type of the object within the class (see below), x, y, w, and h, indicating
the bounding box of the object in the current active units (mm, point or pixels), and label

which is the label of the object. This is the routine the programmer uses to add an object
of class NEW to a form. See below for the precise actions this routine should take.

One of the tasks of fl_add_NEW() is to bind the event handling routine to the object. For
this it will need a routine:

static int handle_NEW(FL_OBJECT *obj, int event,

FL_Coord mx, FL_Coord my,

1 There are other ways to simulate inheritance, such as including a pointer to generic objects as part of the
instance specific data.

Chapter 25: Global Structure 240

int key, void *xev);

This routine is the same as the handle routine for free objects and should handle particular
events for the object. mx and my contain the current mouse position and key the key that
was pressed (if this information is related to the event). See Chapter 26 [Events], page 242,
for the types of events and the actions that should be taken. xev is the XEvent that caused
the invocation of the handler. Note that some of the events may have a NULL xev parameter,
so xev should be checked before dereferencing it.

The routine should return whether the status of the object is changed, i.e., whether the event
dispatcher should invoke this object’s callback or, if no callback is set for the object, whether
the object is to be returned to the application program by [fl_do_forms()], page 297 or
[fl_check_forms()], page 297. What constitutes a status change is obviously dependent
on the specific object class and possibly its types within this class. For example, a mouse
push on a radio button is considered a status change while it is not for a normal button
where a status change occurs on release.

Moreover, most classes have a number of other routines to change settings of the object or
get information about it. In particular the following two routines often exist:

void fl_set_NEW(FL_OBJECT *obj, ...);

that sets particular values for the object and

fl_get_NEW(FL_OBJECT *obj, ...);

that returns some particular information about the object. See e.g., the routines [fl_set_
button()], page 123 and [fl_get_button()], page 124.

25.1 The Routine fl_add_NEW()

fl_add_NEW() has to add a new object to the form and bind its handle routine to it. To
make it consistent with other object classes and also more flexible, there should in fact be
two routines: fl_create_NEW() that creates the object and fl_add_NEW() that actually
adds it to the form. They normally look as follows:

typedef struct {

/* instance specific record */

} SPEC;

FL_OBJECT *fl_create_NEW(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label) {

FL_OBJECT *obj;

/* create a generic object */

obj = fl_make_object(FL_COLBOX, type, x, y, w, h, label,

handle_NEW);

/* fill in defaults */

obj->boxtype = FL_UP_BOX;

/* allocate instance-specific storage and fill it with defaults */

obj->spec_size = sizeof SPEC;

Chapter 25: Global Structure 241

obj->spec = fl_calloc(1, obj->spec_size);

return obj;

}

The constant FL_NEW will indicate the object class. It should be an integer. The num-
bers 0 to FL_USER_CLASS_START - 1 (1000) and FL_BEGIN_GROUP (10000) and higher are
reserved for the system and should not be used. Also it is preferable to use fl_malloc(),
fl_calloc(), fl_realloc() and fl_free() to allocate/free the memory for the instance
specific structures. These routines have the same prototypes and work the same way as
those in the standard library and may offer additional debugging capabilities in future ver-
sions of the Forms Library. Also note that these functions are actually function pointers,
and if desired, the application is free to assign these pointers to its own memory allocation
routines.

There’s also a version equivalent to the strdup() POSIX function which used
[fl_malloc()], page 241:

char * fl_strdup(const char *s);

The object pointer returned by [fl_make_object()], page 252 will have all of its fields
set to some defaults (see Chapter 27 [The Type FL_OBJECT], page 247). In other words,
the newly created object inherits many attributes of a generic one. Any class specific
defaults that are different from the generic one can be changed after [fl_make_object()],
page 252. Conversion of units, if different from the default pixel, is performed within [fl_

make_object()], page 252 and a class module never needs to know what the prevailing
unit is. After the object is created, it has to be added to a form:

FL_OBJECT *fl_add_NEW(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label) {

FL_OBJECT *obj;

obj = fl_create_NEW(type, x, y, w, h, label);

fl_add_object(fl_current_form, obj);

return obj;

}

Chapter 26: Events 242

26 Events

As indicated above, the main module of the Forms Library communicates with the objects
by calling the associated handling routine with, as one of the arguments, the particular
event for which action must be taken. In the following we assume that obj is the object to
which the event is sent.

The following types of events can be sent to an object:

FL_DRAW The object has to be (re)drawn. To figure out the actual size of the object you
can use the fields obj->x, obj->y, obj->w and obj->h. Many Xlib drawing
routines require a window ID, which you can obtain from the object pointer
using FL_ObjWin(obj). Some other aspects might also influence the way the
object has to be drawn. E.g., you might want to draw the object differently
when the mouse is on top of it or when the mouse is pressed on it. This can be
figured out the following way: The field obj->belowmouse tells you whether the
object is below the mouse. The field obj->pushed indicates whether the object
is currently being pushed with the mouse. Finally, obj->focus indicate whether
input focus is directed towards this object. Note that drawing of the object is
the full responsibility of the object class, including the bounding box and the
label, which can be found in the field obj->label. The Forms Library provides
a large number of routines to help you draw object. See Chapter 28 [Drawing
Objects], page 254, for more details on drawing objects and an overview of all
available routines.

One important caution about your draw event handling code: none of the high
level routines ([fl_freeze_form()], page 290, [fl_deactivate_form()],

page 297) etc. can be used. The only routines allowed to be used are (di-
rect) drawing functions and object internal book keeping routines. Attribute
modifying routines, such as [fl_set_object_color()], page 287 etc. are not
allowed (using them can lead to infinite recursions). In addition, (re)drawing
of other objects using [fl_redraw_object()], page 298 while handling [FL_

DRAW], page 242 will also not work.

Due to the way double buffering is handled, at the time the FL_DRAW event is
passed to the handling function (and only then) FL_ObjWin(obj) might return
a pixmap used as the backbuffer (at least if the object is double buffered). What
that means is that FL_ObjWin(obj) should not be used when a real window
is needed. For a real window you can change the window’s cursor or query
the mouse position within it. You can’t do either of these with the backbuffer
pixmap. If there is a need to obtain the real window ID the following routine
can be used:

Window fl_get_real_object_window(FL_OBJECT *)

To summarize: use FL_ObjWin(obj) when drawing and use [fl_get_real_

object_window()], page 242 for cursor or pointer routines. This distinction
is important only while handling FL_DRAW events, FL_ObjWin(obj) should be
used anywhere else.

Chapter 26: Events 243

FL_DRAWLABEL

This event typically follows FL_DRAW and indicates that the object label needs
to be (re)drawn. If the object in question always draws its label inside the
bounding box and this is taken care of by handing FL_DRAW, you can ignore this
event.

FL_ENTER This event is sent when the mouse has entered the bounding box and might
require some action. Note also that the field obj->belowmouse in the object is
being set. If entering an objects area only changes its appearance, redrawing it
normally suffices. Don’t do this directly! Always redraw the object by calling
[fl_redraw_object()], page 298. It will send an FL_DRAW event to the object
but also does some other things (like setting window IDs and taking care of
double buffering etc.).

FL_LEAVE The mouse has left the bounding box. Again, normally a redraw is enough (or
nothing at all).

FL_MOTION

Motion events get sent between FL_ENTER and FL_LEAVE events when the mouse
position changes on the object. The mouse position is given as an argument to
the handle routine.

FL_PUSH The user has pushed a mouse button on the object. Normally this requires
some actual action. The number of the mouse button pushed is given in the
key parameter, having one of the following values:

FL_LEFT_MOUSE, FL_MBUTTON1

Left mouse button was pressed.

FL_MIDDLE_MOUSE, FL_MBUTTON2

Middle mouse button was pressed.

FL_RIGHT_MOUSE, FL_MBUTTON3

Right mouse button was pressed.

FL_SCROLLUP_MOUSE, FL_MBUTTON4

Mouse scroll wheel was rotated in up direction.

FL_SCROLLDOWN_MOUSE, FL_MBUTTON5

Mouse scroll wheel was rotated in down direction.

FL_RELEASE

The user has released the mouse button. This event is only sent if a [FL_PUSH],
page 243 event was sent before. [FL_PUSH], page 243 event.

FL_DBLCLICK

The user has pushed a mouse button twice within a certain time limit (FL_
CLICK_TIMEOUT), which by default is 400 msec. This event is sent after two
FL_PUSH, FL_RELEASE sequence. Note that FL_DBLCLICK is only generated for
objects that have non-zero obj->click timeout fields and it will not be gen-
erated for events from the scroll wheel.

FL_TRPLCLICK

The user has pushed a mouse button three times within a certain time window.
This event is sent after a [FL_DBLCLICK], page 243, [FL_PUSH], page 243,

Chapter 26: Events 244

[FL_RELEASE], page 243 sequence. Set click timeout to none-zero to activate
FL_TRPLCLICK.

FL_FOCUS Input got focussed to this object. This type of event and the next two are only
sent to objects for which the field obj->input is set to 1 (see below).

FL_UNFOCUS

Input is no longer focussed on the object.

FL_KEYPRESS

A key was pressed. The ASCII value (or KeySym if non-ASCII) is passed to the
routine via the key argument, modifier keys can be retrieved from the state

member of the XEvent also passed to the function via xev.

This event only happens between [FL_FOCUS], page 244 and [FL_UNFOCUS],

page 244 events. Not all objects are sent keyboard events, only those that have
non-zero value in field obj->input or obj->wantkey.

FL_SHORTCUT

The user used a keyboard shortcut. The shortcut used is given in the parameter
key. See below for more on shortcuts.

FL_STEP A FL_STEP event is sent all the time (typically about 20 times a second but
possibly less often because of system delays and other time-consuming tasks)
to objects for which the field obj->automatic has been set to a non-zero value.
The handling routine receives a synthetic MotionNotify event as the XEvent.
This can be used to make an object change appearance without user action.
Clock and timer objects use this type of event.

FL_UPDATE

An FL_UPDATE event, like the [FL_STEP], page 244 event, also gets send
about every 50 msec (but less often under high load) to objects while
they are "pushed", i.e., between receiving a [FL_PUSH], page 243 and a
[FL_RELEASE], page 243 event if their obj->want_update field is set. Like
for the FL_STEP event the handling routine receives a synthetic MotionNotify

event as the XEvent. This is typically used by objects that have to perform
tasks at regular time intervals while they are "pushed" (e.g., counters that
need to count up or down while the mouse is pushed on one of its buttons).

FL_ATTRIB

An FL_ATTRIB event is sent to an object (via calling the handler function
each object type must define for this purpose) whenever one of it’s proper-
ties changes, be it its size, position, box type, border width, colors, label, label
color, style or alignment etc. This can e.g., be used by the object to do prepa-
rations for later drawing of it or check that what got set is reasonable. It should
not use this event to actually draw anything (this is to be done only when an
[FL_DRAW], page 242 event is received). When the handler function for events
is called all the arguments it gets passed are 0.

FL_FREEMEM

This event is sent when the object is to be freed. All memory allocated for the
object internally must be freed when this event is received.

Chapter 26: Events 245

FL_OTHER Events other than the above. These events currently include ClientMessage,
Selection and possibly other window manager events. All information about
the event is contained in xev parameter and mx and my may or may not reflect
the actual position of the mouse.

Many of these events might make it necessary that the object has to be redrawn or partially
redrawn. Always do this using the routine [fl_redraw_object()], page 298.

26.1 Shortcuts

The Forms Library has a mechanism of dealing with keyboard shortcuts. In this way the
user can use the keyboard rather than the mouse for particular actions. Obviously, only
"active" objects can have shortcuts (i.e., not objects like boxes, texts etc.).

The mechanism works as follows. There is a routine

void fl_set_object_shortcut(FL_OBJECT *obj, const char *str,

int showit);

with which one can bind a series of keys to an object. E.g., when str is "acE#d^h" the keys
’a’, ’c’, ’E’, <Alt>d and <Ctrl>h are associated with the object. The precise format is as
follows: Any character in the string is considered as a shortcut, except ’^’ and ’#’, which
stand for combinations with the <Ctrl> and <Alt> keys. (The case of the key following
’#’ or ’^’ is not important, i.e., no distiction is made between e.g., "^C" and "^c", both
encode the key combination <Crl>C as well as <Crtl>C.) The key ’^’ itself can be set as a
shortcut key by using "^^" in the string defining the shortcut. The key ’#’ can be obtained
as a shortcut by using th string "^#". So, e.g., "#^#" encodes <ALT>#. The <Esc> key can
be given as "^[".

Another special character not mentioned yet is ’&’, which indicates function and arrow
keys. Use a sequence starting with ’&’ and directly followed by a number between 1 and
35 to represent one of the function keys. For example, "&2" stands for the <F2> function
key. The four cursors keys (up, down, right, and left) can be given as "&A", "&B", "&C" and
"&D", respectively. The key ’&’ itself can be obtained as a shortcut by prefixing it with
’^’.

The argument showit tells whether the shortcut letter in the object label should be un-
derlined if a match exists. Although the entire object label is searched for matches, only
the first alphanumerical character in the shortcut string is used. E.g., for the object label
"foobar" the shortcut "oO" would result in a match at the first o in "foobar" while "Oo"
would not. However, "^O" and "#O" would match since for keys used in combination with
<Crtl> and <Alt> no distiction is made between upper and lower case.

To use other special keys not described above as shortcuts, the following routine must be
used

void fl_set_object_shortcutkey(FL_OBJECT *obj, unsigned int key);

where key is an X KeySym, for example XK_Home, XK_F1 etc. Note that the function [fl_

set_object_shortcutkey()], page 245 always appends the key specified to the current
shortcuts while [fl_set_object_shortcut()], page 245 resets the shortcuts. Of course,
special keys can’t be underlined.

Now, whenever the user presses one of these keys, an [FL_SHORTCUT], page 244 event
is sent to the object. The key pressed is passed to the handle routine (in the argument

Chapter 26: Events 246

key). Combinations with the <Alt> key are given by adding [FL_ALT_MASK], page 156

(currently the 25th bit, i.e., 0x1000000) to the ASCII value of the key. E.g., the key
combinations <Alt>E and <Alt>e are passed as [FL_ALT_MASK], page 156 + ’E’. The
object can now take action accordingly. If you use shortcuts to manipulate class object
specific things, you will need to create a routine to communicate with the user, e.g., fl_
set_NEW_shortcut(), and do your own internal bookkeeping to track what keys do what
and then call [fl_set_object_shortcut()], page 245 to register the shortcut in the
event dispatching module. The idea is NOT that the user himself calls [fl_set_object_
shortcut()], page 245 but that the class provides a routine for this that also keeps track
of the required internal bookkeeping. Of course, if there is no internal bookkeeping, a macro
to this effect will suffice. For example [fl_set_button_shortcut()], page 124 is defined
as [fl_set_object_shortcut()], page 245.

The order in which keys are handled is as follows: First for a key it is tested whether any
object in the form has the key as a shortcut. If yes, the first of those objects gets the
shortcut event. Otherwise, the key is checked to see if it is <Tab> or <Return>. If it is, the
obj->wantkey field is checked. If the field does not contain [FL_KEY_TAB], page 246 bit,
input is focussed on the next input field. Otherwise the key is sent to the current input
field. This means that input objects only get a <Tab> or <Return> key sent to them if in the
obj->wantkey field the [FL_KEY_TAB], page 246 bit is set. This is e.g., used in multi-line
input fields. If the object wants all cursor keys (including <PgUp> etc.), the obj->wantkey
field must have the [FL_KEY_SPECIAL], page 246 bit set.

To summarize, the obj->wantkey field can take on the following values (or the bit-wise or
of them):

FL_KEY_NORMAL

The default. The object receives left and right cursor, <Home> and <End> keys
plus all normal keys (0-255) except <Tab> <Return>.

FL_KEY_TAB

Object receives the <Tab>, <Return> as well as the <Up> and <Down> cursor
keys.

FL_KEY_SPECIAL

The object receives all keys with a KeySym above 255 which aren’t already
covered by FL_KEY_NORMAL and FL_KEY_TAB (e.g., function keys etc.)

FL_KEY_ALL

Object receives all keys.

This way it is possible for a non-input object (i.e., if obj->input is zero) to obtain special
keyboard event by setting obj->wantkey to [FL_KEY_SPECIAL], page 246.

Chapter 27: The Type FL_OBJECT 247

27 The Type FL_OBJECT

Each object has a number of attributes. Some of them are used by the main routine, some
have a fixed meaning and should never be altered by the class routines and some are free
for the class routines to use. Please always use accessor methods when available instead of
using or changing the object’s properties directly. Below we consider some of them that are
likely to be used in new classes.

int objclass

This indicates the class of the object (e.g., FL_BUTTON, FL_SLIDER, FL_NEW etc.)
The user can query the class of an object using the function [fl_get_object_

objclass()], page 287.

int type This indicates the type of the object within the class. Types are integer con-
stants that should be defined in a header file named after the object class, e.g.,
‘NEW.h’. Their use is completely free. For example, in the slider class the type
is used to distinguish between horizontal and vertical sliders. At least one type
should exist and the user should always provide it (just for consistency). They
should be numbered from 0 upwards. The user can query the type of an object
using the function [fl_get_object_type()], page 287.

int boxtype

This is the type of the bounding box for the object. The handling routine for
the object, e.g., handle_NEW(), has to take care that this is actually drawn.
Note that there is a routine for drawing boxes, see below. The user can
change or query the boxtype of an object with the functions [fl_set_object_
boxtype()], page 288 and [fl_get_object_boxtype()], page 288.

FL_Coord x, y, w, h

These are the coordinates and sizes that indicate the bounding box of the
object. They always have to be provided when adding an object. The system
uses them e.g., to determine if the object is below the mouse. The class
routines should use them to draw the object in the correct size, etc. Note
that these values will change when the user resizes the form window. So
never assume anything about their values but always recheck them when
drawing the object. The routines [fl_get_object_geometry()], page 288,
[fl_get_object_position()], page 288 and [fl_get_object_size()],

page 288 should be used to determine position and/or size. To change
the position and/or size of an object never change the elements of the
structures directly (except in a function like fl_add_NEW()) but always use
[fl_set_object_geometry()], page 288, [fl_set_object_position()],

page 288, [fl_set_object_size()], page 288 and [fl_move_object()],

page 288!

Also note that the y-member is always relative to the top of the form the ob-
ject belongs to, even if the user had called [fl_flip_yorigin()], page 283

- this only results in y-values passed by and returned to the user when using
functions like [fl_set_object_position()], page 288 or [fl_get_object_
position()], page 288 getting "flipped", internally always the normal coor-
dinate system is used.

Chapter 27: The Type FL_OBJECT 248

unsigned int resize

Controls if the object should be resized if the form it is on is resized.
The options are FL_RESIZE_NONE, FL_RESIZE_X, FL_RESIZE_Y and
FL_RESIZE_ALL. The default is FL_RESIZE_ALL which is the bitwise OR
of FL_RESIZE_X and FL_RESIZE_Y. Instead of accessing this element
directly better use the functions [fl_get_object_resize()], page 290 and
[fl_set_object_resize()], page 290.

unsigned int nwgravity, segravity

These two variables control how the object is placed relative to its position prior
to resizing. Instead of accessing these elements directly use [fl_get_object_

gravity()], page 290 and [fl_set_object_gravity()], page 290.

FL_COLOR col1, col2

These are two color indices in the internal color lookup table. The class routines
are free to use them or not. The user can change them using the routine [fl_

set_object_color()], page 287 or inspect the colors with [fl_get_object_

color()], page 288. The routine fl_add_NEW() should fill in defaults.

char *label

This is a pointer to an allocated text string. This can be used by class routines
to provide a label for the object. The class routines may not forget to allocate
storage for it when it sets the pointer itself, i.e., doesn’t use [fl_set_object_
label()], page 289 - an empty label should be the empty string and not just
a NULL pointer. The user can change it using the routines [fl_set_object_

label()], page 289 and [fl_set_object_label_f()], page 289 or ask for
it using [fl_get_object_label()], page 289. The label must be drawn by
the routine handling the object when it receives a FL_DRAWLABEL event (or it
could be part of the code for FL_DRAW event). For non-offsetted labels, i.e.,
the alignment is relative to the entire bounding box, simply calling [fl_draw_

object_label()], page 264 should be enough.

FL_COLOR lcol

The color of the label. The class routines can freely use this. The user can
set it with [fl_set_object_lcolor()], page 289 and test it with [fl_get_

object_lcolor()], page 289.

int lsize The size of the font used to draw the label. The class routines can freely use
this. The user can set it with [fl_set_object_lsize()], page 289. and test
it with [fl_get_object_lsize()], page 289.

int lstyle

The style of the font the label os drawn in, i.e., the number of the font in
which it should be drawn. The class routines can freely use this. The user can
set it with [fl_set_object_lstyle()], page 289 and test it with [fl_get_

object_lstyle()], page 289.

int align The alignment of the label with respect to the object. Again it is up to
the class routines to do something useful with this. The possible values are
[FL_ALIGN_LEFT], page 31, [FL_ALIGN_RIGHT], page 31, [FL_ALIGN_TOP],
page 31, [FL_ALIGN_BOTTOM], page 31, [FL_ALIGN_CENTER], page 31,

Chapter 27: The Type FL_OBJECT 249

[FL_ALIGN_LEFT_TOP], page 31, [FL_ALIGN_RIGHT_TOP], page 31,
[FL_ALIGN_LEFT_BOTTOM], page 31 and [FL_ALIGN_RIGHT_BOTTOM],

page 31. The value should be bitwise ORed with [FL_ALIGN_INSIDE],

page 31 if the label will be within the bounding box of the object. The user
can set this using the routine [fl_set_object_lalign()], page 289 and
test it with [fl_set_object_lalign()], page 289.

int bw An integer indicating the border width of the object. Negative values indicate
the up box should look "softer" (in which case no black line of 1 pixel width
is drawn around the objects box). The user can set a different border width
using [fl_set_object_bw()], page 288.

long *shortcut

A pointer to long containing all shortcuts (as keysyms) defined for the object
(also see the previous chapter). You should never need them because they are
fully handled by the main routines.

void *spec

This is a pointer that points to any class specific information. For example, for
sliders it stores the minimum, maximum and current value of the slider. Most
classes (except the most simple ones like boxes and texts) will need this. The
function for adding a new object (fl_add_NEW()) has to allocate storage for it.
Whenever the object receives the event FL_FREEMEM it should free this memory.

int visible

Indicates whether the object is visible. The class routines don’t have to do
anything with this variable. When the object is not visible the main routine
will never try to draw it or send events to it. By default objects are visible. The
visisbility of an object can be tested using the [fl_object_is_visible()],

page 291 function. Note that a this doesn’t guarantee that the object is visible
on the screen, for this also the form the object belongs to needs to be visible,
in which case [fl_form_is_visible()], page 297 returns true.

int active

Indicates whether the object is active, i.e., wants to receive events other than
FL_DRAW.

Static objects, such as text and boxes are inactive. This property should be set
in the fl_add_NEW() routine if required. By default objects are active. This
attribute can be changed by using the functions [fl_deactivate_object()],
page 298 and [fl_activate_object()], page 298 and the current state can
be determined by calling [fl_object_is_active()], page 298.

int input Indicates whether this object can receive keyboard input. If not, events related
to keyboard input are not sent to the object. The default value of input is
false. It should be set by fl_add_NEW() if required. Note that not all keys are
sent (see member wantkey below).

int wantkey

An input object normally does not receive <Tab> or <Return> keystrokes or
any other keys except those that have values between 0-255, the <Left> and
<Right> arrow keys and <Home> and <End> (<Tab> and <Return> are normally

Chapter 27: The Type FL_OBJECT 250

used to switch between input objects). By setting this field to FL_KEY_TAB

enforces that the object receives also these two keys as well as the <Up> and
<Down> arrow keys and <PgUp> and <PgDn> when it has the focus. To receive
other special keys (e.g., function keys) FL_KEY_SPECIALmust be set in wantkey.
By setting wantkey to FL_KEY_ALL all keys are sent to the object.

unsigned int click_timeout

If non-zero this indicates the the maximum elapsed time (in msec)
between two mouse clicks to be considered a double click. A zero value
disables double/triple click detection. The user can set or query this
value using the functions [fl_set_object_dblclick()], page 290 and
[fl_get_object_dblclick()], page 290.

int automatic

An object is automatic if it automatically (without user actions) has to change
its contents. Automatic objects get a FL_STEP event about every 50 msec. For
example the object class FL_CLOCK is automatic. automatic by default is false.
To set this property use [fl_set_object_automatic()], page 290 (don’t set
the object member directly except from within a function like fl_add_NEW(),
in other contexts some extra work is required) and to test the object for it use
[fl_object_is_automatic()], page 290.

int belowmouse

This indicates whether the mouse is on this object. It is set and reset by the
main routine. The class routines should never change it but can use it to draw
or handle the object differently.

int pushed

This indicates whether the mouse is pushed within the bounding box of the
object. It is set and reset by the main routine. Class routines should never
change it but can use it to draw or handle objects differently.

int focus Indicates whether keyboard input is sent to this object. It is set and reset by
the main routine. Never change it but you can use its value.

FL_HANDLEPTR handle

This is a pointer to the interaction handling routine for the object. fl_add_

NEW() sets this by providing the correct handling routine. Normally it is never
used (except by the main routine) or changed although there might be situations
in which you want to change the interaction handling routine for an object, due
to some user action.

FL_OBJECT *next, *prev

FL_FORM *form

These are pointers to other objects in the form and to the form itself. They are
used by the main routines. The class routines should not change them.

void *c_vdata

A void pointer for the class routine. The main module does not reference or
modify this field in any way. The object classes, including the built-in ones,
may use this field.

Chapter 27: The Type FL_OBJECT 251

char *c_cdata

A char pointer for the class routine. The main module does not reference or
modify this field in any way. The object classes, including the built-in ones,
may use this field.

long c_ldata

A long variable for the class routine. The main module does not reference or
modify this field in any way. The object classes, including the built-in ones,
may use this field.

void *u_vdata

A void pointer for the application program. The main module does not reference
or modify this field in any way and neither should the class routines.

char *u_cdata

A char pointer for the application program. The main module does not reference
or modify this field in any way and neither should the class routines.

long u_ldata

A long variable provided for the application program.

FL_CALLBACKPTR object_callback

The callback routine that the application program assigned to the object and
that the system invokes when the user does something with the object.

long argument

The argument to be passed to the callback routine when invoked.

int how_return

Determines under what circumstances the object is returned by e.g., [fl_do_
forms()], page 297 or the callback function for the object is invoked. This
can be either

[FL_RETURN_NONE], page 46

Object gets never returned or its callback invoked

[FL_RETURN_CHANGED], page 45

Return object or invoke callback when state of object changed.

[FL_RETURN_END], page 45

Return object or invoke callback at end of interaction, normally
when the mouse key is released or, in the case of input objects, the
object has lost focus.

[FL_RETURN_END_CHANGED], page 45

Return object or invoke callback only when interaction has ended
and the state of the object has changed.

[FL_RETURN_SELECTION], page 46

Return object or invoke callback if e.g., in a browser a line was
selected.

[FL_RETURN_SELECTION], page 46

Return object or invoke callback if e.g., in a browser a line was
deselected.

Chapter 27: The Type FL_OBJECT 252

[FL_RETURN_ALWAYS], page 46

Return object or invoke callback whenever interaction has ended or
the state of the object has changed.

Never change this element of the structure directly but use the function [fl_

set_object_return()], page 45 instead! Especially in the case of objects
having child objects also the corresponding settings for child objects may need
changes and which automatically get adjusted when the above function is used.

int returned

Set to what calling the object handling function did return (and pruned to what
the object is supposed to return according to the how_return element). Can
be either

[FL_RETURN_NONE], page 46

Handling function did FL_RETURN_NONE (i.e., 0).

[FL_RETURN_CHANGED], page 45

Handling function detected a change of the objects state.

[FL_RETURN_END], page 45

Handling function detected end of interaction with object.

[FL_RETURN_CHANGED], page 45 and [FL_RETURN_END], page 45 are bits
that can be bitwise ored. If both are set this indicates that the objects state
was changed and the interaction ended.

The generic object construction routine

typedef int (*FL_HANDLEPTR)(FL_OBJECT *obj, int event,

FL_Coord mx, FL_Coord my,

int key, void *raw_event);

FL_OBJECT *fl_make_object(int objclass, int type,

FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label,

FL_HANDLEPTR handle);

allocates a chunk of memory appropriate for all object classes and initializes the newly
allocated object to the following state:

obj->resize = FL_RESIZE_X | FL_RESIZE_Y;

obj->nwgravity = obj->segravity = FL_NoGravity;

obj->boxtype = FL_NO_BOX;

obj->align = FL_ALIGN_CENTER | FL_ALIGN_INSIDE;

obj->lcol = FL_BLACK;

obj->lsize = FL_DEFAULT_SIZE;

obj->lstyle = FL_NORMAL_STYLE;

obj->col1 = FL_COL1;

obj->col2 = FL_MCOL;

obj->wantkey = FL_KEY_NORMAL;

obj->active = 1;

Chapter 27: The Type FL_OBJECT 253

obj->visible = 1;

obj->bw = borderWidth_resource_set ? resource_val : FL_BOUND_WIDTH;

obj->u_ldata = 0;

obj->u_vdata = 0;

obj->spec = NULL;

obj->how_return = FL_RETURN_CHANGED

In some situations it can be also useful to make an object a child of another object. An
example is the scrollbar object. It has three child objects, a slider and two buttons, which
all three are children of the scrollbar object. To make an object child a child object of an
object named parent use the function

void fl_add_child(FL_OBJECT *parent, FL_OBJECT *child);

When creating a composite object you will typically add callbacks for the child object that
handle what happens on events for these child objects (e.g., for the scrollbar the buttons
have callbacks that update the internal state for the scrollbar object and result in the slider
getting shifted). Within these callback functions the returned elements of the parent can
be changed to influence if and what gets reported to the application via [fl_do_forms()],

page 297.

There is rarely any need for the new object class to know how the object is added to a
form and how the Forms Library manages the geometry, e.g., does an object have its own
window etc. Nonetheless if this information is required, use [FL_ObjWin()], page 198 on
the object to obtain the window resource ID of the window the object belongs to. Beware
that an object window ID may be shared with other objects1. Always remove an object
from the screen with [fl_hide_object()], page 291.

The class routine/application may reference the following members of the FL FORM structure
to obtain information on the status of the form, but should not modify them directly:

int visible

Indicates if the form is visible on the screen (mapped). Never change it directly,
use [fl_show_form()], page 293 or [fl_hide_form()], page 297 instead.

int deactivated

Indicates if the form is deactivated. Never change it directly, use
[fl_activate_form()], page 297 or [fl_deactivate_form()], page 297

instead.

FL OBJECT *focusobj

This pointer points to the object on the form that has the input focus.

FL OBJECT *first

The first object on the form. Pointer to a linked list.

Window window

The forms window.

1 The only exception is the canvas class where the window ID is guaranteed to be non-shared.

Chapter 28: Drawing Objects 254

28 Drawing Objects

28.1 General Remarks

An important aspect of a new object class (or a free object) is how to draw it. As indicated
above this should happen when the event FL_DRAW is received by the object. The place and
size, i.e., the bounding box, of the object are indicated by the object tructure fields obj->x,
obj->y, obj->w and obj->h. Forms are drawn in the Forms Library default visual or the
user requested visual, which could be any of the X supported visuals. Hence, preferably your
classes should run well in all visuals. The Forms Library tries to hide as much as possible
the information about graphics mode and, in general, using the built-in drawing routines is
the best approach. Here are some details about graphics state in case such information is
needed.

All state information is kept in a global structure of type FL_State and there is a total of
six such structures, fl_state[6], each for every visual class.

The structure contains among others the following members:

XVisualInfo *xvinfo

Many properties of the current visual can be obtained from this member.

int depth The depth of the visual. Same as what you get from xvinfo.

int vclass

The visual class, PseudoColor, TrueColor etc.

Colormap colormap

Current active colormap valid for the current visual for the entire Forms Library
(except FL_CANVAS). You can allocate colors from this colormap, but you should
never free it.

Window trailblazer

This is a valid window resource ID created in the current visual with the col-
ormap mentioned above. This member is useful if you have to call, before the
form becomes active (thus does not have a window ID), some Xlib routines that
require a valid window. A macro, fl_default_window(), is defined to return
this member and use of the macro is encouraged.

GC gc[16] A total of 16 GCs appropriate for the current visual and depth. The first
(gc[0]) is the default GC used by many internal routines and should be modified
with care. It is a good idea to use only the top 8 GCs (8-15) for your free object so
that future Forms Library extensions won’t interfere with your program. Since
many internal drawing routines use the Forms Library’s default GC (gc[0]), it
can change anytime whenever drawing occurs. Therefore, if you are using this
GC for some of your own drawing routines make sure to always set the proper
value before using it.

The currently active visual class (TrueColor, PseudoColor etc.) can be obtained by the
following function/macro:

int fl_get_form_vclass(FL_FORM *form);

int fl_get_vclass(void);

Chapter 28: Drawing Objects 255

The value returned can be used as an index into the array [fl_state], page 302 of [FL_
State], page 254 structures. Note that [fl_get_vclass()], page 254 should only be
used within a class/new object module where there can be no confusion what the "current"
form is.

Other information about the graphics mode can be obtained by using visual class as an
index into the fl_state structure array. For example, to print the current visual depth,
code similar to the following can be used:

int vmode = fl_get_vclass();

printf("depth: %d\n", fl_state[vmode].depth);

Note that fl_state[] for indices other than the currently active visual class might not
be valid. In almost all Xlib calls, the connection to the X server and current window
ID are needed. The Forms Library comes with some utility functions/macros to facilitate
easy utilization of Xlib calls. Since the current version of Forms Library only maintains a
single connection, the global variable [fl_display], page 302 can be used where required.
However, it is recommended that you use fl_get_display() or FL_FormDisplay(Form

*form) instead since the function/macro version has the advantage that your program will
remain compatible with future (possibly multi-connection) versions of the Forms Library.

There are a couple of ways to find out the "current" window ID, defined as the window
ID the object receiving dispatcher’s messages like FL_DRAW etc. belongs to. If the object’s
address is available, FL_ObjWin(obj) will suffice. Otherwise the function [fl_winget()],

page 259 (see below) can be used.

There are other routines that might be useful:

FL_FORM *fl_win_to_form(Window win);

This function takes a window ID win and returns the form the window belongs to or None
on failure.

28.2 Color Handling

As mentioned earlier, Forms Library keeps an internal colormap, initialized to predefined
colors. The predefined colors do not correspond to pixel values the server understands but
are indexes into the colormap. Therefore, they can’t be used in any of the GC altering or
Xlib routines. To get the actual pixel value the X server understands, use the following
routine

unsigned long fl_get_pixel(FL_COLOR col);

To e.g., get the pixel value of the red color, use

unsigned long red_pixel;

red_pixel = fl_get_pixel(FL_RED);

To change the foreground color in the Forms Library’s default GC (gc[0]) use

void fl_color(FL_COLOR col);

To set the background color in the default GC use instead

void fl_bk_color(FL_COLOR col);

To set foreground or background in GCs other than the Forms Library’s default, the following
functions exist:

Chapter 28: Drawing Objects 256

void fl_set_foreground(GC gc, FL_COLOR col);

void fl_set_background(GC gc, FL_COLOR col);

which is equivalent to the following Xlib calls

XSetForeground(fl_get_display(), gc, fl_get_pixel(color));

XSetBackground(fl_get_display(), gc, fl_get_pixel(color));

To free allocated colors from the default colormap, use the following routine

void fl_free_colors(FL_COLOR *cols, int n);

This function frees the n colors stored in the array of colormap indices cols. You shouldn’t
do that for the reserved colors, i.e., colors with indices below FL_FREE_COL1.

In case the pixel values (instead of the index into the colormap) are known, the following
routine can be used to free the colors from the default colormap

void fl_free_pixels(unsigned long *pixels, int n);

Note that the internal colormap maintained by the Forms Library is not updated. This is
in general harmless.

To modify or query the internal colormap, use the following routines:

unsigned long fl_mapcolor(FL_COLOR col, int red, int green, int blue)

long fl_mapcolorname(FL_COLOR col, const char *name);

unsigned long fl_getmcolor(FL_COLOR col,

int *red, int *green, int *blue);

The first function, [fl_mapcolor()], page 256 sets a the color indexed by color to the
color given by the red, green and blue, returning the colors pixel value.

The second function, [fl_mapcolorname()], page 256, sets the color in the colormap
indexed by color to the color named name, where name must be a valid name from the
system’s color database file ‘rgb.txt’. It also returns the colors pixel value or -1 on failure.

The last function, [fl_getmcolor()], page 256, returns the RGB values of the color
indexed by color in the second to third argument pointers and the pixel value as the
return value (or -1, cast to unsigned long, on failure).

28.3 Mouse Handling

The coordinate system used corresponds directly to that of the screen. But object coordi-
nates are relative to the upper-left corner of the form the object belongs to.

To obtain the position of the mouse relative to a certain form or window, use the routines

Window fl_get_form_mouse(FL_FORM *form, FL_Coord *x, FL_Coord *y,

unsigned *keymask)

Window fl_get_win_mouse(Window win, FL_Coord *x, FL_Coord *y,

unsigned *keymask);

The functions return the ID of the window the mouse is in. Upon return x and y are set
to the mouse position relative to the form or window and keymask contains information on
modifier keys (same as the the corresponding XQueryPointer() argument).

A similar routine exists that can be used to obtain the mouse location relative to the root
window

Chapter 28: Drawing Objects 257

Window fl_get_mouse(FL_Coord *x, FL_Coord *y, unsigned *keymask);

The function returns the ID of the window the mouse is in.

To move the mouse to a specific location relative to the root window, use the following
routine

void fl_set_mouse(FL_Coord x, FL_Coord y);

Use this function sparingly, it can be extremely annoying for the user if the mouse position
is changed by a program.

28.4 Clipping

To avoid drawing outside a box the following routine exists:

void fl_set_clipping(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h);

It sets a clipping region in the Forms Library’s default GC used for drawing (but not for
output of text, see below). x, y, w and h define the area drawing is to restrict to and are
relative to the window/form that will be drawn to. In this way you can prevent drawing
over other objects.

Under some circumstances XForms also does it’s own clipping, i.e., while drawing due to a
exposure event. This is called "global clipping". Thus the clipping area you have set via
a call of [fl_set_clipping()], page 257 may get restricted even further due this global
clipping.

You can check if there’s clipping set for the default GC using the function

int fl_is_clipped(int include_global);

which returns 1 if clipping is switched on and 0 otherwise. The include_global argument
tells the function if global clipping is to be included in the answer or not (i.e., if the argument
is 0 only clipping set via [fl_set_clipping()], page 257 is reported).

The area currently clipped to is returned by the function

int fl_get_clipping(int include_global, FL_Coord *x,FL_Coord *y,

FL_Coord *width, FL_Coord *height);

On return the four pointer arguments are set to the position and size of the clipping rectangle
(at least if clipping is switched on) and the qreturn value of this function is the same as that
of [fl_is_clipped()], page 257. The include_global argument has the same meaning
as for [fl_is_clipped()], page 257, i.e., it controls if the effects of global clipping is
included in the results.

When finished with drawing always use

void fl_unset_clipping(void);

to switch clipping of again.

You also can check and obtain the current settings for global clipping using the functions

int fl_is_global_clipped(void);

int fl_get_global_clipping(FL_Coord *x,FL_Coord *y,

FL_Coord *width, FL_Coord *height);

Clipping for text is controlled via a different GC and thus needs to be set, tested for and
unset using a different set of functions:

Chapter 28: Drawing Objects 258

void fl_set_text_clipping(FL_Coord x,FL_Coord y,FL_Coord w,FL_Coord h);

int fl_is_text_clipped(int include_global);

int fl_get_text_clipping(int include_global, FL_Coord *x,FL_Coord *y,

FL_Coord *width, FL_Coord *height);

void fl_unset_text_clipping(void);

Finally, there are functions to set and unset the clipping for a specific GC:

void fl_set_gc_clipping(GC gc, FL_Coord x, FL_Coord y,

FL_Coord width, FL_Coord height);

void fl_unset_gc_clipping(GC gc);

Please note that setting clipping for a GC will always further restrict the region to the region
of global clipping (if it is on at the moment the function is called) and unsetting clipping
will still retain global clipping if this is on at the moment the second function is invoked (if
it is currently on can be checked using the [fl_is_global_clipped()], page 257).

28.5 Getting the Size

To obtain the bounding box of an object with the label taken into account (in contrast to the
result of the [fl_get_object_geometry()], page 288 function which doesn’t include

a label that isn’t inside the object the following routine exists:

void fl_get_object_bbox(FL_OBJECT *obj, FL_Coord *x, FL_Coord *y,

FL_Coord *w, FL_Coord *h);

For drawing text at the correct places you will need some information about the sizes of
characters and strings. The following routines are provided:

int fl_get_char_height(int style, int size, int *ascent, int *descent)

int fl_get_char_width(int style, int size);

These two routines return the maximum height and width of the font used, where size

indicates the point size for the font and style is the style in which the text is to be drawn.
The first function, [fl_get_char_height()], page 258, also returns the height above and
below the baseline of the font via the ascent and descent arguments (if they aren’t NULL
pointers). A list of valid styles can be found in Section 3.11.3.

To obtain the width and height information for a specific string use the following routines:

int fl_get_string_width(int style, int size, const char *str,

int len);

int fl_get_string_height(int style, int size, const char *str,

int len, int *ascent, int *descent);

where len is the length of the string str. The functions return the width and height of the
string, respectively. The second function also returns the height above and below the fonts
baseline if ascent and descent aren’t NULL pointers. Note that the string may not contain
newline characters ’\n’ and that the height calculated from the ascent and descent of those
characters in the string that extend the most above and below the fonts baseline. It thus may
not be suitable for calculating line spacings, for that use the [fl_get_char_height()],

page 258 or [fl_get_string_dimension()], page 259 function.

There exists also a routine that returns the width and height of a string in one call. In
addition, the string passed can contain embedded newline characters ’\n’ and the routine

Chapter 28: Drawing Objects 259

will make proper adjustment so the values returned are large enough to contain the multiple
lines of text. The height of each of the lines is the fonts height.

void fl_get_string_dimension(int style, int size, const char *str,

int len, int *width, int *height);

28.6 Font Handling

Sometimes it can be useful to get the X font structure for a particular size and style as used
in the Forms Library. For this purpose, the following routine exists:

[const] XFontStruct *fl_get_fontstruct(int style, int size);

The structure returned can be used in, say, setting the font in a particular GC:

XFontStruct *xfs = fl_get_fontstruct(FL_TIMESBOLD_STYLE, FL_HUGE_SIZE);

XSetFont(fl_get_display(), mygc, xfs->fid);

The caller is not allowed to free the structure returned by [fl_get_fontstruct()],

page 259, it’s just a pointer to an internal structure!

28.7 Drawing Functions

There are a number of routines that help you draw objects on the screen. All XForms’s
internal drawing routine draws into the "current window", defined as the window the object
that uses the drawing routine belongs to. If that’s not what you need, the following routines
can be used to set or query the current window:

void fl_winset(Window win);

Window fl_winget(void);

One caveat about [fl_winget()], page 259 is that it can return None if called outside of
an object’s event handler, depending on where the mouse is. Thus, the return value of this
function should be checked when called outside of an object’s event handler.

It is important to remember that unless the following drawing commands are issued while
handling the FL_DRAW or FL_DRAWLABEL event (which is not generally recommended), it is
the application’s responsibility to set the proper drawable using [fl_winset()], page 259.

The most basic drawing routines are for drawing rectangles:

void fl_rectf(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

FL_COLOR col);

void fl_rect(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

FL_COLOR col);

Both functions draw a rectangle on the screen in color col. While [fl_rectf()], page 259

draws a filled rectangle, [fl_rect()], page 259 just draws the outline in the given color.

To draw a filled (with color col) rectangle with a black border use

void fl_rectbound(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

FL_COLOR col);

To draw a rectangle with rounded corners (filled or just the outlined) employ

void fl_roundrectf(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

FL_COLOR col);

void fl_roundrect(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

Chapter 28: Drawing Objects 260

FL_COLOR col);

To draw a general polygon, use one of the following routines

typedef struct {

short x,

y;

} FL_POINT;

void fl_polyf(FL_POINT *xpoint, int n, FL_COLOR col);

void fl_polyl(FL_POINT *xpoint, int n, FL_COLOR col);

void fl_polybound(FL_POINT *xpoint, int n, FL_COLOR col);

[fl_polyf()], page 260 draws a filled polygon defined by n points, [fl_polyl()],

page 260 the ouline of a polygon and [fl_polybound()], page 260 a filled polygon with
a black outline.

Note: all polygon routines require that the array xpoint has spaces for n+1 points, i.e., one
more than then number of points you intend to draw!

To draw an ellipse. either filled, open (with the outline drawn in the given color), or filled
with a black border the following routines can be used (use w equal to h to get a circle):

void fl_ovalf(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

FL_COLOR col);

void fl_ovall(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

FL_COLOR col);

void fl_ovalbound(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

FL_COLOR col);

The x and y arguments are the upper left hand corner of the ellipse, while w and h are its
width and height.

Note: [fl_ovall()], page 260 (with two ’l’) isn’t a typo, the trailing ’l’ it’s meant indicate
that only a line will be drawn. And there’s also the function

void fl_ovalf(int fill, FL_Coord x, FL_Coord y, FL_Coord w,

FL_Coord h, FL_COLOR col);

which is invoked by both (the macros) [fl_ovalf()], page 260 and [fl_ovall()],

page 260 with the first argument fill set to either 1 or 0.

To simplify drawing circles there are three additional functions. The first one draws an
(open) circle (with the circumfence in the given color), the second one a filled circle, and
the last one a filled circle with a black circumfence:

void fl_circ(FL_Coord x, FL_Coord y, FL_Coord r, FL_COLOR col);

void fl_circf(FL_Coord x, FL_Coord y, FL_Coord r, FL_COLOR col);

void fl_circbound(FL_Coord x, FL_Coord y, FL_Coord r, FL_COLOR col);

Here x and y are the coordinates of the center of the circle, r is its radius and col the color
to be used.

To draw circular arcs, either open or filled, the following routines can be used

void fl_arc(FL_Coord x, FL_Coord y, FL_Coord radius,

int start_theta, int end_theta, FL_COLOR col);

void fl_arcf(FL_Coord x, FL_Coord y, FL_Coord radius,

Chapter 28: Drawing Objects 261

int start_theta, int end_theta, FL_COLOR col);

x and y are the coordinates of the center and r is the radius. start_theta and end_theta

are the starting and ending angles of the arc in units of tenths of a degree (where 0 stands
for a direction of 3 o’clock, i.e., the right-most point of a circle), and x and y are the center
of the arc. If the difference between theta_end and theta_start is larger than 3600 (360
degrees), drawing is truncated to 360 degrees.

To draw elliptical arcs the following routine can be used:

void fl_pieslice(int fill, FL_Coord x, FL_Coord y, FL_Coord w,

FL_Coord h, int start_theta, int end_theta,

FL_COLOR col);

x and y are the upper left hand corner of the box enclosing the ellipse that the pieslice is
part of and w and h the width and height of that box. start_theta and end_theta, to
be given in tenth of a degree, specify the starting and ending angles measured from zero
degrees (3 o’clock).

Depending on circumstance, elliptical arc may be more easily drawn using the following
routine

void fl_ovalarc(int fill, FL_Coord x, FL_Coord y, FL_Coord w,

FL_Coord h, int theta, int dtheta, FL_COLOR col);

Here theta specifies the starting angle (again measured in tenth of a degree and with 0 at
the 3 o’clock position), and dtheta specifies both the direction and extent of the arc. If
dtheta is positive the arc is drawn in counter-clockwise direction from the starting point
defined by theta, otherwise in clockwise direction. If dtheta is larger than 3600 it is
truncated to 3600.

To connect two points with a straight line, use

void fl_line(FL_Coord x1, FL_Coord y1,

FL_Coord x2, FL_Coord y2, FL_COLOR col);

There is also a routine to draw a line along the diagonal of a box (to draw a horizontal line
set h to 1, not to 0):

void fl_diagline(FL_Coord x, FL_Coord y, FL_Coord w, FL_Coord h,

FL_COLOR col);

To draw connected line segments between n points use

void fl_lines(FL_POINT *points, int n, FL_COLOR col);

All coordinates in points are relative to the origin of the drawable.

There are also routines to draw one or more pixels

void fl_point(FL_Coord x, FL_Coord y, FL_COLOR col);

void fl_points(FL_POINT *p, int np, FL_COLOR col);

As usual, all coordinates are relative to the origin of the drawable. Note that these routines
are meant for you to draw a few pixels, not images consisting of tens of thousands of pixels
of varying colors. For that kind of drawing XPutImage(3) should be used. Or better yet,
use the image support in the Forms Library (see Chapter 37 [Images], page 321). Also it’s
usually better when drawing multiple points to use fl points(), even if that means that the
application program has to pre-sort and group the pixels of the same color.

To change the line width or style, the following convenience functions are available

Chapter 28: Drawing Objects 262

void fl_linewidth(int lw);

void fl_linestyle(int style);

Set lw to 0 to reset the line width to the servers default. Line styles can take on the following
values (also see XChangeGC(3))

FL SOLID Solid line. Default and most efficient.

FL DOT Dotted line.

FL DASH Dashed line.

FL DOTDASH

Dash-dot-dash line.

FL LONGDASH

Long dashed line.

FL USERDASH

Dashed line, but the dash pattern is user definable via [fl_

dashedlinestyle()], page 262. Only the odd numbered segments
are drawn with the foreground color.

FL USERDOUBLEDASH

Similar to FL_LINE_USERDASH but both even and odd numbered segments are
drawn, with the even numbered segments drawn in the background color (as
set by [fl_bk_color()], page 255).

The following routine can be used to change the dash pattern for FL_USERDASH and FL

USERDOUBLEDASH:

void fl_dashedlinestyle(const char *dash, int ndashes)

Each element of the array dash is the length of a segment of the pattern in pixels (0 is
not allowed). Dashed lines are drawn as alternating segments, each with the length of an
element in dash. Thus the overall length of the dash pattern, in pixels, is the sum of all
elements of dash. When the pattern is used up but the line to draw is longer it used from
the start again. The following example code specifies a long dash (9 pixels) to come first,
then a skip (3 pixels), a short dash (2 pixels) and then again a skip (3 pixels). After this
sequence, the pattern repeats.

char ldash_sdash[] = {9, 3, 2, 3};

fl_dashedlinestyle(ldash_sdash, 4);

If dash is NULL or ndashes is 0 (or the dash array contains an element set to 0) a default
pattern of 4 pixels on and 4 fixels off is set.

It is important to remember to call [fl_dashedlinestyle()], page 262 whenever FL_

USERDASH is used to set the dash pattern, otherwise whatever the last pattern was will
be used. To use the default dash pattern you can pass NULL as the dash parameter to
[fl_dashedlinestyle()], page 262.

By default, all lines are drawn so they overwrite the destination pixel values. It is possible
to change the drawing mode so the destination pixel values play a role in the final pixel
value.

Chapter 28: Drawing Objects 263

void fl_drawmode(int mode);

There are 16 different possible settings for mode (see a Xlib programming manual for all the
gory details). A of the more useful ones are

GXcopy Default overwrite mode. Final pixel value = Src

GXxor Bitwise XOR (exclusive-or) of the pixel value to be drawn with the pixel value
already on the screen. Useful for rubber-banding.

GXand Bitwise AND of the pixel value to be drawn with the pixel value already on the
screen.

GXor Bitwise OR of the pixel value to be drawn with the pixel value already on the
screen.

GXinvert Just invert the pixel values already on the screen.

To obtain the current settings of the line drawing attributes use the following routines

int fl_get_linewidth(void);

int fl_get_linestyle(void);

int fl_get_drawmode(void);

There are also a number of high-level drawing routines available. To draw boxes the fol-
lowing routine exists. Almost any object class will use it to draw the bounding box of the
object.

void fl_drw_box(int style, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

FL_COLOR col, int bw);

style is the type of the box, e.g., FL_DOWN_BOX. x, y, w, and h indicate the size of the box.
col is the color and bw is the width of the boundary, which typically should be given the
value obj->bw or FL_BOUND_WIDTH. Note that a negative border width indicates a "softer"
up box. See the demo program ‘borderwidth.c’ for the visual effect of different border
widths.

There is also a routine for drawing a frame:

void fl_drw_frame(int style, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, FL_COLOR col, int bw)

All parameters have the usual meaning except that the frame is drawn outside of the
bounding box specified.

For drawing text there are two routines:

void fl_drw_text(int align, FL_Coord x, FL_Coord y, FL_Coord w,

FL_Coord h, FL_COLOR col, int style, int size,

const char *str);

void fl_drw_text_beside(int align, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, FL_COLOR col,

int style, int size, const char *str);

where align is the alignment, namely, FL ALIGN LEFT, FL ALIGN CENTER etc. x, y, w and
h indicate the bounding box, col is the color of the text, size is the size of the font to
use (in points) and style is the font style to be used (see Section 3.11.3 [Label Attributes

Chapter 28: Drawing Objects 264

and Fonts], page 28, for valid styles). Finally, str is the string itself, possibly containing
embedded newline characters.

[fl_drw_text()], page 263 draws the text inside the bounding box according to the
alignment requested while [fl_drw_text_beside()], page 263 draws the text aligned
outside of the box. These two routines interpret a text string starting with the character @
differently in drawing some symbols instead. Note that [fl_drw_text()], page 263 puts
a padding of 5 pixels in vertical direction and 4 in horizontal around the text. Thus the
bounding box should be 10 pixels wider and 8 pixels higher than required for the text to
be drawn.

The following routine can also be used to draw text and, in addition, a cursor can optionally
be drawn

void fl_drw_text_cursor(int align, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, FL_COLOR col,

int style, int size, char *str,

int FL_COLOR ccol, int pos);

where ccol is the color of the cursor and pos is its position which indicates the index of the
character in str before which to draw the cursor (-1 means show no cursor). This routine
does no interpretion of the special character @ nor does it add padding around the text.

Given a bounding box and the size of an object (e.g., a label) to draw, the following routine
can be used to obtain the position of where to draw it with a certain alignment and including
padding:

void fl_get_align_xy(int align, int x, int y, int w, int h,

int obj_xsize, int obj_ysize,

int xmargin, int ymargin,

int *xpos, int *ypos);

This routine works regardless if the object is to be drawn inside or outside of the bounding
box specified by x, y, w and h. obj_xsize and obj->ysize are the width and height of the
object to be drawn and xmargin and ymargin is the additional padding to use. xpos and
ypos return the position to be used for drawing the object.

For drawing object labels the following routines might be more convenient:

void fl_draw_object_label(FL_OBJECT *obj)

void fl_draw_object_label_outside(FL_OBJECT *obj);

Both routines assume that the alignment is relative to the full bounding box of the object.
The first routine draws the label according to the alignment, which could be inside or
outside of the bounding box. The second routine will always draw the label outside of the
bounding box.

An important aspect of (re)drawing an object is efficiency which can result in flicker and
non-responsiveness if not handled with care. For simple objects like buttons or objects
that do not have "movable parts", drawing efficiency is not a serious issue although you
can never be too fast. For complex objects, especially those that a user can interactively
change, special care should be taken.

The most important rule for efficient drawing is not to draw if you don’t have to, regardless
how simple the drawing is. Given the networking nature of X, simple or not depends not
only on the host/server speed but also the connection. What this strategy entails is that

Chapter 28: Drawing Objects 265

the drawing should be broken into blocks and depending on the context, draw/update only
those parts that need to.

Chapter 29: An Example 266

29 An Example

Let us work through an example of how to create a simple object class named colorbox.
Assume that we want a class with the following behavior: it should normally be red. When
the user presses the mouse on it it should turn blue. When the user releases the mouse but-
ton the object should turn red again and be returned to the application program. Further,
the class module should keep a total count how many times the box got pushed.

The first thing to do is to define some constants in a file named ‘colbox.h’. This file should
at least contain the class number and one or more types:

/* Class number must be between FL_USER_CLASS_START

and FL_USER_CLASS_END */

#define FL_COLBOX (FL_USER_CLASS_START + 1)

#define FL_NORMAL_COLBOX 0 /* The only type */

Note that the type must start from zero onward. Normally it should also contain some
defaults for the boxtype and label alignment etc. The include file also has to declare all the
functions available for this object class. I.e., it should contain:

extern FL_OBJECT *fl_create_colbox(int, FL_Coord, FL_Coord, FL_Coord,

FL_Coord, const char *);

extern FL_OBJECT *fl_add_colbox(int, FL_Coord, FL_Coord, FL_Coord,

FL_Coord, const char *);

extern int fl_get_colorbox(FL_OBJECT *);

Now we have to write a module ‘colbox.c’ that contains the different routines. First of all
we need routines to create an object of the new type and to add it to the current form. We
also need to have a counter that keeps track of number of times the colbox is pushed. They
would look as follows:

typedef struct {

int counter; /* no. of times pushed */

} COLBOX_SPEC;

FL_OBJECT *fl_create_colbox(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label) {

FL_OBJECT *obj;

/* create a generic object class with an appropriate ID */

obj = fl_make_object(FL_COLBOX, type, x, y, w, h, label,

handle_colbox);

/* initialize some members */

obj->col1 = FL_RED;

obj->col2 = FL_BLUE;

/* create class specific structures and initialize */

Chapter 29: An Example 267

obj->spec = fl_malloc(sizeof *obj->spec);

obj->spec->counter = 0;

return obj;

}

FL_OBJECT *fl_add_colbox(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label) {

FL_OBJECT *obj = fl_create_colbox(type, x, y, w, h, label);

fl_add_object(fl_current_form, obj);

return obj;

}

The fields col1 and col2 are used to store the two colors red and blue such that the user
can change them when required with the routine [fl_set_object_color()], page 287.
What remains is to write the handling routine handle_colbox(). It has to react to three
types of events: FL_DRAW, FL_PUSH and FL_RELEASE. Also, when the box is pushed, the
counter should be incremented to keep a total count. Note that whether or not the mouse
is pushed on the object is indicated in the field obj->pushed. Hence, when pushing and
releasing the mouse the only thing that needs to be done is redrawing the object. This leads
to the following piece of code:

static int handle_colbox(FL_OBJECT *obj, int event,

FL_Coord mx, FL_Coord my,

int key, void *xev) {

switch (event) {

case FL_DRAW: /* Draw box */

fl_drw_box(obj->boxtype, obj->x,obj->y, obj->w, obj->h,

obj->pushed ? obj->col2 : obj->col1, obj->bw);

/* fall through */

case FL_DRAWLABEL: /* Draw label */

fl_draw_object_label(obj);

break;

case FL_PUSH:

((COLBOX_SPEC *) obj->spec)->counter++;

fl_redraw_object(obj);

break;

case FL_RELEASE:

fl_redraw_object(obj);

return 1; /* report back to application! */

case FL_FREEMEM:

fl_free(obj->spec);

break;

}

Chapter 29: An Example 268

return 0;

}

That is the whole piece of code. Of course, since the COLBOX_SPEC structure is invisible
outside of ‘colbox.c’, the following routine should be provided to return the total number
of times the colbox was pushed:

int fl_get_colbox(FL_OBJECT *obj) {

if (!obj || obj->objclass != FL_COLBOX) {

fprintf(stderr, "fl_get_colbox: Bad argument or wrong type);

return -1;

}

return ((COLBOX_SPEC *) obj->spec)->counter;

}

To use it, compile it into a file ‘colbox.o’. An application program that wants to use the
new object class simply should include ‘colbox.h’ and link with ‘colbox.o’ when compiling
the program. It can then use the routine fl_add_colbox() to add objects of the new type
to a form.

Chapter 30: New Buttons 269

30 New Buttons

Since button-like object is one of the most important, if not the most important, classes in
graphical user interfaces, Forms Library provides, in addition to the ones explained earlier,
a few more routines that make create new buttons or button-like objects even easier. These
routines take care of the communication between the main module and the button handler so
all new button classes created using this scheme behave consistently. Within this scheme,
the programmer only has to write a drawing function that draws the button. There is
no need to handle events or messages from the main module and all types of buttons,
radio, pushed or normal are completely taken care of by the generic button class. Further,
[fl_get_button()], page 124 and [fl_set_button()], page 123 work automatically
without adding any code for them.

Forms Library provides two routines to facilitate the creation of new button object classes.
One of the routines is

FL_OBJECT *fl_create_generic_button(int objclass, int type,

FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label);

which can be used to create a generic button that has all the properties of a real button
except that this generic button does not know what the real button looks like. The other
routine [fl_add_button_class()], page 270, discussed below, can be used to register a
drawing routine that completes the creation of a new button.

All button or button-like objects have the following instance-specific structure, defined in
‘forms.h’, that can be used to obtain information about the current status of the button:

typedef struct {

Pixmap pixmap; /* for bitmap/pixmap button only */

Pixmap mask; /* for bitmap/pixmap button only */

unsigned int bits_w, /* for bitmap/pixmap button only */

bits_h;

int val; /* whether it’s pushed */

int mousebut; /* mouse button that caused the push */

int timdel; /* time since last touch (TOUCH buttons)*/

int event; /* what event triggered the redraw */

long cspecl; /* for non-generic class specific data */

void * cspec; /* for non-generic class specific data */

char * file; /* filename for the pixmap/bitmap file */

} FL_BUTTON_STRUCT;

Of all its members, only val and mousebut probably will be consulted by the drawing
function. cspecl and cspecv are useful for keeping track of class status other than those
supported by the generic button (e.g., you might want to add a third color to a button for
whatever purposes.) These two members are neither referenced nor changed by the generic
button class.

Making this structure visible somewhat breaks the Forms Library’s convention of hiding
the instance specific data but the convenience and consistency gained by this far outweights
the compromise on data hiding.

Chapter 30: New Buttons 270

The basic procedures in creating a new button-like object are as follows. First, just like
creating any other object classes, you have to decide on a class ID, an integer between FL_

USER_CLASS_START (1001) and FL_USER_CLASS_END (9999) inclusive. Then write a header
file so that application programs can use this new class. The header file should include the
class ID definition and function prototypes specific to this new class.

After the header file is created, you will have to write C functions that create and draw the
button. You also will need an interface routine to place the newly created button onto a
form.

After creating the generic button, the new button class should be made known to the button
driver via the following function

void fl_add_button_class(int objclass, void (*draw)(FL_OBJECT *), void

(*cleanup)(FL_BUTTON_SPEC *));

where objclass is the class ID, and draw is a function that will be called to draw the
button. cleanup is a function that will be called prior to destroying the button. You need
a cleanup function only if the drawing routine uses the cspecv field of FL_BUTTON_STRUCT
to hold memory allocated dynamically by the new button.

We use two examples to show how new buttons are created. The first example is taken from
the button class in the Forms Library, i.e., its real working source code that implements the
button class. To illustrate the entire process of creating this class, let us call this button
class FL_NBUTTON.

First we create a header file to be included in an application program that uses this button
class:

#ifndef NBUTTON_H_

#define NBUTTON_H_

#define FL_NBUTTON FL_USER_CLASS_START

extern FL_OBJECT *fl_create_nbutton(int, FL_Coord, FL_Coord,

FL_Coord, FL_Coord,

const char *);

extern FL_OBJECT *fl_add_nbutton(int, FL_Coord, FL_Coord,

FL_Coord, FL_Coord, const char *);

#endif

Now to the drawing function. We use obj->col1 for the normal color of the box and obj-

>col2 for the color of the box when pushed. We also add an extra property so that when
mouse moves over the button box, the box changes color. The following is the full source
code that implements this:

static void draw_nbutton(FL_OBJECT *obj) {

FL_COLOR col;

/* box color. If pushed we use obj->col2, otherwise use obj->col1 */

col = ((FL_BUTTON_STRUCT *) obj->spec)->val ?

obj->col2 : obj->col1;

Chapter 30: New Buttons 271

/* if mouse is on top of the button, we change the color of

* the button to a different color. However we only do this

* if the * box has the default color. */

if (obj->belowmouse && col == FL_COL1)

col = FL_MCOL;

/* If original button is an up_box and it is being pushed,

* we draw a down_box. Otherwise, don’t have to change

* the boxtype */

if (obj->boxtype == FL_UP_BOX

&& ((FL_BUTTON_STRUCT *) obj->spec)->val)

fl_drw_box(FL_DOWN_BOX, obj->x, obj->y, obj->w, obj->h,

col, obj->bw);

else

fl_drw_box(obj->boxtype, obj->x, obj->y, obj->w, obj->h,

col, obj->bw);

/* draw the button label */

fl_drw_object_label(obj);

/* if the button is a return button, draw the return symbol.

* Note that size and style are 0 as they are not used when

* drawing symbols */

if (obj->type == FL_RETURN_BUTTON)

fl_drw_text(FL_ALIGN_CENTER,

obj->x + obj->w - 0.8 * obj->h - 1,

obj->y + 0.2 * obj->h, 0.6 * obj->h,

0.6 * obj->h, obj->lcol, 0, 0, "@returnarrow");

}

Note that when drawing symbols, the style and size are irrelevent and set to zero in [fl_

drw_text()], page 263 above.

Since we don’t use the cspecv field to point to dynamically allocated memory we don’t
have to write a clean-up function.

Next, following the standard procedures of the Forms Library, we code a separate routine
that creates the new button1

FL_OBJECT *fl_create_nbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label) {

FL_OBJECT *obj;

obj = fl_create_generic_button(FL_NBUTTON, type, x, y, w, h, label);

fl_add_button_class(FL_NBUTTON, draw_nbutton, NULL);

obj->col1 = FL_COL1; /* normal color */

1 A separate creation routine is useful for integration into the Form Designer.

Chapter 30: New Buttons 272

obj->col2 = FL_MCOL; /* pushed color */

obj->align = FL_ALIGN_CENTER; /* button label placement */

return obj;

}

You will also need a routine that adds the newly created button to a form

FL_OBJECT *fl_add_nbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h, const char *label) {

FL_OBJECT *obj = fl_create_nbutton(type, x, y, w, h, label);

fl_add_object(fl_current_form, obj);

return obj;

}

This concludes the creation of button class FL_NBUTTON. The next example implements
a button that might be added to the Forms Library in the future. We call this button a
crossbutton. Normally, this button shows a small up box with a label on the right. When
pushed, the up box becomes a down box and a small cross appears on top of it. This kind
of button obviously is best used as a push button or a radio button. However, the Forms
Library does not enforce this. It can be enforced, however, by the application program or
by the object class developers.

We choose to use obj->col1 as the color of the box and obj->col2 as the color of the
cross (remember these two colors are changeable by the application program via [fl_set_

object_color()], page 287). Note that this decision on color use is somewhat arbitrary,
we could have easily made obj->col2 the color of the button when pushed and use obj-

>spec->cspecl for the cross color (another routine named e.g., fl_set_crossbutton_

crosscol() should be provided to change the cross color in this case).

We start by defining the class ID and declaring the utility routine prototypes in the header
file ‘crossbut.h’:

#ifndef CROSSBUTTON_H_

#define CROSSBUTTON_H_

#define FL_CROSSBUTTON (FL_USER_CLASS_START + 2)

extern FL_OBJECT *fl_add_crossbutton(int, FL_Coord, FL_Coord,

FL_Coord, FL_Coord, const char *);

Chapter 30: New Buttons 273

extern FL_OBJECT *fl_create_crossbutton(int, FL_Coord, FL_Coord,

FL_Coord, FL_Coord,

const char *);

#endif

Next we write the actual code that implements crossbutton class and put it into
‘crossbut.c’:

/* routines implementing the "crossbutton" class */

#include <forms.h>

#include "crossbut.h"

/** How to draw it */

static void draw_crossbutton(FL_OBJECT *obj) {

FL_Coord xx, yy, ww, hh;

FL_BUTTON_STRUCT *sp = obj->spec;

/* There is no visual change when mouse enters/leaves the box */

if (sp->event == FL_ENTER || sp->event == FL_LEAVE)

return;

/* draw the bounding box first */

fl_drw_box(obj->boxtype, obj->x, obj->y, obj->w, obj->h,

obj->col1, obj->bw);

/* Draw the box that contains the cross */

ww = hh = (0.5 * FL_min(obj->w, obj->h)) - 1;

xx = obj->x + FL_abs(obj->bw);

yy = obj->y + (obj->h - hh) / 2;

/* If pushed, draw a down box with the cross */

if (sp->val) {

fl_drw_box(FL_DOWN_BOX, xx, yy, ww, hh, obj->col1, obj->bw);

fl_drw_text(FL_ALIGN_CENTER, xx - 2, yy - 2, ww + 4, hh + 4,

obj->col2, 0, 0, "@9plus");

} else

fl_drw_box(FL_UP_BOX, xx, yy, ww, hh, obj->col1, obj->bw);

/* Draw the label */

if (obj->align == FL_ALIGN_CENTER)

fl_drw_text(FL_ALIGN_LEFT, xx + ww + 2, obj->y, 0, obj->h,

obj->lcol, obj->lstyle, obj->lsize, obj->label);

else

fl_draw_object_label_outside(obj);

Chapter 30: New Buttons 274

if (obj->type == FL_RETURN_BUTTON)

fl_drw_text(FL_ALIGN_CENTER, obj->x + obj->w - 0.8 * obj->h,

obj->y + 0.2 * obj->h, 0.6 * obj->h, 0.6 * obj->h,

obj->lcol, 0, 0, "@returnarrow");

}

This button class is somewhat different from the normal button class (FL_BUTTON) in that
we enforce the appearance of a crossbutton so that an un-pushed crossbutton always has
an upbox and a pushed one always has a downbox. Note that the box that contains the
cross is not the bounding box of a crossbutton although it can be if the drawing function is
coded so.

The rest of the code simply takes care of interfaces:

/* creation routine */

FL_OBJECT * fl_create_crossbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label) {

FL_OBJECT *obj;

fl_add_button_class(FL_CROSSBUTTON, draw_crossbutton, NULL);

/* if you want to make cross button only available for

* push or radio buttons, do it here as follows:

if (type != FL_PUSH_BUTTON && type != FL_RADIO_BUTTON)

type = FL_PUSH_BUTTON;

*/

obj = fl_create_generic_button(FL_CROSSBUTTON, type, x, y, w, h,

label);

obj->boxtype = FL_NO_BOX;

obj->col2 = FL_BLACK; /* cross color */

return obj;

}

/* interface routine to add a crossbutton to a form */

FL_OBJECT *fl_add_crossbutton(int type, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h,

const char *label) {

FL_OBJECT *obj = fl_create_crossbutton(type, x, y, w, h, label);

fl_add_object(fl_current_form, obj);

return obj;

}

The actual code is in the demo directory, see the files ‘crossbut.c’ and ‘crossbut.h’.
An application program only needs to include the header file ‘crossbut.h’ and link with

Chapter 30: New Buttons 275

‘crossbut.o’ to use this new object class. There is no need to change or re-compile the
Forms Library. Of course, if you really like the new object class, you can modify the system
header file ‘forms.h’ to include your new class header file automatically (either through
inclusion at compile time or by including the actual header). You can also place the object
file (‘crossbut.o’) in ‘libforms.a’ and ‘libforms.so’ if you wish. Note however that this
will make your application programs dependent on your personal version of the library.

Since the current version of Form Designer does not support any new object classes de-
veloped as outlined above, the best approach is to use another object class as stubs when
creating a form, for example, you might want to use checkbutton as stubs for the crossbut-
ton. Once the position and size are satisfactory, generate the C-code and then manually
change checkbutton to crossbutton. You probably can automate this with some scripts.

Finally there is a demo program utilizing this new button class. The program is
‘newbutton.c’.

Chapter 31: Using a Pre-emptive Handler 276

31 Using a Pre-emptive Handler

Pre-emptive handlers came into being due to reasons not related to developing new classes.
They are provided for the application programs to have access to the current state or event
of a particular object. However, with some care, this preemptive handler can be used to
override parts of the original built-in handler thus yielding a new class of objects.

As mentioned earlier, an object module communicates with the main module via events.
Central part of the module is the event handler, which determines how an object responds
to various events such as mouse clicks or a key presses. Now a pre-emptive handler is a
function which, if installed, gets called first by the main module when an event for the
object occurs. The pre-emptive handler has the option to override the built-in handler by
informing the main module not to call the built-in handler (and a possibly also installed
post handler), thus altering the behavior of the object. A post handler, on the other hand,
is called when the object handler has finished its tasks and thus does not offer the capability
of overriding the built-in handler. It is much safer, however.

The API to install a pre- or post-handler for an object is as follows

typedef int (*FL_HANDLEPTR)(FL_OBJECT *obj, int event,

FL_Coord mx, FL_Coord my,

int key, void *raw_event);

void fl_set_object_prehandler(FL_OBJECT *obj,

FL_HANDLEPTR pre_handler);

void fl_set_object_posthandler(FL_OBJECT *obj,

FL_HANDLEPTR post_handler);

event is a generic event of the Forms Library, that is, [FL_DRAW], page 242, [FL_ENTER],
page 243 etc. Parameters mx and my are the mouse position and key is the key pressed.
The last parameter raw_event is a pointer to the XEvent (cast to a void pointer due to the
different types of Xevents) that caused the invocation of the pre- or post-handler. But note:
not all events of the Form Library have a corresponding Xevent and thus dereferencing of
xev should only be done after making sure it is not NULL.

The pre- and post-handler have the same function prototype as the built-in handler. Ac-
tually they are called with exactly the same parameters by the event dispatcher. The
pre-handler should return FL_PREEMPT to prevent the dispatcher from calling the normal
object handler for events and !FL_PREEMPT if the objects handler for is to be invoked next.
The post-handler may return whatever it wants since the return value is not used. Note
that a post-handler will receive all events even if the object the post-handler is registered
for does not. For example, a post-handler for a box (a static object that only receives
[FL_DRAW], page 242) receives all events.

Note that when an object has been de-activated using [fl_deactivate_object()],

page 298 (or the whole form the object belongs to is de-activated via calls of
[fl_deactivate_form()], page 297 or [fl_deactivate_all_forms()], page 297)
also pre-emptive and post-handlers won’t get invoked for the object.

See the demo programs ‘preemptive.c’ and ‘xyplotall.c’ for examples. Bear in mind
that modifying the built-in behavior is in general not a good idea. Using a pre-emptive
handler for the purpose of "peeking", however, is quite legitimate and can be useful in
some situations.

Part V - General Informations 277

Part V - General Informations

Chapter 32: Overview of Main Functions 278

32 Overview of Main Functions

In this chapter we give a brief overview of all the main functions that are available. For an
overview of all routines related to specific object classes see Part III.

32.1 Version Information

The header file ‘forms.h’ defines three symbolic constants which you can use to conditionally
compile your application. They are

FL_VERSION

The major version number.

FL_REVISION

Revision number.

FL_INCLUDE_VERSION

1000 * FL_VERSION + FL_REVISION

There is also a routine that can be used to obtain the library version at run time:

int fl_library_version(int *version, int *revision)

The function returns a consolidated version information, computed as 1000 * version +

revision. For example, for library version 1 revision 21 (1.21), the function returns a value
of 1021 with version and revision (if not NULL) set to 1 and 21, respectively.

It is always a good idea to check if the header and the run time library are of the same
version and take appropriate actions when they are not. This is especially important for
versions less than 1.

To obtain the version number of the library used in an executable, run the command with
-flversion option, which will print the complete version information.

32.2 Initialization

The routine

Display *fl_initialize(int *argc, char *argv[], const char *appclass,

XrmOptionDescList app_opt, int n_app_opt);

initializes the Forms Library and returns a pointer to the Display structure if a connection
could be made, otherwise NULL. This function must be called before any other calls to the
Forms Library (except [fl_set_defaults()], page 280 and a few other functions that
alter some of the defaults of the library).

The meaning of the arguments is as follows

argc, argv

Number and array of the command line arguments the application was started
with. The application name is derived from argv[0] by stripping leading path
names and trailing period and extension, if any. Due to the way the X resources
(and command line argument parsing) work, the executable name should not
contain a dot . or a star *.

Chapter 32: Overview of Main Functions 279

appclass The application class name, which typically is the generic name for all instances
of this application. If no meaningful class name exists, it is typically given
(or converted to if non given) as the application name with the first letter
capitalized (second if the first letter is an X).

app_opt Specifies how to parse the application-specific resources.

n_app_opt

Number of entries in the option list.

The [fl_initialize()], page 278 function builds the resource database, calls the Xlib
XrmParseCommand() function to parse the command line arguments and performs other per
display initialization. After the creation of the database, it is associated with the display
via XrmSetDatabase(), so the application can get at it if necessary.

All recognized options are removed from the argument list and their corresponding values
set. The XForms library provides appropriate defaults for all options. The following are
recognized by the library:

Option Type Meaning Default

-fldebug level int Print debug information 0 (off)

-name appname string Change application name none

-flversion Print version of the library
-sync Synchronous X11 mode (debug) false

-display host:dpy string Set (remote) host $DISPLAY

-visual class string TrueColor, PseudoColor... best

-depth depth int Set prefered visual depth best

-vid id long Set prefered visual ID 0

-private Force use of private colormap false

-shared Force use of shared colormap false

-stdcmap Force use of standard colormap false

-double Enable double buffering for forms false

-bw width int Set object border width 1

-rgamma gamma float Set red gamma 1.0

-ggamma gamma float Set green gamma 1.0

Chapter 32: Overview of Main Functions 280

-bgamma gamma float Set blue gamma 1.0

In the above table "best" means the visual that has the most colors, which may or may
not be the server’s default. There is a special command option -visual Default that sets
both the visual and depth to the X servers default. If a visual ID is requested, it overrides
depth or visual if specified. The visual ID can also be requested programmatically (before
[fl_initialize()], page 278 is called) via the function

void fl_set_visualID(long id);

Note that all command line options can be abbreviated, thus if the application program
uses single character options, they might clash with the built-ins. For example, if you use -g
as a command line option to indicate geometry, it might not work as -g matches -ggamma
in the absence of -ggamma. Thus you should avoid using single character command line
options.

If the border width is set to a negative number, all objects appear to have a softer appear-
ance. Older version of the library used a larger default for the border width of 3.

As mentioned the [fl_initialize()], page 278 function removes all the above listed
values from the command line arguments, leaving you with a cleaned-up list. To get again
at the complete list you can use the function

char **fl_get_cmdline_args(int *arg_cnt);

returning a copy to the values from the original list and their number via the arg_cnt

argument.

Depending on your application XForms defaults may or may not be appropriate. E.g., on
machines capable of 24 bits visuals, Forms Library always selects the deeper 24 bits visual.
If your application only uses a limited number of colors, it might be faster if a visual other
than 24 bits is selected.

There are a couple of ways to override the default settings. You can provide an application
specific resource database distributed with your program. The easiest way, however, is to
set up your own program defaults programmatically without affecting the users’ ability to
override them with command line options. For this, you can use the following routine before
calling [fl_initialize()], page 278:

void fl_set_defaults(unsigned long mask, FL_IOPT *flopt);

In addition to setting a preferred visual, this function can also be used to set other program
defaults, such as label font size, unit of measure for form sizes etc.

The following table lists the fields, masks and their meanings of [FL_IOPT], page 280:

Structure Mask Name Meaning
typedef struct {

int debug; FL_PDDebug Debug level (0-5)

int depth; FL_PDDepth Preferred visual depth

int vclass; FL_PDVisual Prefered visual, TrueColor etc.

int doubleBuffer; FL_PDDouble Simulate double buffering

Chapter 32: Overview of Main Functions 281

int buttonFontSize; FL_PDButtonFontSize Default button label font size

int menuFontSize; FL_PDMenuFontSize Menu label font size

int choiceFontSize; FL_PDChoiceFontSize Choice label and choice text font size

int

browserFontSize;

FL_PDBrowserFontSize Browser label and text font size

int inputFontSize; FL_PDInputFontSize Input label and text font size

int labelFontSize; FL_PDLabelFontSize Label font size for all other objects
(box, pixmap etc.)

int pupFontSize; FL_PDPupFontSize Font size for pop-ups

int

privateColormap;

FL_PDPrivateMap Select private colormap if appropriate

int sharedColormap; FL_PDSharedMap Force use of shared colormap

int

standardColormap;

FL_PDStandardMap Force use of standard colormap

int scrollbarType; FL_PDScrollbarType Scrollbar type to use for browser and
input

int ulThickness; FL_PDULThickness Underline thickness

int ulPropWidth; FL_PDULPropWidth Underline width, 0 for const. width
fonts

int backingStore; FL_PDBS Turn BackingStore on or off

int coordUnit; FL_PDCoordUnit Unit of measure: pixel, mm, point

int borderWidth; FL_PDBorderWidth Default border width

} FL IOPT;

A special visual designation, FL_DefaultVisual and a command line option equivalent, -
visual Default are provided to set the program default to the server’s default visual class
and depth.

If you set up your resource specifications to use class names instead of instance names, users
can then list instance resources under an arbitrary name that is specified with the -name

option.

Coordinate units can be in pixels, points (1/72 inch), mm (millimeters), cp (centi-point,
i.e., 1/100 of a point) or cmm (centi-millimeter). The the type of unit in use can be queried
or set via the functions

int fl_get_coordunit(void);

void fl_set_coordunit(int coordUnit);

Chapter 32: Overview of Main Functions 282

coordUnit can have the following values: FL_COORD_PIXEL, FL_COORD_POINT, FL_COORD_
MM, FL_COORD_centiPOINT and FL_COORD_centiMM.

The unit in use can be changed anytime, but typically you would do this prior to creating
a form, presumably to make the size of the form screen resolution independent. The basic
steps in doing this may look something like the following:

int oldcoordUnit = fl_get_coordunit();

fl_set_coordunit(FL_COORD_POINT);

fl_bgn_form(...); /* add more objects */

fl_end_form();

fl_set_coordunit(oldcoordunit);

Some of the defaults are "magic" in that their exact values depend on the context or
platform. For example, the underline thickness by default is 1 for normal fonts and 2 for
bold fonts.

There exists a convenience function to set the application default border width

void fl_set_border_width(int border_width)

which is equivalent to

FL_IOPT fl_cntl;

fl_cntl.borderWidth = border_width;

fl_set_defaults(FL_PDBorderWidth, &fl_cntl);

Typically this function, if used, should appear before [fl_initialize()], page 278 is
called so the user has the option to override the default via resource or command line
options.

The cirrent setting of the borderwidth can also tested via

int fl_get_border_width(void);

To change the default scrollbar type (which is THIN_SCROLLBAR) used in browser and input
object, the following convenience function can be used:

void fl_set_scrollbar_type(int type);

where type can be one of the following

FL_NORMAL_SCROLLBAR

Basic scrollbar

FL_THIN_SCROLLBAR

Thin scrollbar

FL_NICE_SCROLLBAR

Nice scrollbar

FL_PLAIN_SCROLLBAR

Similar to thin scrollbar, but not as fancy

Setting the scrollbar type before calling [fl_initialize()], page 278 is equivalent to

FL_IOPT fl_cntl;

fl_cntl.scrollbarType = type;

fl_set_defaults(FL_PDScrollbarType, &fl_cntl);

It is recommended that this function be used before [fl_initialize()], page 278 so the
user has the option to override the default through application resources.

Chapter 32: Overview of Main Functions 283

Prior to version 0.80 the origin of XForms’ coordinate system was at the lower left-hand
corner of the form. The new Form Designer will convert the form definition file to the
new coordinate system, i.e., with the origin at the upper left-hand corner, so no manual
intervention is required. To help those who lost the .fd files or otherwise can’t use a newer
version of fdesign, a compatibility function is provided

void fl_flip_yorigin(void);

Note however that this function must be called prior to [fl_initialize()], page 278

and is a no-op after that.

If this function has been called functions like [fl_get_object_position()], page 288 or
[fl_get_object_bbox()], page 288, reporting an objects positions and bounding box,
will return y-coordinates in the old-fashioned coordinate system with the origin at the left
bottom corner of the form. Similarly, the functions for setting or changing an objects po-
sition ([fl_set_object_position()], page 288 and [fl_move_object()], page 288)
then expect to receive arguments for the y-coordinates in this system. The y-coordinate
stored in the object itself (i.e., obj->y) is always for the normal coordinate system with the
origin at the top left corner.

For proportional font, substituting tabs with spaces is not always appropriate because this
most likely will fail to align text properly. Instead, a tab is treated as an absolute measure of
distance, in pixels, and a tab stop will always end at multiples of this distance. Application
program can adjust this distance by setting the tab stops using the following routine

void fl_set_tabstop(const char *s);

where s is a string whose width in pixels is to be used as the tab length. The font used to
calculate the width is the same font that is used to render the string in which the tab is
embedded. The default "aaaaaaaa", i.e., eight ’a’s.

Before we proceed further, some comments about double buffering are in order. Since
Xlib does not support double buffering, Forms Library simulates this functionality with
pixmap bit-bliting. In practice, the effect is hardly distinguishable from double buffering
and performance is on par with multi-buffering extensions (It is slower than drawing into
a window directly on most workstations however). Bear in mind that a pixmap can be
resource hungry, so use this option with discretion.

In addition to using double buffering throughout an application, it is also possible to use
double buffering on a per-form or per-object basis by using the following routines:

void fl_set_form_dblbuffer(FL_FORM *form, int yes_no);

void fl_set_object_dblbuffer(FL_OBJECT *obj, int yes_no);

Currently double buffering for objects having a non-rectangular box might not work well. A
nonrectangular box means that there are regions within the bounding box that should not be
painted, which is not easily done without complex and expensive clipping and unacceptable
inefficiency. XForms gets around this by painting these regions with the form’s backface
color. In most cases, this should prove to be adequate. If needed, you can modify the
background of the pixmap by changing obj->dbl_background after switching to double
buffer.

Normally the Forms Library reports errors to stderr. This can be avoided or modified by
registering an error handling function

void fl_set_error_handler(void (*user_handler)(const char *where,

Chapter 32: Overview of Main Functions 284

const char *fmt,...));

The library will call the user_handler function with a string indicating in which function an
error occured and a formatting string (see sprintf()) followed by zero or more arguments.
To restore the default handler, call the function again with user_handler set to NULL. You
can call this function anytime and as many times as you wish.

You can also instruct the default message handler to log the error to a file instead of printing
to stderr

void fl_set_error_logfp(FILE *fp);

For example

fl_set_error_logfp(fopen("/dev/null","w"));

redirects all error messages to ‘/dev/null’, effectively turning off the default error reporting
to stderr.

In XForms versions older than 1.0.01 for some error messages, in addition to being printed
to stderr, a dialog box were shown that requires actions from the user. This could be turned
off and on with the function

void fl_show_errors(int show);

where show indicates whether to show (1) or not show (0) the errors. With newer versions
of the Forms Library this function has no effect.

The fonts used in all forms can be changed using the routines

int fl_set_font_name(int n, const char *name);

int fl_set_font_name_f(int n, const char *fmt, ,,,);

The first function just accepts a simple string while the second constructs the font name
from a format string just as it’s used for printf() etc. and the following arguments. The
first argument, n, must be a number between 0 and FL_MAXFONTS-1. The function returns
0 on success, 1 if called before proper initialization of the library and -1 for either invalid
arguments (name or the result of the expansion of the format string doesn’t name an available
font, n negative or not less than FL_MAXFONTS). See Section 3.11.3 [Label Attributes and
Fonts], page 28, for details. A redraw of all forms is required to actually see the change for
visible forms.

Since the dimension of an object is typically given in pixels, depending on the server resolu-
tion and the font used, this can lead to unsatisfactory user interfaces. For example, a button
designed to (just) contain a label in a 10 pt font on a 75 DPI monitor will have the label
overflow the button on a 100 DPI monitor. This comes about because a character of a 10 pt
font when rendered with 75 DPI resolution may have 10 pixels while the same character in
the same 10 pt font with 100 DPI resolution may have 14 pixels. Thus, when designing the
interfaces, leave a few extra pixels for the object. Or use a resolution independent unit,
such as point, or centi-point etc.

Using a resolution independent unit for the object size should solve the font problems,
theoretically. In practice, this approach may still prove to be vulnerable. The reason is the
discreteness of both the font resolution and the monitor/server resolutions. The standard
X fonts only come in two discrete resolutions, 75 DPI and 100 DPI. Due to the variations
in monitor resolutions, the theoretically identical sized font, say a 10 pt font, can vary in
sizes (pixels) by up to 30%, depending on the server (rendering a font on a 80 DPI monitor
will cause errors in sizes regardless if a 75 DPI or 100 DPI font is used.) This has not even

Chapter 32: Overview of Main Functions 285

taken into account the fact that a surprising number of systems have wrong font paths (e.g.,
a 90 DPI monitor using 75 DPI fonts etc.).

With the theoretical and practical problems associated with X fonts, it is not practical
for XForms to hard-code default font resolution and it is not practical to use the resolu-
tion information obtained from the server either as information obtained from the server
regarding monitor resolution is highly unreliable. Thus, XForms does not insist on using
fonts with specific resolutions and instead it leaves the freedom to select the default fonts
of appropriate resolutions to the system administrators.

Given all these uncertainties regarding fonts, as a workaround, XForms provides a function
that can be used to adjust the object size dynamically according to the actual fonts loaded:

double fl_adjust_form_size(FL_FORM *form);

This function works by computing the size (in pixels) of every object on the form that has
an inside label and compares it to the size of the object. Scaling factors are computed for all
object labels that don’t fit. The maximum scaling factor found is then used to scale the form
so every object label fits inside the object. It will never shrink a form. The function returns
the resulting scaling factor. In scaling the aspect ratio of the form is left unmodified and
all object gravity specifications are ignored. Since this function is meant to compensate for
font size and server display resolution variations, scaling is limited to 125% per invocation.
The best place to use this function is right after the creation of the forms. If the forms are
properly designed this function should be a no-op on the machine the forms were designed
on. Form Designer has a special option -compensate and resource compensate to request
the emission of this function automatically for every form created. It is likely that this will
become the default once the usefulness of it has been established.

There is a similar function that works the same way, but on an object-by-object basis and
further allows explicit margin specifications:

void fl_fit_object_label(FL_OBJECT *obj, FL_Coord hm, FL_Coord vm);

where hm and vm are the horizontal and vertical margins to leave on each side of the object,
respectively. This function works by computing the object labels size and comparing it
to the object size. If the label does not fit inside the object with the given margin, the
entire form the object is on is scaled so the object label fits. In scaling the form, all gravity
specification is ignored but the aspect ratio of the form (and thus of all objects) is kept.
This function will not shrink a form. You can use this function on as many objects as you
choose. Of course the object has to have a label inside the object for this function to work.

All colors with indices smaller than FL_FREE_COL1 are used (or can potentially be used) by
the Forms Library. If you wish they can be changed using the following function prior to
[fl_initialize()], page 278:

void fl_set_icm_color(FL_COLOR index, int r, int g, int b);

Using this function you can actually change all entries in the internal colormap (with index

going up to FL_MAX_COLORS-1). You may also inspect the internal colormap using

void fl_get_icm_color(FL_COLOR index, int *r, int *g, int *b);

In some situations Forms Library may modify some of the server defaults. All modified
defaults are restored as early as possible by the main loop and in general, when the ap-
plication exits, all server defaults are restored. The only exception is when exiting from

Chapter 32: Overview of Main Functions 286

a callback that is activated by shortcuts. Thus it is recommended that the cleanup rou-
tine [fl_finish()], page 286 is called prior to exiting an application or register it via
atexit().

void fl_finish(void);

In addition to restoring all server defaults, [fl_finish()], page 286 also shuts down the
connection and frees dynamically allocated memory.

32.3 Creating Forms

To start the definition of a form call

FL_FORM *fl_bgn_form(int type, FL_Coord w, FL_Coord h);

When the form is created it automatically acquires one object, a box object covering the
full area of the form, which is used as the background of the form. The type argument
is the type of this box object, so you can "style" the look of your forms (but don’t use
any non-rectangular box types). w and h are the width and height of the new form. The
function returns a pointer to the new form.

Note: if you look at the code generated by fdesign for the creation of a form you may
notice that the type of this automatically assigned box is [FL_NO_BOX], page 109 (which is
invisible) and that for the background another box of the same size but a different (visible)
type is added. This is because in fdesign the very first object can’t be accessed and thus
its properties can not be adjusted (like the box type or its color that then becomes the
background color of the form). By using an extra box, which can be accessed from within
fdesign, that problem is circumvented.

There also exist functions for setting and requesting the background color of a form

void fl_set_form_background_color(FL_FORM *form, FL_COLOR col);

FL_COLOR fl_get_form_background_color(FL_FORM *form);

These functions use the color of the very first object of the form, or, if this is a box of
type [FL_NO_BOX], page 109 as it is the case with forms created via code generated by
fdesign, the color of the second object. If these object(s) don’t exist the function can’t
work properly.

Once all objects required have been added to a form call

void fl_end_form(void);

Between these two calls objects and groups of objects are added to the form with functions
like [fl_add_button()], page 120.

To start a new group of objects use

FL_OBJECT *fl_bgn_group(void);

The function returns a pointer to the group (actually to an invisible pseudo-object of class
FL_BEGIN_GROUP). Groups can’t be nested.

When all objects that are supposed to belong to the group are added call

void fl_end_group(void);

Also this function creates an (invisible) pseudo-object, belonging to class FL_END_GROUP,
but since it can’t be used its address isn ot returned.

Groups are useful for two reasons. First of all, it is possible to hide or deactivate groups
of objects with a single function call. This is often very handy to dynamically change the

Chapter 32: Overview of Main Functions 287

appearance of a form depending on the context or selected options. In addition it can
also be used as a shortcut to set some particular attributes of several objects. It is not
uncommon that you want several objects to maintain their relative positioning upon form
resizing. This requires to set the gravity for each object. If these objects are placed inside
a group, setting the gravity attributes of the group will suffice.

The second reason for use of groups is radio buttons. Radio buttons are considered related
only if they belong to the same group. Using groups is the only way to place unrelated
groups of radio buttons on a single form without interference from each other.

Both forms and groups that have been ended by [fl_end_form()], page 286 or [fl_end_
group()], page 286 can be "reopened" by using

FL_FORM *fl_addto_form(FL_FORM *form)

FL_OBJECT *fl_addto_group(FL_OBJECT *group);

Both functions return their argument on success and NULL on failure (e.g., because a different
group or form is still open). On success further objects can be appended to the form or
group.

To remove an object from a form use

void fl_delete_object(FL_OBJECT *obj);

This does not yet destroy the object, it just breaks its connection to the form it did belong
to, so it can still be referenced and added to the same form again or some other form using

void fl_add_object(FL_FORM *form, FL_OBJECT *obj);

even without "reopening" the form using [fl_addto_form()], page 287.

To finally destroy an object use

void fl_free_object(FL_OBJECT *obj);

If [fl_delete_object()], page 287 hadn’t been called for the object this will happen
now. The object receives a final event of type [FL_FREEMEM], page 244 to allow it to
free memory it did allocate and do whatever other clean-up required. Finally all memory
allocated for the object is freed. After being freed an object can not be referenced anymore.

A form as a whole, together with all the objects it contains can be deleted by calling

void fl_free_form(FL_FORM *form);

This will first hide the form (emitting warning if this is necessary), then free all of its objects
and finally release memory allocated for the form.

32.4 Object Attributes

A number of general routines are available for setting and querying attributes. Unless stated
otherwise, all attributes altering routines affect the appearance or geometry of the object
immediately if the object is visible.

Since the object class and type of an object can’t be changed anymore once an object has
been created there are only functions for querying these attributes:

int fl_get_object_objclass(FL_OBJECT *obj);

int fl_get_object_type(FL_OBJECT *obj);

Receiving a negative value indicates that a NULL pointer was passed to the functions.

To set the two colors that influence the appearance of the object use

Chapter 32: Overview of Main Functions 288

void fl_set_object_color(FL_OBJECT *obj, FL_COLOR col1, FL_COLOR col2);

and to find out about the colors of an object use

void fl_get_object_color(FL_OBJECT *obj,

FL_COLOR *col1, FL_COLOR *col2);

void fl_set_object_boxtype(FL_OBJECT *obj, int boxtype);

Changes the shape of the box of the object. Please note that not all possible boxtypes
are suitable for all types of objects, see the documentation for the different objects for
limitations.

To find out the current boxtype of an object use

int fl_get_object_boxtype(FL_OBJECT *obj);

Receiving a negative value indicates that a NULL pointer was passed to the function.

There are also functions to change or query the border width of an object:

void fl_set_object_bw(FL_OBJECT *obj, int bw);

void fl_get_object_bw(FL_OBJECT *obj, int *bw);

If the requested border width is 0, -1 is used.

To change or inquire the objects position (relative to the form it belongs to) the functions

void fl_set_object_position(FL_OBJECT *obj, FL_Coord x, FL_Coord y);

void fl_get_object_position(FL_OBJECT *obj, FL_Coord *x, FL_Coord *y);

exist. If the object is visible it’s redrawn at the new position.

An object can also be moved relative to its current position using the function

void fl_move_object(FL_OBJECT *obj, FL_Coord dx, FL_Coord dy);

where dx and dy are the amounts by which the object is moved to the right and down.

To change or inquire about the size of an object use

void fl_set_object_size(FL_OBJECT *obj, FL_Coord w, FL_Coord h);

void fl_get_object_size(FL_OBJECT *obj, FL_Coord *w, FL_Coord *h);

When changing the size of the object the position of its upper left hand corner remains
unchanged.

To set or query both the position and the size of an object the functions

void fl_set_object_geometry(FL_OBJECT *obj, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h);

void fl_get_object_geometry(FL_OBJECT *obj, FL_Coord *x, FL_Coord *y,

FL_Coord (*w, FL_Coord *h);

can be used.

Please note: always use one of the above functions to change the position and/or size of an
object and don’t try to change the information stored in the object directly. There’s some
double bookkeeping going on under the hood that makes sure that the objects position and
size won’t change due to rounding errors when the whole form gets resized and changing
the internal information kept in the objects structure would interfere with this.

There’s a second function for calculation an objects geometry:

Chapter 32: Overview of Main Functions 289

void fl_get_object_bbox(FL_OBJECT *obj, FL_Coord *x, FL_Coord *y,

FL_Coord *w, FL_Coord *h);

The difference between this functions and [fl_get_object_geometry()], page 288 is that
[fl_get_object_bbox()], page 288 returns the bounding box size that has the label,
which could be drawn outside of the object figured in.

Some objects in the library are composite objects that consist of other objects. For example,
the scrollbar object is made of a slider and two scroll buttons. To get a handle to one of
the components of the composite object, the following routine is available:

FL_OBJECT *fl_get_object_component(FL_OBJECT *obj, int objclass,

int type, int number);

where obj is the composite object, objclass and type are the component object’s class ID
and type; and number is the sequence number of the desired object in case the composite
has more than one object of the same class and type. You can use a constant -1 for type to
indicate any type of class objclass. The function returns the object handle if the requested
object is found, otherwise NULL. For example to obtain the object handle to the horizontal
scrollbar in a browser, code similiar to the following can be used

hscrollbar = fl_get_object_component(browser, FL_SCROLLBAR,

FL_HOR_THIN_SCROLLBAR, 0)

To influence change the color, font size, font style, alignment and text of the label of an
object use

void fl_set_object_lcolor(FL_OBJECT *obj, FL_COLOR lcol);

void fl_set_object_lsize(FL_OBJECT *obj, int lsize);

void fl_set_object_lstyle(FL_OBJECT *obj, int lstyle);

void fl_set_object_lalign(FL_OBJECT *obj, int align);

void fl_set_object_label(FL_OBJECT *obj, const char *label);

void fl_set_object_label(FL_OBJECT *obj, const char *fmt, ...);

To find out about the object labels color, font size, style, alignment and the string itself use

FL_COLOR fl_get_object_lcolor(FL_OBJECT *obj);

int fl_get_object_lsize(FL_OBJECT *obj);

int fl_get_object_lstyle(FL_OBJECT *obj);

int fl_get_object_lalign(FL_OBJECT *obj);

const char * fl_get_object_label(FL_OBJECT *obj);

To set a tool-tip text for an object use the following routines

void fl_set_object_helper(FL_OBJECT *obj, const char *helpmsg);

void fl_set_object_helper_f(FL_OBJECT *obj, const char *fmt, ...);

where helpmsg is a text string (with possible embedded newlines in it) that will be shown
when the mouse hovers over the object for nore than about 600 msec. A copy of the string
is made internally. The second functions accepts instead of a simple string a format string
just as it’s used for printf() etc., followed by as many further arguments as the format
string contains format specifiers.

The boxtype, color and font for the tool-tip message displayed can be customized further
using the following routines:

Chapter 32: Overview of Main Functions 290

void fl_set_tooltip_boxtype(int boxtype);

void fl_set_tooltip_color(FL_COLOR textcolor, FL_COLOR background);

void fl_set_tooltip_font(int style, int size);

where boxtype is the backface of the form that displays the text. The default is [FL_

BORDER_BOX], page 109. textcolor and background specify the color of the text and the
color of the backface. The defaults for these are FL_BLACK and FL_YELLOW. style and size

are the font style and size of the text.

There are four function for controlling how an object reacts to resizing the form it belongs
to or to find out what its current settings are:

void fl_set_object_resize(FL_OBJECT *obj, unsigned int howresize);

void fl_get_object_resize(FL_OBJECT *obj, unsigned int *howresize);

void fl_set_object_gravity(FL_OBJECT *obj, unsigned int NWgravity,

unsigned int SEgravity);

void fl_get_object_gravity(FL_OBJECT *obj, unsigned int *NWgravity,

unsigned int *SEgravity);

See Chapter 4 [Doing Interaction], page 38, for more details on the resizing behaviour of
objects.

If you change many attributes of a single object or many objects in a visible form the
changed object is redrawn after each change. To avoid this put the changes between calls
of the two functions

void fl_freeze_form(FL_FORM *form);

void fl_unfreeze_form(FL_FORM *form);

The form is automatically redrawn once it is "unfrozen", so a call of [fl_redraw_form()],
page 298 isn’t required (and, while the form is "frozen", calling this function as well as
[fl_redraw_object()], page 298 has no effects).

You may also freeze and unfreeze all forms at once by using

void fl_freeze_all_forms(void);

void fl_unfreeze_all_forms(void);

There are also routines that influence the way events are dispatched. These routines are
provided mainly to facilitate the development of (unusual) new objects where attributes
need to be changed on the fly. These routines should not be used on the built-in ones.

To enable or disable an object to receive the [FL_STEP], page 244 event, use the following
routine

void fl_set_object_automatic(FL_OBJECT *obj, int yes_no);

To determine if an object receives [FL_STEP], page 244 events use

int fl_object_is_automatic(FL_OBJECT *obj);

To enable or disable an object to receive the [FL_DBLCLICK], page 243 event use the
following routine

void fl_set_object_dblclick(FL_OBJECT *obj, unsigned long timeout);

where timeout specifies the maximum time interval (in msec) between two clicks for them
to be considered a double-click (using 0 disables double-click detection). To determine the
current setting of the timeout use

Chapter 32: Overview of Main Functions 291

unsigned fl_get_object_dblclick(FL_OBJECT *obj);

To make an object or a group invisible or visible use the following two functions

void fl_hide_object(FL_OBJECT *obj);

void fl_show_object(FL_OBJECT *obj);

obj can be the pseudo-object returned by [fl_bgn_group()], page 286 and then allows
to hide or show whole groups of objects.

To determine if an object is visible (given that the form it belongs to is also visible) use

int fl_object_is_visible(FL_OBJECT *obj);

void fl_trigger_object(FL_OBJECT *obj);

returns obj to the application program after calling its callback if one exists.

void fl_set_focus_object(FL_FORM *form, FL_OBJECT *obj);

sets the input focus in form form to object obj. Note however, if this routine is used as
a response to an [FL_UNFOCUS], page 244 event, i.e., as an attempt to override the focus
assignment by the main loop from within an objects event handler, this routine will not
work as the main loop assigns a new focus object upon return from the object event handler,
which undoes the focus change inside the event handler. To override the [FL_UNFOCUS],

page 244 event the following routine should be used:

void fl_reset_focus_object(FL_OBJECT *obj);

Use the following routine to obtain the object that has the focus on a form

FL_OBJECT *fl_get_focus_object(FL_FORM *form);

The routine

void fl_set_object_callback(FL_OBJECT *obj,

void (*callback)(FL_OBJECT *, long),

long argument);

binds a callback routine to an object.

To invoke the callback manually (as opposed to invocation by the main loop), use the
following function

void fl_call_object_callback(FL_OBJECT *obj);

If the object obj does not have a callback associated with it, this call has not effect.

void fl_set_form_callback(FL_FORM *form,

void (*callback)(FL_OBJECT *, void *),

void *data);

binds a callback routine to an entire form.

It is sometimes useful to obtain the last X event from within a callback function, e.g., to
implement different functionalities depending on which button triggers the callback. For
this, the following routine can be used from within a callback function.

const XEvent *fl_last_event(void);

In other rare circumstances one might not be interested not in the X event but instead
the internal XForms event resulting in the invocation of an object or form callback. This
information can be obtained by calling

Chapter 32: Overview of Main Functions 292

int fl_current_event(void);

A callback invocation resulting from a call of [fl_call_object_callback()], page 291

will return FL_TRIGGER. For other possible return value see Chapter 26 [the chapter about
XForms internal events], page 242. Calling this function is only useful while within an
object or form callback, at all other times it returns just FL_NOEVENT.

Also in objects callback it might be of interest to find out if the mouse is on top of a
certain letter of the (inside) label (one trivial use of this can be found in the program
‘demo/strange_button.c’. To find out about this use

int fl_get_label_char_at_mouse(FL_OBJECT *obj);

The function returns the index of the character in the label of the object the mouse is on
or -1 if it’s not over the label. Note that this function has some limitations: it can only be
used on labels inside of the object and the label string may not contain underline characters
(and the label can’t be a symbol) - if you try to use it on labels that don’t satisfy these
requirements -1 is returned.

Sometimes, it may be desirable to obtain hardcopies of some objects in a what-you-see-is-
what-you-get (WYSISYG) way, especially those that are dynamic and of vector-graphics in
nature. To this end, the following routine exists:

int fl_object_ps_dump(FL_OBJECT *obj, const char *fname);

The function will output the specified object in PostScript. If fname is NULL, a file selector
will be shown to ask the user for a file name. The function returns a negative number if no
output is generated due to errors. At the moment, only the FL_XYPLOT object is supported.
Nothe that this function isn’t part of the statndard XForms library (libforms) but the
XForms image library (libflimage discussed in Chapter 37 [Part VI Images], page 321.

The object must be visible at the time of the function call. The hardcopy should mostly be
WYSIWYG and centered on the printed page. The orientation is determined such that a
balanced margin results, i.e., if the width of the object is larger than the height, landscape
mode will be used. Further, if the object is too big to fit on the printed page, a scale factor
will be applied so the object fits. The box underneath the object is by default not drawn
and in the default black&white mode, all curves are drawn in black. See demo program
‘xyplotover.c’ for an example output.

It is possible to customize the output by changing the PostScript output control parameters
via the function

FLPS_CONTROL *flps_init(void);

A typical use is to call this routine to obtain a handle to the PostScript output control
structure and change the control structure members to suit your needs before calling [fl_

object_ps_dump()], page 292. You should not free the returned buffer.

The control structure has the following members

int ps_color

The choices are full color (FLPS_COLOR), grayscale (FLPS_GRAYSCALE) and
black&white (FLPS_BW). The default for xyplot is black and white. In this
mode, all drawings are black, on a white background. If drawbox (see below) is
true, the drawing color can be either white or black depending on the specified
color.

Chapter 32: Overview of Main Functions 293

int orientation

Valid choices are FLPS_AUTO, FLPS_PORTRAIT and FLPS_LANDSCAPE. The de-
fault is FLPS_AUTO.

auto_fit By default, this is true so the object always fits the printed page. Set it to false
(0) to turn off auto-scaling.

int eps Set this to 1 if output in EPS format is required.

int drawbox

Set this to 1 if the box of the object is to be drawn.

float xdpi, ydpi

These two are the screen resolution. The default is to use the actual resolution
of the display. Note by setting a dpi number smaller or larger than the actual
resolution, the output object is in effect being enlarged or shrunken.

float paper_w

The paper width in inches. The default is 8.5 in.

float paper_h

The paper height in inches. The default is 11 in.

To generate a PostScript output of a form or forms, use the fd2ps program documented in
Chapter 13 [Part II Generating Hardcopies], page 104.

32.5 Doing Interaction

To display the form form on the screen use one of

Window fl_show_form(FL_FORM *form, int place, int border,

const char *title);

Window fl_show_form(FL_FORM *form, int place, int border,

const char *fmt, ...);

place controls the position and size of the form. border indicates whether a border (window
manager’s decoration) should be drawn around the form. If a border is to be drawn title is
the name of the window (and its associated icon). The routine returns the window identifier
of the form. For resource and identification purposes, the form name is taken to be the title
with spaces removed and the first character lower-cased. E.g., if a form has a title "Foo Bar

the forms name is derived as "fooBar". The only difference between the two functions is
that the first one accepts a simple string for the title while the second expects a format
string like printf(), followed by the appropriate number of arguments.

For the the location and size of the window controlled by place the following possibilities
exist:

FL_PLACE_SIZE

The user can control the position but the size is fixed. Interactive resizing is
not allowed once the form becomes visible.

FL_PLACE_POSITION

Initial position used will be the one set via [fl_set_form_position()],

page 296. Interactive resizing is allowed.

Chapter 32: Overview of Main Functions 294

FL_PLACE GEOMETRY

Place at the latest position and size (see also below) or the geometry set via
[fl_set_form_geometry()], page 296 etc. A form so shown will have a fixed
size and interactive resizing is not allowed.

FL_PLACE_ASPECT

Allows interactive resizing but any new size will have the aspect ratio as that
of the initial size.

FL_PLACE_MOUSE

The form is placed centered below the mouse. Interactive resizing will not be
allowed unless this option is accompanied by [FL_FREE_SIZE], page 39 as in
[FL_PLACE_MOUSE], page 38|[FL_FREE_SIZE], page 39.

FL_PLACE_CENTER

The form is placed in the center of the screen. If [FL_FREE_SIZE], page 39 is
also specified, interactive resizing will be allowed.

FL_PLACE_FULLSCREEN

The form is scaled to cover the full screen. If [FL_FREE_SIZE], page 39 is also
specified, interative resizing will be allowed.

FL_PLACE_FREE

Both the position and size are completely free. The initial size used is the de-
signed size. Initial position, if set via [fl_set_form_position()], page 296,
will be used, otherwise interactive positioning may be possible if the window
manager allows it.

FL_PLACE_HOTSPOT

The form is so placed that mouse is on the "hotspot". If [FL_FREE_SIZE],
page 39 is also specified, interactive resizing will be allowed.

FL_PLACE_CENTERFREE

Same as [FL_PLACE_CENTER], page 38|[FL_FREE_SIZE], page 39, i.e., place
the form at the center of the screen and allow resizing.

FL_PLACE ICONIC

The form is shown initially iconified. The size and location used are the window
manager’s default.

If no size is specified, the designed (or later scaled) size will be used. Note that the initial
position is dependent upon the window manager used. Some window managers will allow
interactive placement of the windows and some will not.

There are three values that can be passed for border:

FL_FULLBORDER

Draw full border with title

FL_TRANSIENT

Draw borders with possibly less decoration (depends on the window managers
behaviour)

FL_NOBORDER

Draw no border at all

Chapter 32: Overview of Main Functions 295

Since multiple forms can be displayed at the same time note that using FL_NOBORDER might
have adverse effect on keyboard focus and is not very friendly to other applications (it is close
to impossible to move a form that has no border). Thus use this feature with discretion.
The only situation where FL_NOBORDER is appropriate is for automated demonstration suites
or when the application program must obtain an input or a mouse click from the user, and
even then all other forms should be deactivated while a borderless form is active. For almost
all situations where the application must demand an action from the user FL_TRANSIENT

is preferable. Also note that you can’t iconify a form that has no borders and under most
window managers forms displayed with FL_TRANSIENT can’t be iconified either.

One additional property (under almost all window managers) of a transient window is that
it will stay on top of the main form, which the application program can designate using

void fl_set_app_mainform(FL_FORM *form);

By default, the main form is set automatically by the library to the first full-bordered form
shown.

To obtain the current main form, use the following routine

FL_FORM *fl_get_app_mainform(void);

In some situations, either because the concept of an application main form does not apply
(for example, an application might have multiple full-bordered windows), or under some
(buggy) window managers, the designation of a main form may cause stacking order prob-
lems. To workaround these, the following routine can be used to disable the designation of
a main form (must be called before any full-bordered form is shown):

void fl_set_app_nomainform(int yes_no);

with a true flag.

All visible forms will have the properties WM_CLASS, WM_CLIENT_MACHINE and WM_NAME set.
In addition, the first full-bordered form will have the WM_COMMAND property set and is by
default the applications main form.

Sometimes it is necessary to have access to the window resource ID before the window is
mapped (shown). For this, the following routines can be used

Window fl_prepare_form_window(FL_FORM *form, int place, int border,

const char *name);

Window fl_prepare_form_window_f(FL_FORM *form, int place, int border,

const char *fmt, ...);

These routines create a window that obeys any and all constraints just as [fl_show_

form()], page 293 does but remains unmapped. The only difference between the two
functions is that the first one takes a simple string for the forms name while the second
expects a format string like printf(), followed by the appropriate number of further argu-
ments.

To map such a window, the following must be used

Window fl_show_form_window(FL_FORM *form);

Between these two calls, the application program has full access to the window and can set
all attributes, such as icon pixmaps etc., that are not set by [fl_show_form()], page 293.

The application program can raise a form to the top of the screen so no other forms obscures
it by calling

Chapter 32: Overview of Main Functions 296

void fl_raise_form(FL_FORM *form);

To instead lower a form to the bottom of the stack use

void fl_lower_form(FL_FORM *form);

When placing a form on the screen using FL_PLACE_GEOMETRY for the place argument to
[fl_show_form()], page 293 the position and size can be set before by using the routines

void fl_set_form_position(FL_FORM *form, FL_Coord x, FL_Coord y);

void fl_set_form_size(FL_FORM *form, FL_Coord w, FL_Coord h);

void fl_set_form_geometry(FL_FORM form*, FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h);

void fl_scale_form(FL_FORM *form, double xsc, double ysc);

where [fl_set_form_geometry()], page 296 combines the functionality of [fl_set_

form_position()], page 296 and [fl_set_form_size()], page 296 and the last
routine, [fl_scale_form()], page 296, scales the form in horizontal and vertical
direction by the factors passed to the function. These routines can also be used when the
form is visible.

Sometimes it is desirable to know how large the decoration are the window manager puts
around a forms window. They can be obtained by a call of

void fl_get_decoration_sizes(FL_FORM *form, int *top, int *right,

int *bottom, int *left);

This is especially useful if it is necessary to open a window at some previously stored position
since in that case one needs the position of of the window, which deviates from the position
reported for the form by the window manager’s decorations. Obviously, the above function
can’t be used for forms that are embedded into another form.

The function

int fl_form_is_iconified(FL_FORM *form);

allows to test if the (visible) window of a form is in iconified state.

If interactive resizing is allowed (e.g., by showing the form with [FL_PLACE_POSITION],

page 38) it can be useful to limit the range of the size of a form can take. To this end, the
following functions are available

void fl_set_form_minsize(FL_FORM *form, FL_Coord minw, FL_Coord minh);

void fl_set_form_maxsize(FL_FORM *form, FL_Coord maxw, FL_Coord maxh);

Although these two routines can be used before or after a form becomes visible, not all
window managers honor such requests once the window is visible. Also note that the
constraints only apply to the next call of [fl_show_form()], page 293 for the form.

To set or change the icon shown when a form is iconified use the following routine

void fl_set_form_icon(FL_FORM *form, Pixmap icon, Pixmap mask);

where icon can be any valid pixmap ID. (see Section 15.6 [Pixmap Object], page 114 for
some of the routines that can be used to create pixmaps.) Note that a previously set icon
if not freed or modified in anyway.

If, for any reason, you would like to change the form title after the form has been made
visible, the following calls can be used (they will also change the icon title)

Chapter 32: Overview of Main Functions 297

void fl_set_form_title(FL_FORM *form, const char *name);

void fl_set_form_title_f(FL_FORM *form, const char *fmt, ...);

(While the first function expects a simple string, the second has to be called with a format
string as printf() etc., followed by the corresponding number of arguments.)

The routine

void fl_hide_form(FL_FORM *form);

hides the particular form, i.e., closes its window and all subwindows.

To check if a form is visible or not, the following function can be used

int fl_form_is_visible(FL_FORM *form)’

The function can return that the form is visible ([FL_VISIBLE], page 43), is invisible ([FL_
INVISIBLE], page 43) or is in the processing of becoming invisible ([FL_BEING_HIDDEN],
page 43).

The most important function for doing the actual interaction with forms is

FL_OBJECT *fl_do_forms(void);

It starts the main loop of the program and returns only when either the state of an ob-
ject changes that has no callback bound to it or [fl_finish()], page 286 is called in a
callback. In the first case the address of the object is returned, in the latter NULL.

A second way of doing interaction with the currently displayed forms is using

FL_OBJECT *fl_check_forms(void);

This routine returns NULL immediately unless the state of one of the object (without a
callback bound to it) changed. In that case a pointer to this object gets returned. NULL

also gets returned after a call of [fl_finish()], page 286.

Then there are two more functions:

FL_OBJECT *fl_do_only_forms(void);

FL_OBJECT *fl_check_only_forms(void);

Both functions do the same as [fl_do_forms()], page 297 and [fl_check_forms()],

page 297 except that they do not handle user events generated by application windows
opened via [fl_winopen()], page 305 or similar routines.

To activate or deactivate a form for user interaction you can use

void fl_activate_form(FL_FORM *form);

void fl_deactivate_form(FL_FORM *form);

The same can also be done for all forms at once using

void fl_deactivate_all_forms(void)

void fl_activate_all_forms(void)

To find out if a form is currently active call

int fl_form_is_activated(FL_FORM *form);

A return value of 0 tells you that the form is currently deactivated.

You can also register callbacks for a form that are invoked whenever the activation status
of the form is changed:

Chapter 32: Overview of Main Functions 298

typedef void (*FL_FORM_ATACTIVATE)(FL_FORM *, void *);

FL_FORM_ACTIVATE fl_set_form_atactivate(FL_FORM *form,

FL_FORM_ATACTIVATE callback,

void *data);

typedef void (*FL_FORM_ATDEACTIVATE)(FL_FORM *, void *);

FL_FORM_ACTIVATE fl_set_form_atdeactivate(FL_FORM *form,

FL_FORM_ATACTIVATE callback,

void *data);

Also individual objects (or groups of objects if the argument of the function is an object
returned by [fl_bgn_group()], page 286) can be activated and deactivated to enable or
disable user interaction:

void fl_activate_object(FL_OBJECT *obj);

void fl_deactivate_object(FL_OBJECT *obj);

It is normally useful to give the user a visual clue when an object gets deactivated, e.g., by
graying out its label etc.

To find out if an object is active use

int fl_object_is_active(FL_OBJECT *obj);

void fl_redraw_object(FL_OBJECT *obj);

This routine redraws the particular object. If obj is a group it redraws the complete
group. Normally you should never need this routine because all library routines take care
of redrawing objects when necessary, but there might be situations in which an explicit
redraw is required.

To redraw an entire form use

void fl_redraw_form(FL_FORM *form);

For non-form windows, i.e., those created with [fl_winopen()], page 305 or similar rou-
tines by the application program, the following means of interaction are provided (note
that these do not work on form windows, for which a different set of functions exist, see
Section 33.2 [Windowing Support], page 304 for details.)

You may set up a callback routine (of type FL_APPEVENT_CB for all user events using

typedef int (*FL_APPEVENT_CB)(XEvent *, void *);

FL_APPEVENT_CB fl_set_event_callback(FL_APPEVENT_CB callback, void *data);

The function returns the previously set callback (or NULL).

It is also possible to set up callback functions on a per window/event basis using the following
routines:

typedef int (*FL_APPEVENT_CB)(XEvent *xev, void *user_data);

FL_APPEVENT_CB fl_add_event_callback(Window win, int xevent_type,

FL_APPEVENT_CB callback,

void *user_data);

void fl_remove_event_callback(Window win, int xevent_type);

These functions manipulate the event callback functions for the window specified, which will
be called when an event of type xevent_type is pending for the window. If xevent_type is
0 it signifies a callback for all event for window win. Note that the Forms Library does not

Chapter 32: Overview of Main Functions 299

solicit any event for the caller, i.e., the Forms Library assumes the caller opens the window
and solicits all events before calling these routines.

To let the Forms Library handle event solicitation, the following function may be used

void fl_activate_event_callbacks(Window win);

32.6 Signals

Typically, when a signal is delivered, the application does not know what state the appli-
cation is in, thus limiting the tasks a signal handler can do. In a GUI system and with
a main loop inside the library, it’s even harder to know what’s safe or unsafe to do in a
signal handler. Given all these difficulties, the Forms Library’s main loop is made to be
aware of signal activities and invoke signal handlers only when it’s appropriate to do so,
thus removing most limitations on what a signal handler can do.

The application program can elect to handle the receipt of a signal by registering a callback
function that gets called when a signal is caught

typedef void (*FL_SIGNAL_HANDLER)(int, void *);

void fl_add_signal_callback(int signal, FL_SIGNAL_HANDLER sh,

void *data);

Only one callback per signal is permitted. By default, [fl_add_signal_callback()],
page 299 will store the callback function and initiate a mechanism for the OS to deliver
the signal when it occurs. When the signal is received by the library, the main loop will
invoke the registered callback function when it is appropriate to do so. The callback function
can make use of all of XForms’s functions as well as Xlib functions as if they were reentrant.
Further, a signal callback registered his way is persistent and will cease to function only
when explicitly removed.

It is very simple to use this routine. For example, to prevent a program from exiting
prematurely due to signals, a code fragment similar to the following can be used:

void clean_up(int signum, void *data) {

/* clean up, of course */

}

/* call this somewhere after fl_initialize() */

fl_add_signal_callback(SIGINT, clean_up, &mydata);

After this, whenever a SIGINT signal is received, clean_up() is called.

To remove a signal callback, the following routine should be used

void fl_remove_signal_callback(int signal);

Although very easy to use, there are limitations with the default behavior outlined above.
For example on some platforms there is no blocking of signals of any kind while handling a
signal. In addition, use of [fl_add_signal_callback()], page 299 prevents the applica-
tion program from using any, potentially more flexible, system signal handling routines on
some platforms. Also there might be perceptible delays from the time a signal is delivered
by the OS and the time its callback is invoked by XForms’ main loop. This delay can be
particular troublesome for timing sensitive tasks (playing music for example).

Chapter 32: Overview of Main Functions 300

In light of these limitations, provisions are made so an application program may choose to
take over the initial signal handling setup and receipt via various system dependent methods
(sigaction() for example).

To change the default behavior of the built-in signal facilities, the following routine should
be called prior to any use of fl_add_signal_callback() with a true value for flag:

void fl_app_signal_direct(int flag);

After this call [fl_add_signal_callback()], page 299 will not initiate any actions to
receive a signal. The application program should handle the receipt and blocking of signals
(via e.g., signal(2), sigaction(2), sigprocmask(2) etc.) When the signal is received by
the application program, it should call the following routine to inform the main loop of the
delivery of the signal signum, possibly after performing some timing sensitive tasks:

void fl_signal_caught(int signum);

This routine is the only one in the library that can be safely called from within a direct
application signal handler. If multiple invocations of [fl_signal_caught()], page 300

occur before the main loop is able to call the registered callback, the callback is called only
once.

The following example illustrates how to handle a timing critical situation (for most appli-
cation, idle callback, timeouts or FL_TIMER object should be sufficient).

First, you need to define the function that will handle the timing critical tasks. The function
will be registered with the OS to be invoked directly by it. There are limitations on what
you can do within a (OS) signal handler, in particular, GUI activity is not safe.

void timing_critical_task(int sig) {

/* handle timing critical tasks that does not involve GUI */

...

/* Now tell the library the signal has been delivered by the OS.

* The library will invoke the xforms signal handler when it’s

* appropriate to do so */

fl_signal_caught(sig);

}

Now define a (XForms) signal handler that will be responsible for handling the response of
the GUI upon receipt of the signal

void gui_signal_handler(int sig, void *data) {

/* within an XForms signal handler, there is no limitation

* on GUI activitity */

fl_set_object_color(....);

...

}

To make all this work, a set-up similar to the following can be used

/* setup the signal */

fl_app_signal_direct(1);

setitimer(ITIMER_REAL, interval);

/* setup the OS signal handler */

signal(SIGALRM, timing_critical_tasks);

Chapter 32: Overview of Main Functions 301

/* setup the XForms signal handler */

fl_add_signal_callback(SIGALRM, gui_signal_handler, &myData);

32.7 Idle Callbacks and Timeouts

For application programs that need to perform some light, but semi-continuous or periodic
tasks, idle callback and timeouts (also FL_TIMER objects) can be utilized.

To register an idle callback with the system, use the following routine

typedef int (*FL_APPEVENT_CB)(XEvent *, void *);

FL_APPEVENT_CB fl_set_idle_callback(FL_APPEVENT_CB callback,

void *user_data);

where callback is the function that will get called whenever the main loop is idle. The
time interval between invocations of the idle callback can vary considerably depending on
interface activity and other factors. A range between 50 and 300 msec should be expected.
While the idle callback is executed it won’t be called again (i.e., no call of any XForms
function from within the idle callback function will call the idle callback function), so it
does not need to be reentrant.

It is possible to change what the library considers to be "idle" with the following function:

void fl_set_idle_delta(long msec);

Here msec is the minimum time interval of inactivity after which the main loop is considered
to be in an idle state. However it should be noted that under some conditions an idle callback
can be called sooner than the minimum interval.

If the timing of the idle callback is of concern, timeouts should be used. Timeouts are
similar to idle callbacks but with the property that the user can specify a minimum time
interval that must elapse before the callback is called. The precision of timeouts tends to
be quite a bit better than that of idle callbacks since they internally get prefered treatent.
To register a timeout callback, the following routine can be used

typedef void (*FL_TIMEOUT_CALLBACK)(int, void *);

int fl_add_timeout(long msec, FL_TIMEOUT_CALLBACK callback,

void *data);

The function returns the timeout ID (note: the function will not return 0 and -1, so the
application can use these values to mark invalid or expired timeouts). When the time
interval specified by the msec argument (in milli-second) is elapsed, the timeout is removed
and the callback function is called with the timeout ID as the first argument. Although a
timeout offers some control over the timing, due to performance and CPU load compromises,
while the resolution can be better than 10 ms under favourable conditions, it can also be
much worse, occasionally up to 150 ms.

To remove a timeout before it triggers, use the following routine

void fl_remove_timeout(int id);

where id is the timeout ID returned by [fl_add_timeout()], page 301. See Section 21.1
[Timer Object], page 186, for the usage of FL_TIMER object. For tasks that need more
accurate timing the use of signal should be considered.

Chapter 32: Overview of Main Functions 302

32.8 Global Variables

For convenience the library exports a number of global variables. These are:

FL_OBJECT *FL_EVENT

This is a special object returned by [fl_do_forms()], page 297 etc. when
an X event is received that isn’t coming from a form under the control of the
library, e.g., for a window that was opened directly via Xlib functions. Upon
receiving this special event the application program can and must remove the
pending event from the queue using [fl_XNextEvent()], page 50.

FL_FORM *fl_current_form

This variable is always set to the currently active form.

Display *fl_display

This variable is set to the display (X server) the program is connected to and
is needed as an argument for many Xlib functions. It’s recommended not to
use this global variable but instead either the function [fl_get_display()],

page 255 or [FL_FormDisplay()], page 255 (the latter accepts a form
pointer as its argument and will also be safe in future versions of the library
that may support multiple connections).

int fl_screen

This variable is set to the default screen of the display connection.

Window fl_root

This variable is set to the root window.

Window fl_vroot

Some window managers have problems with obtaining the corrent root window
and applications don’t work with the normal root windows. In this case fl_

vroot can be used instead.

int fl_scrw, fl_scrh

These variables contain the screens width and height.

int fl_mode

The variable contains the visual mode in use, it should be one of the Xlib
constants PseudoColor, TrueColor, DirectColor, StaticColor, GrayScale
or StaticGray. Alternatively, the functions [fl_get_vclass()],

page 254 or fl_get_form_vclass() can be used (the latter accepts a form
pointer as its argument and is thus also safe for future versions that may allow
multiple connections).

FL_State fl_state[6]

This array of structure of type [FL_State], page 254 contains a lot of infor-
mation about the graphics mode, where each structure has the information for
each of the cisual modes. Interesting is only the entry for the visual mode used,
[fl_vmode], page 302.

char *fl_ul_magic_char

This variable points to the character used to indicate underlining in labels and
other texts. If it appears as the very first character of a string all characters

Chapter 32: Overview of Main Functions 303

in that string are underlined, otherwise the character direct in front of it. Per
default it’s set to ’\b’.

Chapter 33: Some Useful Functions 304

33 Some Useful Functions

33.1 Misc. Functions

The following routine can be used to sound the keyboard bell (if capable):

void fl_ringbell(int percent);

where percent can range from -100 to 100 with 0 being the default volume setting of the
keyboard. A value of 100 indicates maximum volume and a value of -100 minimum volume
(off). Note that not all keyboards support volume variations.

To get the user name who’s running the application you can use the routine

const char *fl_whoami(void);

To get a string form of the current date and time, the following routine is available:

const char *fl_now(void);

The format of the string is of the form "Wed Jun 30 21:49:08 1993".

The following time related routine might come in handy

void fl_gettime(unsigned long *sec, unsigned long *usec);

Upon function return sec and usec are set to the current time, expressed in seconds and
microseconds since 00:00 GMT January, 1970. This function is most useful for computing
time differences.

Th function

int fl_mode_capable(int mode, int warn);

allows to determine the visual classes the system is capable of. mode must be one of
GrayScale, StaticGray, PseudoColor, StaticColor, DirectColor and TrueColor and
the function returns 1 if the system is capable of displaying in this visual class and 0 other-
wise. If warn is set a warning is printed out in case the capability asked for isn’t available.

Finally

int fl_msleep(usigned long msec);

allows to wait for a number of milli-seconds (with the best resolution possible on your
system).

33.2 Windowing Support

Some of the following routines are also used internally by the Forms Library as an attempt
to localize window system dependencies and may be of some general use. Be warned that
these routines may be subject to changes, both in their API and/or functionality.

You can create and show a window with the following routines

Window fl_wincreate(const char *name);

Window fl_winshow(Window win);

where the parameter win of [fl_winshow()], page 304 is the window ID returned by
[fl_wincreate()], page 304. The title of the window is set by the name argument.

Between the creation and showing of the window other attributes of the window can be set.
Note that a window opened this way is always a top level window and uses all the Forms

Chapter 33: Some Useful Functions 305

Library’s defaults (visual, depth etc.). Another thing about [fl_winshow()], page 304 is
that it will wait for and gobble up the first Expose event and you can draw into the window
immediately after the function returns.

It is sometimes more convenient to create and show a window in a single call using

Window fl_winopen(const char *name);

This will open a (top-level) window with the title name. A window so opened can be
drawn into as soon as the function returns, i.e., [fl_winopen()], page 305 waits until the
window is ready to be drawn to.

The newly opened window will have the following default attributes

event_mask

ExposureMask, KeyPressMask, KeyReleaseMask, ButtonPressMask,
ButtonReleaseMask, OwnerGrabButtonMask, ButtonMotionMask,
PointerMotionMask, PointerMotionHintMask, StructureNotifyMask

backing_store

as set by fl_cntl.backingStore

class InputOutput

visual same as Forms Library’s default

colormap same as Forms Library’s default

To make a top-level window a sub-window of another window use the following routine

int fl_winreparent(Window win, Window new_parent);

The origin of the window win will be at the origin of the parent window new_parent. At the
time of the function call, both the window and the parent window must be valid windows.

By default, a newly opened window will have a size of 320 by 200 pixels and no other
constraints. You can modify the default or constraints using the following routines prior to
calling [fl_winopen()], page 305:

void fl_initial_winsize(FL_Coord w, FL_Coord h);

void fl_winsize(FL_Coord w, FL_Coord h);

These two routines set the preferred window size. w and h are the width and height of
the window in pixels. [fl_winsize()], page 305 in addition will make the window non-
resizeable (but you can still resize the window programmatically) by setting the minimum
and maximum window size to the requested size via WMHints. The effect of a window
having this property is that it can’t be interactively resized (provided the window manager
cooperates).

Also the state of the window when opening it can be influenced by the function

void fl_initial_winstate(int state);

where state is on of the XLib constants NormalState (the default) or IconicState,
which will result in the opened window being iconified. The third possible constant,
WithdrawnState, doesn’t make much sense in this context.

It is sometimes desirable to have a window that is resizeable but only within a useful range.
To set such a constraint use the following functions:

Chapter 33: Some Useful Functions 306

void fl_winminsize(Window window, FL_Coord minw, FL_Coord minh);

void fl_winmaxsize(Window window, FL_Coord maxw, FL_Coord maxh);

These two routines can also be used after a window has become visible. For windows still
to be created/opened, use None for the window parameter. For example, if we want to open
a window of 640 by 480 pixels and have it remain resizeable but within a permitted range,
code similar to the following can be used:

fl_initial_winsize(640, 480);

fl_winminsize(None, 100,100);

fl_winmaxsize(None, 1024,768)

win = fl_winopen("MyWin");

In addition to the window size preference you can also set the preferred position of a window
to be opened:

void fl_winposition(FL_Coord x, FL_Coord y);

where x and y are the coordinates of the upper-left corner of the window relative to the
root window.

Alternatively, you can set the geometry (position and size) in a single function call:

void fl_initial_wingeometry(FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h);

void fl_wingeometry(FL_Coord x, FL_Coord y,

FL_Coord w, FL_Coord h);

Again, windows for which [fl_wingeometry()], page 306 had been created will not allow
interactive resizing later on.

There are further routines that can be used to change other aspects of the window to be
created:

void fl_winaspect(Window win, FL_Coord x, FL_Coord y);

This will set the aspect ratio of the window for later interactive resizing.

To change the window title (and its associated icon title) use

void fl_wintitle(Window win, const char *title);

void fl_wintitle_f(Window win, const char *fmt, ...);

While the first function only accepts a simple string for the window title the second one
allows to pass a format string just like the one used for printf() etc. and an appropriate
number of further arguments which are used to construct the title.

To change the icon title only use the routines

void fl_winicontitle(Window win, const char *title);

void fl_winicontitle_f(Window win, const char *fmt, ...);

To install an icon for the window use

void fl_winicon(Window win, Pixmap icon, Pixmap mask);

You can suppress the window manager’s decoration or make a window a transient one by
using the following routines prior to creating the window

void fl_noborder(void);

void fl_transient(void);

You can also set the background of the window to a certain color using the following call

Chapter 33: Some Useful Functions 307

void fl_winbackground(Window win, unsigned long pixel);

It is possible to set the steps by which the size of a window can be changed by using

void fl_winstepsize(Window win, int xunit, int yunit);

where xunit and yunit are the number of pixels of changes per unit in x- and y- directions,
respectively. Changes to the window size will be multiples of these units after this call.
Note that this only applies to interactive resizing.

To change constraints (size and aspect ratio) on an active window, you can use the following
routine

void fl_reset_winconstraints(Window win);

The following routines are available to get information about an active window win:

void fl_get_winsize(Window win, FL_Coord *w, FL_Coord *h);

void fl_get_winorigin(Window win, FL_Coord *x, FL_Coord *y);

void fl_get_wingeometry(Window win, FL_Coord *x, FL_Coord *y,

FL_Coord *w, FL_Coord *h);

All values returned are in pixels. The origin of a window is measured from the upper left
hand corner of the root window.

To change the size of a window programmatically the following function is available:

void fl_winresize(Window win, FL_Coord neww, FL_Coord newh);

Resizing will not change the origin of the window (relative to the root window). While the
window gets resized originally set restraints will remain unchanged. E.g., if a window was
not permitted to be resized interactively it will continue to remain unresizeable by the user.

To move a window without resizing it use the following function:

void fl_winmove(Window win, FL_Coord newx, FL_Coord newy);

To move and resize a window, use the following routine

void fl_winreshape(Window win, FL_Coord newx, FL_Coord newy,

FL_Coord neww, FL_Coord newh);

The following routine is available to iconify a window

int fl_iconify(Window win);

The return value is nonzero when the message, asking for iconification of the window, was
send successfully to the window manager, otherwise zero (but this may not be taken as a
sure sign that the window was really iconified).

To make a window invisible use

void fl_winhide(Window win);

A window hidden this way can be shown again later using [fl_winshow()], page 304.

To hide and destroy a window, use the following calls

void fl_winclose(Window win);

There will be no events generated from [fl_winclose()], page 307, i.e., the function
waits and gobbles up all events for window win. In addition, this routine also removes all
callbacks associated with the closed window.

The following routine can be used to check if a window ID is valid or not

Chapter 33: Some Useful Functions 308

int fl_winisvalid(Window win);

Note that excessive use of this function may negatively impact performance.

Usually an X application should work with window managers and accepts the keyboard
focus assignment. In some special situations, explicit override of the keyboard focus might
be warranted. To this end, the following routine exists:

void fl_winfocus(Window win);

After this call keyboard input is directed to window win.

33.3 Cursors

XForms provides a convenience function to change the cursor shapes:

void fl_set_cursor(Window win, int name);

where win must be a valid window identifier and name is one of the symbolic cursor names
(shapes) defined by standard X or the integer values returned by [fl_create_bitmap_

cursor()], page 308 or one of the Forms Library’s pre-defined symbolic names.

The X standard symbolic cursor names (all starts with XC_) are defined in
<X11/cursorfont.h> (you don’t need to explicitly include this as <forms.h> already does
this for you). For example, to set a watch-shaped cursor for form form (after the form is
shown), the following call may be made

fl_set_cursor(form->window, XC_watch);

The Forms Library defines a special symbolic constants, FL_INVISIBLE_CURSOR that can
be used to hide the cursor for window win:

fl_set_cursor(win, FL_INVISIBLE_CURSOR);

Depending on the structure of the application program, a call of XFlush(fl_get_

display()); may be required following [fl_set_cursor()], page 308.

To reset the cursor to the XForms’s default (an arrow pointing northwest), use the following
routine

void fl_reset_cursor(Window win);

To change the color of a cursor use the following routine

void fl_set_cursor_color(int name, FL_COLOR fg, FL_COLOR bg);

where fg and bg are the foreground and background color of the cursor, respectively. If the
cursor is being displayed, the color change is visible immediately.

It is possible to use cursors other than those defined by the standard cursor font by creating
a bitmap cursor with

int fl_create_bitmap_cursor(const char *source, const char *mask,

int w, int h, int hotx, int hoty);

where source and mask are two (x)bitmaps. The mask defines the shape of the cursor.
The pixels set to 1 in the mask define which source pixels are displayed. If mask is NULL

all bits in source are displayed. hotx and hoty are the hotspot of the cursor (relative
to the source’s origin). The function returns the cursor ID which can be used in calls of
[fl_set_cursor()], page 308 and [fl_set_cursor_color()], page 308 etc.

Finally, there is a routine to create animated cursors where several cursors are displayed
one after another:

Chapter 33: Some Useful Functions 309

int fl_create_animated_cursor(int *cur_names, int interval);

The function returns the cursor name (ID) that can be shown later via [fl_set_cursor()],
page 308. In the function call cur_names is an array of cursor names (either X standard
cursors or cursor names returned by [fl_create_bitmap_cursor()], page 308), termi-
nated by -1. Parameter interval indicates the time each cursor is displayed before it is
replaced by the next in the array. An interval about 150 msec is a good value for typical
uses. Note that there is currently a limit of 24 cursors per animation sequence.

Internally animated cursor works by utilizing the timeout callback. This means that if
the application blocks (thus the main loop has no chance of servicing the timeouts), the
animation will stop.

See demo program ‘cursor.c’ for an example use of the cursor routines.

33.4 Clipboard

Clipboard is implemented in the Forms Library using the X selection mechanism, more
specifically the XA_PRIMARY selection. X selection is a general and flexible way of sharing
arbitrary data among applications on the same server (the applications are of course not
necessarily running on the same machine). The basic (and over-simplified) concept of the
X selection can be summarized as follows: the X Server is the central point of the selection
mechanism and all applications running on the server communicate with other applications
through the server. The X selection is asynchronous in nature. Every selection has an
owner (an application represented by a window) and every application can become owner
of the selection or lose the ownership.

The clipboard in Forms Library is a lot simpler than the full-fledged X selection mechanism.
The simplicity is achieved by hiding and handling some of the details and events that are of
no interests to the application program. In general terms, you can think of a clipboard as a
read-write buffer shared by all applications running on the server. The major functionality
you want with a clipboard is the ability to post data onto the clipboard and request the
content of the clipboard.

To post data onto the clipboard, use the following routine

typedef int (*FL_LOSE_SELECTION_CB)(FL_OBJECT *obj, long type);

int fl_stuff_clipboard(FL_OBJECT *obj, long type,

const void *data, long size,

FL_LOSE_SELECTION_CB callback);

where size is the size (in bytes) of the content pointed to by data. If successful, the function
returns a positive value and the data will have been copied onto the clipboard. The callback
is the function that will be called when another application takes ownership of the clipboard.
For textual content the application that loses the clipboard should typically undo the visual
cues about the selection. If no action is required when losing the ownership a NULLq callback
can be passed. The obj argument is used to obtain the window (owner) of the selection.
type is currently unused. At the moment the return value of lose_selection_callback()
is also unused. The data posted onto the clipboard are available to all applications that
manipulate XA_PRIMARY, such as xterm etc.

To request the current clipboard content use the following routine

Chapter 33: Some Useful Functions 310

typedef int (*FL_SELECTION_CB)(FL_OBJECT *obj, long type,

const void * data, long size);

int fl_request_clipboard(FL_OBJECT *obj, long type,

FL_SELECTION_CB callback);

where callback is the callback function that gets called when the clipboard content is
obtained. The content data passed to the callback function should not be modified.

One thing to remember is that the operation of the clipboard is asynchronous. Requesting
the content of the clipboard merely asks the owner of the content for it and you will not
have the content immediately (unless the asking object happens to own the selection).
XForms main event loop takes care of the communication between the requesting object
and the owner of the clipboard and breaks up and re-assembles the content if it exceeds the
maximum protocol request size (which has a guaranteed minimum of 16 kB, but typically
is larger). If the content of the clipboard is successfully obtained the main loop invokes the
lose selection callback of the prior owner and then the requesting object’s callback function.

The function returns a positive number if the requesting object owns the selection (i.e., the
callback could beinvoked before the function returned) and 0 otherwise.

If there is no selection the selection callback is called with an empty buffer and the length
of the buffer is set to 0. In that case [fl_request_clipboard()], page 309 returns -1.

Chapter 34: Resources for Forms Library 311

34 Resources for Forms Library

Managing resources is an important part of programming with X. Typical X programs use
extensive resource database/management to customize their appearances. With the help
of the Form Designer there is little or no need to specify any resources for the default
appearance of an application written using the Forms Library. Because of this, complete
resource support is a somewhat low-priority task and currently only minimal support is
available. Nevertheless, more complete and useful resource management system specific to
the Forms Library can be implemented using the services provided by the XForms.

34.1 Current Support

At the moment all built-in XForms resources have a top level class name XForm and a
resource name xform. Because of this incomplete specification most of the current resources
are "global", in the sense that they affect all form windows. Eventually all resources will
be fully resolved, e.g., to specify attribute foo of form formName, the resource name can be
appName.formName.foo instead of (the current incomplete) appName.xform.foo.

The argument app_opt passed to [fl_initialize()], page 278 is a table of structures
listing your applications command line options. The structure is defined as follows

typedef struct {

char * option;

char * specifier;

XrmOptionKind argKind;

void * value;

} XrmOptionDescList, FL_CMD_OPT;

See XrmGetResource() for details.

After the initialization routine is called all command line arguments, both XForms built-in
and application specific ones, are removed from argc and argv and parsed into a standard
XResources database. To read your application specific options follow [fl_initialize()],

page 278 with the following routine

void fl_get_app_resources(FL_RESOURCE *resource, int nresources);

Here resource is a table containing application specific resources in the following format:

typedef struct {

char * res_name; /* resource name without application name */

char * res_class; /* resource class */

FL_RTYPE type; /* C type of the variable */

void * var /* variable that will hold the value */

char * defval; /* default value in string form */

int nbytes; /* buffer size for string var. */

} FL_RESOURCE;

and the resource type FL_RTYPE type is one of the following

FL_SHORT for short variable

FL_BOOL for boolean variable (int)

FL_INT for int variable

Chapter 34: Resources for Forms Library 312

FL_LONG for long variable

FL_FLOAT for float variable

FL_STRING

for char[] variable

FL_NONE for variables not to be used (or not available)

Note that the variable for FL_BOOL must be of type int. It differs from FL_INT only in the
way the resources are converted, not in the way their values are stored. A boolean variable
is considered to be true (1) if any one of True, true, Yes, yes, On, on, or 1 is specified as
its value. For string variables, the length for the destination buffer must be specified.

[fl_get_app_resources()], page 311 simply looks up all entries specified in the FL_

RESOURCE structure in all databases after prefixing the resource name with the application
name, which can be the new name introduced by the -name command line option.

Summarized below are the currently recognized Forms Library built-in resources:

Resource Name Class Type Default values
rgamma Gamma float 1.0
ggamma Gamma float 1.0
bgamma Gamma float 1.0
visual Visual string best
depth Depth int best
doubleBuffer DoubleBuffer bool true
privateColormap PrivateColormap bool false
standardColormap StandardColormap bool false
sharedColormap SharedColormap bool false
pupFontSize PupFontSize int 12pt
buttonFontSize FontSize int 10pt
sliderFontSize FontSize int 10pt
inputFontSize FontSize int 10pt
browserFontSize FontSize int 10pt
menuFontSize FontSize int 10pt
choiceFontSize FontSize int 10pt
ulPropWidth ULPropWidth bool true
ulThickness ULThickness int 1
scrollbarType ScrollbarType string thin
coordUnit CoordUnit string pixel
borderWidth BorderWidth int 1

Again, "best" means that the Forms Library by default selects a visual that has the most
depth.

By default, resource files are read and merged in the order as suggested by X11 R5 as
follows:

• ‘/usr/lib/X11/app-defaults/<AppClassName>’

• ‘$XAPPRLESDIR/<AppClassName>’

• RESOURCE_MANAGER property as set using xrdb if RESOURCE_MANAGER is empty,
‘~/.Xdefaults’

Chapter 34: Resources for Forms Library 313

• $XENVIRONMENT if $XENVIORONMENT is empty, ‘~/.Xdefaults-hostname’

• ommand line options

All options set via resources may not be the final values used because resource settings are
applied at the time an object/form is created, thus any modifications after that override the
resource settings. For example buttonLabelSize, if set, is applied at the time the button
is created ([fl_add_button()], page 120). Thus altering the size after the button is
created via [fl_set_object_lsize()], page 289 overrides whatever is set by the resource
database.

To run your application in PseudoColor with a depth of 8 and a thicker underline, specify
the following resources

appname*visual: PseudoColor

appname*depth: 8

appname*ulThickness: 2

Since resources on a form by form basis are yet to be implemented, there is no point
specifying anything more specific although also appname.XForm.depth etc. would work
correctly.

34.1.1 Resources Example

Let us assume that you have an application named myapp and it accepts the options
-foo level and -bar plus a filename. The proper way to initialize the Forms Library is
as follows

FL_CMD_OPT cmdopt[] = {

{"-foo", "*.foo", XrmoptionSepArg, 0 },

{"-bar", ".bar", XrmoptionNoArg, "True"}

};

int foolevel, ifbar;

int deftrue; /* can only be set thru resources */

FL_resource res[] = {

{"foo", "FooCLASS", FL_INT, &foolevel, "0"},

{"bar", "BarCLASS", FL_BOOL, &ifbar, "0"},

{"deftrue", "Whatever", FL_BOOL, &deftrue, "1"}

};

int main(int argc, char *argv[]) {

fl_initialize(&argc, argv ,"MyappClass", cmdopt, 2);

fl_get_app_resources(res, 3);

if (argc == 1) /* missing filename */

fprintf(stderr, "Usage %s: [-foo level][-bar] "

"filename\n","myapp");

/* rest of the program */

}

After this both variables foolevel and ifbar are set either through resource files or com-
mand line options, with the command line options overriding those set in the resource files.

Chapter 34: Resources for Forms Library 314

In case neither the command line nor the resource files specified the options, the default
value string is converted.

There is another routine, a resource routine of the lowest level in XForms, which might be
useful if a quick-and-dirty option needs to be read:

const char *fl_get_resource(const char *res_name,

const char *res_class,

FL_RTYPE type, char *defval,

void *val, int nbytes);

res_name and res_class must be complete resource specifications (minus the application
name) and should not contain wildcards of any kind. The resource will be converted accord-
ing to the type and result stored in type, which is an integer of type [FL_RTYPE], page 311.
nbytes is used only if the resource type is [FL_STRING], page 312. The function returns
the string representation of the resource value. If a value of [FL_NONE], page 312 is passed
for type the resource is not converted and the pointer val is not dereferenced.

There is also a routine that allows the application program to set resources programmati-
cally:

void fl_set_resource(const char *string, const char *value);

where string and value are a resource-value pair. The string can be a fully qualified
resource name (minus the application name) or a resource class.

Routines [fl_set_resource()], page 314 and [fl_get_resource()], page 314 can be
used to store and retrieve arbitrary strings and values and may be useful to pass data
around.

34.2 Going Further

It is possible to implement your own form/object specific resources management system
using the services mentioned above. For example, to implement a user-configurable form
size, code similar to the following can be used, assuming the form is named "myform":

struct fsize {

int width,

height;

} myformsize;

FL_RESOURCE res[] = {

{"myform.width", "XForm.width", FL_INT, &myform.width, "150"},

{"myform.height","XForm.height", FL_INT, &myform.height, "150"}

};

fl_initialize(&argc, argv, app_class, 0, 0);

fl_get_app_resources(res, 2);

/* create the forms */

myform = fl_bgn_form(myformsize.width, myformsize.height,.....);

Or (more realistically) you create the form first using fdesign and then scale it before it is
shown:

Chapter 34: Resources for Forms Library 315

fl_initialize(&argc, argv, app_class, 0, 0);

fl_get_app_resources(res, 2);

/*create_all_forms here */

fl_set_form_size(myform, mysformsize.width, myformsize.height);

fl_show_form(myform, ...);

Since eventually form geometry and other things might be done via XForms internal routines
it is recommended that you name your form to be the form title with all spaces removed
and the first letter lower-cased, i.e., if a form is shown with a label Foo Bar, the name of
the form should be fooBar.

Chapter 35: Dirty Tricks 316

35 Dirty Tricks

This chapter describes some of the routines that may be used in special situations where
more power or flexibility from Forms Library is needed. These routines are classified as
"dirty tricks" either because they can easily mess up the normal operation of Forms Library
or they depend on internal information that might change in the future, or they rely too
much on the underlying window systems. Thus whenever possible, try not to use these
routines.

35.1 Interaction

35.1.1 Form Events

It is possible to by-pass the form event processing entirely by setting a "raw callback"
that sits between the event reading and dispatching stage, thus a sneak preview can be
implemented and optionally the event can even be consumed before the libraries internal
form processing machinery gets to it.

Use the following routines to register such a preemptive processing routine

typedef int (*FL_RAW_CALLBACK)(FL_FORM *, void *xevent);

FL_RAW_CALL_BACK fl_register_raw_callback(FL_FORM *form,

unsigned long mask,

FL_RAW_CALLBACK callback);

where mask is the event mask you are interested in (same as the XEvent mask). The function
returns the old handler for the event.

Currently only handlers for the following events are supported

• KeyPressMask and KeyReleaseMask

• ButtonPressMask and ButtonReleaseMask

• EnterWindowMask and LeaveWindowMask

• ButtonMotionMask and PointerMotionMask

• FL ALL EVENT (see below)

Further, there is only one handler for each event pair, (e.g., ButtonPress and
ButtonRelease), thus you can’t have two separate handlers for each pair although it
is possible to register a handler only for one of them (but almost always a mistake) if
you know what you’re doing. If you register a single handler for more than one pair of
events, e.g., setting mask to KeyPressMask|ButtonPressMask, the returned old handler is
random.

A special constant, FL_ALL_EVENT, is defined so that the handler registered will received all
events that are selected. To select events, use [fl_addto_selected_xevent()], page 54.

Once an event handler is registered and the event is detected, then instead of doing the
default processing by the dispatcher, the registered handler function is invoked. The handler
function must return either FL_PREEMPT if the event is consumed) and 0 otherwise so that
the internal processing of the event can continue. See the demo program ‘minput2.c’ for
an example.

Since these kind of handlers work on a rather low level there’s a chance that they interfere
with some mechanisms of the library. Consider the case of setting a raw callback handler

Chapter 35: Dirty Tricks 317

for mouse press and release events, in which the handler returns 0 for mouse press events
but FL_PREEMPT on relese events. In that case the mouse press event results in the normal
processing and e.g., a button below the mouse will receive it (and be drawn correspondingly).
To be drawn again in its normal way it also needs to receive the release event (even if the
mouse isn’t on top of it anymore when the mouse button is released). But when the handler
function doesn’t also let the release event propagate to the normal handling of events then
the button will never receive the expected release event and will stay drawn in the way as
if the release event never happened. Thus one should avoid having different return values
from the handler for pairs of related events.

35.1.2 Object Events

Just as you can by-pass the internal event processing for a particular form, you can also do
so for an object. Unlike in raw callbacks, you can not select individual events.

The mechanism provided is via the registration of a pre-handler for an object. The pre-
handler will be called before the built-in object handler. By electing to handle some of the
events, a pre-handler can, in effect, replace part of the built-in handler.

In Chapter 31 [the chapter about pre-emptive handlers], page 276 the API was already
discussed in detail, so here we just repeat the discussion for completeness as any use of
pre-emptive handler is considered "dirty tricks".

To register a pre-handler, use the following routine

typedef int (*FL_HANDLEPTR)(FL_OBJECT *obj, int event,

FL_Coord mx, FL_Coord my,

int key, void *raw_event);

void fl_set_object_prehandler(FL_OBJECT *, FL_HANDLEPTR prehandler);

where event is the generic event in the Forms Library, that is, FL DRAW, FL ENTER etc. The
arguments mx and my are the mouse position and key is the key pressed. The last parameter,
raw_event is a pointer to the XEvent that caused the invocation of the pre-handler. cast
to a void pointer.

Notice that the pre-handler has the same function prototype as the built-in handler. Actu-
ally they are called with the exact same parameters by the event dispatcher. The prehandler
should return 0 if the processing by the built-in handler should continue. A return value of
FL PREEMPT will prevent the dispatcher from calling the built-in handler.

See demo program ‘preemptive.c’ for an example.

A similar mechanism exists for registering a post-handler, i.e., a handler invoked after the
built-in handler is finished, by using

void fl_set_object_posthandler(FL_OBJECT *, FL_HANDLEPTR prehandler);

Whenever possible a post-handler should be used instead of a pre-handler.

35.2 Other

As stated earlier, [fl_set_defaults()], page 280 can be used to modify the Forms Li-
brary’s defaults prior to calling [fl_initialize()], page 278. Actually, this routine can
also be used after [fl_initialize()], page 278 to override the values set on the com-
mand line or in the application databases. However, overriding users’ preferences should

Chapter 35: Dirty Tricks 318

be done with discretion. Further, setting privateColormap after [fl_initialize()],

page 278 has no effect.

Chapter 36: Trouble Shooting 319

36 Trouble Shooting

This chapter deals with a number of (common) problems encountered by people using the
Forms Library. Ways of avoiding them are presented.

fl show form() only draws the form partially
This only happens if immediately following [fl_show_form()], page 293 the
application program blocks the execution (e.g., waiting for a socket connection,
starting a new process via fork() etc.). To fix this problem, you can flush the
X buffer manually using fl_update_display(1) before blocking occurs or use
an idle callback to check the status of the blocking device or let the main loop
handle it for you via [fl_add_io_callback()], page 55.

I updated the value of a slider/counter/label, but it does not change
This only happens if the update is followed by a blockage of execution or a long
task without involving the main loop of Forms Library. You can force a screen
update using fl_update_display(1).

I found a bug in XForms, What do I do?
Please consider subscribing to the XForms mailing list at

http://lists.nongnu.org/mailman/listinfo/xforms-development

and sending an email with information about the bug you found. Please try to
post information about the version of the Forms Library you’re using and your
OS beside a description of the bug. Some sample code that exhibits the erratic
behavior would help greatly.

If, for some reasons, you don’t want subscribe to the mailing list you may also
send an email to one of the maintainers. At the moment you probably should
first contact Jens Thoms Toerring, <jt@toerring.de>.

http://lists.nongnu.org/mailman/listinfo/xforms-development
mailto:jt@toerring.de

Part VI - Image Support API 320

Part VI - Image Support API

Chapter 37: Images 321

37 Images

Although images are not typically a part of the GUI, they are often part of an application.
For this reason and others, image support is part of Forms Library. It is somewhat not
unexpected that the users of a graphical user interface want some graphics support.

The most important reason to have image support in the library is the amount of ques-
tions/requests on the mailing list of the Forms Library about images. It convinced us that
having image support will make many Forms Library users life easier.

The second reason has something to do with image support in X, which at best is cumber-
some to use as the API reflects the underlying hardware, which, at the level of Xlib, is quite
appropriate, but not quite what an application programmer wants to deal with. Image sup-
port in Forms Library for the large part is hardware independent. This is possible because
xforms makes distinction between the real image it keeps and the image being displayed.
At the expense of some flexibility and memory requirement, the high-level image support
API should prove to be useful for most situations.

The third reason is that image support as it is now in the library is well isolated and is only
linked into an application when it is actually being used. This is not a trivial point in the
consideration to include image support in the library proper.

37.1 The Basic Image Support API

Reading and displaying images are quite easy. It can be as simple as a couple of lines of
code:

FL_IMAGE *image;

if ((image = flimage_load("imagefilename"))

image->display(image, win);

In this example, an image is created from a file, then the image is displayed in a window,
win. For most casual uses, this is really what is needed to load and display an image.

As you may have guessed, an image in Forms Library is represented by a structure of type
FL_IMAGE. In addition to the pixels in the image, it also keeps a variety of information
about the image such as its type, dimension, lookup tables etc. Further, if the image can
not be displayed directly on the display hardware (for example, the image is 24 bits, while
the display is only capable of 8 bits), a separate displayable image is created and displayed.
Any manipulation of the image is always performed on the original high-resolution image,
and a new displayable image will be created if necessary.

Writing an image is just as simple

if (flimage_dump(image, "filename", "jpeg") < 0)

fprintf(stderr,"image write failed");

In this code snippet, an image in memory is written to a file in JPEG format. As you might
have noticed by now, all image routines start with flimage. The exact APIs for reading and
writing an image are as follows

FL_IMAGE *flimage_load(const char *filename);

int flimage_dump(FL_IMAGE *im, const char *filename, const char *fmt);

Chapter 37: Images 322

The function [flimage_load()], page 321 takes a filename and attempts to read it. If
successful, an image (or multiple images) is created and returned. If for any reason the
image can’t be created (no permission to read, unknown file format, out of memory etc), a
null pointer is returned. As will be documented later, error reporting and progress report
can be configured so these tasks are performed inside the library.

The function [flimage_dump()], page 321 takes an image, either returned by [flimage_

load()], page 321 (possibly after some processing) or created on the fly by the application,
attempts to create a file to store the image. The image format written is controlled by the
third parameter fmtq, which should be either the formal name or the short name of one of
the supported formats (such as jpeg, ppm, gif, bmp etc., see section 23.3) or some other
formats the application knows how to write. If this parameter is NULL, the original format
the image was in is used. If the image is successfully written, a non-negative number is
returned, otherwise a negative number. Depending on how the image support is configured,
error reporting may have already occurred before the function returns.

Given these two routines, a file converter (i.e., changing the image file format) is simple

if ((image = flimage_load("inputfile"))

flimage_dump(image, "outfile", "newformat");

See the demo program ‘iconvert.c’ for a flexible and usable image converter.

To free an image, use the following routine

void flimage_free(FL_IMAGE *image);

The function first frees all memory allocated for the image, then the image structure itself.
After the function returns, the image should not be referenced.

The following routines are available to display an image in a window

int flimage_display(FL_IMAGE *image, FL_WINDOW win);

int flimage_sdisplay(FL_IMAGE *image, FL_WINDOW win);

where win is a window ID. If the image(s) is successfully displayed, a non-negative integer
is returned, a negative integer otherwise. The difference between the two display routines
is that [flimage_sdisplay()], page 322 only displays a single image while [flimage_

display()], page 322, built on top of flimage_sdisplay(), can display single or multiple
images. For typical use, [flimage_display()], page 322 or image->display should be
used. [flimage_sdisplay()], page 322 is useful only if you’re coding your own multi-
image display routine. For example, [flimage_display()], page 322 is built roughly like
the following

int flimage_display(FL_IMAGE *im, FL_WINDOW win) {

int err;

for (err = 0; err >=0 && im; im = im->next) {

err = flimage_sdisplay(im, win);

fl_update_display(0);

fl_msleep(im->setup->delay);

}

return err;

}

Chapter 37: Images 323

And you can build your own multi-frame image display routine to suit your application’s
needs.

Despite the display routine’s simple look, this function performs tasks that involve the
details of dealing with different hardware capabilities, a daunting task for beginners. For
PseudoColor displays (i.e., using color maps or color lookup tables), a color quantization
or dithering step may be performed by the function to reduce the number of colors in the
image (of course, the colorreduced image is kept only for display, the original image is
untouched so future processing is carried out on the original full resolution image, rather
than the displayed, an approximate of the original image). In general, when the information
in an image is reduced in order to display it, the original image is not altered in any way.
For example, this function can display a 24bit image on a 1bit display without losing any
information on the original 24bit image.

By default, the entire image is displayed at the top-left corner of the window. To display the
image at other locations within the window (perhaps to center it), use the image->wx and
image->wy fields of the FL_IMAGE structure. These two fields specify where in the window
the origin of the image should be. By repeatedly changing image->wx and image->wy and
displaying, image panning can be implemented.

It is also possible to display a subimage by specifying non-zero value for (image->sx,image-
>sy) and (image->sw, image->sh). You can view the image as a 2D space with the origin
at the top left corner. The positive y axis of the image space is pointing downward. (image-
>sx,image->sy) specify the subimage offset into the image (they must be non-negative) and
(image->sw,image->sh) specify the width and height of the subimage. Taken the window
offset and the subimage together, the more accurate statement of the functionality of the
the function [flimage_display()], page 322 is that it displays a subimage specified by
(image->sx,image->sy) and (image->sw,image->sh) starting at (image->wx, image-

>wy).

You can also use clipping to display a subimage by utilizing the following functions and
image->gc

fl_set_gc_clipping(image->gc, x, y, w, h);

fl_unset_gc_clipping(image->gc);

where the coordinates are window coordinates. Of course, by manipulating image->gc

directly, more interesting clipping or masking can be achieved. Since the GC is visual
dependent, a newly created image before displaying may not yet have a valid GC assoiated
with it. If you must set some clipping before displaying, you can set the image->gc yourself
beforehand. Note that you if you free the GC, make sure you reset it to None.

To display an image in a canvas, the following can be used

flimage_display(image, FL_ObjWin(canvas));

Since this function only knows about window IDs, and writes to the window directly, it
may not be sensitive to the status of the form the canvas is on, e.g., a frozen form. In your
application, you should check the status of the form before calling this function.

Sometimes it may be useful to find out if a specific file is an image file before attempting
to read it (for example, as a file filter). To this end, the following routine exists

int flimage_is_supported(const char *file);

The function returns true if the specified file is a known image file. If the file is not a known
image or not readable for any reason, the function return 0.

Chapter 37: Images 324

37.2 The FL_IMAGE Structure

Before we go into more details on image support, some comments on the image structure
are in order. The image structure contains the following basic fields that describe fully the
image in question and how it should be displayed.

typedef unsigned char FL_PCTYPE; /* primary color type */

#define FL_PCBITS 8 /* primary color bits */

#define FL_PCMAX ((1<<FL_PCBITS)-1) /* primary color max val */

typedef unsigned int FL_PACKED; /* packed RGB(A) type */

typedef struct flimage_ {

int type;

int w,

h;

void * app_data;

void * u_vdata;

unsigned char ** red;

unsigned char ** green;

unsigned char ** blue;

unsigned char ** alpha;

unsigned short ** ci;

unsigned short ** gray;

FL_PACKED ** packed;

short * red_lut;

short * green_lut;

short * blue_lut;

short * alpha_lut;

int map_len;

int colors;

int gray_maxval;

int app_background;

int wx,

wy;

int sx,

sy;

int sw,

sh;

char * comments;

int comments_len;

void * io_spec;

int spec_size;

int (*display) (struct flimage_ *, FL_WINDOW win);

struct flimage_ * next;

int double_buffer;

unsigned long pixmap;

/* more stuff omitted */

} FL_IMAGE;

Chapter 37: Images 325

The meaning of each field is as follows:

type This field specifies the current image type and storage (1bit, 24bit etc. See next
section for details). The image type also indicates implicitly which of the pixel
fields should be used.

w,h The width and height of the image.

app_data A field that’s initialized at image creation. Its value can be set by the application
prior to any existence of image. Once set, all images created thereafter will have
the same value for this field. See Section later. The Forms Library does not
modify or reference it once it’s initialized.

u_vdata A field for use by the application. This field is always initialize to null. The
Forms Library does not reference or modify it.

red, green, blue, alpha

This first three fields are the color components of a 24 bit image, each of which
is a 2-dimensional array. The 2D array is arranged so the image runs from left to
right and top to bottom. For example, the 3rd pixel on the 10th row is composed
of the following RGB elements: (red[9][2],green[9][2],blue[9][2]). Note
however, these fields are meaningful only if the image type is FL_IMAGE_RGB.
Although it’s always allocated for a 24bit image, alpha is currently not used
by the Forms Library

ci The field are the pixel values for a color index image (image type FL_IMAGE_CI).
The field is also a 2-dimensional array arranged in the same way as the fields
red, green and blue, i.e., the image runs from left to right, top to bottom. For
example, ci[3][9] should be used to obtain the 10th pixel on the 4th row. To
obtain the RGB elements of a pixel, the pixel value should be used as an index
into a lookup table specified by the fields red_lut, green_lut and blue_lut.
Although ci can hold an unsigned short, only the lower FL_LUTBITS (12) bits
are supported, i.e., the color index should not be bigger than 4095.

gray This field, again a 2-dimensional array, holds the pixels of a gray image. The
pixel values are interpreted as intensities in a linear fashion. Two types of gray
images are supported, 8 bit (FL_IMAGE_GRAY) and 16 bit (FL_IMAGE_GRAY16).
For 16 bit gray image, the actual depths of the image is indicated by member
gray_maxval. For example, if gray_maxval is 4095, it is assumed that the
actual pixel value ranges from 0 to 4095, i.e., the gray scale image is 12 bit.
For 8 bit grayscale image, gray_maxval is not used. This means that the type
FL_IMAGE_GRAY is always assumed to be 8 bit, the loading and creating routine
should take care to properly scale data that are less than 8 bit.

gray_maxval

This field is meaningful only if the image type is FL_IMAGE_GRAY16. It specifies
the actual dynamic range of the gray intensities. Its value should be set by the
image loading routines if the gray image depth is more than 8 bits.

ci_maxval

This field by default is 256, indicating the maximum value of the color index.

Chapter 37: Images 326

packed This field (a 2-dimensional array) holds a 24 bit/32 bit image in a packed for-
mat. Each element of the 2D array is an unsigned integer (for now) that holds
the RGB, one byte each, in the lower 24 bits of the integer. The topmost byte is
not used. The macro FL_PACK(r, g, b) should be used to pack the triplet (r,
g, b) into a pixel and FL_UNPACK(p, r, g, b) should be used to unpack a pixel.
To obtain individual primary colors, the macros FL_GETR(p), FL_GETG(p) and
FL_GETB(p) are available.

Note that the use of the macros to pack and unpack are strongly recommended.
It will isolate the application program from future changes of the primary color
type (for example, 16-bit resolution for R,G and B).

red_lut, green_lut, blue_lut, alpha_lut

These are the lookup tables for a color index image. Each of the table is a 1D
array of length image->map len. Although alpha lut is always allocated for a
color index image, it’s currently not used by the Forms Library.

map_len The length of the colormap (lookup table).

app_background

A packed RGB value indicating the preferred color to use for the background
of an image (also known as transparent color). This field is initialized to an
illegal value. Since there is no portable way to obtain the window background
the application has to set this field if transparency is to be achieved. In future
versions of image support, other means of doing transparency will be explored
and implemented.

wx, wy The window offset to use to display the image.

sx, sy, sw, sh

The subimage to display.

comments This is typically set by the loading routines to convey some information about
the image. The application is free to choose how to display the comment, which
may have embedded newlines in it.

io_spec This field is meant for the reading/writing routine to place format specific state
information that otherwise needs to be static or global.

spec_size

This field should be set to the number of bytes io_spec contains.

display A function you can use to display an image. The image loading routine sets
this function.

next This is a link to the next image. This is how [flimage_load()], page 321

chains multiple image together.

double_buffer

If true, the display function will double-buffer the image by using a pixmap.
For typical image display it’s not necessary to enable double-buffering as it is
very expensive (memory and speed). Double-buffering may be useful in image
editing.

pixmap The backbuffer pixmap if double-buffered.

Chapter 37: Images 327

Although it is generally not necessary for an application to access individual pixels, the need
to do so may arise. In doing so, it is important to consult the image->type field before
dereferencing any of the pixel field. That is, you should access image->ci only if you know
that the image type is FL_IMAGE_CI or FL_IMAGE_MONO.

37.3 Supported image types

Forms Library supports all common and not-so-common image types. For example, the
supported images range from the simple 1 bit bitmap to full 24 bit RGB images. 12 bit
gray scale images (common in medical imaging) are also supported.

The supported image types are denoted using the following constants, all of them (except
FL_IMAGE_FLEX) using a different bit, so they can be bitwise ORed together:

FL_IMAGE_MONO, /* 1 bit bitmaps */

FL_IMAGE_GRAY, /* gray-scale image (8 bit) */

FL_IMAGE_GRAY16, /* gray-scale image (9 to 16 bit) */

FL_IMAGE_CI, /* generic color index image */

FL_IMAGE_RGB, /* 24 bit RGB(A) image */

FL_IMAGE_PACKED, /* 24 bit RGB(A) image. Packed storage */

FL_IMAGE_FLEX, /* All of the above */

For the 24 bit variety another 8 bit (image->alpha and the top-most byte of the packed
integer) is available for the application, perhaps storing the alpha values into it. The Forms
Library does not modify or reference this extra byte.

Mono (b&w) images are stored as a colormap image with a lut of length 2.

The FL_IMAGE_FLEX type is mainly for the reading and loading routines to indicate the types
they are capable of handling. For example, if you’re coding an output routine, you use FL_
IMAGE_FLEX to indicate that the output routine can take any type the image. Otherwise
the driver will convert the image type before handing the image over to the actual output
routine.

In displaying an image of type FL_IMAGE_GRAY16, window leveling, a technique to visualize
specific ranges of the data, is employed. Basically, you specify a window level (level) and a
window width (wwidth) and the display function will map all pixels that fall within level-

width/2 and level+width/2 linearly to the whole dynamic range of the intensities the
hardware is capable of displaying. For example, if the display device can only display 256
shades of gray, level-width/2 is mapped to 0 and level+width/2 is mapped to 255, and
pixels values between level-width/2 and level+width/2 are linearly mapped to values
between 0 and 255. Pixel values that fall below level-width/2 are mapped to zero and
those that larger than level+width/2 are mapped to 255.

Use the following routine to set the window level

int flimage_windowlevel(FL_IMAGE *im, int level, int wwidth);

The function returns 1 if window level parameters are modified, otherwise 0 is returned.
Setting wwidth to zero disables window leveling. Note that if im points to a multiple image,
window level parameters are changed for all images.

To obtain the image type name in string format, e.g., for reporting purposes, use the
following routine

Chapter 37: Images 328

const char *flimage_type_name(int type);

To convert between different types of images, the following routine is available

int flimage_convert(FL_IMAGE *image, int newtype, int ncolors);

The parameter newtype should be one of the supported image types mentioned earlier in
this section. Parameter ncolors is meaningful only if newtype is FL_IMAGE_CI. In this case,
it specifies the number of colors to generate, most likely from a color quantization process. If
the conversion is successful a non-negative integer is returned, otherwise a negative integaer.
Depending on which quantization function is used, the number of quantized colors may not
be more than 256.

To keep information loss to a minimum, [flimage_convert()], page 328 may elect to
keep the original image in memory even if the conversion is successful. For example, con-
verting a full color image (24 bit) into a 8 bit image and then converting back can lose much
information of the image if the converting function does not keep the original image.

What this means is that the following sequence gets back the original image

/* the current image is RGB. Now we reduce the full color

image to 8 bit color index image. The conversion routine

will keep the 24 bit color. */

flimage_convert(image, FL_IMAGE_CI, 256);

/* Now convert back to RGB for image processing. The con-

version routine will notice that the input image was

originally converted from a 24bit image. Instead of

doing the conversion, it simply retrieves the saved

image and returns. */

flimage_convert(image, FL_IMAGE_RGB, 0);

This behavior might not always be what the application wants. To override it, you can set
image->force_convert to 1 before calling the conversion routine. Upon function return
the flag is reset to zero.

37.4 Creating Images

With the basic fields in the image structure and image types explained, we’re now in a
position to tackle the problem of creating images on the fly. The data may have come from
some simulations or some other means, the task now is to create an image from the data
and try to display/visualize it.

The first task involved in creating an image is to create an image structure that is properly
initialized. To this end, the following routine is available

FL_IMAGE *flimage_alloc(void);

The function returns a pointer to a piece of dynamically allocated memory that’s properly
initialized.

The task next is to put the existing data into the structure. This involves several steps.
The first step is to figure out what type of image to create. For scalar data, there are
two logical choices, either a gray-scale intensity image or a color index image with the data

Chapter 37: Images 329

being interpreted as indices into some lookup table. Both of these may be useful. Gray-scale
imagse are straight forward to create and the meaning of the pixel values is well defined
and understood. On the other hand with color-mapped image you can selectively enhance
the data range you want to visualize by choosing appropriate color-maps. For vector data,
RGB image probably makes most sense. In any case it’s strictly application’s decision. All
that is needed to make it work with Forms Library is to set the image->type field to a
valid value. Of course the image dimension (width and height) also needs to be set. Once
this is done, we need to copy the data into the image structure.

Before we copy the data we create the destination storage using one of the following routines

void *fl_get_matrix(int nrows, int ncols, unsigned int elem_size);

int flimage_getmem(FL_IMAGE *image);

The [fl_get_matrix()], page 329 function creates a 2-dimensional array of entities of
size elem_size. The array is of nrows by ncols in size. The 2D array can be passed as a
pointer to pointer and indexed as a real 2D arrays. The [flimage_getmem()], page 329

routine allocates the proper amount of memory appropriate for the image type, including
colormaps when needed.

After the destination storage is allocated, copying the data into it is simple

image->type = FL_IMAGE_GRAY;

image->w = data_columns;

image->h = data_row;

flimage_getmem(image);

/* or you can use the instead

im->gray = fl_get_matrix(im->h, im->w, sizeof **im->gray);

*/

for (row = 0; row < image->h; row++)

for (col = 0; col < image->w; col++)

image->gray[row][col] = data_at_row_and_col;

Of course, if data is stored row-by-row, a memcpy(3) instead of a loop over columns may
be more efficient. Also if your data are stored in a single array, [fl_make_matrix()],
page 349 might be a lot faster as it does not copy the data.

If the created image is a color index image, in addition to copying the data to image->ci,
you also need to set the lookup table length image->map_len, which should reflect the
dynamic range of the data:

image->type = FL_IMAGE_CI;

image->w = A;

image->h = B;

image->map_len = X;

flimage_getmem(image); /* this will allocate ci and lut */

for (row = 0; row < image->h; row++)

for (col = 0; col < image->w; col++)

image->ci[row][col] = data;

Chapter 37: Images 330

for (i = 0; i < image->map_len; i++) {

image->red_lut[i] = some_value_less_than_FL_PCMAX;

image->green_lut[i] = some_value_less_than_FL_PCMAX;

image->blue_lut[i] = some_value_less_than_FL_PCMAX;

}

If the type is FL_IMAGE_GRAY16, you also need to set image->gray_maxval to the maximum
value in the data.

Now we’re ready to display the image

flimage_display(image, win);

As mentioned before, the display routine may create a buffered, display hardware specific
and potentially lower-resolution image than the original image. If for any reason, you need
to modify the image, either the pixels or the lookup tables, you need to inform the library
to invalidate the buffered image:

image->modified = 1;

37.5 Supported Image Formats

There are many file formats for image storage. The popularity, flexibility and cleanness of
the different formats varies. Forms Library supports several popular ones, but these are
not the only ones that are popular. Toward the end of this section, it will be outlined
how to extend the image support in the Forms Library so more image file can be read by
[flimage_load()], page 321.

37.5.1 Built-in support

Each image file format in Forms Library is identified by any one of three pieces of infor-
mation, the formal name, the short name, and the file extension. For example, for the GIF
format, the formal name is "CompuServe GIF"1, the short name is "GIF", and file extension
is "gif". This information is used to specify the output format for [flimage_dump()],

page 321.

The following table summarizes the supported file formats with comments

FormalName ShortName Extension Comments
Portable Pixmap ppm ppm
Portable Graymap pgm pgm
Portable Bitmap pbm pbm
CompuServe GIF gif gif
Windows/OS2 BMP file bmp bmp
JPEG/JFIF format jpeg jpg
X Window Bitmap xbm xbm
X Window Dump xwd xwd
X PixMap xpm xpm XPM3 only
NASA/NOST FITS fits fits Standard FITS and IM-

AGE extension

1 The Graphics Interchange Format (c) is the Copyright property of CompuServe Incorporated. GIF(sm) is
a Service Mark property of CompuServe Incorporated.

Chapter 37: Images 331

Portable Network Graphics png png needs netpbm
SGI RGB format iris rgb need pbmplus/netpbm

package

PostScript format ps ps needs gs for reading
Tagged Image File Format tiff tif no compression support

To avoid executable bloating with unnecessary code, only ppm, pgm, pbm and compression
filters (gzip and compress) are enabled by default. To enable other formats, call flimage_
enable_xxx() once anywhere after [fl_initialize()], page 278, where xxx is the short
name for the format. For example, to enable BMP format, flimage_enable_bmp() should
be called.

Further, if you enable GIF support, you’re responsible for any copyright/patent and intel-
lectual property dispute arising from it. Under no circumstance should the authors of the
Forms Library be liable for the use or misuse of the GIF format.

Usually there are choices on how the image should be read and written. The following is
a rundown of the built-in options that control some aspects of image support. Note that
these options are persistent in nature and once set they remain in force until reset.

typedef struct {

int quality;

int smoothing;

} FLIMAGE_JPEG_OPTIONS;

void flimage_jpeg_output_options(FLIMAGE_JPEG_OPTIONS *option);

The default quality factor for JPEG output is 75. In general, the higher the quality factor
rhe better the image is, but the file size gets larger. The default smoothing factor is 0.

void flimage_pnm_output_options(int raw_format);

For PNM (ppm, pgm, and pbm) output, two variants are supported, the binary (raw) and
ASCII format. The raw format is the default. If the output image is of type FL_IMAGE_

GRAY16, ASCII format is always output.

void flimage_gif_output_options(int interlace);

If interlace is true, an interlaced output is generated. Transparency, comments, and text
are controlled, respectively, by image->tran_rgb, image->comments and image->text.

PostScript options affect both reading and writing.

FLIMAGE_PS_OPTION *flimage_ps_options(void);

where the control structure has the following members

int orientation

The orientation of the generated image on paper. Valid options are FLPS_AUTO,
FLPS_PORTRAIT and FLPS_LANDSCAPE. The default is FLPS_AUTO.

int auto_fit

By default, the output image is scaled to fit the paper if necessary. Set it to
false (0) to turn auto-scaling off.

float xdpi, ydpi

These two are the screen resolution. Typical screens these days have resolutions
about 80 dpi. The settings of these affect both reading and writing.

Chapter 37: Images 332

float paper_w

The paper width, in inches. The default is 8.5 in.

float paper_h

The paper height, in inches. The default is 11.0 in

char* tmpdir

A directory name where temporary working files go. The default is ‘/tmp’.

float hm, vm

Horizontal and vertical margins, in inches, to leave when writing images. The
default is 0.4 in (about 1 cm).

float xscale

Default is 1.0.

float yscale

Default is 1.0.

int first_page_only

If set, only the first page of the document will be loaded even if the document
is multi-paged. The default setting is false.

To change an option, simply call [flimage_ps_options()], page 331 and change the field
from the pointer returned by the function:

void SetMyPageSize(float w, float h) {

FLIMAGE_PS_OPTION *options = flimage_ps_options();

options->paper_w = w;

options->paper_h = h;

}

All these option setting routines can be used either as a configuration routine or an image-
by-image basis by always calling one of these routines before [flimage_dump()], page 321.
For example,

flimage_jpeg_output_options(option_for_this_image);

flimage_dump(im, "file","jpeg");

You can also utilize the image->pre_write function to set the options. This function, if
set, is always called inside [flimage_dump()], page 321 before the actual output begins.

37.5.2 Adding New Formats

It is possible for application to add new formats to the library so [flimage_load()],

page 321 and [flimage_dump()], page 321 know how to handle them. Basically, the
application program tells the library how to identify the image format, and the image
dimension, and how to read and write pixels.

The API for doing so is the following

typedef int (*FLIMAGE_Identify) (FILE *);

typedef int (*FLIMAGE_Description) (FL_IMAGE *);

typedef int (*FLIMAGE_Read_Pixels) (FL_IMAGE *);

typedef int (*FLIMAGE_Write_Image) (FL_IMAGE *);

Chapter 37: Images 333

int flimage_add_format(const char *formal_name,

const char *short_name,

const char *extension,

int type,

FLIMAGE_Identify identify,

FLIMAGE_Description description,

FLIMAGE_Read_Pixels read_pixels,

FLIMAGE_Write_Image write_image);

where we have

formal_name

The formal name of the image format

short_name

An abbreviated name for the image format

extension

File extension, if this field is NULL, short_name will be substituted

type The image type. This field generally is one of the supported image types (e.g.,
FL_IMAGE_RGB), but it does not have to. For image file formats that are capable
of holding more than one type of images, this field can be set to indicate this
by ORing the supported types together (e.g., FL_IMAGE_RGB|FL_IMAGE_GRAY).
However, when description returns, the image type should be set to the actual
type in the file.

identify This function should return 1 if the file pointed to by the file pointer passed
in is the expected image format (by checking signature etc.). It should return
a negative number if the file is not recognized. The decision if the file pointer
should be rewound or not is between this function and the description function.

description

This function in general should set the image dimension and type fields (and
colormap length for color index images) if successful, so the driver can allocate
the necessary memory for read pixel. Of course, if read_pixels elects to allo-
cate memory itself, the description function does not have to set any fields.
However, if reading should continue, the function should return 1 otherwise a
negative number.

The function should read from input file stream image->fpin.

It is likely that some information obtained in this function needs to be passed
to the actual pixel reading routine. The easiest way is, of course, to make these
information static within the file, but if a GUI system is in place, all the reading
routines should try to be reentrant. The method to avoid static variables is to
use the image->io_spec field to keep these information. If this field points
to some dynamically allocated memory, you do not need to free it after read_
pixels function finishes. However, if you free it or this field points to static
memory, you should set to this field to NULL when finished.

The following is a short example showing how this field may be utilized.

Chapter 37: Images 334

typedef struct {

int bits_per_pixel;

int other_stuff;

} SPEC;

static int description(FL_IMAGE *im) {

SPEC *sp = fl_calloc(1, sizeof *sp);

im->io_spec = sp;

im->spec_size = sizeof *sp;

sp->bits_per_pixel = read_from_file(im->fpin);

return 0;

}

static int read_pixels(FL_IMAGE *im) {

SPEC *sp = im->io_spec;

int bits_per_pixel = sp->bits_per_pixel;

read_file_based_on_bits_per_pixel(im->fpin);

/* You don’t have to free im->io_spec, but if you do

remember to set it to NULL before returning */

return 0;

}

read_pixels

This function reads the pixels from the file and fills one of the pixel matrix in the
image structure depending on the type. If reading is successful, a non-negative
number should be returned otherwise a negative number should be returned.

Upon entry, image->completed is set to zero.

The function should not close the file.

write_image

This function takes an image structure and should write the image out in a
format it knows. Prior to calling this routine, the driver will have already
converted the image type to the type it wants. The function should return 1 on
success and a negative number otherwise. If only reading of the image format
is supported this parameter can be set to NULL.

The function should write to file stream image->fpout.

By calling [flimage_add_format()], page 332 the newly specified image format is added
to a "recognized image format" pool in the library. When [flimage_load()], page 321

is called the library, after verifying that the file is readable, loops over each of the formats
and calls the identify routine until a format is identified or the pool exhausted. If the file
is recognized as one of the supported formats the description routine is called to obtain

Chapter 37: Images 335

the image dimension and type. Upon its return the library allocates all memory needed,
then calls read_pixels. If the image format pool is exhausted before the file is recognized
[flimage_load()], page 321 fails.

On output, when [flimage_dump()], page 321 is called, the requested format name is
used to look up the output routine from the image format pool. Once an output routine
for the requested format is found, the library looks the image type the output is capable
of writing. If the current image type is not among the types supported by the format the
library converts image to the type needed prior to calling the output routine write_image().
So what [flimage_dump()], page 321 does is

int flimage_dump(FL_IMAGE *im, const char *filename,

const char *formatName) {

format = search_image_format_pool(formatName);

if (!format)

return -1;

im->fpout = fopen(filename);

if (im->pre_write)

im->pre_write(im);

convert image type if necessary(im);

format->write_pixels(im);

...

}

If the name of the image format supplied by [flimage_add_format()], page 332 is iden-
tical to one that is already supported, the new routines replace those that are in the pool.
This way, the application can override the built-in supports.

For a non-trivial example of adding a new format, see file ‘flimage_jpeg.c’. Another way
of adding image formats is through external filters that convert an unsupported format into
one that is. All you need to do is inform the library what external filter to use. pbmplus or
netpbm are excellent packages for this purpose.

The library has two functions that deal with external filters

int flimage_description_via_filter(FL_IMAGE * im, char *const *cmds,

const char *what, int verbose);

int flimage_write_via_filter(FL_IMAGE *im, char *const *cmds,

char *const formats[], int verbose);

where cmds are a list of shell commands (filters) that convert the format in question into
one of the supported formats. Parameter what is for reporting purposes and parameter
verbose controls if some information and error messages should be printed. This is mainly
for debugging purposes.

Let us go through one example to show how this filter facility can be used. In this example,
we support SGI’s rgb format via the netpbm package.

As with regular image format, we first define a function that identifies the image format:

static int IRIS_identify(FILE *fp) {

char buf[2];

Chapter 37: Images 336

fread(buf, 1, 2, fp);

return (buf[0] == ’\001’ && buf[1] == ’\332’)

|| (buf[0] == ’\332’ && buf[1] == ’\001’);

}

Then we need to define the filter(s) that can convert a RGB file into one that’s supported.
Here we use sgitopnm, but you can use diferent filters if available. Function [flimage_

description_via_filter()], page 335 will try all the filters specified until one of them
succeeds. If none does an error code is returned:

static int IRIS_description(FL_IMAGE *im) {

static char *cmds[] = {"sgitopnm %s > %s",

NULL /* sentinel, indicating end of

list of filters */ };

return flimage_description_via_filter(im, cmds,

"Reading RGB...", 0);

}

All commands should be suitable format strings for function sprintf() and contain %s

twice. The first one will be replaced by the input file name, the second by a filename which
will be supplied by the library to hold the converted image. The list must be terminate
with a NULL element.

In the above example, sgitopnm %s > %s specifies the external command, sgitopnm, and
how it operates. Basically, the library will do a sprintf(cmdbuf, cmd[i], irisfile,

tmpfile) and then execute cmdbuf.

There is really no need for a load function as the filter will have already invoked the correct
load function when it returns. For the record of capability queries, a dummy load function
is needed:

static int IRIS_load(FL_IMAGE * im) {

fprintf(stderr, "We should never get here...\n");

return -1;

}

Writing an image is similar:

static int IRIS_dump(FL_IMAGE *im) {

static char *cmds[] = {"pnmtosgi %s > %s",

NULL};

static char *cmds_rle[] = {"pnmtosgi -rle %s > %s",

NULL};

static char *formats[] = {"ppm", "pgm", "pbm", NULL};

return flimage_write_via_filter(im, rle ? cmds_rle : cmds,

formats, 0);

}

Again, the external commands should accept two arguments. The first argument will be
supplied by the library, a temporary file that holds the converted image in a format the
filter understands, and the second argument will be the requested output filename.

For output, an additional argument is required. The additional argument formats specifies
the image format accepted by the external filter. In this case, this is the pnm format. It is

Chapter 37: Images 337

important that if the filter accepts more than one format, you should specify the formats
in decreasing generality, i.e., ppm, pgm, pbm.

With these functions in place, finally we’re ready to add iris support into the library

void add_iris(void) {

flimage_add_format("SGI Iris", "iris", "rgb",

FL_IMAGE_RGB|FL_IMAGE_GRAY|FL_IMAGE_MONO,

IRIS_identify,

IRIS_description,

IRIS_load,

IRIS_dump);

}

After a call of add_iris() you can now use [flimage_load()], page 321 and [flimage_

dump()], page 321 to read and write SGI iris format just like any other format.

37.5.3 Queries

Since the number of formats supported by the library is dynamic in nature, some query
routines are available to obtain support information.

To obtain the number of currently supported image formats, use the routine

int flimage_get_number_of_formats(void);

The functions returns the number of formats supported, for reading or writing or both. To
obtain detailed information for each format, the following can be used

typedef struct {

const char * formal_name;

const char * short_name;

const char * extension;

int type;

int read_write;

int annotation;

} FLIMAGE_FORMAT_INFO;

const FLIMAGE_FORMAT_INFO *flimage_get_format_info(int n);

where parameter n is an integer between 1 and the return value of [flimage_get_number_
of_formats()], page 337 . Upon function return a static buffer is returned containing
the basic information about the image. The read write field can be one of the following
combinations thereof

FLIMAGE_READABLE

supports reading

FLIMAGE_WRITABLE

supports writing

or the bitwise OR of both.

These two routines are most useful for reporting or presenting capabilities to the user

FLIMAGE_FORMAT_INFO *info;

int n = flimage_get_number_of_formats();

Chapter 37: Images 338

fprintf(stderr,"FL supports the following format\n");

for (; n; n--) {

info = flimage_get_format_info(n);

fprintf(stderr,"%s format\t(%c%c)\n",

info->short_name,

(info->read_write & FLIMAGE_READABLE) ? ’r’ : ’ ’,

(info->read_write & FLIMAGE_WRITABLE) ? ’w’ : ’ ’);

}

37.6 Setup and Configuration

Although the image support is designed with integration into a GUI system in mind, it
neither assumes what the GUI system is nor does it need a GUI system to work. As a matter
of fact, for the most part it doesn’t even need an X connection to work (obviously without a
connection, you won’t be able to display images). For this reason, some of the typical (and
necessary) tasks, such as progress and error reporting, are by default implemented only to
use text output (i.e., to stderr). Obviously, with a GUI in place this is not quite adequate.
Hooks are available for application program to re-define what to do with these tasks.

The interface to the library configuration is as follows

void flimage_setup(FLIMAGE_SETUP *setup);

where the parameter setup is a pointer to a structure defined as follows:

typedef struct {

void * app_data;

int (*visual_cue) (FL_IMAGE *im, const char *msg);

void (*error_message) (FL_IMAGE *im, const char *msg);

const char * rgbfile;

int do_not_clear;

int max_frames;

int delay;

int double_buffer;

int add_extension;

} FLIMAGE_SETUP;

with

app_data The application can use this field to set a value so the field image->app_data

in all image structures returned by the library will have this value. It’s most
useful to set this field to something that’s persistent during the application run,
such as the fdui structure of the main control panel.

Note that image->app_data is different from image->u_vdata in that all image
structures returned by the library have the same value of image->app_data,
which is set by the library. In contrast, image->u_vdata is set by the applica-
tion on an image-by-image basis.

visual_cue

This is the function that will be called by all image reading, writing and pro-
cessing routines. The function is meant to give the user some visual feedback

Chapter 37: Images 339

about what is happening. For lengthy tasks, this function is called repeatedly
and periodically to indicate what percentage of the task is completed and to
give the application program a chance to check and process GUI activities (for
example, via [fl_check_forms()], page 297).

The first parameter to the function is the image currently being worked on and
the second parameter is a short message, indicating the name of the task, such
as "Reading JPG" etc.

Two fields in the image structure can be used to obtain progress information.
The member fields image->total indicates the total amount of work to be
done in some arbitrary units (usually number of rows in the image). image-

>completed indicates how much of the task has been completed. The percent-
age of how much is completed is then simply the ratio of image->completed
and image->total, multiplied by 100.

At the begin of a task image->completed is set to a value less or equal 1, and
at the end of the task, image->completed is set to image->total.

A special value of -1 for image->completed may be used to indicate a task of
unknown length.

error_message

This is a function that is called when an error (of all severities) has occurred
inside the library. It is recommanded that the application provide a means to
show the messages to the user by sypplying this function.

The first parameter is a pointer to the image that’s being worked on, and the
second parameter is a brief message, such as "memory allocation failed" etc.

A convenience function, [flimage_error()], page 339, is provided to call the
error message handler.

rgbfile This field should be set to the full path to the color name database (‘rgb.txt’)
if your system has it in non-standard locations. On most systems, this file is
‘/usr/lib/X11/rgb.txt’, which is the default if this field is not set.2

do_not_clear

By default, [flimage_display()], page 322 clears the window before dis-
playing the image. Set this member to 1 to disable window clearing.

no_auto_extension

By default, [flimage_dump()], page 321 changes the filename extension to
reflect the format. Set this member to 1 to disable extension substitution.

double_buffer

If set, all image display will by default double-buffered. Double-buffering an
image is very expensive (in terms of both resource and speed) as the backbuffer
is simulated using a pixmap. If there are no annotations, double-buffering an
image does not really improve anything.

It is far better to turn double-buffering on and off on a image-by-image basis
using the image->double_bufffer field.

2 The routine where this field is used searches some more locations than the default and should work on most
systems automagically.

Chapter 37: Images 340

max_frames

This field specifies the maximum number of frames to read by [flimage_

load()], page 321. The default maximum is 30 frames.

delay This field specifies the delay (in milliseconds) between successive frames. It is
used by the [flimage_display()], page 322 routine.

Note that it is always a good idea to clear the setup structure before initializing and using
it

FLIMAGE_SETUP mysetup;

memset(mysetup, 0, sizeof mysetup);

mysetup.max_frames = 100;

mysetup.delay = 10;

flimage_setup(&mysetup);

It is possible to modify the image loading process by utilizing the following routines
[flimage_load()], page 321 is based on:

FL_IMAGE *flimage_open(const char *name);

This function takes a file name and returns an image sturcture pointer if the file is a
recognized image file. Otherwise NULL is returned.

The function

FL_IMAGE *flimage_read(FL_IMAGE *im);

takes an image structure returned by [flimage_open()], page 340 and fills the image
structure. Between [flimage_open()], page 340 and [flimage_read()], page 340 you
can inspect or modify fields in the image structure.

int flimage_close(FL_IMAGE *im);

This function closes all file streams used to create the image.

37.7 Simple Image Processing

Some simple image processing capabilities are present in the Forms Library image support.
All the image processing routines take an image as a parameter and process it in place.
If appropriate, only the subimage specified by (image->subx, image->suby) and (image-

>subw, image->subw) is affected (note these are different fields from those for subimage
displaying). The subimage fields are best set via user interaction, perhaps by having a
rubber band that the user can drag to set the size.

In the following, each routine will be briefly explained.

37.7.1 Convolution

Convolution or filtering can be done easily using the following routine

int flimage_convolve(FL_IMAGE *im, int **kernel,

int krow, int kcol);

This function takes a convolution kernel of krow by kcol and convolves it with the image.
The result replaces the input image. The kernel size should be odd. If successful, the
function returns a positive integer, otherwise a negative number. The kernel should be

Chapter 37: Images 341

allocated by [fl_get_matrix()], page 329. To use a kernel that’s a C 2-dimensional
array (cast to a pointer to int), use the following function

int flimage_convolvea(FL_IMAGE *im, int *kernel,

int krow, int kcol);

The difference between these two functions is in their usage syntax:

int **kernel1 = fl_get_matrix(sizeof **kernel, n, m);

int kernel2[n][m];

kernel1[x][y] = z;

kernel2[x][y] = z;

flimage_convolve(im, kernel1, n, m);

flimage_convolvea(im, (int*) kernel2, n, m); /* note the cast */

Two special built-in kernels are designated with the following symbolic constants

FLIMAGE_SMOOTH

indicates a 3 by 3 smoothing kernel

FLIMAGE_SHARPEN

indicates a 3 by 3 sharpening kernel

37.7.2 Tint

Tint as implemented in the Forms Library emulates the effect of looking at an image through
a piece of colored glass. You can specify the color and transparency of the glass:

int flimage_tint(FL_IMAGE *im, unsigned int packed, double opacity);

where the parameter packed is a packed RGB color, specifying the color of the glass.
opacity specifies how much the color of the image is absorbed by the glass. A value of
0 means the glass is totally transparent, i.e., the glass has no effect3, while a value of 1.0
means total opaqueness, i.e., all you see is the color of the glass. Any value between these
two extremes results in a color that is a combination of the pixel color and the glass color.
For example, to tint a part of the image bluish, you can set packed to FL_PACK(0,0,200)

and use an opacity of 03.

Tint is most useful in cases where you want to put some annotations on the image, but
do not want to use a uniform and opaque background that completely obscures the image
behind. By using tint, you can have a background that provides some contrast to the text,
yet not obscures the image beneath completely.

Tint operation uses the subimage settings.

37.7.3 Rotation

Image rotation can be easily done with the following routine

int flimage_rotate(FL_IMAGE *im, int angle, int subpixel);

where angle is the angle in one-tenth of a degree (i.e., a 45 degree rotation should be
specified as 450) with a positive sign for counter-clock rotation. The parameter subpixel
should be one of the following, specifying if subpixel sampling should be enabled. It can be
set to either FLIMAGE_NOSUBPIXEL or FLIMAGE_SUBPIXEL.

3 Strictly speaking, a piece of glass that is totally transparent can’t have colors.

Chapter 37: Images 342

If subpixel sampling is enabled, the resulting image pixels are interpolated from the original
pixels. This usually has an "anti-aliasing" effect that leads to less severe jagged edges and
similar artifacts commonly encountered in rotations. However, it also means that a color
indexed image gets converted to a RGB image. If preserving the pixel value is important,
you should not turn subpixel sampling on.

[flimage_rotate()], page 341 return a negative number if it for some reason (usually
due to running out of memory) fails to perform the rotation.

Since the rotated image has to be on a rectangular grid, the regions that are not occupied
by the image are filled with a fill color, where the default is black. If a different fill color is
desired you can set the image->fill_ccolor field to a packed RGB color before calling the
rotation function. Note that even for color indexed images the fill color should be specified
in RGB. The rotation function will search the colormap for the appropriate index if no
subpixel sampling is used.

Repeated rotations should be avoided if possible. If you have to call it more than once it’s
a good idea to crop after rotations in order to get rid of the regions that contain only fill
color.

37.7.4 Image Flipping

Image flipping refers to the mirror operation in x- or y-direction at the center. For example,
to flip the columns of an image, the left and right of the image are flipped (just like having
a vertical mirror in the center of the image) thus the first pixel on any given row becomes
the last, and the last pixel becomes the first etc.

The API for flipping is as follows

int flimage_flip(FL_IMAGE *im, int what);

where what can be ’c’ or ’r’. indicating if column and row flipping is desired.

37.7.5 Cropping

There are two functions available to crop an image

int flimage_autocrop(FL_IMAGE *im, unsigned int background);

int flimage_crop(FL_IMAGE *im, int xl, int yt, int xr, int yb);

The first function, as its name suggests, automatically crops an image using the background
as the color to crop. The function works by searching the image from all four sides and
removing all contiguous regions of the uniform background from the sides. The image is
modified in place. If cropping is successful, a non-negative integer is returned, otherwise -1.
If background is specified as the constant FLIMAGE_AUTOCOLOR, the background is chosen
as the first pixel of the image.

The second function uses the parameters supplied by the user to crop the image. xl and xr

are the offsets into the image from the left and the right sides, respectively, i.e., if both xl

and xr are 1, the cropping removes the first column and the last column from the image.
Parameters yt and yb specify the offsets into the image from the top and bottom of the
image respectively.

Note the offsets do not have to be positive. When they are negative, they indicate en-
largement of the image. The additional regions are filled with the uniform color specified
by image->fill_color, a packed RGB color. This can be quite useful to add a couple of

Chapter 37: Images 343

pixels of border to an image. For example, the following adds a 1 pixel wide yellow border
to an image

image->fill_color = FL_PACK(255,255,0);

flimage_crop(image, -1, -1, -1, -1);

Another function is available that can be used to obtain the auto-cropping offsets

int flimage_get_autocrop(FL_IMAGE *im, unsigned background,

int *xl, int *yt, int *xl, int *yb);

This function works the same way as [flimage_autocrop()], page 342, except that no
actual cropping is performed. Upon function return the parameters xl, yt, xl and yb are
set to the offsets found by the function. The application can then make adjustment to these
offsets and call [flimage_crop()], page 342.

37.7.6 Scaling

An image can be scaled to any desired size with or without subpixel sampling. Without
subpixel sampling simple pixel replication is used, otherwise a box average algorithm is
employed that yields an anti-aliased image with much less artifacts. A special option is
available that scales the image to the desired size but keeps the aspect ratio of the image
the same by filling the part of the image that would otherwise be empty.

The main entry point to the scaling function is

int flimage_scale(FL_IMAGE *im, int newwidth, int newheight,

int option);

where the parameters newwidth and newheight specify the desired image size. Parameter
optionq can be one of the following constants or the bitwise OR of them:

FLIMAGE_NOSUBPIXEL

scale the image with no subpixel sampling

FLIMAGE_SUBPIXEL

scale the image with subpixel sampling

FLIMAGE_ASPECT

scale the image with no aspect ratio change

FLIMAGE_CENTER

center the scaled image if aspect

FLIMAGE_NOCENTER

do not center the scaled image

For example, FLIMAGE_ASPECT|FLIMAGE_SUBPIXEL requests fitting the image to the new
size with subpixel sampling. FLIMAGE_ASPECT specifies a scaling that results in an image of
the requested size (even if the scales are different for width and height) without changing
the aspect ratio of the original image by filling in the stretched regions with the fill color
image->fill_color, a packed RGB color:

im->fill_color = FL_PACK(255,0,0);

flimage_scale(im, im->w+2, im->h, FLIMAGE_SUBPIXEL|FLIMAGE_ASPECT);

This code generates an image that is two pixels wider than the original image but with the
same aspect ratio. The two additional pixel columns on each side of the image are filled

Chapter 37: Images 344

with the fill color (red), yielding a red border. The fitting can be useful in turning a series
of images of unequal sizes into images of equal sizes with no perceptible change in image
quality.

Depending on what the application requires, simple scaling (zooming) with no subpixel
sampling is much faster than box averaging or blending, but subpixel sampling tends to
yield smoother images with less scaling artifacts.

37.7.7 Warping

Image warping (or texture mapping in 2D) refers to the transformation of pixel coordi-
nates. Rotation, scaling and shearing etc. are examples of (linear and non-perspective)
image warping. In typical applications some of the commonly used pixel coordinate trans-
formations are implemented using more efficient algorithms instead of a general warping.
For example, image rotation is often implemented using three shears rather than a general
warp (Forms Library implements rotation via image warping).

Non-perspective linear image warping in general is characterized by a 2x2 warp matrix W

and a translation vector T with two elements as follows

P’ = W * P + T

where P is a vector describing a position via it’s x and y coordinates and P’ is the position
after warping.

The elements w[i][j] of the warp matrix are constants (if the warp matrix isn’t constant
or is of higher order, we usually call such a transformation morphing rather than warping).
Since our destination for the warped image is an array of pixels rather than a properly
defined coordinate system (such as a window) the translation has no meaning. For the
following discussion, we assume the translation vector is zero. (In doing the actual warping,
the warped image is indeed shifted so it starts at the (0,0) element of the array representing
it).

Although, theoretically, any 2D matrix can be used as a warp matrix, there are practical
constraints in image warping due to the discreteness of pixel coordinates. First of all, we
have to snap all pixel coordinates onto a 2D rectangular integer grid. This in general will
leave holes in the warped image because two pixels may get mapped to a single destination
location, leaving a hole in the destination image. Secondly, truncation or rounding the
resulting floating point values introduces errors. Because of these reasons, image warping
is performed in reverse. That is, instead of looping over all pixel coordinates in the original
image and transforming those into new coordinates, we start from the new coordinates
and use inverse warping to obtain the coordinates of the pixel in the original image. This
requires that the inverse of the warp matrix must exist (which is the case if w[0][0] *

w[1][1] != w[0][1] * w[1][0], i.e., the warp matrix has a non-vanishing determinante).
With inverse warping the transformation becomes a re-sampling of the original image, and
subpixel sampling (anti-aliasing) can be easily implemented.

The following function is available in the library to perform warping

int flimage_warp(FL_IMAGE *im, float matrix[][2],

int neww, int newh, int subpixel);

where matrix is the warp matrix. neww and newh specify the warped image size. To have
the warp function figure out the minimum enclosing rectangle of the warped image you can
pass zeros for the new width and height. Nevertheless, you can specify whatever size you

Chapter 37: Images 345

want and the warp function will fill the empty grid location with the fill color. This is how
the aspect ratio preserving scaling is implemented.

In general, the warped image will not be rectangular in shape. To make the image rec-
tangular the function fills the empty regions. The fill color is specified by setting the
image->fill_color field with a packed RGB color.

The last argument, subpixel specifies if subpixel sampling should be used. Although
subpixel sampling adds processing time, it generally improves image quality significantly.
The valid values for this parameter is any logical OR of FLIMAGE_NOSUBPIXEL, FLIMAGE_
SUBPIXEL and FLIMAGE_NOCENTER.

FLIMAGE_NOCENTER is only useful if you specify an image dimension that is larger than the
warped image, and in that case the warped image is flushed top-left within the image grid,
otherwise it is centered.

To illustrate how image warping can be used, we show how an image rotation by an angle
deg can be implemented:

float m[2][2];

m[0][0] = m[1][1] = cos(deg * M_PI / 180.0);

m[0][1] = sin(deg * M_PI / 180.0);

m[1][0] = -m[0][1];

flimage_warp(im, mat, 0, 0, FLIMAGE_SUBPIXEL);

Please note that the transformation is done in-place, i.e., after the function returns the
image structure pointer, im, points to the rotated image.

If you specify a warp matrix with the off-diagonal elements being zero (scaling matrix),
the image will only be scaled (in x-direction by m[0][0] and in y-direction by m[1][1])
without being also rotated.

By experimenting with various warp matrices you can obtain some interesting images. Just
keep in mind that large values of the warp matrix elements tend to make the final image
larger.

37.7.8 General Pixel Transformation

Many image processing tasks can be implemented as seperate RGB transformations. These
transformations can be done very efficiently through the use of lookup tables. For this
reason the following routine exists:

int flimage_transform_pixels(FL_IMAGE *im, int *red,

int *green, int *blue);

where red, green and blue are the lookup tables of a length of at least FL_PCMAX + 1

(typically 256). The function returns a postive number on success and the image will be
replaced. Note that this routine notices the settings of the subimage, i.e., you can transform
a portion of the image.

To illustrate the use of this routine let’s look at how a simple contrast adjustment may be
implemented:

#include <forms.h>

#include <math.h>

Chapter 37: Images 346

int AdjustContrast(FL_IMAGE *im) {

int r[FL_PCMAX+1],

g[FL_PCMAX+1],

b[FL_PCMAX+1];

int i,

scale = 10;

/* in this example rgb are adjusted the same way */

for (i = 0; i <= FL_PCMAX; i++)

r[i] = g[i] = b[i] = i * log10(1 + i * scale / FL_PCMAX)

/ log10(1 + scale);

return flimage_transform_pixels(im, r, g, b);

}

37.7.9 Image Annotation

You can annotate an image with text or simple markers (arrows etc.). The location of the
annotation can either be in pixel coordinate system or some application defined coordinate
system.

37.7.9.1 Using Text Strings

To place text into the image, use the following routine

int flimage_add_text(FL_IMAGE *im, const char *str, int len,

int fstyle, int fsize, unsigned tcolor,

unsigned bcolor, int nobk, double tx,

double ty, int rotation);

where fstyle and fsize are the same as the label font style and size defined earlier in
Section 3.11.3. tcolor and bcolor specify the colors to use for the text str and the
background if the nobk argument is false. If nobk is true the text is drawn without a
background. tx and ty specify the location of the text relative to the image origin. The
location specified is the lower-right corner of the text. Note that the location specified can
be in some physical space other than pixel space. For example, if the pixel-pixel distance
represents 10 miles on a map, you’d like to be able to specify the text location in miles
rather than pixels. The location is converted into pixel space using the following code

tx_pixel = im->xdist_scale * tx + im->xdist_offset;

ty_pixel = im->ydist_scale * ty + im->ydist_offset;

By default, the offsets im->xdist_offset and im->yxdist_offset are initialized to 0 and
the scales im->xdist_scale and im->ydist_scale to 1.

The function returns the current number of strings for the image. The interpretation of
text used also used elsewhere applies, i.e., if str starts with character @ a symbol is drawn.

There is another function, maybe more convenient depending on the application, that you
can use

int flimage_add_text_struct(FL_IMAGE *im,

const FLIMAGE_TEXT *text);

Chapter 37: Images 347

With this function instead of passing all the parameters individual;y you pass a FLIMAGE_

TEXT structure to the function. The structure has the following fields:

str The string to append to the image.

len Length of the string in bytes.

x, y A location relative to the image origin, given in pixels (no conversion from other
coordinate systems is done)

align Specifies the alignment of the string relative to the give location.

style, size

The font style and size to use.

color The text color

bcolor The background color

nobk If true indicates that no background is to be drawn.

angle Angle (in thenth of a degree) the text is to be rotated from the default horizontal
orientation. Currently only PostScript output handles this correctly.

To delete the all texts you added to an image, use

void flimage_delete_all_text(FL_IMAGE *im);

You also can suppress the display of annotation text without deleting it. To do this, simply
set im->dont_display_text to true.

37.7.9.2 Using Markers

In addition to text strings you can also add simple markers (arrows, circles etc) to your
image.

To add a marker to an image use the following routines

int flimage_add_marker(FL_IMAGE *im, const char *name,

double x, double y, double w, double h,

int linestyle, int fill, int rotation,

FL_COLOR, FL_COLOR bcol);

int flimage_add_marker_struct(FL_IMAGE *im, const FLIMAGE_MARKER *m);

where name is the marker name (see below for a list of built-in markers). The marker name
must consist of regular ASCII characters. linestyle indicates the line style (FL_SOLID, FL
DOT etc., see Chapter 27 for a complete list. fill indicates if the marker should be filled or
not. x and y are the coordinates of the center of the marker in physical coordinates (i.e.,
the same transformation as described above for annotated texts is applied), w and h are
the size of the bounding box of the marker, again in physical coordinates. Every marker
has a natural orientation from which you can rotate it. The angle of rotation is given by
rotation in tenth of a degree. col is the color of the marker, in packed RGB format. bcol
is currently un-used.

The second function takes a structure that specifies the marker. The members of the
structure are as follows:

name The name of the marker.

Chapter 37: Images 348

x, y Position of center of the marker in pixel coordinates, relative to the origin of
the image.

w, h The size of the bounding box in pixel coordinates.

color The color of the marker in packed RGB format.

fill If true the marker is filled.

thickness

The line line thickness used for drawing.

style The line style to be used for drawing.

angle Angle of rotation in tenth of a degree from the marker’s nature orientation.

If successful both functions return the number of markers that are currently associated with
the image, otherwise a negative number.

Some built-in markers in different orientations are shown in Fig. 22.1.

To delete all markers added to an image use the function

void flimage_delete_all_markers(FL_IMAGE *im);

Of course the library would not be complete without the ability for applications to define
new markers. The following function is provided so you can define your own markers:

int flimage_define_marker(const char *name,

void (*draw) (FLIMAGE_MARKER *marker),

const char *psdraw);

When the marker is to be drawn the function draw() is called with the marker structure.
In addition to the fields listed above the following fields are filled by the library to facilitate
the operation of drawing the marker

display The display to be drawn on.

gc The GC to be used in drawing

win The window to draw to.

psdraw A string that draws a marker in a square with the corner coordinates (-1, -1),
(-1, 1), (1, 1) and (1, -1) in PostScript. For example the rectangle marker has
the following psdraw string:

-1 -1 moveto

-1 1 lineto

1 1 lineto

1 -1 lineto

closepath

Defining new markers is the preferred method of placing arbitary drawings onto an image
as it works well with double-buffering and pixelization of the markers.

Chapter 37: Images 349

37.7.9.3 Pixelizing the Annotation

Annotations placed on the image are kept seperate from the image pixels themselves. The
reasons for doing so are twofold. First, keeping the annotation seperate makes it possible
to later edit the annotations. The second reason is that typically the screen has a lower
resolutions than other output devices. By keeping the annotations seperate from the pixels
makes it possible to obtain better image qualities when the annotations are rendered on
higher-resolution devices (for example a PostScript printer).

If for some reason making the annotations a part of the image pixels is desired, use the
following routine

int flimage_render_annotation(FL_IMAGE *image, FL_WINDOW win);

The function returns -1 if an error occurs. The parameter win is used to create the appropri-
ate pixmap. After the function returns the annotations are rendered into the image pixels
(thus an annotation or a part of it that was outside of the image is lost). Note that during
rendering the image type may change depending on the capabilities of win. Annotations
that were kept separately are deleted. Note that the image must have been displayed at
least once prior to calling this function for it to work correctly.

You can always enlarge the image first via the cropping function with some solid borders.
Then you can put annotation outside of the original image but within the enlarged image.

Not all image formats support the storage of text and markers. This means if you attempt
to save an image that has associated text and markers into an image format that does
not support it, you may lose the annotation. All pnm formats supports the storage of
annotations. To find out if a particular format supports annotation storage, look at the
annotation field of the FLIMAGE_FORMAT_INFO structure. A zero value indicates it does not
support it.

37.7.10 Write Your Own Routines

The only communication required between an image processing routine and the rest of the
image routines is to let the display routine know that the image has been modified by setting
image->modified to 1. This information is used by the display routine to invalidate any
buffered displayable images that were created from the original image. After displaying,
image->modified is reset by the display routine.

37.8 Utilities

In the following some of the utilities that may come in handy when you’re writing image
manipulation routines are described.

37.8.1 Memory Allocation

To create a matrix to be used in several of the functions listed above use either [fl_get_
matrix()], page 329 described above or

void *fl_make_matrix(int nrow, int ncol, unsigned int esize,

void *inMem);

where nrow and ncol are the number of rows and columns of the matrix respectively. esize
is the size (in bytes) of each matrix element.

Chapter 37: Images 350

Both functions return a two-dimensional array of entities of size esize. The first function
initializes all elements to zero. The second function does not allocate nor initialize memory
for the matrix itself. Instead it uses the memory with address inMem that is supplied by
the caller, which should be a one-dimensional array of length nrow * ncol * esize.

You can use the returned pointer as a regular two-dimensional array (matrix[r][c]) or as
a single array of length nrow *ncol, starting from at matrix[0]:

short **matrix = fl_get_matrix(nrow, ncol, sizeof **matrix);

/* access the matrix as a 2-d array */

matrix[3][4] = 5;

/* or access it as 1D array */

*(matrix[0] + 3 * ncol + 4) = 5;

/* most useful in image processing to use it as 1D array */

memcpy(saved, matrix, nrow * ncol * sizeof **matrix);

To free a matrix allocated using one the above functions, use

void fl_free_matrix(void *matrix);

The function frees all memory allocated. After the function returns the matrix cab not be
de-referenced anymore. In the case where the matrix was created by [fl_make_matrix()],

page 349 the function will only free the memory that’s allocated to hold the matrix indices
but not the memory supplied by the caller. It is the caller’s responsibility to free that part
of the memory.

There are also some useful functions that manipulate images directly. The following is a
brief summary of them.

FL_IMAGE *flimage_dup(FL_IMAGE *im);

This function duplicates an image im and returns the duplicated image. At the moment,
only the first image is duplicated even if the input image has multiple frames. Furthermore,
markers and annotations are not duplicated.

Pixmap flimage_to_pixmap(FL_IMAGE *im, FL_WINDOW win);

int flimage_from_pixmap(FL_IMAGE *im, Pixmap pixmap);

The first function converts an image into a Pixmap (a server side resource) that can be used
in the pixmap object (see pixmap-class???).

The second function does the reverse. im must be a properly allocated image.

37.8.2 Color Quantization

In order to display a RGB image on a color-mapped device of limited depth, the number of
colors in the original image will have to be reduced. Color quantization is one way of doing
this.

Two color quantization algorithms are available in the Forms Library. One uses Heck-
bert’s median cut algorithm followed by Floyd-Steinberg dithering after which the pixels
are mapped to the colors selected. The code implementing this is from the Independent

Chapter 37: Images 351

JPEG Group’s two pass quantizer (‘jquant2.c’ in the IJG’s distribution), which under
copyright (c) 1991-1996 by Thomas G. Lane and the IJG.

Another method is based on the Octree quantization algorithm with no dithering and is
implemented by Steve Lamont (spl@ucsd.edu) and is under vopyright (c) 1998 by Steve
Lamont and the National Center for Microscopy and Imaging Research. This quantization
library is available from ftp://ncmir.ucsd.edu/pub/quantize/libquantize.html. The
quantizer based on this library is not compiled into the image support. The source code for
using this quantizer is in image subdirectory.

By default, the median cut algorithm is used. You can switch to the octree based algorithm
using the following call

void flimage_select_octree_quantizer(void);

To switch back to the median cut quantizer use

void flimage_select_mediancut_quantizer(void);

The median-cut quantizer tends to give better images because of the dithering step. How-
ever, in this particular implementation, the number of quantized colors is limited to 256.
There is no such limit with the octree quantizer implementation.

37.8.3 Remarks

See ‘itest.c’ and ‘ibrowser.c’ for example use of the image support in Forms Library.
‘iconvert.c’ is a program that converts between different file formats and does not require
an X connection.

Due to access limitations, not all combinations of display depth and bits per pixel (bpp)
are tested. Depths of 1 bit (1 bpp), 4 bits (8 bpp), 8 bits (8 bpp), 16 bits (16 bpp), 24 bits
(32 bpp), 30 bits (32 bpp) were tested. Although it works in 12 bit PseudoColor mode, due
to limitations of the default quantizer the display function does not take full advantage of
the larger lookup table. Special provisions were made so a gray12 image will be displayed
in 4096 shades of gray if the hardware supports 12-bit grayscale.

If JPEG support (‘image_jpeg.c’) is not compiled into the Forms Library, you can obtain
the jpeg library source from ftp://ftp.uu.net/graphics/jpeg.

ftp://ncmir.ucsd.edu/pub/quantize/libquantize.html
ftp://ftp.uu.net/graphics/jpeg

Index of Functions 352

Index of Functions

fl_activate_all_forms() 49, 297
fl_activate_event_callbacks() 54, 299
fl_activate_form() . 49, 297
fl_activate_glcanvas() . 201
fl_activate_object() 23, 298
fl_add_bitmap() . 113
fl_add_bitmapbutton() . 120
fl_add_box() . 16, 109
fl_add_browser() . 169
fl_add_browser_line() . 171
fl_add_browser_line_f() 171
fl_add_button() . 19, 120
fl_add_button_class() . 270
fl_add_canvas() . 197
fl_add_canvas_handler() 197
fl_add_chart() . 117
fl_add_chart_value() . 118
fl_add_checkbutton() . 120
fl_add_child() . 253
fl_add_choice() . 219
fl_add_clock() . 116
fl_add_counter() . 139
fl_add_dial() . 134
fl_add_event_callback() 53, 298
fl_add_formbrowser() . 182
fl_add_frame() . 110
fl_add_free() . 57
fl_add_fselector_appbutton() 78
fl_add_glcanvas() . 200
fl_add_input() . 21, 147
fl_add_io_callback() . 55
fl_add_labelbutton() . 120
fl_add_labelframe() . 111
fl_add_lightbutton() . 120
fl_add_menu() . 222
fl_add_nmenu() . 163
fl_add_nmenu_items() . 164
fl_add_nmenu_items2() . 167
fl_add_object() . 36, 287
fl_add_pixmap() . 114
fl_add_pixmapbutton() . 120
fl_add_positioner() . 136
fl_add_round3dbutton() . 120
fl_add_roundbutton() . 120
fl_add_scrollbar() . 131
fl_add_scrollbutton() . 120
fl_add_select() . 157
fl_add_select_items() . 157
fl_add_signal_callback() 299
fl_add_slider() . 20, 127
fl_add_spinner() . 141
fl_add_symbol() . 35
fl_add_tabfolder() . 178
fl_add_text() . 18, 112
fl_add_thumbwheel() . 144

fl_add_timeout() . 47, 301
fl_add_timer() . 186
fl_add_valslider() . 21, 127
fl_add_xyplot() . 188
fl_add_xyplot_overlay() 193
fl_add_xyplot_overlay_file() 193
fl_add_xyplot_text() . 194
fl_addto_browser() . 171
fl_addto_browser_chars() 171
fl_addto_browser_chars_f() 171
fl_addto_browser_f() . 171
fl_addto_choice() . 220
fl_addto_choice_f() . 220
fl_addto_command_log() . 75
fl_addto_command_log_f() 75
fl_addto_form() . 36, 287
fl_addto_formbrowser() . 183
fl_addto_group() . 23, 287
fl_addto_menu() . 224
fl_addto_selected_xevent() 54
fl_addto_tabfolder() . 179
fl_addtopup() . 229
fl_adjust_form_size() . 285
fl_app_signal_direct() . 300
fl_arc() . 260
fl_arcf() . 260
fl_bgn_form() . 16, 286
fl_bgn_group() . 22, 286
fl_bk_color() . 255
fl_call_object_callback() 52, 291
fl_calloc() . 241
fl_canvas_yield_to_shortcut() 200
fl_check_command() . 74
fl_check_forms() . 48, 297
fl_check_only_forms() . 297
fl_circ() . 260
fl_circbound() . 260
fl_circf() . 260
fl_clear_browser() . 171
fl_clear_canvas() . 200
fl_clear_chart() . 118
fl_clear_choice() . 220
fl_clear_command_log() . 75
fl_clear_menu() . 225
fl_clear_nmenu() . 168
fl_clear_select() . 162
fl_clear_xyplot() . 195
fl_color() . 255
fl_create_animated_cursor() 308
fl_create_bitmap_cursor() 308
fl_create_colormap() . 199
fl_create_from_bitmapdata() 113
fl_create_from_pixmapdata() 115
fl_create_generic_button() 269
fl_current_event() . 291

Index of Functions 353

fl_current_pup() . 231
fl_dashedlinestyle() . 262
fl_deactivate_all_forms() 49, 297
fl_deactivate_form() 49, 297
fl_deactivate_object() 23, 298
fl_default_window() . 254
fl_defpup() . 227
fl_delete_browser_line() 172
fl_delete_choice() . 220
fl_delete_folder() . 180
fl_delete_folder_byname() 180
fl_delete_folder_byname_f() 180
fl_delete_folder_bynumber() 180
fl_delete_formbrowser() 183
fl_delete_formbrowser_bynumber() 183
fl_delete_menu_item() . 224
fl_delete_nmenu_item() . 167
fl_delete_object() . 36, 287
fl_delete_select_item() 161
fl_delete_symbol() . 36
fl_delete_xyplot_overlay() 194
fl_delete_xyplot_text() 194
fl_deselect_browser() . 172
fl_deselect_browser_line() 172
fl_diagline() . 261
fl_disable_fselector_cache() 77
fl_do_forms() . 44, 297
fl_do_only_forms() . 297
fl_dopup() . 229
fl_draw_object_label() . 264
fl_draw_object_label_outside() 264
fl_draw_symbol() . 35
fl_drawmode() . 262
fl_drw_box() . 263
fl_drw_frame() . 263
fl_drw_text() . 263
fl_drw_text_beside() . 263
fl_drw_text_cursor() . 264
fl_end_all_command() . 74
fl_end_command() . 74
fl_end_form() . 16
fl_end_form(); . 286
fl_end_group() . 22, 286
fl_enumerate_fonts() . 30
fl_exe_command() . 74
fl_find_formbrowser_form_number() 184
fl_finish() . 286
fl_fit_object_label() . 285
fl_flip_yorigin() . 283
fl_for_all_objects() . 42
fl_form_is_activated() . 297
fl_form_is_iconified() . 296
fl_form_is_visible() 43, 297
FL_FormDisplay() . 255
fl_free() . 241
fl_free_colors() . 27, 256
fl_free_dirlist() . 80
fl_free_form() . 36, 287

fl_free_matrix() . 350
fl_free_object() . 36, 287
fl_free_pixels() . 256
fl_free_pixmap() . 116
fl_free_pixmap_focus_pixmap() 126
fl_free_pixmap_pixmap() 114
fl_free_pixmapbutton_pixmap() 125
fl_freepup() . 231
fl_freeze_all_forms() . 290
fl_freeze_form() . 33, 290
fl_get_active_folder() . 179
fl_get_active_folder_name() 179
fl_get_active_folder_number() 179
fl_get_align_xy() . 264
fl_get_app_mainform() . 295
fl_get_app_resources() . 311
fl_get_border_width() . 282
fl_get_browser() . 173
fl_get_browser_dimension() 177
fl_get_browser_line() . 172
fl_get_browser_line_yoffset() 174
fl_get_browser_maxline() 173
fl_get_browser_rel_xoffset() 174
fl_get_browser_rel_yoffset() 174
fl_get_browser_screenlines() 173
fl_get_browser_scrollbar_repeat() 177
fl_get_browser_topline() 173
fl_get_browser_xoffset() 174
fl_get_browser_yoffset() 174
fl_get_button() . 20, 124
fl_get_button_mouse_buttons() 124
fl_get_button_numb() . 124
fl_get_canvas_colormap() 199
fl_get_canvas_depth() . 199
fl_get_canvas_id() . 198
fl_get_char_height() . 258
fl_get_char_width() . 258
fl_get_chart_bounds() . 119
fl_get_choice() . 220
fl_get_choice_item_mode() 221
fl_get_choice_item_text() 220
fl_get_choice_maxitems() 221
fl_get_choice_text() . 220
fl_get_clipping() . 257
fl_get_clock() . 116
fl_get_cmdline_args() . 280
fl_get_command_log_fdstruct() 75
fl_get_coordunit() . 281
fl_get_counter_bounds() 140
fl_get_counter_min_repeat() 141
fl_get_counter_precision() 140
fl_get_counter_repeat() 141
fl_get_counter_speedjump() 141
fl_get_counter_step() . 140
fl_get_counter_value() . 140
fl_get_decoration_sizes() 296
fl_get_dial_angles() . 135
fl_get_dial_bounds() . 135

Index of Functions 354

fl_get_dial_direction() 135
fl_get_dial_step() . 135
fl_get_dial_value() . 135
fl_get_directory() . 78
fl_get_dirlist() . 80
fl_get_display() . 255
fl_get_drawmode(() . 263
fl_get_filename() . 78
fl_get_focus_object() 22, 291
fl_get_folder() . 179
fl_get_folder_area() . 181
fl_get_folder_name() . 179
fl_get_folder_number() . 179
fl_get_fontstruct() . 259
fl_get_form_background_color() 286
fl_get_form_mouse() . 256
fl_get_form_vclass() . 254
fl_get_formbrowser_area() 185
fl_get_formbrowser_form() 184
fl_get_formbrowser_numforms() 183
fl_get_formbrowser_topform() 184
fl_get_formbrowser_xoffset() 185
fl_get_formbrowser_yoffset() 185
fl_get_fselector_fdstruct() 79
fl_get_fselector_form() . 78
fl_get_glcanvas_attributes() 201
fl_get_glcanvas_context() 201
fl_get_glcanvas_defaults() 200
fl_get_glcanvas_xvisualinfo() 201
fl_get_global_clipping() 257
fl_get_icm_color() . 26, 285
fl_get_input() . 22, 152
fl_get_input_color() . 154
fl_get_input_cursorpos() 153
fl_get_input_editkeymap() 156
fl_get_input_format() . 151
fl_get_input_numberoflines() 154
fl_get_input_screenlines() 154
fl_get_input_scrollbarsize() 154
fl_get_input_selected_range() 152
fl_get_input_topline() . 154
fl_get_input_xoffset() . 154
fl_get_label_char_at_mouse() 292
fl_get_linestyle(() . 263
fl_get_linewidth() . 263
fl_get_matrix() . 329
fl_get_menu() . 225
fl_get_menu_item_mode() 226
fl_get_menu_item_text() 225
fl_get_menu_maxitems() . 225
fl_get_menu_popup() . 227
fl_get_menu_text() . 225
fl_get_mouse() . 51, 256
fl_get_nmenu_item() . 166
fl_get_nmenu_item_by_label() 167
fl_get_nmenu_item_by_text() 167
fl_get_nmenu_item_by_value() 167
fl_get_nmenu_popup() . 168

fl_get_object_bbox() 258, 288
fl_get_object_boxtype() 288
fl_get_object_bw() . 27, 288
fl_get_object_color() 24, 288
fl_get_object_component() 289
fl_get_object_dblclick() 290
fl_get_object_geometry() 288
fl_get_object_gravity() 42, 290
fl_get_object_label() 32, 289
fl_get_object_lalign() . 289
fl_get_object_lcolor() . 289
fl_get_object_lsize() . 289
fl_get_object_lstyle() . 289
fl_get_object_objclass() 287
fl_get_object_position() 288
fl_get_object_resize() 42, 290
fl_get_object_return_state() 46, 176
fl_get_object_size() . 288
fl_get_object_type() . 287
fl_get_pattern() . 78
fl_get_pixel() . 255
fl_get_pixmap_pixmap() . 114
fl_get_pixmapbutton_pixmap() 125
fl_get_positioner_mouse_buttons() 137
fl_get_positioner_numb() 137
fl_get_positioner_xbounds() 138
fl_get_positioner_xvalue() 138
fl_get_positioner_ybounds() 138
fl_get_positioner_yvalue() 138
fl_get_real_object_window() 242
fl_get_resource() . 314
fl_get_scrollbar_bounds() 133
fl_get_scrollbar_increment() 133
fl_get_scrollbar_size() 133
fl_get_scrollbar_value() 133
fl_get_select_item() . 160
fl_get_select_item_by_label() 160
fl_get_select_item_by_label_f() 160
fl_get_select_item_by_text() 160
fl_get_select_item_by_text_f() 160
fl_get_select_item_by_value() 160
fl_get_select_popup() . 162
fl_get_select_text_align() 162
fl_get_select_text_color() 162
fl_get_select_text_font() 162
fl_get_slider_bounds() . 129
fl_get_slider_repeat() . 130
fl_get_slider_size() . 130
fl_get_slider_value() 21, 129
fl_get_spinner_bounds() 143
fl_get_spinner_down_button() 143
fl_get_spinner_input() . 143
fl_get_spinner_precision() 143
fl_get_spinner_step() . 143
fl_get_spinner_up_button() 143
fl_get_spinner_value() . 143
fl_get_string_dimension() 259
fl_get_string_height() . 258

Index of Functions 355

fl_get_string_width() . 258
fl_get_tabfolder_folder_byname() 180
fl_get_tabfolder_folder_byname_f() 180
fl_get_tabfolder_folder_bynumber() 180
fl_get_tabfolder_numfolders() 180
fl_get_tabfolder_offset() 180
fl_get_text_clipping(. 257
fl_get_thumbwheel_bounds() 145
fl_get_thumbwheel_step() 146
fl_get_thumbwheel_value() 145
fl_get_timer() . 187
fl_get_vclass() . 254
fl_get_win_mouse() . 51, 256
fl_get_wingeometry() 51, 307
fl_get_winorigin() . 51, 307
fl_get_winsize() . 51, 307
fl_get_xyplot() . 189
fl_get_xyplot_data() . 190
fl_get_xyplot_data_pointer() 193
fl_get_xyplot_data_size() 190
fl_get_xyplot_numdata() 194
fl_get_xyplot_overlay_data() 193
fl_get_xyplot_screen_area() 196
fl_get_xyplot_world_area() 196
fl_get_xyplot_xbounds() 193
fl_get_xyplot_xmapping() 195
fl_get_xyplot_ybounds() 193
fl_get_xyplot_ymapping() 195
fl_getmcolor() . 26, 256
fl_getpup_items() . 235
fl_getpup_mode() . 234
fl_getpup_text() . 234
fl_gettime() . 304
fl_hide_alert() . 70
fl_hide_choice() . 72
fl_hide_command_log() . 75
fl_hide_form() . 43, 297
fl_hide_fselector() . 77
fl_hide_input() . 72
fl_hide_message() . 70
fl_hide_object() . 23, 291
fl_hide_oneliner() . 70
fl_hide_question() . 71
fl_hidepup() . 236
fl_iconify() . 307
fl_initial_wingeometry() 306
fl_initial_winsize() . 305
fl_initial_winstate() . 305
fl_initialize() . 278
fl_input_end_return_handling() 150
fl_insert_browser_line() 171
fl_insert_browser_line_f() 171
fl_insert_chart_value() 118
fl_insert_formbrowser() 184
fl_insert_nmenu_items() 167
fl_insert_nmenu_items2() 167
fl_insert_select_items() 161
fl_insert_xyplot_data() 194

fl_interpolate() . 196
fl_invalidate_fselector_cache() 77
fl_is_center_lalign() . 31
fl_is_clipped() . 257
fl_is_global_clipped() . 257
fl_is_inside_lalign() . 31
fl_is_outside_lalign() . 31
fl_is_text_clipped(. 257
fl_isselected_browser_line() 173
fl_last_event() . 51, 291
fl_library_version() . 278
fl_line() . 261
fl_lines() . 261
fl_linestyle() . 261
fl_linewidth() . 261
fl_load_browser() . 172
fl_lower_form() . 296
fl_make_matrix() . 349
fl_make_object() . 252
fl_malloc() . 241
fl_mapcolor() . 26, 256
fl_mapcolorname() . 26, 256
fl_mode_capable() . 304
fl_mouse_button() . 51
fl_move_object() . 288
fl_msleep() . 304
fl_newpup() . 227
fl_noborder() . 306
fl_now() . 304
fl_object_is_active() 24, 298
fl_object_is_automatic() 290
fl_object_is_visible() 23, 291
fl_object_ps_dump() . 292
FL_ObjWin() . 198
fl_oval() . 260
fl_ovalarc(. 261
fl_ovalbound() . 260
fl_ovalf() . 260
fl_ovall() . 260
fl_pclose() . 74
fl_pieslice() . 261
fl_point() . 261
fl_points() . 261
fl_polybound() . 260
fl_polyf() . 260
fl_polyl() . 260
fl_popen() . 74
fl_popup_add() . 202
fl_popup_add_entries() . 202
fl_popup_add_items() . 211
fl_popup_create() . 209
fl_popup_entry_clear_state() 214
fl_popup_entry_delete() 208
fl_popup_entry_get_by_label() 215
fl_popup_entry_get_by_label_f() 215
fl_popup_entry_get_by_position() 215
fl_popup_entry_get_by_text() 214
fl_popup_entry_get_by_text_f() 214

Index of Functions 356

fl_popup_entry_get_by_user_data() 215
fl_popup_entry_get_by_value() 215
fl_popup_entry_get_group() 217
fl_popup_entry_get_state() 214
fl_popup_entry_get_subpopup() 218
fl_popup_entry_set_callback() 213
fl_popup_entry_set_enter_callback() 213
fl_popup_entry_set_font() 216
fl_popup_entry_set_group() 218
fl_popup_entry_set_leave_callback() 213
fl_popup_entry_set_shortcut() 217
fl_popup_entry_set_state() 214
fl_popup_entry_set_subpopup() 218
fl_popup_entry_set_text() 217
fl_popup_entry_set_user_data() 217
fl_popup_entry_set_value() 217
fl_popup_get_bw() . 216
fl_popup_get_color() . 216
fl_popup_get_min_width() 216
fl_popup_get_policy() . 212
fl_popup_get_size() . 213
fl_popup_get_title() . 215
fl_popup_get_title_font() 215
fl_popup_insert_items() 211
fl_popup_raise_clear_state() 214
fl_popup_set_bw() . 216
fl_popup_set_callback() 213
fl_popup_set_color() . 216
fl_popup_set_cursor() . 216
fl_popup_set_min_width() 216
fl_popup_set_policy() . 212
fl_popup_set_position() 213
fl_popup_set_title() . 215
fl_popup_set_title_f() . 215
fl_popup_set_title_font() 215
fl_popup_toggle_clear_state() 214
fl_prepare_form_window() 41, 295
fl_prepare_form_window_f() 295
fl_print_xevent_name() . 52
fl_raise_form() . 295
fl_read_bitmapfile() . 113
fl_read_pixmapfile() . 115
fl_realloc() . 241
fl_rect() . 259
fl_rectbound() . 259
fl_rectf() . 259
fl_redraw_form() . 32, 298
fl_redraw_object() . 32, 298
fl_refresh_fselector() . 78
fl_register_raw_callback() 316
fl_remove_canvas_handler() 198
fl_remove_event_callback() 54, 298
fl_remove_fselector_appbutton() 78
fl_remove_io_callback() . 56
fl_remove_selected_xevent() 54
fl_remove_signal_callback() 299
fl_remove_timeout() . 47, 301
fl_replace_browser_line() 172

fl_replace_browser_line_f() 172
fl_replace_chart_value() 118
fl_replace_choice() . 220
fl_replace_choice_f() . 220
fl_replace_formbrowser() 184
fl_replace_menu_item() . 224
fl_replace_nmenu_item() 167
fl_replace_nmenu_items2() 167
fl_replace_select_item() 161
fl_replace_xyplot_point() 193
fl_request_clipboard() . 309
fl_reset_cursor() . 308
fl_reset_focus_object() 291
fl_reset_winconstraints() 307
fl_resume_timer() . 187
fl_ringbell() . 304
fl_roundrect() . 259
fl_roundrectf() . 259
fl_scale_form() . 41, 296
fl_select_browser_line() 172
fl_set_app_mainform() 40, 295
fl_set_app_nomainform() 295
fl_set_atclose() . 43
fl_set_background() . 255
fl_set_bitmap_data() . 113
fl_set_bitmap_file() . 113
fl_set_bitmapbutton_data() 125
fl_set_bitmapbutton_file() 125
fl_set_border_width() 28, 282
fl_set_browser_bottomline() 173
fl_set_browser_dblclick_callback() 173
fl_set_browser_fontsize() 174
fl_set_browser_fontstyle() 174
fl_set_browser_hscroll_callback() 176
fl_set_browser_hscrollbar() 175
fl_set_browser_rel_xoffset() 174
fl_set_browser_rel_yoffset() 174
fl_set_browser_scrollbar_repeat() 177
fl_set_browser_scrollbarsize() 176
fl_set_browser_specialkey() 175
fl_set_browser_topline() 173
fl_set_browser_vscroll_callback() 176
fl_set_browser_vscrollbar() 175
fl_set_browser_xoffset() 174
fl_set_browser_yoffset() 174
fl_set_button() . 19, 123
fl_set_button_mouse_buttons() 124
fl_set_button_shortcut() 124
fl_set_canvas_attributes() 199
fl_set_canvas_colormap() 199
fl_set_canvas_depth() . 199
fl_set_canvas_visual() . 199
fl_set_chart_autosize() 119
fl_set_chart_baseline() 119
fl_set_chart_bounds() . 119
fl_set_chart_lcolor() . 118
fl_set_chart_lsize() . 118
fl_set_chart_lstyle() . 118

Index of Functions 357

fl_set_chart_maxnumb() . 119
fl_set_choice() . 221
fl_set_choice_align() . 221
fl_set_choice_align_bottom() 222
fl_set_choice_entries() 221
fl_set_choice_fontsize() 221
fl_set_choice_fontstyle() 221
fl_set_choice_item_mode() 221
fl_set_choice_text() . 221
fl_set_choice_text_f() . 221
fl_set_choices_shortcut() 72
fl_set_clipping() . 257
fl_set_clock_adjustment() 116
fl_set_clock_ampm() . 117
fl_set_color_leak() . 27
fl_set_command_log_position() 75
fl_set_coordunit() . 281
fl_set_counter_bounds() 140
fl_set_counter_filter() 140
fl_set_counter_min_repeat() 141
fl_set_counter_precision() 140
fl_set_counter_repeat() 141
fl_set_counter_speedjump() 141
fl_set_counter_step() . 140
fl_set_counter_value() . 140
fl_set_cursor() . 308
fl_set_cursor_color() . 308
fl_set_default_tabfolder_corner() 181
fl_set_defaults() . 280
fl_set_dial_angles() . 135
fl_set_dial_bounds() . 135
fl_set_dial_crossover() 135
fl_set_dial_direction() 135
fl_set_dial_step() . 135
fl_set_dial_value() . 135
fl_set_directory() . 78
fl_set_dirlist_filter() . 81
fl_set_dirlist_filterdir() 81
fl_set_dirlist_sort() . 81
fl_set_error_handler() . 283
fl_set_error_logfp() . 284
fl_set_event_callback() 53, 298
fl_set_focus_object() 22, 291
fl_set_folder() . 181
fl_set_folder_byname() . 181
fl_set_folder_byname_f() 181
fl_set_folder_bynumber() 181
fl_set_font_name() . 29, 284
fl_set_font_name_f() 29, 284
fl_set_foreground() . 255
fl_set_form_atactivate() 49, 297
fl_set_form_atclose() . 44
fl_set_form_atdeactivate() 49, 297
fl_set_form_background_color() 286
fl_set_form_callback() 53, 291
fl_set_form_dblbuffer() 283
fl_set_form_geometry() 39, 296
fl_set_form_hotobject() . 40

fl_set_form_hotspot() . 40
fl_set_form_icon() . 43, 296
fl_set_form_maxsize() . 296
fl_set_form_minsize() . 296
fl_set_form_position() 39, 296
fl_set_form_size() . 39, 296
fl_set_form_title() . 43, 296
fl_set_form_title_f() 43, 296
fl_set_formbrowser_hscrollbar() 184
fl_set_formbrowser_scroll() 184
fl_set_formbrowser_topform() 185
fl_set_formbrowser_topform_bynumber() . . . 185
fl_set_formbrowser_vscrollbar() 184
fl_set_formbrowser_xoffset() 185
fl_set_formbrowser_yoffset() 185
fl_set_fselector_border() 78
fl_set_fselector_callback() 77
fl_set_fselector_filetype_marker() 79
fl_set_fselector_fontsize() 77
fl_set_fselector_fontstyle() 77
fl_set_fselector_placement() 78
fl_set_fselector_title() 77
fl_set_gc_clipping() . 258
fl_set_glcanvas_attributes() 201
fl_set_glcanvas_defaults() 200
fl_set_glcanvas_direct() 201
fl_set_goodies_font() . 72
fl_set_icm_color() . 26, 285
fl_set_idle_callback() 47, 301
fl_set_idle_delta() . 301
fl_set_input() . 22, 152
fl_set_input_color() 22, 154
fl_set_input_cursor_visible() 154
fl_set_input_cursorpos() 153
fl_set_input_editkeymap() 155
fl_set_input_f() . 22, 152
fl_set_input_fieldchar() 154
fl_set_input_filter() . 150
fl_set_input_format() . 151
fl_set_input_hscrollbar() 153
fl_set_input_maxchars() 150
fl_set_input_mode() . 151
fl_set_input_return() . 149
fl_set_input_scroll() . 153
fl_set_input_scrollbarsize() 154
fl_set_input_selected() 152
fl_set_input_selected_range() 152
fl_set_input_topline() . 153
fl_set_input_vscrollbar() 153
fl_set_input_xoffset() . 154
fl_set_menu() . 223
fl_set_menu_entries() . 224
fl_set_menu_item_callback() 226
fl_set_menu_item_mode() 225
fl_set_menu_item_shortcut() 226
fl_set_menu_notitle() . 227
fl_set_menu_popup() . 227
fl_set_mouse() . 257

Index of Functions 358

fl_set_nmenu_hl_text_color() 168
fl_set_nmenu_items() . 164
fl_set_nmenu_policy() . 166
fl_set_nmenu_popup() . 165
fl_set_object_automatic() 290
fl_set_object_boxtype() 27, 288
fl_set_object_bw() . 27, 288
fl_set_object_callback() 52, 291
fl_set_object_color() 24, 287
fl_set_object_dblbuffer() 283
fl_set_object_dblclick() 290
fl_set_object_geometry() 288
fl_set_object_gravity() 41, 290
fl_set_object_helper() 32, 289
fl_set_object_helper_f() 32, 289
fl_set_object_label() 31, 289
fl_set_object_label_f() 31, 289
fl_set_object_lalign() 30, 289
fl_set_object_lcolor() 28, 289
fl_set_object_lsize() 28, 289
fl_set_object_lstyle() 28, 289
fl_set_object_position() 288
fl_set_object_posthandler() 276, 317
fl_set_object_prehandler() 276, 317
fl_set_object_resize() 41, 290
fl_set_object_return() . 45
fl_set_object_shortcut() 245
fl_set_object_shortcutkey() 245
fl_set_object_size() . 288
fl_set_oneliner_color() . 70
fl_set_oneliner_font() . 70
fl_set_pattern() . 78
fl_set_pixmap_align() . 115
fl_set_pixmap_colorcloseness() 115
fl_set_pixmap_data() . 114
fl_set_pixmap_file() . 114
fl_set_pixmap_pixmap() . 115
fl_set_pixmapbutton_align() 125
fl_set_pixmapbutton_data() 125
fl_set_pixmapbutton_file() 125
fl_set_pixmapbutton_focus_data() 126
fl_set_pixmapbutton_focus_file() 126
fl_set_pixmapbutton_focus_outline() 126
fl_set_pixmapbutton_focus_pixmap() 126
fl_set_pixmapbutton_pixmap() 125
fl_set_positioner_mouse_buttons() 137
fl_set_positioner_xbounds() 137
fl_set_positioner_xstep() 138
fl_set_positioner_xvalue() 137
fl_set_positioner_ybounds() 137
fl_set_positioner_ystep() 138
fl_set_positioner_yvalue() 137
fl_set_resource() . 73, 314
fl_set_scrollbar_bounds() 132
fl_set_scrollbar_increment() 133
fl_set_scrollbar_size() 133
fl_set_scrollbar_type() 282
fl_set_scrollbar_value() 132

fl_set_select_item() . 161
fl_set_select_items() . 158
fl_set_select_policy() . 160
fl_set_select_popup() . 159
fl_set_select_text_align() 162
fl_set_select_text_color() 162
fl_set_select_text_font() 162
fl_set_slider_bounds() 21, 129
fl_set_slider_filter() . 130
fl_set_slider_precision() 130
fl_set_slider_repeat() . 130
fl_set_slider_size() . 129
fl_set_slider_value() 21, 129
fl_set_spinner_bounds() 143
fl_set_spinner_precision() 143
fl_set_spinner_step() . 143
fl_set_spinner_value() . 143
fl_set_tabfolder_autofit() 181
fl_set_tabfolder_offset() 180
fl_set_tabstop() . 283
fl_set_text_clipping() . 257
fl_set_thumbwheel_bounds() 145
fl_set_thumbwheel_crossover() 145
fl_set_thumbwheel_step() 146
fl_set_thumbwheel_value() 145
fl_set_timer() . 186
fl_set_timer_countup() . 187
fl_set_timer_filter() . 187
fl_set_tooltip_boxtype() 32, 289
fl_set_tooltip_color() 32, 289
fl_set_tooltip_font() 32, 289
fl_set_tooltip_lalign() . 32
fl_set_visualID() . 280
fl_set_xyplot_alphaxtics() 191
fl_set_xyplot_alphaytics() 191
fl_set_xyplot_data() . 189
fl_set_xyplot_data_double() 189
fl_set_xyplot_file() . 190
fl_set_xyplot_fixed_xaxis() 192
fl_set_xyplot_fixed_yaxis() 192
fl_set_xyplot_grid_linestyle() 191
fl_set_xyplot_inspect() 190
fl_set_xyplot_interpolate() 195
fl_set_xyplot_key() . 194
fl_set_xyplot_key_font() 195
fl_set_xyplot_key_position() 194
fl_set_xyplot_keys() . 195
fl_set_xyplot_linewidth() 195
fl_set_xyplot_log_minor_xtics() 191
fl_set_xyplot_log_minor_ytics() 191
fl_set_xyplot_mark_active() 189
fl_set_xyplot_maxoverlays() 194
fl_set_xyplot_overlay_type() 193
fl_set_xyplot_symbol() . 192
fl_set_xyplot_symbolsize() 192
fl_set_xyplot_xbounds() 193
fl_set_xyplot_xgrid() . 191
fl_set_xyplot_xscale() . 195

Index of Functions 359

fl_set_xyplot_xtics() . 190
fl_set_xyplot_ybounds() 193
fl_set_xyplot_ygrid() . 191
fl_set_xyplot_yscale() . 195
fl_set_xyplot_ytics() . 190
fl_setpup_align_bottom() 234
fl_setpup_bw() . 235
fl_setpup_cursor() . 235
fl_setpup_default_bw(); 235
fl_setpup_default_checkcolor() 236
fl_setpup_default_color() 235
fl_setpup_default_cursor() 235
fl_setpup_default_fontsize() 227, 235
fl_setpup_default_fontstyle() 227, 235
fl_setpup_entercb() . 233
fl_setpup_entries() . 231
fl_setpup_itemcb() . 233
fl_setpup_leavecb() . 233
fl_setpup_maxpups() . 236
fl_setpup_menucb() . 233
fl_setpup_mode() . 234
fl_setpup_position() . 234
fl_setpup_selection() . 234
fl_setpup_shadow() . 235
fl_setpup_shortcut() . 232
fl_setpup_softedge() . 235
fl_setpup_submenu() . 233
fl_setpup_title() . 235
fl_setpup_title_f() . 235
fl_share_canvas_colormap() 199
fl_show_alert() . 70
fl_show_alert_f() . 71
fl_show_browser_line() . 173
fl_show_choice() . 72
fl_show_choices() . 72
fl_show_colormap() . 76
fl_show_command_log() . 75
fl_show_errors() . 284
fl_show_form() . 38, 293
fl_show_form_f() . 293
fl_show_form_window() 41, 295
fl_show_fselector() . 76
fl_show_input() . 72
fl_show_menu_symbol() . 226
fl_show_message() . 70
fl_show_messages() . 70
fl_show_messages_f() . 70
fl_show_object() . 23, 291
fl_show_oneliner() . 70
fl_show_question() . 71
fl_show_simple_input() . 73
fl_showpup() . 236
fl_signal_caught() . 300
fl_strdup() . 241
fl_stuff_clipboard() . 309
fl_suspend_timer() . 187
fl_to_inside_lalign() . 31
fl_to_outside_lalign() . 31

fl_transient() . 306
fl_trigger_object() . 24, 291
fl_unfreeze_all_forms() 290
fl_unfreeze_form() . 33, 290
fl_unset_clipping() . 257
fl_unset_gc_clipping() . 258
fl_unset_text_clipping() 257
fl_update_display() . 38
fl_use_fselector() . 77
fl_validate_input() . 151
fl_whoami() . 304
fl_win_to_form() . 255
fl_winaspect() . 306
fl_winbackground() . 306
fl_winclose() . 307
fl_wincreate() . 304
fl_winfocus() . 308
fl_wingeometry() . 306
fl_winget() . 259
fl_winhide() . 307
fl_winicon() . 306
fl_winicontitle() . 306
fl_winicontitle_f() . 306
fl_winisvalid() . 307
fl_winmaxsize() . 305
fl_winminsize() . 305
fl_winmove() . 307
fl_winopen() . 305
fl_winposition() . 306
fl_winreparent() . 305
fl_winreshape() . 307
fl_winresize() . 307
fl_winset() . 259
fl_winshow() . 304
fl_winsize() . 305
fl_winstepsize() . 307
fl_wintitle() . 306
fl_wintitle_f() . 306
fl_XEventsQueued() . 50
fl_XNextEvent() . 50
fl_XPeekEvent() . 50
fl_XPutbackEvent() . 50
fl_xyplot_s2w() . 196
fl_xyplot_w2s() . 196
flimage_add_format() . 332
flimage_add_marker() . 347
flimage_add_marker_struct() 347
flimage_add_text() . 346
flimage_add_text_struct() 346
flimage_alloc() . 328
flimage_autocrop() . 342
flimage_close() . 340
flimage_convert() . 328
flimage_convolve() . 340
flimage_convolvea() . 341
flimage_crop() . 342
flimage_define_marker() 348
flimage_delete_all_markers() 348

Index of Functions 360

flimage_delete_all_text() 347
flimage_description_via_filter() 335
flimage_display() . 322
flimage_dump() . 321
flimage_dup() . 350
flimage_enable_bmp() . 331
flimage_enable_fits() . 331
flimage_enable_genesis() 331
flimage_enable_gif() . 331
flimage_enable_gzip() . 331
flimage_enable_jpeg() . 331
flimage_enable_png() . 331
flimage_enable_pnm() . 331
flimage_enable_ps() . 331
flimage_enable_sgi() . 331
flimage_enable_tiff() . 331
flimage_enable_xbm() . 331
flimage_enable_xpm() . 331
flimage_enable_xwd() . 331
flimage_error() . 339
flimage_flip() . 342
flimage_free() . 322
flimage_from_pixmap() . 350
flimage_get_autocrop() . 343
flimage_get_format_info() 337

flimage_get_number_of_formats() 337
flimage_getmem() . 329
flimage_gif_output_options() 331
flimage_is_supported() . 323
flimage_jpeg_output_options() 331
flimage_load() . 321
flimage_open() . 340
flimage_pnm_output_options() 331
flimage_ps_options() . 331
flimage_read() . 340
flimage_render_annotation() 349
flimage_rotate() . 341
flimage_scale() . 343
flimage_sdisplay() . 322
flimage_select_mediancut_quantizer() 351
flimage_select_octree_quantizer() 351
flimage_setup() . 338
flimage_tint() . 341
flimage_to_pixmap() . 350
flimage_transform_pixels() 345
flimage_type_name() . 327
flimage_warp() . 344
flimage_windowlevel() . 327
flimage_write_via_filter() 335
flps_init() . 292

Index of Global Variables 361

Index of Global Variables

fl_current_form . 302
fl_display . 302
FL_EVENT . 302
fl_root . 302
fl_screen . 302
fl_scrh . 302

fl_scrw . 302

fl_state . 302

fl_ul_magic_char . 302

fl_vmode . 302

fl_vroot . 302

Index of Constants 362

Index of Constants

FD_FSELECTOR . 79
FL DASH . 262
FL DOT . 262
FL DOTDASH . 262
FL LONGDASH . 262
FL PUP NONE . 231
FL SOLID . 262
FL USERDASH . 262
FL USERDOUBLEDASH . 262
FL_ACTIVE_XYPLOT . 188
FL_ALIGN_BOTTOM . 31
FL_ALIGN_CENTER . 31
FL_ALIGN_INSIDE . 31
FL_ALIGN_LEFT . 31
FL_ALIGN_LEFT_BOTTOM . 31
FL_ALIGN_LEFT_TOP . 31
FL_ALIGN_RIGHT . 31
FL_ALIGN_RIGHT_BOTTOM . 31
FL_ALIGN_RIGHT_TOP . 31
FL_ALIGN_TOP . 31
FL_ALL_FREE . 59
FL_ALPHASORT . 81
FL_ALT_MASK . 156
FL_ANALOG_CLOCK . 116
FL_APPEVENT_CB 47, 53, 298, 301
FL_ATTRIB . 244
FL_AUTO . 153, 176, 184
FL_BAR_CHART . 117
FL_BEGIN_GROUP . 241, 286
FL_BEING_HIDDEN . 43
FL_BITMAPBUTTON . 121
FL_BLACK . 25
FL_BLUE . 25
FL_BOLD_STYLE . 29
FL_BOLDITALIC_STYLE . 29
FL_BOOL . 311
FL_BORDER_BOX . 16, 109
FL_BORDER_FRAME . 110, 111
FL_BOTTOM_BCOL . 25
FL_BOTTOM_TABFOLDER . 178
FL_BROWSER_SCROLL_CALLBACK 176
FL_BUTTON . 121
FL_BUTTON_NMENU . 163
FL_BUTTON_STRUCT . 269
FL_BUTTON_TOUCH_NMENU . 163
FL_CALLBACKPTR . 52
FL_CASEALPHASORT . 81
FL_CHART_MAX . 119
FL_CHARTREUSE . 25
FL_CHECKBUTTON . 121
FL_CIRCLE_XYPLOT . 188
FL_CLICK_TIMEOUT . 243
FL_CMD_OPT . 311
FL_COL1 . 25
FL_CONTINUOUS_FREE . 59

FL_CONTROL_MASK . 156
FL_COORD_centiMM . 282
FL_COORD_centiPOINT . 282
FL_COORD_MM . 282
FL_COORD_PIXEL . 282
FL_COORD_POINT . 282
FL_CYAN . 25
FL_DARKCYAN . 25
FL_DARKER_COL1 . 25
FL_DARKGOLD . 25
FL_DARKORANGE . 25
FL_DARKTOMATO . 25
FL_DARKVIOLET . 25
FL_DASHED_XYPLOT . 188
FL_DATE_INPUT . 147
FL_DBLCLICK . 58, 243
FL_DEEPPINK . 25
FL_DESELECTABLE_HOLD_BROWSER 169
FL_DIAL_CCW . 135
FL_DIAL_CW . 135
FL_DIGITAL_CLOCK . 116
FL_Dirlist . 80
FL_DIRLIST_FILTER . 81
FL_DODGERBLUE . 26
FL_DOS_INPUT_MODE . 152
FL_DOTDASHED_XYPLOT . 188
FL_DOTTED_XYPLOT . 188
FL_DOWN_BOX . 16, 109
FL_DOWN_FRAME . 110, 111
FL_DRAW . 57, 242
FL_DRAWLABEL . 58, 242
FL_DROPLIST_CHOICE . 219
FL_DROPLIST_SELECT . 157
FL_East . 42
FL_EditKeymap . 155
FL_EMBOSSED_BOX . 17
FL_EMBOSSED_FRAME . 110, 111
FL_EMBOSSED_STYLE . 29
FL_EMPTY_XYPLOT . 188
FL_END_GROUP . 286
FL_ENGRAVED_FRAME . 110, 111
FL_ENGRAVED_STYLE . 29
FL_ENLARGE_ONLY . 181
FL_ENTER . 58, 243
FL_EXCEPT . 56
FL_FILL_DIAL . 134
FL_FILL_XYPLOT . 188
FL_FILLED_CHART . 117
FL_FIT . 181
FL_FIXED_STYLE . 29
FL_FIXEDBOLD_STYLE . 29
FL_FIXEDBOLDITALIC_STYLE 29
FL_FIXEDITALIC_STYLE . 29
FL_FLAT_BOX . 17, 109
FL_FLOAT . 312

Index of Constants 363

FL_FLOAT_INPUT . 147
FL_FLOAT_SPINNER . 142
FL_FOCUS . 58, 244
FL_FORM_ATACTIVATE . 49, 297
FL_FORM_ATDEACTIVATE 49, 297
FL_FRAME_BOX . 17, 109
FL_FREE_COL1 . 26
FL_FREE_SIZE . 39
FL_FREEMEM . 59, 244
FL_FULLBORDER . 40, 294
FL_GREEN . 25
FL_GRID_MAJOR . 191
FL_GRID_MINOR . 191
FL_GRID_NONE . 191
FL_HANDLE_CANVAS . 197
FL_HANDLEPTR . 252, 276, 317
FL_HIDDEN_BUTTON . 122
FL_HIDDEN_INPUT . 147
FL_HIDDEN_RET_BUTTON . 122
FL_HIDDEN_TIMER . 186
FL_HOLD_BROWSER . 169
FL_HOR_BROWSER_SLIDER . 127
FL_HOR_FILL_SLIDER . 127
FL_HOR_NICE_SCROLLBAR . 131
FL_HOR_NICE_SLIDER . 127
FL_HOR_PLAIN_SCROLLBAR . 131
FL_HOR_PROGRESS_BAR . 127
FL_HOR_SCROLLBAR . 131
FL_HOR_SLIDER . 127
FL_HOR_THIN_SCROLLBAR . 131
FL_HOR_THUMBWHEEL . 144
FL_HORBAR_CHART . 117
FL_HUGE_SIZE . 28
FL_IMAGE . 324
FL_IMAGE_CI . 327
FL_IMAGE_FLEX . 327
FL_IMAGE_GRAY . 327
FL_IMAGE_GRAY16 . 327
FL_IMAGE_MONO . 327
FL_IMAGE_PACKED . 327
FL_IMAGE_RGB . 327
FL_IMPULSE_XYPLOT . 188
FL_INACTIVE . 25
FL_INACTIVE_FREE . 59
FL_INCLUDE_VERSION . 278
FL_INDIANRED . 25
FL_INOUT_BUTTON . 122
FL_INPUT_DDMM . 151
FL_INPUT_END_EVENT_ALWAYS 150
FL_INPUT_END_EVENT_CLASSIC 150
FL_INPUT_FREE . 59
FL_INPUT_MMDD . 151
FL_INPUTVALIDATOR . 150
FL_INT . 311
FL_INT_INPUT . 147
FL_INT_SPINNER . 142
FL_INVALID . 151
FL_INVISIBLE . 43

FL_INVISIBLE_CURSOR . 308
FL_INVISIBLE_POSITIONER 136
FL_IO_CALLBACK . 55
FL_IOPT . 280
FL_ITALIC_STYLE . 29
FL_JUMP_SCROLL . 184
FL_KEY_ALL . 246
FL_KEY_NORMAL . 246
FL_KEY_SPECIAL . 246
FL_KEY_TAB . 246
FL_KEYPRESS . 59, 244
FL_LABELBUTTON . 121
FL_LARGE_SIZE . 28
FL_LEAVE . 58, 243
FL_LEFT_BCOL . 25
FL_LEFT_MOUSE . 243
FL_LIGHTBUTTON . 121
FL_LIGHTER_COL1 . 25
FL_LINE_CHART . 117
FL_LINE_DIAL . 134
FL_LINEAR . 195
FL_LINEPOINTS_XYPLOT . 188
FL_LOG . 195
FL_LONG . 311
FL_LOSE_SELECTION_CB . 309
FL_MAGENTA . 25
FL_MAX_COLORS . 26
FL_MAX_FSELECTOR . 77
FL_MAX_XYPLOTOVERLAY . 193
FL_MAXPUPI . 229
FL_MBUTTON1 . 243
FL_MBUTTON2 . 243
FL_MBUTTON3 . 243
FL_MBUTTON4 . 243
FL_MBUTTON5 . 243
FL_MCOL . 25
FL_MEDIUM_SIZE . 28
FL_MENU_BUTTON . 122
FL_MENU_SELECT . 157
FL_MIDDLE_MOUSE . 243
FL_MOTION . 58, 243
FL_MTIMESORT . 81
FL_MULTI_BROWSER . 169
FL_MULTILINE_INPUT . 147
FL_NO . 181
FL_NO_BOX . 16, 109
FL_NO_FRAME . 110, 111
FL_NOBORDER . 40, 294
FL_NOEVENT . 292
FL_NoGravity . 41
FL_NONE . 81
FL_NORMAL_BITMAP . 113
FL_NORMAL_BROWSER . 169
FL_NORMAL_BUTTON . 19, 122
FL_NORMAL_CANVAS . 197
FL_NORMAL_CHOICE . 219
FL_NORMAL_CHOICE2 . 219
FL_NORMAL_COUNTER . 139

Index of Constants 364

FL_NORMAL_DIAL . 134
FL_NORMAL_FORMBROWSER . 182
FL_NORMAL_FREE . 59
FL_NORMAL_INPUT . 147
FL_NORMAL_INPUT_MODE . 152
FL_NORMAL_NMENU . 163
FL_NORMAL_PIXMAP . 114
FL_NORMAL_POSITIONER . 136
FL_NORMAL_SELECT . 157
FL_NORMAL_SIZE . 28
FL_NORMAL_STYLE . 29
FL_NORMAL_TEXT . 112
FL_NORMAL_TIMER . 186
FL_NORMAL_TOUCH_NMENU . 163
FL_NORMAL_XYPLOT . 188
FL_North . 41
FL_NorthEast . 42
FL_NorthWest . 41
FL_OFF . 153, 175, 184
FL_ON . 153, 175, 184
FL_ORCHID . 25
FL_OTHER . 59, 244
FL_OVAL_BOX . 17, 109
FL_OVAL_FRAME . 110, 112
FL_OVAL3D_DOWNBOX . 17
FL_OVAL3D_UPBOX . 17
FL_OVERLAY_POSITIONER . 136
FL_PACKED . 324
FL_PALEGREEN . 25
FL_PCBITS . 324
FL_PCMAX . 324
FL_PIE_CHART . 117
FL_PIXMAPBUTTON . 121
FL_PLACE GEOMETRY . 293
FL_PLACE ICONIC . 294
FL_PLACE_ASPECT . 38, 294
FL_PLACE_CENTER . 38, 294
FL_PLACE_CENTERFREE . 39, 294
FL_PLACE_FREE . 39, 294
FL_PLACE_FULLSCREEN . 39, 294
FL_PLACE_GEOMETRY . 38
FL_PLACE_HOTSPOT . 39, 294
FL_PLACE_ICONIC . 39
FL_PLACE_MOUSE . 38, 294
FL_PLACE_POSITION . 38, 293
FL_PLACE_SIZE . 38, 293
FL_POINT . 260
FL_POINTS_XYPLOT . 188
FL_POPUP . 207
FL_POPUP_BACKGROUND_COLOR 217
FL_POPUP_CB . 205
FL_POPUP_CHECKED 165, 207, 214
fl_popup_delete() . 208
FL_POPUP_DISABLED . 207, 214
FL_POPUP_DISABLED_TEXT_COLOR 217
fl_popup_do() . 211
FL_POPUP_DRAG_SELECT 160, 166, 212
FL_POPUP_DSABLED . 164

FL_POPUP_ENTRY . 206
FL_POPUP_HIDDEN 165, 207, 214
FL_POPUP_HIGHLIGHT_COLOR 217
FL_POPUP_HIGHLIGHT_TEXT_COLOR 217
fl_popup_insert_entries() 208
FL_POPUP_ITEM . 209
FL_POPUP_LINE . 207
FL_POPUP_NONE . 164, 207
FL_POPUP_NORMAL . 164, 207
FL_POPUP_NORMAL_SELECT 160, 166, 212
FL_POPUP_RADIO . 164, 207
FL_POPUP_RADIO_COLOR . 217
FL_POPUP_RETURN . 206
FL_POPUP_SUB . 207
FL_POPUP_TEXT_COLOR . 217
FL_POPUP_TITLE_COLOR . 217
FL_POPUP_TOGGLE . 164, 207
FL_PREEMPT . 276, 316
FL_PULLDOWN_MENU . 222
FL_PUP_BOX . 226, 231
FL_PUP_CB . 233
FL_PUP_CHECK . 226, 232
FL_PUP_ENTERCB . 233
FL_PUP_ENTRY . 224, 231
FL_PUP_GREY . 226, 231
FL_PUP_LEAVECB . 233
FL_PUP_NONE . 226
FL_PUP_RADIO . 226, 231
FL_PUSH . 58, 243
FL_PUSH_BUTTON . 19, 122
FL_PUSH_MENU . 222
FL_RADIO_BUTTON . 19, 122
FL_RALPHASORT . 81
FL_RAW_CALLBACK . 316
FL_RCASEALPHASORT . 81
FL_READ . 56
FL_RED . 25
FL_RELEASE . 58, 243
FL_RESIZE_ALL . 41
FL_RESIZE_NONE . 41
FL_RESIZE_X . 41
FL_RESIZE_Y . 41
FL_resource . 311
FL_RETURN_ALWAYS . 46
FL_RETURN_BUTTON . 122
FL_RETURN_CHANGED . 45
FL_RETURN_DESELECTION . 46
FL_RETURN_END . 45
FL_RETURN_END_CHANGED . 45
FL_RETURN_NONE . 46
FL_RETURN_SELECTION . 46
FL_REVISION . 278
FL_RFLAT_BOX . 17, 109
FL_RIGHT_BCOL . 25
FL_RIGHT_MOUSE . 243
FL_RINGBELL . 151
FL_RMTIMESORT . 81
FL_ROUND3DBUTTON . 121

Index of Constants 365

FL_ROUNDBUTTON . 121
FL_ROUNDED_BOX . 17, 109
FL_ROUNDED_FRAME . 110, 112
FL_ROUNDED3D_DOWNBOX . 17
FL_ROUNDED3D_UPBOX . 17
FL_RSHADOW_BOX . 17, 109
FL_RSIZESORT . 81
FL_RTYPE . 311
FL_SCROLLBARBUTTON . 121
FL_SCROLLDOWN_MOUSE . 243
FL_SCROLLUP_MOUSE . 243
FL_SECRET_INPUT . 147
FL_SELECT_BROWSER . 169
FL_SELECTION_CB . 309
FL_SHADOW_BOX . 17, 109
FL_SHADOW_STYLE . 29
FL_SHORT . 311
FL_SHORTCUT . 51, 59, 124, 244
FL_SIGNAL_HANDLER . 299
FL_SIMPLE_COUNTER . 139
FL_SIZESORT . 81
FL_SLATEBLUE . 25
FL_SLIDER_MAX_PREC . 130
FL_SLIDER_WIDTH . 130, 133
FL_SMALL_SIZE . 28
FL_SMOOTH_SCROLL . 184
FL_South . 42
FL_SouthEast . 42
FL_SouthWest . 42
FL_SPECIALPIE_CHART . 118
FL_SPIKE_CHART . 117
FL_SPRINGGREEN . 25
FL_SQUARE_XYPLOT . 188
FL_State . 254
FL_STEP . 59, 244
FL_STRING . 312
FL_TIMEOUT_CALLBACK . 47, 301
FL_TIMER_FILTER . 187
FL_TIMES_STYLE . 29
FL_TIMESBOLD_STYLE FL . 29
FL_TIMESBOLDITALIC_STYLE 29
FL_TIMESITALIC_STYLE . 29
FL_TINY_SIZE . 28
FL_TOMATO . 25
FL_TOP_BCOL . 25
FL_TOP_TABFOLDER . 178
FL_TOUCH_BUTTON . 19, 122
FL_TOUCH_MENU . 222
FL_TRANSIENT . 40, 294
FL_TRIGGER . 292
FL_TRPLCLICK . 58, 243

FL_UNFOCUS . 59, 244
FL_UP_BOX . 16, 109
FL_UP_FRAME . 110, 111
FL_UPDATE . 58, 244
FL_USER_CLASS_START . 241
FL_VALID . 151
FL_VALUE_TIMER . 186
FL_VERSION . 278
FL_VERT_BROWSER_SLIDER . 127
FL_VERT_FILL_SLIDER . 127
FL_VERT_NICE_SCROLLBAR . 131
FL_VERT_NICE_SLIDER . 127
FL_VERT_PLAIN_SCROLLBAR 131
FL_VERT_PROGRESS_BAR . 127
FL_VERT_SCROLLBAR . 131
FL_VERT_SLIDER . 127
FL_VERT_THIN_SCROLLBAR . 131
FL_VERT_THUMBWHEEL . 144
FL_VISIBLE . 43
FL_West . 42
FL_WHEAT . 25
FL_WHITE . 25
FL_WRITE . 56
FL_XYPLOT_SYMBOL . 192
FL_YELLOW . 25
FLIMAGE_ASPECT . 343
FLIMAGE_AUTOCOLOR . 342
FLIMAGE_CENTER . 343
FLIMAGE_Description . 332
FLIMAGE_FORMAT_INFO . 337
FLIMAGE_Identify . 332
FLIMAGE_JPEG_OPTIONS . 331
FLIMAGE_NOCENTER . 343, 345
FLIMAGE_NOSUBPIXEL 341, 343, 345
FLIMAGE_Read_Pixels . 332
FLIMAGE_SETUP . 338
FLIMAGE_SHARPEN . 341
FLIMAGE_SMOOTH . 341
FLIMAGE_SUBPIXEL 341, 343, 345
FLIMAGE_TEXT . 346
FLIMAGE_Write_Image . 332
FLPS_CONTROL . 292
ForgetGravity . 42
FT_BLK . 80
FT_CHR . 80
FT_DIR . 80
FT_FIFO . 80
FT_FILE . 80
FT_LINK . 80
FT_SOCK . 80

	
	Preface
	Part I - Using the Forms Library
	Introduction
	Getting Started
	Naming Conventions
	Some Examples
	Programming Model

	Defining Forms
	Starting and Ending a Form Definition
	Boxes
	Texts
	Buttons
	Sliders
	ValSliders
	Input Fields
	Grouping Objects
	Hiding and Showing
	Deactivating and Triggering Objects
	Changing Attributes
	Color
	Bounding Boxes
	Label Attributes and Fonts
	Tool Tips
	Redrawing Objects
	Changing Many Attributes
	Symbols

	Adding and Removing Objects
	Freeing Objects

	Doing Interaction
	Displaying a Form
	Simple Interaction
	Periodic Events and Non-blocking Interaction
	Dealing With Multiple Windows
	Using Callback Functions
	Handling Other Input Sources

	Free Objects
	Free Object
	An Example

	Goodies
	Messages and Questions
	Command Log
	Colormap
	File Selector

	Part II - The Form Designer
	Introduction
	Getting Started
	Command Line Arguments
	Creating Forms
	Creating and Changing Forms
	Adding Objects
	Selecting Objects
	Moving and Scaling
	Aligning Objects
	Raising and Lowering
	Setting Attributes
	Generic Attributes
	Basic Attributes
	Font
	Misc. Attributes
	Colors

	Object Specific Attributes
	Cut, Copy and Paste
	Groups
	Hiding and Showing Objects
	Testing Forms

	Saving and Loading Forms
	Language Filters
	External Filters
	Command Line Arguments of the Filter

	Generating Hardcopies
	Part III - Object Classes
	Introduction
	Static Objects
	Box Object
	Adding Box Objects
	Box Types
	Box Attributes
	Remarks

	Frame Object
	Adding Frame Objects
	Frame Types
	Frame Attributes
	Remarks

	LabelFrame Object
	Adding LabelFrame Objects
	LabelFrame Types
	Attributes
	Remarks

	Text Object
	Adding Text Objects
	Text Types
	Text Attributes
	Remarks

	Bitmap Object
	Adding Bitmap Objects
	Bitmap Types
	Bitmap Interaction
	Other Bitmap Routines
	Bitmap Attributes
	Remarks

	Pixmap Object
	Adding Pixmap Objects
	Pixmap Types
	Pixmap Interaction
	Other Pixmap Routines
	Pixmap Attributes
	Remarks

	Clock Object
	Adding Clock Objects
	Clock Types
	Clock Interaction
	Other Clock Routines
	Clock Attributes
	Remarks

	Chart Object
	Adding Chart Objects
	Chart Types
	Chart Interaction
	Other Chart Routines
	Chart Attributes
	Remarks

	Button-like Objects
	Adding Button Objects
	Button Types
	Button Interaction
	Other Button Routines
	Button Attributes
	Remarks

	Valuator Objects
	Slider Object
	Adding Slider Objects
	Slider Types
	Slider Interaction
	Other Slider Routines
	Slider Attributes
	Remarks

	Scrollbar Object
	Adding Scrollbar Objects
	Scrollbar Types
	Scrollbar Interaction
	Other Scrollbar Routines
	Scrollbar Attributes
	Remarks

	Dial Object
	Adding Dial Objects
	Dial Types
	Dial Interaction
	Other Dial Routines
	Dial Attributes
	Remarks

	Positioner Object
	Adding Positioner Objects
	Positioner Types
	Positioner Interaction
	Other Positioner Routines
	Positioner Attributes
	Remarks

	Counter Object
	Adding Counter Objects
	Counter Types
	Counter Interaction
	Other Counter Routines
	Counter Attributes
	Remarks

	Spinner Object
	Adding Spinner Objects
	Spinner Types
	Spinner Interaction
	Other Spinner Routines
	Spinner Attributes

	Thumbwheel Object
	Adding Thumbwheel Objects
	Thumbwheel Types
	Thumbwheel Interaction
	Other Thumbwheel Routines
	Thumbwheel Attributes
	Remarks

	Input Objects
	Adding Input Objects
	Input Types
	Input Interaction
	Other Input Routines
	Input Attributes
	Remarks

	Choice Objects
	Select Object
	Adding Select Objects
	Select Interaction
	Other Select Routines
	Select Attributes
	Remarks

	Nmenu Object
	Adding Nmenu Objects
	Nmenu Interaction
	Other Nmenu Routines
	Nmenu Attributes
	Remarks

	Browser Object
	Adding Browser Objects
	Browser Types
	Browser Interaction
	Other Browser Routines
	Browser Attributes
	Remarks

	Container Objects
	Folder Object
	Adding Folder Objects
	Folder Types
	Folder Interaction
	Other Folder Routines
	Remarks

	FormBrowser Object
	Adding FormBrowser Objects
	FormBrowser Types
	FormBrowser Interaction
	Other FormBrowser Routines
	Remarks

	Other Objects
	Timer Object
	Adding Timer Objects
	Timer Types
	Timer Interaction
	Other Timer Routines
	Timer Attributes
	Remarks

	XYPlot Object
	Adding XYPlot Objects
	XYPlot Types
	XYPlot Interaction
	Other XYPlot Routines
	XYPlot Attributes
	Remarks

	Canvas Object
	Adding Canvas Objects
	Canvas Types
	Canvas Interaction
	Other Canvas Routines
	Canvas Attributes
	OpenGL Canvas

	Popups
	Adding Popups
	Popup Interaction
	Other Popup Routines
	Popup Attributes

	Deprecated Objects
	Choice Object
	Adding Choice Objects
	Choice Types
	Choice Interaction
	Other Choice Routines
	Choice Attributes
	Remarks

	Menu Object
	Adding Menu Objects
	Menu Types
	Menu Interaction
	Other Menu Routines
	Menu Attributes
	Remarks

	XPopup
	Creating XPopups
	XPopup Interaction
	Other XPopup Routines
	XPopup Attributes
	Remarks

	Part IV - Designing Object Classes
	Introduction
	Global Structure
	The Routine fl_add_NEW()

	Events
	Shortcuts

	The Type FL_OBJECT
	Drawing Objects
	General Remarks
	Color Handling
	Mouse Handling
	Clipping
	Getting the Size
	Font Handling
	Drawing Functions

	An Example
	New Buttons
	Using a Pre-emptive Handler
	Part V - General Informations
	Overview of Main Functions
	Version Information
	Initialization
	Creating Forms
	Object Attributes
	Doing Interaction
	Signals
	Idle Callbacks and Timeouts
	Global Variables

	Some Useful Functions
	Misc. Functions
	Windowing Support
	Cursors
	Clipboard

	Resources for Forms Library
	Current Support
	Resources Example

	Going Further

	Dirty Tricks
	Interaction
	Form Events
	Object Events

	Other

	Trouble Shooting
	Part VI - Image Support API
	Images
	The Basic Image Support API
	The FL_IMAGE Structure
	Supported image types
	Creating Images
	Supported Image Formats
	Built-in support
	Adding New Formats
	Queries

	Setup and Configuration
	Simple Image Processing
	Convolution
	Tint
	Rotation
	Image Flipping
	Cropping
	Scaling
	Warping
	General Pixel Transformation
	Image Annotation
	Using Text Strings
	Using Markers
	Pixelizing the Annotation

	Write Your Own Routines

	Utilities
	Memory Allocation
	Color Quantization
	Remarks

	Index of Functions
	Index of Global Variables
	Index of Constants

