The R Reference Index

The R Core Team

Version 1.0.0 (February 29, 2000)

Copyright (©) 1999 R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to
redistribute it under the terms of the GNU General Public License. For more information
about these matters, see http://www.gnu.org/copyleft/gpl.html.

Contents

1 The base package 1
Alias o e 1
abbreviate L e 2
abline 3
abs . .o 4
addl 4
aggregate e 6
airmiles L L L e 7
airquality oL e 8
alias . . . 9
all . e 10
alllequal 11
allnames L 12
ANOVA .« v v v e e e e e e 12
anscombe L L e e e 13
AIY « o e e e e e e e e e 14
AOV + v o e e e e e e e e e e e e e e e e e e e 15
APETTIL « v v v e e e e e e e e e e e e e e e e e 16
append e e 17
apply . . . e e e 17
approxfun L 19
APTOPOS « « v v v e e e e e e e e 20
ATES . . v e e e e e e e e e 21
Arithmetic e 22
AITAY « ¢ v v v e e e e e e e e e e e e e e e e e e e 23
AITOWS .« v v v v v e e e e e e e e e e e 24
as.char.or.expr 25
as.function 25
asSIgN 26
attach e 27
attenu e e e e e e e e e 28
attitude e 29
attr . e e e e e e 30
attributes 31
autoload L 31
AVE © v e 32
axXiS 33
backsolve e e e 34
barplot 35
Bessel 37
Beta e 38

ii

CONTENTS

Binomial e 40
body 41
boX . . . e 42
boxplot 42
boxplot.stats L 44
browser e e 45
bug.report 46
builtins 48
DXD . o o e 48
DY e 49
C o e 50
C o e e e 51
call . . . 52
12 53
case/variablenames L 53
cab . . L e e e e e 54
Cauchy e 55
chind e 56
charexpand 57
character e e 58
charmatch L 58
check.options L 59
chickwts e e e 60
Chisquare e e 60
chol e 62
chol2inv e e 63
chull 63
class . . . L 64
close.socket L L e e 65
COZ o o i e e e 66
codes e 66
coefficients L 67
col . e 68
COlOTS e 69
commandArgs 69
COMMENT v v o o e 70
Comparison e e e 71
complete.cases 71
complex 72
conflicts L 73
Constants e 74
CONLOUT o v o it e e e e e e e e e e e e e e 75
contrast L e e e e e 77
contrasts e e e e e e e e e 78
contributors L L L e e 78
Control s 79
convolveo e 80
coplot . . .o e 81
copyright L L 83
7) 84
count.fields 85

COV.WE . o o o e e e e e 86

CONTENTS iii

Crossprod Lo e e e 87
CUMSUNL . .+ v v v v v e 87
CUTVE « . v v v e v e 88
CUb . . o e e e e e e e &9
data 90
data.class e e 92
data.frame L 92
data.matrix L e 94
dataentry 94
date . . . oL 95
debug 96
debugger L e 96
Defunct e 98
delay oL 99
delete.responsel 99
demoo 100
densityo 101
deparse e 103
Deprecated oL 104
deriv . . . e 105
detach 106
dev.XXX . .. L e 107
dev2 . o e 108
dev2bitmap 109
deviance L e 110
Devices e 111
dfresidual 112
diag . . . L e 112
diff . e 113
dim .. e 114
dimnames L e e 114
discoveries 115
do.call e 116
dotplot o 116
double 117
download.file 118
dput . . . e 119
drop . . .o e 120
dummy.coef 120
dump 121
duplicated L 122
dynldoad 123
edit . . . L 125
edit.data.frame 126
effaovlist e e 127
effects L 128
CIZEIL . . . L e e e e e 129
environment L L L L e e e e e e e e e e e e 130
esOph . . L 131
CUTO + v v v v e v e e e e e e e e e e e e e e e e e e e 133
eurodiSt L L e 134

eval . 134

iv

CONTENTS

example e e 136
eXISES . . . e 137
expand.grid oL 138
Exponential L 138
EXPIESSION .« v v v v e e e e e e e e e e e e 139
Extract 140
extractAIC e 141
Extremes 142
factor 143
factor.scope L 145
faithful o 146
family 147
FDist o 148
Tt . 150
file . . . e e 151
file.choose 152
filepath o L 153
file.show e 153
filled.contour 154
fitted.values L 156
fivenum e e 156
X e 157
Foreign e 158
Formaldehyde 161
formals 162
format e e 162
format.nfo L 163
formatC L 164
formula e 166
frame 167
freenyo 168
ftable e e 169
ftableformulao 170
function L L 171
GammaDist e 172
BC v v e e e 173
getorture . . o. oL L L e e 174
Geometric 174
get .o e 175
GeteNV . . L L L e 176
getwd ..o 177
gl e 177
glm . . .o e 178
glm.summaries L 180
LAY o o o e e e e e e e e e e e e e 181
BICD « v e e e e e e e e 182
grid . ..o 183
HairEyeColor 184
help 185
help.search L 186
help.starto 188

CONTENTS v

hist e e 198
RSV . . e e 200
httpclient oL 201
Hyperbolic o 201
Hypergeometric Lo 202
identify 203
ifelse 204
Image 205
index.search e 206
inferto 207
influence.measures 208
InsectSprays 209
integer 211
interaction L L L e e e e e e e e e e e 212
interactive L e e e e e e 212
Internal 213
invisible e 213
IQR . . e 214
IriS . . o e 214
is.empty.model L Lo 215
isfinite.o 216
isfunction 218
isdanguage L 219
is.object 219
IR . e 220
IS.TECUTSIVE . . . v o o ot e e e e e e e e e e e e e e e e 220
is.singleo 221
is.symbol ... e 221
islands e 222
Japanese e 222
JIbber .« oo e 236
kappa 237
kronecker e 238
labels e e 239
lapply 239
Last.value e 240
layout e 241
legend 242
length e 244
levels e 245
levels.factor e 246
library 246
library.dynam 249
License e 250
LifeCycleSavings« . . 255
Hnes 256
LSt . o e 256
list.files e e 258
Im . 259
Im.influence e 260
Im.summaries e e e e e e e e e 262

load 263

vi

CONTENTS

locator e e e e 264
log . . . e 265
Logic o 266
logical L 266
Logistic L 267
loglin o o e e 268
Lognormal L 270
longley e 271
lower.tri e e e 271
LoWeSS e 272
IS . e 273
Is.diag o e 274
ls.print 275
Isfit . . . e 275
Machine e 276
machine 278
mad . .. e 279
mahalanobis L e 280
make.function.htmlo 281
makelink L e e 281
make.names e 282
make.socket L L e 283
make.tables e 284
margin.table L 284
Mat.Or.VEC o . o o e e e e e e e e e e e e e e e e e e e 285
match e e 285
match.arg L. 286
match.call 287
match.fun 288
matmult e 289
matplot e 290
matrix e e e e e e e e e 291
00T 0 292
median L e e e e 293
Memory L 294
memory.profile oL 295
00 T30 L0 P 296
METZE . . o v vt e e e e e e e e 296
Methods e e 297
methods L e 299
MISSING Lo 300
mode e 301
model.extract L 302
model.frame 303
model. matrix L. e e e e e 304
model.tables L 305
mosaicplot 306
MECATrS e e e e e e e e e e e e e e 308
mtext . . . e e e e e e e 308
NA e 310
na.action L e e e e 311

na.fail e 311

CONTENTS vii

NAIE . . o v v v e e e e e e e e e e e e 312
NAMES . ¢ o v v v e e e e e e e e e e e e e e e e e e e 312
NATES .« o v v v e e e e e e e e e e e e e e e 313
nchar . . . L e e e 313
NegBinomial 314
nextno e 315
nhtemp L 316
nlevels oL 316
nlm .o 317
NOQqUOLE L e e e 318
Normal 319
NotYet o 321
NTOW . . v v e 321
NULL . . . e 322
NUINETIC .« . v v v vttt e e e e e e e e e e e e e e e e e e 322
offset L 323
on.exit e 323
optim . . . L e 324
optimize e 327
OPLIONIS o o o e 328
OrchardSprays o e 331
OTdEr . . o . v o o e 332
OULET e 333
padjust 334
package.contents oL oL 335
package.dependencies Lo oL 335
PABE . . . e 336
PAITS . . . L e e 336
pairs.formula 338
palette L 339
Palettes 340
panel.smooth 341
DAL .« o o e e e e 342
Paren oL 347
PATSE . . o v e i e e e e e e e e e e e e 348
parse.dcf . . .o 348
paste . . .o e 349
PEISD o v v v e e e e e e e e e e 350
phones L 352
Pictex . . . e 353
piechart 354
PlantGrowth 355
Platform 356
plot . . e 357
plot.default 358
plot.factor 360
plot.formula L 360
plot.m 361
plot.window 363
Plot.xy e 364
plotmath L 365

pmatch 371

viii

CONTENTS

PIE . o o e e e e 372
POINtS . . .o e 373
Poisson 374
POLY .« 375
POLygOmo 376
polyroot L 377
POS.tO.€V . L . oL e e e 378
postscript oL 378
POWEL . . v v vttt e e e e e e e e e 380
PPOINES . . . L e e e 381
PreCID .« o o o o i e e e e 381
predict L e 382
predict.glm 383
predict.lmo 384
preplot L 385
presidents 386
PTESSUTE . . . v v v v vt e e e e e e e e e e e e e 387
pretty . . .o 387
Primitive e 389
Printo e 389
print.coefmat 390
print.default oL 391
print.matrix L e e e 392
proc.timeol 393
Prod . . .o e 394
profileo 394
DIOJ . o o o 395
prompt . ..o e 396
prop.table L 397
QANOTTIL + v v v o v e e e e e e e e e e e e e e 398
0 399
QR.Auxiliaries L 400
quakeso e 402
quantileo 402
QUIT . o e e 403
R.home o 404
R.Version 404
Random o 405
Random.user 408
randl e e e e e e 409
TANEE . . v v v e e e e e e e e e e e e e e e e e 410
rank ..o 411
read. fwf L e 411
read.socket oL 412
read.tableo 413
read.table.url L 415
readline L 416
real . . oL 416
Recall e 417
TeCt . . e 417
relevel L e e e 418

TEINOVE . o v v v v e e e e e e e e e e e e e e e e e e e 419

CONTENTS ix

) 419
replace L. L 420
replications oL L 420
residuals L e 421
restart oL e e e e e e e 422
TEV v v v e 423
TED e 423
TIVEIS . . . o o o o e e e e e e e e e e e e e e e e 424
rle o e 424
Round 425
0 426
TOW/COINAINES i 427
TOWSUINL . v v v v v e 427
TUZ « v v o v e e e e e e e e e e e 428
Rwin configuration L 429
sample e 430
SAVE v vt e 431
savePlot L e 431
scale . ..o 432
SCAIL + v v v e 433
SCTEEIL . v v v v v e 435
SA . e 436
SC.AOV + v v v e 437
se.contrast L e e e e e e e e 437
search L e 438
SegMENtS e 439
T 440
SEQUETICE .« .+ v v v v v v e e e e e e e e e e e e e e e e e 441
SEES e e e e e e e e e 441
shell e 442
shell.exec L e e 443
SIBN .. 444
SignRank 444
Sink . oL e e 445
sleep . . .o 446
Solve . . . L e 447
SOTt v o e e 447
SOULCE & v v v v v e 448
Special L 449
splinefun 450
Split . . L e 451
stackloss L e e 452
SEATS . . o . e e e e e e e e e e e e e e e 453
Start e e e e e e e e e 454
Startup 455
stat.anova L L e e e e e e e 456
state . . . L e e e e e e e e 456
Stem . . . L e e e e e 457
SEED . . e 458
SEOD . . e e 459
175 O 460

CONTENTS

strsplit L e 463
structure L. L L e e e 464
strwidth e 464
subset 465
substitute L e e 466
Substr . .. L e e 468
SUITL & v v v v e v e e e e e e e e e e e e e e e e e e e 469
SUIMIMATY + v v v v v v v e e e et e e e e e e e e e e e e e e 469
sunflowerplot 470
SUNSPOLS « « . v v v e e e e e e e e e e e 472
SVA . L e e 472
SWEED v v e e e e e e e e e e e e e e e e e e 473
SWISS & & v v v e e e e e e e e e e e e 474
switch e e 475
SYIIUIL .« . v v v v v e e e e e e e e e e e e 476
sys.parent 478
SYS.SOULCE + v v v v v v v e e e e e e e e e e e e e e e e e 479
System 480
system.file . . . oL L 481
system.time Lo 482
b e e 483
table . . . L e 484
tabulate L e e 485
tapply . . . e 485
TDist . . . e e 487
tempfileo 488
TEIMS L Lo e e e e e e e e e e e e 489
TEXE . e 489
time e e e e e e 491
Titanic. e e e e 492
title . . e 493
ToothGrowth 494
TTaCe o e e e e e e e e e e e e e e 494
traceback L e e 495
transform L 495
TIEES . . o o e e e e e e e e e 496
Trig . . e e 497
7= 498
TSP o o e 499
Tukey o 500
typeof . . o 501
UCBAdmISSIons o o e 502
Uniform 503
URIQUE .« v v v v v ot e e e e e e e e e e e e 504
UNITOOL o o o e e e e e e e e e e e e e e e 504
ULDIES . . . o e e e 505
unlink . ..o L e 506
unlist . . L L e e e 507
UNNAIME . . v v v v v v e 507
updateo 508
update.formulao Lo 509

update.packages L 510

CONTENTS xi

2 The

USArrests o e 511
USJudgeRatings L 512
USPersonalExpenditure 513
USPOD ¢ v v e e e e e e e e e e e e 514
VADeaths 514
22 515
VECEOT o e e e e e e e 516
volcano e 517
WarNING oL e e 518
WAIUNES o o v ot e e e e e 518
warpbreakso 519
Weibull 520
weighted.mean L Lo 521
weighted.residuals L 521
which o 522
Wilcoxon o 523
winDialog 525
WINdOW L e e 925
WINdOWS e e e e 526
WINEXETasS e e e e e e 527
winMenus e 528
WOINEIL .« v v v v v et e e e e e e e e e e e e e e e 529
WIite . . . L e 529
write.table L e 530
XY.CoOTdS . . .o e e 531
zipfile.extracto 532
ctest package 533
ansari.test L L L e e 533
bartlett.test L L 534
binom.testo 535
chisq.test oL 537
cor.test . ..o 538
fisher.test e 540
fligner.test L L 542
friedman.test Lo 543
kruskal.test oL oL 545
kstest . . . oL 546
mantelhaen.test Lo 547
mecnemar.test L. L L L L e e e e e e e 548
mMood.teSt e e e e e e e e 549
pairwise.prop.test L L 551
pairwise.t.test L oL L 551
pairwise.table oL oL L 552
pairwise.wilcox.test L. oL 553
power.prop.test L 553
power.t.test . .o oL L 554
print.pairwise.htest Lo 555
print.power.htest Lo 556
prop.test . . . oL L 957
shapiro.test L 558
ttest .« . . e e e 559

var.test ... L e e e e e 561

xii

3 The

4 The

5 The

6 The

7 The

CONTENTS

wilcox.test L L e e e 562
eda package 565
Lne e 565
medpolish oL 566
smooth L e 567
1gs package 569
COV.IOD . . . o o o e 569
las . . o e 571
predict.lgs 573
modreg package 575
ksmooth L 575
loess e 576
loess.control L 578
modreg-internal L Lo 579
plot.ppr . . . e 579
DD - o o e e e 580
predict.loess L 583
predict.smooth.spline L L L o84
TOCK . o o e e e 585
scatter.smooth L 586
smooth.spline 587
SUPSINU « « v v v v v e 588
mva package 591
as.helust 591
biplot e 592
biplot.princomp L. 593
17215 70) 594
cmdscale L e 595
CULTEE o o o e e e e e e e e e 596
dist . . . e e 597
helust L e 598
identify.helust oL 600
kmeans e 602
PICOMD .« o v v v i it e e e e e e e e e e e e e e e e e e e 603
PriNCOMP o ot e e e e e 604
rect.helust 606
nls package 607
asOneSidedFormula 607
BOD . . . e 608
ChickWeight« 608
clearNames e e 609
CO2 . e e 610
DNase e 611
formula.nls e 612
getInitial Lo 612
Indometh e 613
Loblolly 614

logLik L 615

CONTENTS

8 The

9 The

nls . .
nls.control L L e
nlsModel e
NLSstAsymptotic oo
NLSstClosestX o e e

predict.nls L e
profilemls
profiler Lo
profiler.nls L
Puromycin.o
selfStart L e
selfStart.default
selfStart.formulao
setNames e

SSasympOTig
SShiexp
SSfol . . e

splines package

asVector e e
backSpline oL
DS e e

0T P
periodicSpline
polySpline L
predict.bs
predict.bSpline
splineDesign L e
splineKnots L
splineOrder L
xyVector e e

stepfun package

ecdf . ..o
plot.stepfun L
stepfun L e

xiii

615
617
618
619
620
621
621
622
623
624
625
626
627
629
630
631
632
633
634
635
636
637
638
639
640
641
642

643
643
644
645
646
647
648
649
650
650
652
653
653
654

xiv CONTENTS
10 The ts package 661
act . 661
AT o v e e e e e e e e e e e e e e e e 663
ar.ols e 666
arimal L 668
AUSETES e e e 670
beavers L e e e e 671
Blsales 672
Box.test e e 672
10 2 00 673
diffibs . . e 674
diffinv . . .o 674
embed 675
EuStockMarkets 676
filter e e 676
kernapply L. 678
kernel e e e 678
lag . . o e 680
LakeHuron 681
O 681
lynx . .. 681
na.omit.ts L e e e e e 682
nottem L e e e e e e e 682
PP.test. e 683
SPEC.AT © v v v v e e e e e e e e e e e e e e e 684
) 0G0 0 < 7 3 o 685
Spec.taper L L e 687
SPECITUI L e 688
StL e 690
SUNSPOL .« o o o e e e e e 691
toeplitz L 692
treering oL e 693
ts-internal L L e 693
ts.plot . . L e 694
TSOUMIONL o o e e e e e e e e 695
UKDriverDeaths 696
UKLungDeathso 696
USAccDeaths e 696

Index

Chapter 1

The base package

.Alias Create Alias (Pointer) to R Object .Alias

Description
.Alias creates an alias to another (part of) an R object which is more (memory-) efficient
than usual assignment.

Usage

new <- .Alias(expr)

Arguments

expr an R expression; typically a name.

new new name by which expr can be accessed.
Value

an identical copy of expr.

Warning

This has a dangerous semantic, and consequences can be unexpected (it can be used to
defeat the call-by-value illusion). Know what you are doing before using .Alias!

See Also

<- for usual assignments.

Examples

mop <- options()

mop$browser <- "a browser" # not set on all platforms
Op <- .Alias(mop)

A change to mop is reflected in Op and vice versa
-- ONLY if no new slots are created ...

mop$digits <- "Wow!"

2 abbreviate

Op$browser <- "another one"
mop$browser; Op$digits
all(names(mop) == names(0Op) &
sapply(seq(mop), function(i) all(0Op[[i]l] == mop[[il1)))
##> TRUE -- Op and mop ARE the same thing !

mop$newslot <- pi #--->> ’newslot’ ==> (shallow) COPY of ’mop’
Op$newslot # R: still the old one, i.e. NULL
all(names(mop) == names(Op))# no longer TRUE

abbreviate Abbreviate Strings abbreviate

Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they

were).
Usage
abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE)
Arguments
names.arg a vector of names to be abbreviated.
minlength the minimum length of the abbreviations.
use.classes logical (currently ignored by R).
dot logical; should a dot (".") be appended?
Details

The algorithm used is similar to that of S. First spaces at the beginning of the word are
stripped. Then any other spaces are stripped. Next lower case vowels are removed followed
by lower case consonants. Finally if the abbreviation is still longer than minlength upper
case letters are stripped.

Letters are always stripped from the end of the word first. If an element of names.arg
contains more than one word (words are separated by space) then at least one letter from
each word will be retained. If a single string is passed it is abbreviated in the same manner
as a vector of strings.

If use.classes is FALSE then the only distinction is to be between letters and space. This
has NOT been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates
in the original names.arg will be given identical abbreviations. If any non-duplicated
elements have the same minlength abbreviations then minlength is incremented by one
and new abbreviations are found for those elements only. This process is repeated until all
unique elements of names.arg have unique abbreviations.

The character version of names. arg is attached to the returned value as a names argument.

abline 3

See Also

substr.

Examples

x <- c("abcd", "efgh", "abce")
abbreviate(x, 2)

data(state)
(st.abb <- abbreviate(state.name, 2))
table(nchar(st.abb))# out of 50, 3 need 4 letters

abline Add a Straight Line to a Plot abline

Description

This function adds one or more straight lines through the current plot.

Usage

abline(a, b, ...)
abline(h=, ...)

abline(v=, ...)
abline (untf=, ...)
abline(coef=, ...)

abline(reg=, ...)

Detalils

The first form specifies the line in intercept/slope form (alternatively a can be specified on
its own and is taken to contain the slope and intercept in vector form).

The h= and v= forms draw horizontal and vertical lines at the specified coordinates.
The coef form specifies the line by a vector containing the slope and intercept.

reg is a regression object which contains reg$coef. If it is of length 1 then the value is
taken to be the slope of a line through the origin, otherwise, the first 2 values are taken to
be the intercept and slope.

If untf is true, and one or both axes are log-transformed, then a curve is drawn correspond-
ing to a line in original coordinates, otherwise a line is drawn in the transformed coordinate
system. The h and v parameters alway refer to original coordinates.

The graphical parameters col and 1ty can be specified as arguments to abline; see par
for details.

See Also

lines and segments for connected and arbitrary lines given by their endpoints. par.

4 addl

Examples

data(cars)
z <- 1m(dist
plot(cars)
abline(z)

speed, data = cars)

abs Miscellaneous Mathematical Functions abs

Description

These functions compute miscellaneous mathematical functions. The naming follows the
standard for computer languages such as C or Fortran.

Usage

abs (x)
sqrt (x)

See Also

Arithmetic for simple, log for logarithmic, sin for trigonometric, and Special for special
mathematical functions.

Examples

xx <- -9:9
plot(xx, sqrt(abs(xx)), col = "red")
lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

add1 Add or Drop All Possible Single Terms to a Model add1

Description

Compute all the single terms in the scope argument that can be added to or dropped from
the model, fit those models and compute a table of the changes in fit.

Usage

addl(object, scope, ...)
addl.default(object, scope, scale = 0, test = c("none", "Chisq"),
k = 2, trace = FALSE, ...)
addl.lm(object, scope, scale = 0, test = c("none", "Chisq", "F"),
x = NULL, k = 2, ...)
addl.glm(object, scope, scale = 0, x = NULL, test = c("none", "Chisq"),
k=2, ...)

dropl(object, scope, ...)
dropl.default(object, scope, scale = 0, test = c("none", "Chisq"),
k = 2, trace = FALSE, ...)

addl)

dropl.lm(object, scope, scale = 0, all.cols = TRUE,
test=c("none", "Chisq", "F"),k = 2, ...)
dropl.glm(object, scope, scale = 0, test = c("none", "Chisq"),

k=2, ...)
Arguments
object a fitted models object.
scope a formula giving the terms to be considered for adding or dropping.
scale an estimate of the residual mean square to be used in computing C,,.
Ignored if O or NULL.
test should the results include a test statistic relative to the original model?
The F test is only appropriate for 1m and aov models. The x? test can
be an exact test (1m models with known scale) or a likelihood-ratio test
depending on the method.
k the penalty constant in AIC / C,,.
trace if TRUE, print out progress reports.
X a model matrix containing columns for the fitted model and all terms in
the upper scope. Useful if add1 is to be called repeatedly.
all.cols (Provided for compatibility with S.) Logical to specify whether all columns
of the design matrix should be used. If FALSE then non-estimable columns
are dropped, but the result is not usually statistically meaningful.
Details

For drop methods, a missing scope is taken to be all terms in the model. The hierarchy is
respected when considering terms to be added or dropped: all main effects contained in a
second-order interaction must remain, and so on.

The methods for 1m and glm are more efficient in that they do not recompute the model
matrix and call the fit methods directly.

The default output table gives AIC, defined as minus twice log likelihood plus 2p where p
is the rank of the model (the number of effective parameters). This is only defined up to
an additive constant (like log-likelihoods). For linear Gaussian models with fixed scale, the
constant is chosen to give Mallows’ C,,, RSS/scale +2p —n. Where C, is used, the column
is labelled as Cp rather than AIC.

Value

An object of class "anova" summarizing the differences in fit between the models.

Warning

The model fitting must apply the models to the same dataset. This may be a problem if
there are missing values and R’s default of na.action = na.omit is used, although it is
not for methods for "1m" and "glm".

Note

These are not fully equivalent to the functions in S. There is no keep argument, and the
methods used are not quite so computationally efficient.

Their authors’ definitions of Mallows’ C, and Akaike’s AIC are used, not those of the
authors of the models chapter of S.

6 aggregate

Author(s)
B. D. Ripley

See Also

step, aov, 1m, extractAIC.

Examples

example (step) #-> swiss
(alml <- add1(1ml, ~ I(Education”2) + ."2))

aggregate Compute Summary Statistics of Data Subsets aggregate

Description

Splits the data into subsets, computes summary statistics for each, and returns the result
in a convenient form.

Usage

aggregate(x, ...)

aggregate.default(x, ...)

aggregate.data.frame(x, by, FUN, ...)

aggregate.ts(x, nfrequency = 1, FUN = sum, ndeltat = 1)

Arguments
X an R object.
by a list of grouping elements, each as long as the variables in x. Names for
the grouping variables are provided if they are not given.
FUN a scalar function to compute the summary statistics which can be applied
to all data subsets.
nfrequency new number of observations per unit of time; must be a divisor of the
frequency of x.
ndeltat new fraction of the sampling period between successive observations; must
be a divisor of the sampling interval of x.
further arguments passed to the method used.
Details

aggregate is a generic functions with methods for data frames and time series.

The default method aggregate.default uses the time series method if x is a time series,
and otherwise coerces x to a data frame and calls the data frame method.

aggregate.data.frame is the data frame method. If x is not a data frame, it is coerced
to one. Then, each of the variables (columns) in x is split into subsets of cases (rows) of
identical combinations of the components of by, and FUN is applied to each such subset with
further arguments in ... passed to it. (IL.e., tapply(VAR, by, FUN, ..., simplify =
FALSE) is done for each variable VAR in x, conveniently wrapped into one call to lapply().)

airmiles 7

Empty subsets are removed, and the result is reformatted into a data frame containing the
variables in by and x. The ones arising from by contain the unique combinations of grouping
values used for determining the subsets, and the ones arising from x the corresponding
summary statistics for the subset of the respective variables in x.

aggregate.ts is the time series method. If x is not a time series, it is coerced to one. Then,
the variables in x are split into appropriate blocks of length frequency(x) / nfrequency,
and FUN is applied to each such block. The result returned is a time series with frequency
nfrequency holding the aggregated values.

Author(s)
Kurt Hornik

See Also

apply, lapply, tapply.

Examples

data(state)

Compute the averages for the variables in ‘state.x77’, grouped

according to the region (Northeast, South, North Central, West) that
each state belongs to.

aggregate(state.x77, list(Region = state.region), mean)

Compute the averages according to region and the occurrence of more
than 130 days of frost.
aggregate(state.x77,
list(Region = state.region,
Cold = state.x77[,"Frost"] > 130),
mean)
(Note that no state in ‘South’ is THAT cold.)

data(presidents)
Compute the average annual approval ratings for American presidents.
aggregate(presidents, nf = 1, FUN = mean)

airmiles Commercial Airline Mileage airmiles

Description
The revenue passenger miles flown by commercial airlines in the United States for each year
from 1937 to 1960.

Usage

data(airmiles)

Format

A time-series of 24 observations; yearly, 1937-1960.

8 airquality

Source

F.A.A. Statistical Handbook of Aviation.

References

Brown, R. G. (1963) Smoothing, Forecasting and Prediction of Discrete Time Series.
Prentice-Hall.

Examples
data(airmiles)
plot(airmiles, main = "airmiles data",
xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)
airquality New York Air Quality Measurements airquality
Description

Daily air quality measurements in New York, May to September 1973.

Usage

data(airquality)

Format

A data frame with 154 observations on 6 variables.

[,11 0Ozone numeric Ozone (ppb)

[,2] Solar.R numeric Solar R (lang)

[,3] Wind numeric Wind (mph)

[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1-12)

[,6] Day numeric Day of month (1-31)

Details

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September
30, 1973.

e Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island

e Solar.R: Solar radiation in Langleys in the frequency band 4000-7700 Angstroms from
0800 to 1200 hours at Central Park

e Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia
Airport

e Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Source

The data were obtained from the New York State Department of Conservation (ozone data)
and the National Weather Service (meteorological data).

alias 9

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods
for Data Analysis. Belmont, CA: Wadsworth.

Examples
data(airquality)
pairs(airquality, panel = panel.smooth, main = "airquality data")
alias Find Aliases (Dependencies) in a Model alias
Description

Find aliases (linearly dependent terms) in a linear model specified by a formula.

Usage
alias(object, ...)
alias.formula(object, data, ...)

alias.lm(object, complete = TRUE, partial = FALSE, partial.pattern = FALSE)

Arguments
object A fitted model object, for example from 1lm or aov, or a formula for
alias.formula.
data Optionally, a data frame to search for the objects in the formula.
complete Should information on complete aliasing be included?
partial Should information on partial aliasing be included?

partial.pattern
Should partial aliasing be presented in a schematic way? If this is done,
the results are presented in a more compact way, usually giving the deciles
of the coefficients.

Details

Although the main method is for class "1m", alias is most useful for experimental designs
and so is used with fits from aov. Complete aliasing refers to effects in linear models that
cannot be estimated independently of the terms which occur earlier in the model and so
have their coefficients omitted from the fit. Partial aliasing refers to effects that can be
estimated less precisely because of correlations induced by the design.

Value

A list (of class "listof") containing components

Model Description of the model; usually the formula.

Complete A matrix with columns corresponding to effects that are linearly depend-
ent on the rows; may be of class "mtable" which has its own print
method.

Partial The correlations of the estimable effects, with a zero diagonal.

10 all

Note

The aliasing pattern may depend on the contrasts in use: Helmert contrasts are probably
most useful.

The defaults are different from those in S.

Author(s)
B.D. Ripley
Examples
From Venables and Ripley (1997) p.210.
N <- ¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- ¢(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
<- ¢(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yleld <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,
62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)
npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

The next line is optional (for fractions package which gives neater
results.)
has.VR <- require(MASS, quietly = TRUE)

op <- options(contrasts=c("contr.helmert", "contr.poly"))
npk.aov <- aov(yield ~ block + N*PxK, npk)

alias(npk.aov)

if (has.VR) detach(package:MASS)

options(op)# reset

all Are All Values True? all

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments
one or more logical vectors.
na.rm logical. If true NA values are removed before the result is computed.
Value

Given a sequence of logical arguments, a logical value indicating whether or not all of the
elements of x are TRUE.

The value returned is TRUE if all the values in x are TRUE, and FALSE if any the values in x
are FALSE.

If x consists of a mix of TRUE and NA values, then value is NA.

all.equal 11

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))
if(all(x < 0)) cat("all x values are negative\n")

all.equal Test if Two Objects are (Nearly) Equal all.equal

Description

all.equal(x,y) is a utility to compare R objects x and y testing “near equality”. If they
are different, comparison is still made to some extent, and a report of the differences is
returned.

Usage

all.equal(target, current, ...)

all.equal.numeric (target , current,
tolerance= .Machine$double.eps ~ 0.5, scale=NULL)

Details

There are several methods available, most of which are dispatched by the default method, see
methods("all.equal"). all.equal.list and all.equal.language provide comparison
of recursive objects.

Numerical comparison is done using averge (mean) relative error, unless scale is used
or when the absolute difference is less than tolerance. For complex arguments, Mod of
difference is used.

attr.all.equal is used for comparing attributes, returning NULL or character.

Value

Either TRUE or a vector of mode "character" describing the differences between target
and current.

Numerical differences are reported by relative error

See Also

==, and all for exact equality testing.

Examples

all.equal(pi, 355/113) # not precise enough (default tol) > relative error

all.equal(gamma(2:14), cumprod(1:13)) # TRUE, but
all (gamma(2:14) == cumprod(1:13)) # FALSE, since not exactly
all.equal(gamma(2:14), cumprod(1:13), tol=0) # to see difference

all.equal(options(), .Options)

.Options $ myopt <- TRUE
all.equal(options(), as.list(.Options))
rm(.Options)

12 anova

all.names Find All Names in an Expression all.names

Description

Return a character vector containing all the names which occur in an expression or call.

Usage

all.names(expr, functions = TRUE,
max.names = 200, unique = FALSE)

all.vars(expr, functions = FALSE,
max.names = 200, unique = TRUE)

Arguments
expr an expression or call from which the names are to be extracted.
functions a logical value indicating whether function names should be included in
the result.
max.names the maximum number of names to be returned.
unique a logical value which indicates whether duplicate names should be re-
moved from the value.
Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

Examples

all.names (expression(sin(x+y)))
all.vars(expression(sin(x+y)))

anova Anova Tables anova

Description

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage

anova(object, ...)
print (anova.object)

anscombe 13

Arguments
object an object containing the results returned by a model fitting function (e.g.
1m or glm).
additional objects of the same type.
Value

This (generic) function returns an object of class anova. These objects represent analysis-
of-variance and analysis-of-deviance tables. When given a single argument it produces a
table which tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in the order
specified.

The print method for anova objects prints tables in a “pretty” form.

Warning

The comparison between two or more models will only be valid if they are fitted to the same
dataset. This may be a problem if there are missing values and R’s default of na.action
= na.omit is used.

See Also

coefficients, effects, fitted.values, residuals, summary.

Anscombe’s Quartet of “Identical” Simple Linear

. anscombe
Regressions

anscombe

Description
Four z-y datasets which have the same traditional statistical properties (mean, variance,
correlation, regression line, etc.), yet are quite different.

Usage

data(anscombe)

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged
x4 values 8 and 19
yl, ¥2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03

Source

Tufte, Edward R. (1989) The Visual Display of Quantitative Information, 13-14. Graphics
Press.

14

References

any

Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27,

17-21.

Examples

data(anscombe)
summary (anscombe)

##-- now some "magic" to do the 4 regressions in a loop:

ff <-y "~ x

for(i in 1:4) {
££[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
or ff[[2]] <- as.name(paste("y", i, sep=""))
£f£f[[3]] <- as.name(paste("x", i, sep=""))
assign(paste("1lm.",i,sep=""), 1lmi <- 1lm(ff, data= anscombe))
print (anova(lmi))

}

See how close they are (numerically!)
sapply(objects(pat="1m\. [1-4]1$"), function(n) coef(get(n)))
lapply(objects(pat="1m\.[1-4]$"), function(n) summary(get(n))$coef)

Now, do what you should have done in the first place: PLOTS
op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma= c(0,0,2,0))
for(i in 1:4) {
££[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
plot(ff, data =anscombe, col="red", pch=21, bg = "orange", cex =
x1im=c(3,19), ylim=c(3,13))
abline(get(paste("lm.",i,sep="")), col="blue")

}
mtext ("Anscombe’s 4 Regression data sets", outer = TRUE, cex=1.5)
par (op)
any Are Values True? any
Description

Given a set of logical vectors, are all or any of the values true?

Usage

any(..., na.rm = FALSE)

Arguments

one or more logical vectors.

na.rm logical. If true NA values are removed before the result is computed.

aov 15

Value
Given a sequence of logical arguments, a logical value indicating whether or not any of the
elements of x are TRUE.

The value returned is TRUE if any the values in x are TRUE, and FALSE if all the values in x
are FALSE.

If x consists of a mix of FALSE and NA values, the value is NA.

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))
if (any(x < 0)) cat("x contains negative values\n")

aov Fit an Analysis of Variance Model aov

Description

Fit an analysis of variance model by a call to 1m for each stratum.

Usage
aov(formula, data = NULL, projections = FALSE, contrasts = NULL, ...)
se.aov(object, n, type = "means")

Arguments
formula A formula specifying the model.
data A data frame in which the variables specified in the formula will be found.

If missing, the variables are searched for in the standard way.

projections Logical flag: should the projections be returned?
contrasts A list of contrasts to be used for some of the factors in the formula. These

are not used for any Error term, and supplying contrasts for factors only
in the Error term will give a warning.

Arguments to be passed to 1m, such as subset or na.action.

Detalils
This provides a wrapper to 1m for fitting linear models to balanced or unbalanced experi-
mental designs.

The main difference from 1m is in the way print, summary and so on handle the fit: this
is expressed in the traditional language of the analysis of variance rather than of linear
models.

If the formula contains a single Error term, this is used to specify error strata, and appro-
priate models are fitted within each error stratum.

The formula can specify multiple responses.

Value
An object of class c("aov", "1lm") or for multiple responses of class c("maov", "aov",
"mlm", "1m") or for multiple error strata of class "aovlist". There are print and summary

methods available for these.

16 aperm
Author(s)

B. D. Ripley
See Also

1m, alias, proj, model.tables
Examples

From Venables and Ripley (1997) p.210.

N <- ¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- ¢(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- ¢(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)
npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

(npk.aov <- aov(yield ~ block + N*P*K, npk))

summary (npk.aov)

coefficients(npk.aov)

as a test, not particularly sensible statistically

op <- options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

npk.aovE

summary (npk . aovE)

options(op)# reset to previous

aperm Array Transposition aperm

Description

Transpose an array by permuting its dimensions and optionally resizing it.
Usage

aperm(a, perm, resize = TRUE)
Arguments

a the array to be transposed.

perm the subscript permutation vector.

resize a flag indicating whether the vector should be resized as well as having

its elements reordered (default TRUE.)

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm.

If resize is TRUE, the array is reshaped as well as having its elements permuted.

The function t provides a faster and more convenient way of transposing matrices.

append 17

See Also

Examples

interchange the first two subscripts on a 3-way array x
x <- array(1:24, 2:4)

xt <- aperm(x, c(2,1,3))

all(t(xt[,,2]) == x[,,2])

append Vector Merging append

Description

Add elements to a vector.

Usage

append(x, values, after=length(x))

Arguments

X the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.
Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

Examples

all(append(1:5, 0:1, after=3) ==
append(1:3, c(0:1, 4:5)))

apply Apply Functions Over Array Margins apply

Description
Returns a vector or array or list of values obtained by applying a function to margins of an
array.

Usage
apply(x, MARGIN, FUN, ...)

18 apply

Arguments
X the array to be used.
MARGIN a vector giving the subscripts which the function will be applied over. 1
indicates rows, 2 indicates columns, c(1,2) indicates rows and columns.
FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted.
optional arguments to FUN.
Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension
c(n,dim(x) [MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length
1 and an array of dimension dim(x) [MARGIN] otherwise.

If the calls to FUN return vectors of different lengths, apply returns a list of length
dim(x) [MARGIN].

See Also

lapply, tapply, and convenience functions sweep and aggregate.

Examples

Compute row and column sums for a matrix:

x <- cbind(xl = 3, x2 = c(4:1, 2:5))

dimnames (x) [[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind (x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

all(apply(x,2, is.vector)) # TRUE [was not in R <= 0.63.2]

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, ci1,c2) c(mean(x[c1]),mean(x[c2]))
apply(x,1, cave, cl1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nr = 2)

ma

apply(ma, 1, table) #--> a list of length 2
apply(ma, 1, quantile)# 5 x n matrix with rownames

all(dim(ma) == dim(apply(ma, 1:2, sum)))## wasn’t ok before R 0.63.1

approxfun 19
approxfun Interpolation Functions approxfun
Description

Return a list of points which linearly interpolate given data points, or a function performing
the linear (or constant) interpolation.

Usage

approx

Arguments

X,y

xout

method

yleft

yright

rule

Details

(x, y, xout, method="linear", n=50,
yleft, yright, rule=1, £=0)

approxfun(x, y,
yleft, yright, rule=1, £=0)

method="1linear",

vectors giving the coordinates of the points to be interpolated. Alternat-
ively a single plotting structure can be specified.

an optional set of values specifying where interpolation is to take place.

specifies the interpolation method to be used. Choices are "linear" or
"constant".

If xout is not specified, interpolation takes place at n equally spaced
points spanning the interval [min(x), max (x)].

the value to be returned when input x values less than min(x). The
default is defined by the value of rule given below.

the value to be returned when input x values greater than max(x). The
default is defined by the value of rule given below.

an integer describing how interpolation is to take place outside the interval
[min(x), max(x)]. If rule is 1 then NAs are returned for such points and
if it is 2, the value at the closest data extreme is used.

For method="constant" a number between 0 and 1 inclusive, indicating
a compromise between left- and right-continuous step functions. If yO
and y1 are the values to the left and right of the point then the value is
yO*xf+y1*(1-f) so that £=0 is right-continuous and £=1 is left-continuous.

The inputs can contain missing values which are deleted, so at least two complete (x, y)
pairs are required.

Value

approx returns a list with components x and y, containing n coordinates which interpolate
the given data points according to the method (and rule) desired.

The function approxfun returns a function performing (linear or constant) interpolation of
the given data points. For a given set of x values, this function will return the corresponding
interpolated values. This is often more useful than approx.

20 apropos

See Also

spline and splinefun for spline interpolation.

Examples

x <- 1:10

y <- rnorm(10)

par(mfrow = c(2,1))

plot(x, y, main = "approx(.) and approxfun(.)")
points(approx(x, y), col = 2, pch = "%")

points(approx(x, y, method = "constant"), col = 4, pch = "*")

f <- approxfun(x, y)

curve(f(x), 0, 10, col = "green")

points(x, y)

is.function(fc <- approxfun(x, y, method = "const")) # T
curve(fc(x), 0, 10, col = "darkblue", add = TRUE)

apropos Find Objects by (Partial) Name apropos

Description

apropos returns a vector of character strings giving the names of all objects in the search
list matching what.

find is a different user interface to the same task as apropos.

Usage

apropos (what, where = FALSE, mode = "any")
find(what, mode = "any", numeric. = FALSE, simple.words = TRUE)

Arguments

what name of an object, or regular expression to match against

where, numeric.
a logical indicating whether positions in the search list should also be
returned

mode character; if not "any", only objects who’s mode equals mode are searched.

simple.words logical; if TRUE, the what argument is only searched as whole only word.

Details

apropos returns a vector of character strings giving the names of all objects in the search
list matching what. If mode != "any" only those objects which are of mode mode are
considered. If where is TRUE, their position in the search list is returned as their names
attribute.

find is a different user interface to the same task as apropos. However, by default
(simple.words == TRUE), only full words are searched.

args 21

Author(s)
Kurt Hornik and Martin Maechler (May 1997).

See Also

objects for listing objects from one place, search for the search path.

Examples

apropos("1m")
apropos(1ls)
apropos ("1q")

Im <- 1:pi

find (1m) ##> " .GlobalEnv" "package:base"
find(1m, num=T) ## .. numbers with these names
find(1m, num=T, mode="function")# only the second one
rm(1m)

apropos(".", mode="list")

need a DOUBLE backslash ‘\\’ (in case you don’t see it anymore)
apropos ("\\[")

everything
length(apropos("."))

those starting with ‘pr’
apropos("“pr")

the 1-letter things
apropos("~.$")

the 1-2-letter things
apropos("~..7$")

the 2-to-4 letter things
apropos ("~.{2,4}$")

the 8-and-more letter things
apropos("~.{8,}$")
table (nchar (apropos("~.{8,}$")))

args Argument List of a Function args

Description

Displays the argument names and corresponding default values of a function.

Usage

args (name)

22 Arithmetic

Arguments
name an interpreted function. If name is a character string then the function
with that name is found and used.
Details

This function is mainly used interactively. For programming, use formals instead.

Value
A function with identical formal argument list but an empty body if given an interpreted
function; NULL in case of a variable or primitive (non-interpreted) function.

See Also

formals, help.

Examples

args(c) # -> NULL (c is a ‘primitive’ function)
args(plot.default)

Arithmetic Arithmetic Operators Arithmetic

Description

These binary operators perform arithmetic on vector objects.

Usage

Y NN ¥
SN <Y< <

%hy
Why

LT T T T T

Details

1 “yandy "~ Oarel, always. x ~ y should also give the proper “limit” result when either
argument is infinite (i.e., +- Inf).

Objects such as arrays or time-series can be operated on this way provided they are con-
formable.

array 23

Value

They return numeric vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled
only fractionally). The operators are + for addition, - for subtraction * for multiplication,
/ for division and " for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that x == (x
%hy) +y * Cx %/% y) unless y == 0 where the result is NA or NaN (depending on the
typeof of the arguments).

See Also

Math for miscellaneous and Special for special mathematical functions.

Examples

<- -1:12

+ 1

* x + 3

%% 2 #-- is periodic
W% 5

Lo T S]

array Multi-way Arrays array

Description

Creates or tests for arrays.

Usage

array(x, dim = length(x), dimnames = NULL)
as.array(x)
is.array(x)

Value

array returns an array with the extents specified in dim and naming information in dim-
names. The values in x are taken to be those in the array with the leftmost subscript
moving fastest. If there are too few elements in x to fill the array, then the elements in x
are recycled.

as.array() coerces its argument to be an array by attaching a dim attribute to it. It also
attaches dimnames if x has names. The sole purpose of this is to make it possible to access
the dim[names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., has
a dim attribute) or not.

See Also

aperm, matrix.

24 arrows

Examples

dim(as.array(letters))

array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"
[,11 [,21 [,3] [,4]

#[1,] 1 3 2 1

#[2,] 2 1 3 2

arrows Add Arrows to a Plot arrows

Description

Draw arrows between pairs of points.

Usage

arrows(x0, yO, x1, yl, length = 0.25, angle = 30, code = 2,
col = par("fg"), 1ty = NULL, xpd = FALSE)

Arguments
x0,y0 coordinates of points from which to draw.
x1,y1 coordinates of points to which to draw.
length length of the edges of the arrow head (in inches).
angle angle from the shaft of the arrow to the edge of the arrow head.
code integer code, determining kind of arrows to be drawn.

col, lty, xpd usual graphical parameters as in par.

Details

For each i, an arrow is drawn between the point (x0[i], yO[i]) and the point
(x1[i],y1[il).

If code=2 an arrowhead is drawn at (x0[i],y0[i]) and if code=1 an arrowhead is drawn
at (x1[1],y1[i]). If code=3 a head is drawn at both ends of the arrow.

The graphical parameters col and 1ty can be used to specify a color and line texture for
the line segments which make up the arrows (col may be a vector).

See Also

segments to draw segments.

Examples

x <- runif(12); y <- rnorm(12)

i <= order(x,y); x <- x[i]; y <- yl[i]

plot(x,y, main="arrows(.) and segments(.)")

draw arrows from point to point :

s <- seq(length(x)-1)# one shorter than data
arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)

s <- s[-length(s)]

segments(x[s], y[s], x[s+2], y[s+2], col= ’pink’)

as.char.or.expr 25

as.char.or.expr Coerce to Character or Expression as.char.or.expr

Description

Coerce expression and call objects to expressions, and all other objects to character.

Usage

as.char.or.expr(x)

Arguments

X an arbitrary R object.

Details

This function is used for handling the text arguments to the text-drawing functions. These
arguments can be character strings or expressions (which are interpreted as mathematical
expressions and typeset according to TeX-like rules, see plotmath for more details). Users
will typically have no need for it.

Examples

as.char.or.expr("This is a string.")
as.char.or.expr(call("round", 10.5))

as.function Convert Object to Function as.function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

as.function.default(l, envir = sys.frame(sys.parent()))

Arguments
X object to convert
additional arguments, depending on object
1 a list

envir environment in which the function should be defined

26

Value

assign

The desired function.

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist (a=,b=2,a+b))
as.function(alist(a=,b=2,a+b)) (3)

assign

Assign a Value to a Name assign

Description

Assign a value to a name in an environment.

Usage

assign(x, value, pos = -1, envir = pos.to.env(pos),
inherits = FALSE, immediate = TRUE)

x <- value
X <<- value
value -> x
value ->> x

Arguments

b4
value

pos

envir

inherits

immediate

a variable name (given as a quoted string).
a value to be assigned to x.

an index into the search list which determines which environment the
assignment is to take place in. A character string may also be used. The
environment can also be specified directly with envir.

the environment in which to assign. The default is the environment where
the call to assign takes place.

should the enclosing frames of the environment be inspected?

an ignored compatibility feature.

attach 27

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no
envir is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until
the variable x is encountered. The value is then assigned in the environment in which the
variable is encountered. If the symbol is not encountered then assignment takes place in
the global environment.

If inherits is FALSE, assignment takes place in the initial frame of envir.

The arrow forms of assignment provide shortcut ways to carry out assignment. The <- and
-> forms carry out assignment in the local environment frame, while the <<- and ->> forms
cause a search to made through the environment for an existing definition of the variable
being assigned. If such a variable is found then its value is redefined, otherwise assignment
takes place globally.

Note that the action of <<- and ->> differs from that in the S language, but is useful in
conjunction with the scoping rules of R.

See Also

get, exists, environment.

Examples
for(i in 1:6) { #-- Create objects ’r1’, ’r2’, ... ’r6’ --
nam <- paste("r",i, sep=".")
assign(nam, 1:1)
}

1s(pat=""r..$")

##-- Global assignment within a function:
myf <- function(x) {

innerf <- function(x) assign("Global.res", x"2, env = .GlobalEnv)
innerf (x+1)

}

myf (3)

Global.res # 16

attach Attach Set of R Objects to Search Path attach

Description

A new database is attached. This means that its objects are made available to R.

should say more here

Usage

attach(what, pos = 2, name = deparse(substitute(what)))

28 attenu

Arguments
what “database” to attach. Typically a data.frame or list.
pos integer specifying position in search() where to attach.
name alternative way to specify the database to be attached.
Value

The environment is returned invisibly with a "name" attribute.

See Also

library, detach, search, objects, environment.

Examples

data(women)

attach(women)

summary (height) #- which belongs to ‘women’
detach("women")

attenu The Joyner-Boore Attenuation Data attenu

Description

This data gives peak accelerations measured at various observation stations for 23 earth-
quakes in California. The data have been used by various workers to estimate the attenu-
ating affect of distance on ground acceleration.

Usage

data(attenu)

Format

A dataframe with 182 observations on 5 variables.

[[1] event numeric Event Number

[2] mag numeric Moment Magnitude

[,3] station factor Station Number

[4] dist numeric Station-hypocenter distance (km)
[,5] accel numeric Peak acceleration (g)

Source

Joyner, W.B., D.M. Boore and R.D. Porcella (1981). Peak horizontal acceleration and velo-
city from strong-motion records including records from the 1979 Imperial Valley, California
earthquake. USGS Open File report 81-365. Menlo Park, Ca.

attitude

References

29

Boore, D. M. and Joyner, W.B.(1982) The empirical prediction of ground motion, Bull.
Seism. Soc. Am., 72, S269-S5268.

Bolt, B. A. and Abrahamson, N. A. (1982) New attenuation relations for peak and expected

accelerations of strong ground motion, Bull. Seism. Soc. Am., 72, 2307-2321.

Bolt B. A. and Abrahamson, N. A. (1983) Reply to W. B. Joyner & D. M. Boore’s “Com-
ments on: New attenuation relations for peak and expected accelerations for peak and
expected accelerations of strong ground motion”, Bull. Seism. Soc. Am., 73, 1481-1483.

Brillinger, D. R. and Preisler, H. K. (1984) An exploratory analysis of the Joyner-Boore
attenuation data, Bull. Seism. Soc. Am. T4, 1441-1449.

Brillinger, D. R. and Preisler, H. K. (1984) Further analysis of the Joyner-Boore attenuation

data. Manuscript.

Examples

data(attenu)

check the data class of the variables

sapply(attenu, data.class)
summary (attenu)

pairs(attenu, main = "attenu data")
coplot(accel ~ dist | as.factor(event), data = attenu, show = FALSE)
coplot(log(accel) ~ log(dist) | as.factor(event),

data = attenu, panel = panel.smooth, show.given = FALSE)

attitude

Attitudes Toward Supervisors

attitude

Description

Not available (yet).

Usage

data(attitude)

Format

A data from with 30 observations on 7 variables.

] rating

] complaints
| privileges

] learning

] raises

] critical

]

[,1
[,2
[,3
[4
[,5
[,6
[,7] advancel

Source

numeric
numeric
numeric
numeric
numeric
numeric
numeric

Overall rating

Handling of employee complaints
Gives special privileges
Opportunity to learn

Gives raises

Too critical

Advancement

Chatterjee, S. and Price, B. (1977) Regression Analysis by Example. New York: Wiley.

30 attr

Examples
data(attitude)
pairs(attitude, main = "attitude data")
summary (attitude)
summary (fml <- lm(rating ~ ., data = attitude))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
summary (fm2 <- lm(rating ~ complaints, data = attitude))
plot (fm2)
par (opar)

attr Object Attributes attr

Description

Get or set specific attributes of an object.

Usage

attr(x, which)
attr(x, which) <- value

Arguments

X an object whose attributes are to be accessed.

which a character string specifying which attribute is to be accessed.
Value

This function provides access to a single object attribute. The simple form above returns
the value of the named attribute. The assignment form causes the named attribute to take
the value on the right of the assignment symbol.

See Also

attributes

Examples

create a 2 by 5 matrix
x <= 1:10
attr(x,"dim") <- c(2, 5)

attributes 31

attributes Object Attribute Lists attributes

Description

These functions access an object’s attribute list. The first form above returns the an object’s
attribute list. The assignment forms make the list on the right-hand side of the assignment
the object’s attribute list (if appropriate).

Usage

attributes(obj)
attributes(obj) <- list
mostattributes(obj) <- list

Details

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when that is valid whereas as attributes assignment would
give an error in that case.

See Also

attr.

Examples

X <- cbind(a=1:3, pi=pi) # simple matrix w/ dimnames
str(attributes(x))

strip an objects attributes:
attributes(x) <- NULL
x # now just a vector of length 6

mostattributes(x) <- list(mycomment = "really special", dim = 3:2,
dimnames = 1ist(LETTERS[1:3], letters[1:5]), names = paste(1:6))
x # dim(), but not {dim}names

autoload On-demand Loading of Packages autoload

Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in . Auto-
loadEnv environment. When R attempts to evaluate name, autoloader is run, the package
is loaded and name is re-evaluated in the new package’s environment. The result is that R
behaves as if file was loaded but it does not occupy memory.

Usage

autoload(name, file)
autoloader (name, file)
.AutoloadEnv

32 ave

Arguments

name string giving the name of an object

file string giving the name of a package containing the object
Value

This function is invoked for its side-effect.

See Also

delay, library

Examples

autoload("line","eda")
search()
1s("Autoloads")
all(1ls("Autoloads") == ls(envir = .AutoloadEnv))
data(cars)

plot(cars)
z<-line(cars)
abline(coef(z))
search()
detach("package:eda")
search()

z<-line(cars)

search()

ave Group Averages Quver Level Combinations of Factors ave

Description

Subsets of x[] are averaged, where each subset consist of those observations with the same
factor levels.

Usage
ave(x, ..., FUN = mean)
Arguments
X A numeric.
Grouping variables, typically factors, all of the same length as x.
FUN Function to apply for each factor level combination.
Value
A numeric vector, say y of length length(x). If ... 1is gi,g2, e.g., y[i] is equal to

FUN(x[j], for all j with g1 [j1==g1[i] and g2[jl==g2[il).

axis 33

See Also

mean, median.

Examples

data(warpbreaks)
attach(warpbreaks)
ave (breaks, wool)
ave(breaks, tension)
ave(breaks, tension, FUN = function(x)mean(x, trim=.1))
plot(breaks, main =
"ave(Warpbreaks) for wool x tension combinations")

lines(ave(breaks, wool, tension), type=’s’, col = "blue")
lines(ave(breaks, wool, tension, FUN=median), type=’s’, col = "green")
legend (40,70, c("mean","median"), lty=1,col=c("blue","green"), bg="gray90")
detach()
axis Add an Axis to a Plot axis
Description

Adds an axis to the current plot, allowing the specification of the side, position, labels, and
other options.

Usage

axis(side, at, labels = TRUE, ...)

Arguments
side an integer specifying which side of the plot the axis is to be drawn on.
at the points at which tick-marks are to be drawn. Non-finite (infinite, NaN
or NA) values are omitted.
labels this can either be a logical value specifying whether (numerical) annota-
tions are to be made at the tickmarks, or a vector of character strings to
be placed at the tickpoints.
graphical parameters may also be passed as arguments to this function.
Details

The axis line is drawn from the lowest to the highest value of at, but will be clipped at
the plot region. Only ticks which are drawn from points within the plot region (up to a
tolerance for rounding error) are plotted, but the ticks and their labels may well extend
outside the plot region.

Value

This function is invoked for its side effect, which is to add an axis to an already existing
plot. The axis is placed as follows: 1=below, 2=left, 3=above and 4=right.

34

Examples

plot(1:4, rnorm(4), axes=FALSE)
axis(l, 1:4, LETTERS[1:4])

axis(2)

box() #- to make it look "as usual"

plot(1:7, rnorm(7), type = ’s’, xaxt=’n’, col = ’red’)

axis(1, 1:7, LETTERS[1:7], col.axis = ’blue’)

backsolve

backsolve Solve an Upper or Lower Triangular System backsolve

Description

Solves a system of linear equations where the coefficient matrix is upper or lower triangular.

Usage

backsolve(r, x, k= ncol(r), upper.tri
forwardsolve(l, x, k= ncol(l), upper.tri

Value

TRUE, transpose = FALSE)
FALSE, transpose = FALSE)

The solution of the triangular system. The result will be a vector if x is a vector and a

matrix if x is a matrix.

References

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users

Guide. Philadelphia: STAM Publications.

See Also

chol, qr, solve.

Examples

upper triangular matrix ‘r’:
r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))
(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1
r I*hy # ==x= (8,4,2)

(y2 <- backsolve(r, x, transpose = TRUE)) # 8 -12 -5
all(t(r) %*% y2 == x)# exactly on Linux (Pentium)

all(y == backsolve(t(r), x, upper = FALSE, transpose
all(y2 == backsolve(t(r), x, upper = FALSE, transpose

TRUE))
FALSE))

barplot 35
barplot Bar Plots barplot
Description

Creates a bar plot with vertical or horizontal bars.

Usage

barplot(height, width = 1, space = NULL, names.arg = NULL,
legend.text = NULL, beside = FALSE, horiz = FALSE,
col = heat.colors(NR), border = par("fg"),

main
x1lim
axes

Arguments

height

width

space

names.arg

legend. text

beside

horiz

col
border
main,sub

xlab

NULL, sub = NULL, xlab = NULL, ylab = NULL,
NULL, ylim = NULL,
TRUE, axisnames = TRUE, inside = TRUE, plot = TRUE, ...)

either a vector or matrix of values describing the bars which make up the
plot. If height is a vector, the plot consists of a sequence of rectangular
bars with heights given by the values in the vector. If height is a matrix
and beside is FALSE then each bar of the plot corresponds to a column
of height, with the values in the column giving the heights of stacked
“sub-bars” making up the bar. If height is a matrix and beside is TRUE,
then the values in each column are juxtaposed rather than stacked.

optional vector of bar widths.

the amount of space (as a fraction of the average bar width) left before
each bar. May be given as a single number or one number per bar. If
height is a matrix and beside is TRUE, space may be specified by two
numbers, where the first is the space between bars in the same group,
and the second the space between the groups. If not given explicitly, it
defaults to c(0,1) if height is a matrix and beside is TRUE, and to 0.2
otherwise.

a vector of names to be plotted below each bar or group of bars. If this
argument is omitted, then the names are taken from the names attribute
of height if this is a vector, or the column names if it is a matrix.

a vector of text used to construct a legend for the plot. This is only useful
when height is a matrix. In that case the legend labels should correspond
to the rows of height.

a logical value. If FALSE, the columns of height are portrayed as stacked
bars, and if TRUE the columns are portrayed as juxtaposed bars.

a logical value. If FALSE, the bars are drawn vertically with the first bar
to the left. If TRUE, the bars are drawn horizontally with the first at the
bottom.

a vector of colors for the bars or bar components.
the color to be used for the border of the bars.
overall and sub title for the plot.

a label for the x axis.

36 barplot

ylab a label for the y axis.

x1lim limits for the x axis.

ylim limits for the y axis.

axes logical. If TRUE, a vertical (or horizontal, if horiz is true) axis is drawn.

axisnames logical. If TRUE, and if there are names.arg (see above), the other axis is
drawn (with 1ty=0) and labeled.

plot logical. If FALSE, nothing is plotted.

further graphical parameters (par) are passed to plot.window() and
title().

Details

This is a generic function, it currently only has a default method. A formula interface may
be added eventually.

Value

A numeric vector (or matrix, when beside = TRUE), say mp, giving the coordinates of all
the bar midpoints drawn, useful for adding to the graph.

If beside is true, use apply(mp, 2, mean) for the midpoints of each group of bars, see
example.

See Also
plot(..., type="h"), dotplot, hist.

Examples

tN <- table(Ni <- rpois(100, lambda=5))
r <- barplot(tN, col=’gray’)

#- type = "h" plotting *is* ‘bar’plot
lines(r, tN, type=’h’, col=’red’, lwd=2)

barplot (tN, space = 1.5, axisnames=FALSE,
sub = "barplot(...., space= 1.5, axisnames = FALSE)")

data(VADeaths, package = "base")
barplot (VADeaths, plot = FALSE)
barplot (VADeaths, plot = FALSE, beside = TRUE)

mp <- barplot(VADeaths) # default
tot <- apply(VADeaths, 2, sum)
text (mp, tot + 3, format(tot), xpd = NA, col = "blue")
barplot (VADeaths, beside = TRUE,
col = c("lightblue", "mistyrose", "lightcyan",

"lavender", "cornsilk"),
legend = rownames(VADeaths), ylim = c(0, 100))
title(main = "Death Rates in Virginia", font.main = 4)

hh <- t(VADeaths)[, 5:1]
mybarcol <- "gray20"
mp <- barplot(hh, beside = TRUE,
col = c("lightblue", "mistyrose",
"lightcyan", "lavender"),

Bessel 37

legend = colnames(VADeaths), ylim= c(0,100),
main = "Death Rates in Virginia", font.main = 4,
sub = "Faked upper 2*sigma error bars", col.sub = mybarcol)
segments(mp, hh, mp, hh + 2xsqrt(1000%xhh/100), col = mybarcol, lwd = 1.5)
all(dim(mp) == dim(hh))# corresponding matrices
mtext(side = 1, at = apply(mp, 2, mean), line = -2,
text = paste("Mean", formatC(apply(hh, 2, mean))), col = "red")

Bessel Bessel Functions Bessel

Description

Bessel Functions of integer and fractional order, of first and second kind, J, and Y, and
Modified Bessel functions (of first and third kind), I, and K.

gammaCody is the (T') function as from the Specfun package and originally used in the Bessel
code.

Usage

FALSE)
FALSE)

besselI(x, nu, expon.scaled
besselK(x, nu, expon.scaled
besselJ(x, nu)

besselY(x, nu)

gammaCody (x)

Arguments

X numeric, > 0.

nu numeric; > 0 unless in besselK which is symmetric in nu. The order of
the corresponding Bessel function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid
overflow (I,) or underflow (K,), respectively.

Detalils

The underlying C code stems from Netlib (http://www.netlib.org/specfun/r[ijky]
besl).

If expon.scaled = TRUE, e “I,(z), or e K, (x) are returned.

gammaCody may be somewhat faster but less precise and /or robust than R’s standard gamma.
It is here for experimental purpose mainly, and may be defunct very soon.

Value

Numeric vector of the same length of x with the (scaled, if expon.scale=TRUE) values of
the corresponding Bessel function.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover,
New York; Chapter 9: Bessel Functions of Integer Order.

http://www.netlib.org/specfun/r[ijky]besl
http://www.netlib.org/specfun/r[ijky]besl

38 Beta

See Also

Other special mathematical functions, as the gamma, I'(x), and beta, B(z).

Examples

nus <- ¢(0:5,10,20)

x <- seq(0,4, len= 501)

plot(x,x, ylim = c(0,6), ylab="",type=’n’, main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x,bessell(x,nu=nu), col = nu+2)

legend (0,6, leg=paste("nu=",nus), col = nus+2, lwd=1)

x <- seq(0,40,1en=801); yl <- c(-.8,.8)

plot(x,x, ylim = yl, ylab="",type=’n’, main = "Bessel Functions J_nu(x)")
for(nu in nus) lines(x,besselJ(x,nu=nu), col = nu+2)

legend(32,-.18, leg=paste("nu=",nus), col = nus+2, lwd=1)

x0 <- 27(-20:10)
plot(x0,x0°-8, log=’xy’, ylab="",type=’n’,
main = "Bessel Functions J_nu(x) mnear O\n log - log scale")
for(nu in sort(c(nus,nus+.5))) lines(x0,besselJ(x0,nu=nu), col = nu+2)
legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

plot(x0,x0°-8, log=’xy’, ylab="",type=’n’,

main = "Bessel Functions K_nu(x) near O\n log - log scale")
for(nu in sort(c(nus,nus+.5))) lines(x0,besselK(x0,nu=nu), col = nu+2)
legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

x <- x[x > 0]

plot(x,x, ylim=c(le-18,1el1l),log="y", ylab="",type=’n’,
main = "Bessel Functions K_nu(x)")

for(nu in nus) lines(x,besselK(x,nu=nu), col = nu+2)

legend(0,1e-5, leg=paste("nu=",nus), col = nus+2, lwd=1)

Check the Scaling :
for(nu in nus)

print(all(abs(1- besselK(x,nu)*exp(x) / besselK(x,nu,expo=TRUE)) < 2e-15))
for(nu in nus)

print(all(abs(1l- besselI(x,nu)*exp(-x) / bessell(x,nu,expo=TRUE)) < le-15))

yl <- c(-1.6, .6)

plot(x,x, ylim = yl, ylab="",type=’n’, main = "Bessel Functions Y_nu(x)")
for(nu in nus){xx <- x[x > .6*nul]; lines(xx,besselY(xx,nu=nu), col = nu+2)}
legend(25,-.5, leg=paste("nu=",nus), col = nus+2, lwd=1)

Beta The Beta Distribution Beta

Description

Density, distribution function, quantile function and random generation for the Beta distri-
bution with parameters shapel and shape2 (and optional non-centrality parameter ncp).

Beta 39

Usage

dbeta(x, shapel, shape2, ncp=0, log = FALSE)

pbeta(q, shapel, shape2, ncp=0, lower.tail = TRUE, log.p
gbeta(p, shapel, shape2, lower.tail = TRUE, log.p
rbeta(n, shapel, shape2)

FALSE)
FALSE)

Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations to generate.

shapel, shape2
positive parameters of the Beta distribution.

ncp non-centrality parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >
Details

The Beta distribution with parameters shapel = a and shape2 = b has density

_ T(a+b) ,
f(z) = Wfﬂ 1-a)

fora>0,b>0and 0 < x < 1.

Value

dbeta gives the density, pbeta the distribution function, gbeta the quantile function, and
rbeta generates random deviates.

See Also

beta for the Beta function, and dgamma for the Gamma distribution.

Examples

x <- seq(0, 1, length=21)
dbeta(x, 1, 1)
pbeta(x, 1, 1)

40 Binomial
Binomial The Binomial Distribution Binomial
Description

Density, distribution function, quantile function and random generation for the binomial

distribution with

Usage

parameters size and prob.

dbinom(x, size, prob, log = FALSE)

pbinom(q, size,
gbinom(p, size,
rbinom(n, size,

Arguments
X, q
p
n
size

prob
log, log.p

lower.tail

Details

The binomial dist

forx=0,...,n.

prob, lower.tail = TRUE, log.p
prob, lower.tail = TRUE, log.p
prob)

FALSE)
FALSE)

vector of quantiles.

vector of probabilities.

number of observations to generate.

number of trials.

probability of success on each trial.

logical; if TRUE, probabilities p are given as log(p).

logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >

ribution with size = n and prob = p has density

) = (2)pr -

If an element of x is not integer, the result of dbinom is zero, with a warning.

The quantile is defined as the smallest value z such that F(x) > p, where F is the distri-

bution function.

Value

dbinom gives the density, pbinom gives the distribution function, gbinom gives the quantile
function and rbinom generates random deviates.

See Also

dnbinom for the n

egative binomial, and dpois for the Poisson distribution.

body 41

Examples

Compute P(45 < X < 55) for X Binomial(100,0.5)
sum(dbinom(46:54, 100, 0.5))

Using "log = TRUE" for an extended range :
n <- 2000
plot (O:m, dbinom(0:n, n, pi/10, log=TRUE), type=’1’,
main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")
lines(0:n, log(dbinom(0:n, n, pi/10)), col=’red’, lwd=2)
mtext ("dbinom(k, log=TRUE)", adj=0)
mtext ("extended range", adj=0, line = -1, font=4)
mtext ("log(dbinom(k))", col="red", adj=1)

body Access to and Manipulation of the Body of a Function body

Description

Get or set the body of a function.

Usage

body (fun = sys.function(sys.parent()))
body (fun) <- list

Arguments
fun a function object or a character string naming the function to be manip-
ulated. If not specified, the function calling body is used.
list a list of R expressions.
Value

body returns the body of the function specified.
The assignment form sets the body of a function to the list on the right hand side.

See Also

alist, args, function.

Examples

body (body)

f <- function(x) x°5
body(f) <- expression(57x)
£(3) # = 125

str(body (£))

42 boxplot

box Draw a Box around a Plot box

Description

This function draws a box around the current plot in the given color and linetype. The bty
parameter determines the type of box drawn. See par for details.

Usage
box(which="plot", lty="solid", ...)
Arguments
which character, one of "plot", "figure", "inner" and "outer".
1ty line type of the box.
further graphical parameters, such as bty, col, or lwd, see par.
See Also

rect for drawing of arbitrary rectangles.

Examples

plot(1:7,abs(rnorm(7)), type=’h’, axes = F)
axis(1, labels = letters[1:7])
box(1lty=’137’, col = ’red’)

boxplot Bozx Plots boxplot

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

Usage
boxplot(x, ...)
boxplot.default(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

notch = FALSE, names, data = sys.frame(sys.parent()),
plot TRUE, border = par("fg"), col = NULL, log = "",
pars = NULL)

boxplot.formula(formula, data = NULL, subset, na.actiom, ...)

boxplot

Arguments

X

X,

range

width

varwidth

notch

names

data

plot

border

col

log

pars,
formula
data

subset

na.action

Details

43

an R object.
methods may have additional arguments.

the data from which the boxplots are to be produced. The data can be
specified as separate vectors, each corresponding to a component boxplot,
or as a single list containing such vectors. Alternatively a symbolic spe-
cification of the form x ~ g can be given, indicating that the observations
in the vector x are to be grouped according to the levels of the factor
g. In this case the argument data can be used to provide values for the
variables in the specification. NAs are allowed in the data.

this determines how far the plot whiskers extend out from the box. If
range is positive, the whiskers extend to the most extreme data point
which is no more than range times the interquartile range from the box.
A value of zero causes the whiskers to extend to the data extremes.

a vector giving the relative widths of the boxes making up the plot.

if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.

group labels which will be printed under each boxplot.

data.frame, list, or environment in which variable names are evaluated
when x is a formula.

if TRUE (the default) then a boxplot is produced. If not, the summaries
which the boxplots are based on are returned.

an optional vector of colors for the outlines of the boxplots. The values
in border are recycled if the length of border is less than the number of
plots.

if col is non-null it is assumed to contain colors to be used to col the
bodies of the box plots.

character indicating if x or y or both coordinates should be plotted in log
scale.

graphical parameters can also be passed as arguments to boxplot.
a formula, such as y ~ x.
a data.frame (or list) from which the variables in formula should be taken.

an optional vector specifying a subset of observations to be used in the
fitting process.

a function which indicates what should happen when the data contain
NAs.

further arguments to the default boxplot method and graphical paramet-
ers may also be passed as arguments, see par.

This is a generic function. It currently has a default method (boxplot.default) and a
formula interface (boxplot.formula).

44

Value

boxplot.stats

List with one component corresponding to each plot. The components are themselves lists
with named components as follows:

stats

conf

out

See Also

a vector containing the extreme of the lower whisker, the lower hinge, the
median, the upper hinge and the extreme of the upper whisker.

the number of observations in the sample.
the lower and upper extremes of the notch.

the values of any data points which lie beyond the extremes of the
whiskers.

boxplot.stats which does the computation, bxp for the plotting, and stripplot for an
alternative (with small data sets).

Examples

boxplot on a formula:
data(InsectSprays)

boxplot (count

spray, data = InsectSprays, col = "lightgray")

data(OrchardSprays)

boxplot (decrease ~

treatment, data = OrchardSprays,

log = "y", col="bisque")

boxplot on a matrix:
mat <- cbind(UniO5 = (1:100)/21, Norm = rnorm(100),

T5

= rt(100, df = 5), Gam2 = rgamma(100, shape = 2))

boxplot(data.frame(mat), main = "boxplot(data.frame(mat), main = ...)")

boxplot.stats

Box Plot Statistics boxplot.stats

Description

This function is typically is called by boxplot to gather the statistics necessary for producing
box plots, but may be invoked separately.

Usage

boxplot.stats(x, coef = 1.5, do.conf=TRUE, do.out=TRUE)

Arguments

X

coef

do.conf,do.out

a numeric vector for which the boxplot will be constructed (NAs and NaNs
are allowed and omitted).

this determines how far the plot “whiskers” extend out from the box. If
coef is positive, the whiskers extend to the most extreme data point
which is no more than coef times the interquartile coef from the box. A
value of zero causes the whiskers to extend to the data extremes.

logicals; if FALSE, the conf or out component respectively will be empty
in the result.

browser 45

Value

List with named components as follows:

stats a vector of length 5, containing the extreme of the lower whisker, the
lower “hinge”, the median, the upper “hinge” and the extreme of the upper
whisker.

n the number of of non-NA observations in the sample.

conf the lower and upper extremes of the “notch”.

out the values of any data points which lie beyond the extremes of the
whiskers.

Note that $stats and $conf are sorted in increasing order, unlike S, and that $n and $out
include any +- Inf values.

See Also

fivenum, boxplot, bxp.

Examples

x <- c(1:100, 1000)

str(boxplot.stats(x))

str(boxplot.stats(x, do.conf=FALSE, do.out=FALSE))
str(boxplot.stats(x, coef = 3, do.conf=FALSE))
str(boxplot.stats(x, coef = 0))

str(boxplot.stats(c(x, NA)))
str(boxplot.stats(c(x, -1:1/0)))

browser Environment Browser browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser ()

Details

A call to browser causes a pause in the execution of the current expression and runs a copy
of the R interpreter which has access to variables local to the environment where the call
took place.

Local variables can be listed with 1s, and manipulated with R expressions typed to this
sub-interpreter. The interpreter copy is exited by typing c. Execution then resumes at the
statement following the call to browser.

Typing n causes the step-through-debugger, to start and it is possible to step through the
remainder of the function one line at a time.

Typing Q quits the current execution and returns you to the top-level prompt.

46 bug.report

See Also

debug, and traceback for the stack on error.

bug.report Send a Bug Report bug.report

Description

Invokes an editor to write a bug report and optionally mail it to the R-bugs list at (r-
bugs@biostat.ku.dk). Some standard information on the current version and configuration
of R are included automatically.

Usage
bug.report(subject = "", ccaddress = getenv("USER"),
method = getOption("mailer"), address = "r-bugs@biostat.ku.dk",
file = "R.bug.report")
Arguments
subject Subject of the email. Please do not use single quotes (?) in the subject!
ccaddress Optional email address for copies (default is current user). Use ccaddress
= FALSE for no copies.
method Submission method.
address Recipient’s email address.
method Submission method, one of "mailx", "gnuclient", "none", or "ess".
address Recipient’s email address.
file File to use for setting up the email (or storing it when method is "none"
or sending mail fails).
Details

Currently direct submission of bug reports works only on Unix systems. If the submission
method is "mailx", then the default editor is used to write the bug report. Which editor
is used can be controlled using options, type getOption("editor") to see what editor is
currently defined. Please use the help pages of the respective editor for details of usage.
After saving the bug report (in the temporary file opened) and exiting the editor the report
is mailed using a Unix command line mail utility such as mailx. A copy of the mail is sent
to the current user.

If method is "gnuclient", then an emacs mail buffer is opened and used for sending the
email.

If method is "none" or NULL (which is the default on Windows systems), then only an editor
is opened to help writing the bug report. The report can then be copied to your favorite
email program and be sent to the R-bugs list.

If method is "ess" the body of the mail is simply sent to stdout.

Value

Nothing useful.

bug.report 47

When is there a bug?

If R executes an illegal instruction, or dies with an operating system error message that
indicates a problem in the program (as opposed to something like “disk full”), then it is
certainly a bug.

Taking forever to complete a command can be a bug, but you must make certain that it
was really R’s fault. Some commands simply take a long time. If the input was such that
you KNOW it should have been processed quickly, report a bug. If you don’t know whether
the command should take a long time, find out by looking in the manual or by asking for
assistance.

If a command you are familiar with causes an R error message in a case where its usual
definition ought to be reasonable, it is probably a bug. If a command does the wrong thing,
that is a bug. But be sure you know for certain what it ought to have done. If you aren’t
familiar with the command, or don’t know for certain how the command is supposed to
work, then it might actually be working right. Rather than jumping to conclusions, show
the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for statistical analysis. This is
a very important sort of problem, but it is also a matter of judgment. Also, it is easy to
come to such a conclusion out of ignorance of some of the existing features. It is probably
best not to complain about such a problem until you have checked the documentation in
the usual ways, feel confident that you understand it, and know for certain that what you
want is not available. If you are not sure what the command is supposed to do after a
careful reading of the manual this indicates a bug in the manual. The manual’s job is to
make everything clear. It is just as important to report documentation bugs as program
bugs. However, we know that the introductory documentation is seriously inadequate, so
you don’t need to report this.

If the online argument list of a function disagrees with the manual, one of them must be
wrong, so report the bug.

How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands you
type, from when you start R until the problem happens. Always include the version of R,
machine, and operating system that you are using; type ‘version’ in R to print this.

The most important principle in reporting a bug is to report FACTS, not hypotheses or
categorizations. It is always easier to report the facts, but people seem to prefer to strain
to posit explanations and report them instead. If the explanations are based on guesses
about how R is implemented, they will be useless; we will have to try to figure out what
the facts must have been to lead to such speculations. Sometimes this is impossible. But
in any case, it is unnecessary work for us.

For example, suppose that on a data set which you know to be quite large the com-
mand data.frame(x, y, z, monday, tuesday) never returns. Do not report that
data.frame() fails for large data sets. Perhaps it fails when a variable name is a day
of the week. If this is so then when we got your report we would try out the data.frame()
command on a large data set, probably with no day of the week variable name, and not see
any problem. There is no way in the world that we could guess that we should try a day of
the week variable name.

Or perhaps the command fails because the last command you used was a [method that had
a bug causing R’s internal data structures to be corrupted and making the data.frame()

48 bxp

command fail from then on. This is why we need to know what other commands you have
typed (or read from your startup file).

It is very useful to try and find simple examples that produce apparently the same bug, and
somewhat useful to find simple examples that might be expected to produce the bug but
actually do not. If you want to debug the problem and find exactly what caused it, that is
wonderful. You should still report the facts as well as any explanations or solutions.

Invoking R with the ——vanilla option may help in isolating a bug. This ensures that the
site profile and saved data files are not read.

On some systems a bug report can be generated using the bug.report() function. This
automatically includes the version information and sends the bug to the correct address.
Alternatively the bug report can be emailed to (r-bugs@biostat.ku.dk) or submitted to the
Web page at http://r-bugs.biostat.ku.dk/R.

Author(s)

This help page is adapted from the Emacs manual

See Also
R FAQ

builtins Returns the names of all built-in objects builtins

Description
Return the names of all the built-in objects. These are fetched directly from the symbol
table of the R interpreter.

Usage

builtins(internal = FALSE)

Arguments
internal a logical indicating whether only “internal” functions (which can be called
via .Internal) should be returned.
bxp Bozx Plots from Summaries bxp
Description

bxp(..) draws box plots based on the given summaries in z. It is usually called from
within boxplot(..), but can be invoked directly.

Usage

bxp(z, notch = FALSE, width
border = par("fg"), col

NULL, varwidth = FALSE, notch.frac = 0.5,
NULL, log = "", pars = NULL, ...)

http://r-bugs.biostat.ku.dk/R

by 49
Arguments
z a list containing data summaries to be used in constructing the plots.
These are usually the result of a call to boxplot, but can be generated in
any fashion.
notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.
width a vector giving the relative widths of the boxes making up the plot.
varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.
notch.frac numeric in (0,1). When notch=TRUE, the fraction of the box width that
the notches should use.
border character, the color of the box borders. Is recycled for multiple boxes.
col character; the color within the box. Is recycled for multiple boxes
log character, indicating if any axis should be drawn in logarithmic scale, as
in plot.default.
pars,... Graphical parameters can be passed as arguments to this function, either
as a list (pars) or normally(. . .).
Value
An invisible vector with the x-coordinates of box centers, useful for adding to the plot.
Examples
str(bx.p <- boxplot(split(rnorm(100), gl(5,20)), plot = FALSE))
op <- par(mfrow= c(2,2))
bxp (bx.p)
bxp(bx.p, notch = TRUE)
bxp(bx.p, notch = TRUE, col= ’lightblue’)
bxp(bx.p, notch = TRUE, col= ’lightblue’, border=’red’, log = ’x’)
par (op)
by Apply a Function to a Data Frame split by Factors by
Description
Function by is an object-oriented wrapper for tapply applied to data frames.
Usage
by(data, INDICES, FUN, ...)
Arguments
data an R object, normally a data frame, possibly a matrix.
INDICES a factor or a list of factors, each of length nrow(x).
FUN a function to be applied to data frame subsets of x.

further arguments to FUN.

50 C

Details

A data frame is split by row into data frames subsetted by the values of one or more factors,
and function FUN is applied to each subset in term.

Object data will be coerced to a data frame by default.

Value

A list of class "by", giving the results for each subset.

See Also

tapply

Examples

data(warpbreaks)

attach(warpbreaks)

by (warpbreaks[, 1:2], tension, summary)

by (warpbreaks[, 1], list(wool=wool, tension=tension), summary)
by (warpbreaks, tension, function(x) lm(breaks ~ wool, data=x))
detach("warpbreaks")

C Sets Contrasts for a Factor C

Description

Sets the "contrasts" attribute for the factor.

Usage
C(object, contr, how.many, ...)
Arguments
object a factor or ordered factor
contr which contrasts to use. Can be a matrix with one row for each level of the
factor or a suitable function like contr.poly or a character string giving
the name of the function
how.many the number of contrasts to set, by default one less than nlevels(object).
Additional arguments for the function contr.
Details

For compatibility with S, contr can be treatment, helmert, sum or poly (without quotes)
as shorthand for contr.treatment and so on.

Value

The factor object with the "contrasts" attribute set.

Author(s)
B.D. Ripley

See Also

contrasts, contr.sum, etc.

Examples

reset contrasts to defaults
options(contrasts=c("contr.treatment", "contr.poly"))
data(warpbreaks)

attach(warpbreaks)

tens <- C(temnsion, poly, 1)

attributes(tens)

detach()

tension SHOULD be an ordered factor, but as it is not we can use

aov(breaks ~ wool + tens + tension, data=warpbreaks)
show the use of ... The default contrast is contr.treatment here
summary (lm(breaks ~ wool + C(tension, base=2), data=warpbreaks))

data(esoph) # following on from help(esoph)

model3 <- glm(cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +
C(alcgp, , 1), data = esoph, family = binomial())

summary (model3)

C Combine Values into a Vector or List c

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to
a common type which is the type of the returned value. If recursive=TRUE, the function
recursively descends through lists combining all their elements into a vector.

Usage

c(..., recursive=FALSE)

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(1,7:9)
c(1:5, 10.5, "next")

c(list (A=c(B=1)) ,recursive=T)

c(options(), recursive=T)
c(list(A=c(B=1,C=2) ,B=c(E=7)),recursive=T)

52 call

call Function Calls call

Description

Create or test for objects of mode "call".

Usage

call(name, ...)
is.call(x)
as.call(x)

Arguments
name a character string naming the function to be called.
X an arbitrary R object.

Value

call returns an unevaluated function call, that is, an unevaluated expression which consists
of the named function applied to the given arguments (name must be a quoted string which
gives the name of a function to be called).

is.call is used to determine whether x is a call (i.e., of mode "call").

It is not possible to coerce objects to mode call (objects either are calls or they are not
calls). as.call returns its argument if it is a call and otherwise terminates with an error
message.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of
functions; further is.language, expression, function.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5
cl <- call("round", 10.5)

is.call(cl)# TRUE

cl

such a call can also be evaluated.

eval(cl)# [1] 10

case/variable.names 53

cars Stopping Distances of Cars cars

Description
The data give the speed of cars and the distances taken to stop. Note that the data were
recorded in the 1920s.

Usage

data(cars)

Format

A data frame with 50 observations on 2 variable.

[,1] speed numeric Speed (mph)
[,2] dist numeric Stopping distance (ft)

Source

Ezekiel, M. (1930) Methods of Correlation Analysis. Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

case/variable.names Case and Variable Names of Fitted Models case/variable.names

Description

Simple utilities returning (non-missing) case names, and (non-eliminated) variable names.

Usage

case.names(obj, ...)
case.names.lm(obj, full = FALSE)

variable.names(obj, ...)
variable.names.lm(obj, full = FALSE)

Arguments

obj an R object, typically a fitted model.

full logical; if TRUE, all names (including zero weights,..) are returned.
Value

A character vector

54 cat

See Also

1m

Examples

x <- 1:20

y <= x + (x/4 - 2)°3 + rnorm(20, s=3)

names(y) <- paste("0",x,sep=".")

ww <- rep(1,20); ww[13] <- 0

summary (Imxy <- Im(y ~ x + I(x"2)+I(x"3) + I((x-10)"2),
weights = ww), cor = TRUE)

variable.names (1mxy)

variable.names (lmxy, full= TRUE)# includes the last

case.names (1mxy)

case.names (lmxy, full = TRUE)# includes the O-weight case

cat Concatenate and Print cat

Description

Prints the arguments, coercing them if necessary to character mode first.

Usage
cat(... , file = "", sep = " ", fill = FALSE, labels = NULL,
append = FALSE)
Arguments
R objects which are coerced to character strings, concatenated, and prin-
ted, with the remaining arguments controlling the output.
file character string naming the file to print to. If "" (the default), cat prints
to the standard output.
sep character string to insert between the objects to print.
fill a logical or numeric controlling how the output is broken into successive
lines. If FALSE, only newlines created explicitly by
n are printed. Otherwise, the output is broken into lines with print width
equal to the option width if £ill is TRUE, or the value of fill if this is
numeric.
labels character vector of labels for the lines printed. Ignored if £i11 is FALSE.
append if TRUE, output will be appended to file; otherwise, it will overwrite the
contents of file.
Details

cat converts its arguments to character strings, concatenates them, separating them by the
given sep= string, and then prints them.

No linefeeds are printed unless explicitly requested by "
n" or if generated by filling (if argument £i1l is TRUE or numeric.)

cat is useful for producing output in user defined functions.

Cauchy 55

Value

None (invisible NULL).

See Also

print, format

Examples

print an informative message

cat("iteration = ", iter <- iter + 1, "\n")
Cauchy The Cauchy Distribution Cauchy
Description

Density, distribution function, quantile function and random generation for the Cauchy
distribution with location parameter location and scale parameter scale.

Usage

dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
gcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)
Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations to generate.

location, scale
location and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >
Details

If location or scale are not specified, they assume the default values of 0 and 1 respect-
ively.

The Cauchy distribution with location [and scale s has density

f(x)_%<1+<zsl>2>

for all z.

56 cbind

Value

dcauchy, pcauchy, and qcauchy are respectively the density, distribution function and
quantile function of the Cauchy distribution. rcauchy generates random deviates from the
Cauchy.

See Also

dt for the t distribution which generalizes dcauchy(*, 1 = 0, s = 1).

Examples

all.equal(dcauchy(-1:4), 1 / (pi*(1 + (-1:4)72)))

cbind Combine Columns/Rows into a Matriz cbind

Description

Take a sequence of vector and/or matrix arguments and combine them as the columns or
rows, respectively, of a matrix.

Usage
cbind(...)
rbind(...)

Detalils

The functions cbind and rbind are generic, with methods for data frames.

If there are several matrix arguments, they must all have the same number of columns (or
rows) and this will be the number of columns (or rows) of the result. If all the arguments
are vectors, the number of columns (rows) in the result is equal to the length of the longest
vector. Values in shorter arguments are recycled to achieve this length (with a warning
when they are recycled only fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rosw)
of the result is determined by the number of columns (rows) of the matrix arguments. Any
vectors have their values recycled or subsetted to achieve this length.

Note

The method dispatching is not done via UseMethod(..), but by C-internal dispatching.
Therefore, there’s no need for, e.g., rbind.default.

See Also

¢ to combine vectors (and lists).

char.expand 57

Examples

cbind(1,1:7) # the ’1’ (= shorter vector) is recycled
cbind(1:7, diag(3))# vector is subset -> warning

cbind (0,rbind(1,1:3))

cbind (0, matrix(1l, nrow=0, ncol=4))#> Warning (making sense)
dim(cbind (0, matrix(1l, nrow=2, ncol=0)))#-> 2 x 1

char.expand Ezxpand a String with Respect to a Target Table char.expand

Description

Seeks a unique match of its first argument among the elements of its second. If successful,
it returns this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.
Details

This function is particularly useful when abbreviations are allowed in function arguments,
and need to be uniquely expanded with respect to a target table of possible values.

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

58 charmatch

character Character Vectors character

Description

Create or test for objects of type "character".

Usage

character(length = 0)
as.character (x)
is.character(x)

Value

character creates a character vector of the specified length. The elements of the vector
are all equal to "".

as.character attempts to coerce its argument to be of character type.

is.character returns TRUE or FALSE depending on whether its argument is of character
type or not.

charmatch Partial String Matching charmatch

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA)

Arguments

X the values to be matched.

table the values to be matched against.

nomatch the value returned at non-matching positions.
Details

Exact matches are preferred to partial matches (those where the value to be matched has
an exact match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the
index of the matching value is returned; if multiple exact or multiple partial matches are
found then 0 is returned and if no match is found then NA is returned.

Author(s)

This function is based on a C function written by Terry Therneau.

check.options 59

See Also

match, pmatch.

Examples
charmatch("", "") # returns 1
charmatch("m", c("mean", "median", "mode")) # returns O
charmatch("med", c("mean", "median", "mode")) # returns 2
check.options Set Options with Consistency Checks check.options
Description

Utility function for setting options with some consistency checks. The attributes of
the new settings in new are checked for consistency with the model (often default) list
in name.opt.

Usage

check.options(new, name.opt, reset = FALSE, assign.opt = FALSE,
envir = .GlobalEnv, check.attributes = c("mode", "length"),
override.check = FALSE)

Arguments

new a named list

name.opt character with the name of R object containing the “model” (default) list.

reset logical; if TRUE, reset the options from name.opt. If there is more than
one R object with name name.opt, remove the first one in the search()
path.

assign.opt logical; if TRUE, assign the ...

envir the environment used for get and assign.

check.attributes
character containing the attributes which check.options should check.
override.check
logical vector of length length(new) (or 1 which entails recycling). For
those new[i] where override.check[i] == TRUE, the checks are over-
riden and the changes made anyway.

Value
A list of components with the same names as the one called name.opt. The values of the
components are changed from the new list, as long as these pass the checks (when these are
not overridden according to override.check).

Author(s)
Martin Maechler

60 Chisquare

See Also

ps.options which uses check.options.

Examples

L1 <- list(a=1:3, b=pi, ch="CH")
str(L2 <- check.options(list(a=0:2), name.opt = "L1"))
str(check.options(NULL, reset = TRUE, name.opt = "L1"))

chickwts Chicken Weights by Feed Type chickwts

Description
An experiment was conducted to measure and compare the effectiveness of various feed
supplements on the growth rate of chickens.

Usage

data(chickwts)

Format

A data frame with 71 observations on 2 variables.

[1,] weight numeric Chick weight
[2,] feed factor Feed type

Details

Newly hatched chicks were randomly allocated into six groups, and each group was given a
different feed supplement. Their weights in grams after six weeks are given along with feed

types.

Source

Anonymous (1948) Biometrika, 35, p.214.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Chisquare The (non-central) Chi-Square Distribution Chisquare

Description

Density, distribution function, quantile function and random generation for the chi-square
(x?) distribution with df degrees of freedom and optional non-centrality parameter ncp.

Chisquare 61

Usage

dchisq(x, df, ncp=0, log = FALSE)

pchisq(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df)

Arguments
X, q vector of quantiles.
P vector of probabilities.
n number of observations to generate.
daf degrees of freedom.
ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X >

Details
The chi-square distribution with df= n degrees of freedom has density

1

_ n/2—1,—x/2
on/2D(nj2)" €

fu()
for x > 0. Mean and variance are n and 2n, respectively.

The non-central chi-square distribution with df= n degrees of freedom and non-centrality
parameter ncp = A has density

fly=e 2y P p)

r=0

for x > 0.

Value

dchisq gives the density, pchisq gives the distribution function, qchisq gives the quantile
function, and rchisq generates random deviates.

See Also

dgamma for the Gamma distribution which generalizes the chi-square one.

Examples

dchisq(1l, df=1:3)
pchisq(1, df= 3)
pchisq(l, df= 3, ncp = 0:4)# includes the above

x <- 1:10

Chisquare(df = 2) is a special exponential distribution
all.equal(dchisq(x, df=2), dexp(x, 1/2))
all.equal(pchisq(x, df=2), pexp(x, 1/2))

62 chol

chol The Choleski Decomposition chol

Description

Compute the Choleski factorization of a symmetric (Hermitian), positive definite square
matrix.

Usage

chol (x)

Arguments

X a symmetric, positive definite matrix.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that
R'R = z (see example).

Note that effectively, only the upper triangular part of x is used such that the above only
holds when x is symmetric.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: STAM Publications.

See Also

chol2inv for its inverse, backsolve for solving linear systems with upper triangular left
sides.

qr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))

(cm <= chol(m))

t(cm) %*%h cm #-- = 'm’

all(abs(m - t(cm) %*% cm) < 100* .Machine$double.eps) # TRUE

chol2inv 63

chol2inv Inverse from Choleski Decomposition chol2inv

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition.

Usage

chol2inv(x, size = ncol(x))

Arguments
X a matrix. The first nc columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.
size the number of columns of x containing the Choleski decomposition.
Value

The inverse of the decomposed matrix.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: STAM Publications.

See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
t(cma) %*% cma # = ma
all.equal(diag(3), ma %*% chol2inv(cma))

chull Compute Convexr Hull of a Set of Points chull

Description

Computes the subset of points which lie on the convex hull of the set of points specified.

Usage
chull(x, y=NULL)

Arguments

X, ¥ coordinate vectors of points. This can be specified as two vectors x and
y, a 2-column matrix x, a list x with components x and y

64 class

Details

xy.coords is used to interpret the specification of the points. The algorithm is that given
by Eddy (1977).

‘Peeling’ as used in the S function chull can be implemented by calling chull recursively.

Value

An integer vector giving the indices of the points lying on the convex hull, in clockwise
order.

Author(s)
B. D. Ripley

References

Eddy, W. F. (1977) A new convex hull algorithm for planar sets. ACM Transactions on
Mathematical Software, 3, 398-403.

Eddy, W. F. (1977) Algorithm 523. CONVEX, A new convex hull algorithm for planar
sets[Z]. ACM Transactions on Mathematical Software, 3, 411-412.

See Also

xy.coords,polygon

Examples

X <- matrix(rnorm(2000), ncol=2)
plot (X, cex=0.5)

hpts <- chull(X)

hpts <- c(hpts, hpts[1])
lines(X[hpts, 1)

class Object Classes class

Description

R possesses a simple generic function mechanism which can be used for an object-oriented
style of programming. Method despatch takes place based on the class of the first argument
to the generic function.

Usage

class(x)

class(x) <- names
unclass(x)
inherits(x, name)

close.socket 65

Details

An R “object” is a data object which has a class attribute. A class attribute is a vector of
character strings giving the names of the classes which the object “inherits” from. When a
generic function fun is applied to an object with class attribute c("first", "second"),
the system searches for a function called fun.first and, if it finds it, applies it to the
object. If no such function is found, a function called fun.second is tried. If no class name
produces a suitable function, the function fun.default is used.

The function class prints the vector of names of classes an object inherits from. Corres-
pondingly, class<- sets the classes an object inherits from.

unclass returns (a copy of) its argument with its class information removed.

inherits indicates whether its first argument inherits from a class with name equal to its
second argument.

See Also

UseMethod, NextMethod.

close.socket Close a Socket close.socket

Description

Closes the socket and frees the space in the file descriptor table. The port may not be freed
immediately.

Usage

close.socket (socket)

Arguments

socket A socket object

Value

logical indicating success or failure

Author(s)

Thomas Lumley

See Also

make.socket, read.socket

66 codes

co2 Mauna Loa Atmospheric CO2 Concentration co2

Description

Atmospheric concentrations of COs are expressed in parts per million (ppm) and reported
in the preliminary 1997 SIO manometric mole fraction scale.

Usage

data(co2)

Format

A time series of 468 observations; monthly from 1959 to 1997.

Details

The values for February, March and April of 1964 were missing and have been obtained by
interpolating linearly between the values for January and May of 1964.

Source

Keeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), University of
California, La Jolla, California USA 92093-0220.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

Examples

data(co2)

plot(co2, ylab = expression("Atmospheric concentration of C0"[2]),
las = 1)

title(main = "co2 data set")

codes Factor Codes codes

Description
This (generic) function returns a numeric coding of a factor. It can also be used to assign
to a factor using the coded form.

Usage

codes (x)
codes(x) <- value

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2

coefficients 67

Value

For an ordered factor, it returns the internal coding (1 for the lowest group, 2 for the second
lowest, etc.).

For an unordered factor, an alphabetical ordering of the levels is assumed, i.e the level
that is coded 1 is the one whose name is sorted first according to the prevailing collating
sequence. Warning: the sort order may well depend on the locale, and should not be
assumed to be ASCII.

Note

Normally codes is not the appropriate function to use with an unordered factor. Use
unclass or as.numeric to extract the codes used in the internal representation of the
factor, as these do not assume that the codes are sorted.

See Also

factor, levels, nlevels.

Examples

codes (rep(factor(c(20,10)),3))

x <- gl(3,5)
codes(x) [3] <- 2
X

data(esoph)
(ag <- esoph$alcgpl[12:1])
codes (ag)

codes(factor(1:10)) # BEWARE!

coefficients Ezxtract Model Coefficients coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by mod-
eling functions. coefficients is an alias (.Alias) for it.

Usage
coef(x, ...)
coefficients(x, ...)
Arguments
X an object for which the extraction of model coefficients is meaningful.

other arguments.

68 col

Details

All object classes which are returned by model fitting functions should provide a coef
method. (Note that the method is coef and not coefficients.)

Value

Coeflicients extracted from the model object x.

See Also

fitted.values and residuals for related methods; glm, 1m for model fitting.

Examples

x <- 1:5; coef(Im(c(1:3,7,6) ~ x))

col Column Indezes col

Description

Returns a matrix of integers indicating their column number in the matrix.

Usage

col(x, as.factor=FALSE)

Arguments
X a matrix.
as.factor a logical value indicating whether the value should be returned as a factor
rather than as numeric.
Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to j.

See Also

row to get rows.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)
ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix
x <- matrix(0, nr = 5, nc = 5)
x[row(x) == col(x)] <- 1

colors 69

colors Color Names colors

Description

Returns the built-in color names which R knows about.

Usage

colors()

Detalils

These color names can be used with a col= specification in graphics functions.

An even wider variety of colors can be created with primitives rgb and hsv or the derived
rainbow, heat.colors, etc.

Value

A character vector containing all the built-in color names.

See Also
palette for setting the “palette” of colors for par (col=<num>); rgb, hsv, gray; rainbow

for a nice example; and heat.colors, topo.colors for images.

Examples

str(colors())

commandArgs Extract Command Line Arquments commandArgs

Description

Provides access to a copy of the command line arguments supplied when this R session was
invoked.

Usage

commandArgs ()

Details

These arguments are captured before the standard R command line processing takes place.
This means that they are the unmodified values. If it were useful, we could provide support
an argument which indicated whether we want the unprocessed or processed values.

70 comment

Value

A character vector containing the name of the executable and the user-supplied command
line arguments. The first element is the name of the executable by which R was invoked.
As far as I am aware, the exact form of this element is platform dependent. It may be the
fully qualified name, or simply the last component (or basename) of the application.

Examples

commandArgs ()
Spawn a copy of this application as it was invoked.
system(paste(commandArgs(), collapse=" "))

comment Query or Set a ‘Comment’ Attribute comment

Description

These functions set and query a comment attribute for any R objects. This is typically
useful for data.frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Usage

comment (x)
comment (x) <- value

Arguments
X any R object
value a character vector
See Also

attributes and attr for “normal” attributes.

Examples

x <- matrix(1:12, 3,4)

comment (x) <- c("This is my very important data from experiment #0234",
"Jun 5, 1998")

b4

comment (x)

Comparison 71

Comparison Relational Operators Comparison

Description

Binary operators which allow the comparison of values in vectors.

Usage
x <y
X >y
x <= y
X >= y
X == y
x !l=y

Value

A vector of logicals indicating the result of the element by element comparison. The elements
of shorter vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conform-
able.

Examples

x <- rnorm(20)
x <1
x[x > 0]

complete.cases Find Complete Cases complete.cases

Description

Return a logical vector indicating which cases are complete, i.e., have no missing values.

Usage

complete.cases(...)

Arguments
a sequence of vectors, matrices and data frames.
Value
A logical vector specifying which observations/rows have no missing values across the entire
sequence.
See Also

is.na, na.omit, na.fail.

72 complex

Examples

data(airquality)
x <- airquality[, -1] # x is a regression design matrix
y <- airquality[, 1] # y is the corresponding response

all(!complete.cases(y) == is.na(y)) #--> TRUE
ok <- complete.cases(x,y)

sum(!ok) # how many are not "ok" ?

x <- x[ok,]

y <- ylok]

complex Complex Vectors complex

Description

These are basic functions which support complex arithmetic in R. Complex vectors can be
created with complex. The vector can be specified either by giving its length, its real and
imaginary parts, or modulus and argument.

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(z)

is.complex(z)

Re(z)
Im(z)
Mod (z)
Arg(z)
Conj(2)

Detalils

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the
real part, imaginary part, modulus, argument and complex conjugate for complex values.
Modulus and argument are also called the polar coordinates. If z = x + iy with real x and
y, Mod(2) = v/22 4 y2, and for ¢ = Arg(z), x = cos(¢) and y = sin(¢).

In addition, the elementary trigonometric, logarithmic and exponential functions are avail-
able for complex values.

Examples

(z<-0i "~ (-3:3))

all(Re(z) == 0 =~ (-3:3))

matrix(1i~ (-6:5), nr=4)#- all columns are the same
0 © 1i # a complex NaN

create a complex normal vector
z <- complex(real = rnorm(100), imag = rnorm(100))

conflicts 73

or also (less efficiently):
z2 <= 1:2 + 1ix(8:9)

all(Mod (1 - sin(z) / ((exp(lixz)-exp(-1ix*z))/(2*%1i)))
< 100*.Machine$double.eps)
The Arg(.) is an angle:
zz <- (rep(1:4,len=9) + 1i%(9:1))/10
zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)
plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,
main = expression(paste("Rotation by "," ", pi == 18070)))
abline (h=0,v=0, col="blue", lty=3)
points(zz.shift, col="orange")

conflicts Search for Masked Objects on the Search Path conflicts

Description

conflicts reports on objects that exist with the same name in two or more places on the
search path, usually because an object in the global environment or a package is masking
a system object of the same name. This helps discover unintentional masking.

Usage

conflicts(where=search(), detail=FALSE)

Arguments
where A subset of the search path, by default the whole search path.
detail If TRUE, give the masked or masking functions for all members of the
search path.
Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty
vectors are omitted.

Author(s)
B.D. Ripley

Examples

Im <- 1:3

conflicts(, TRUE)

gives something like
$.GlobalEnv

[1] "lm"

$package:base

#
#
#
#
[1] "1m"
#

74 Constants

Constants Built-in Constants Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name

pi

Detalils

R has a limited number of built-in constants (there is also a rather larger library of data
sets which can be loaded with the function data).

The following constants are available:

e LETTERS: the 26 upper-case letters of the Roman alphabet;
e letters: the 26 lower-case letters of the Roman alphabet;

month.abb: the three-letter abbreviations for the English month names;

month.name: the English names for the months of the year;

pi: the ratio of the circumference of a circle to its diameter.

See Also

data.

Examples

all(nchar(letters) == 1) # TRUE
all(month.abb == substr(month.name, 1, 3)) # TRUE

eps <- .Machine$double.eps
all.equal(pi, 4*atan(1l), tol= 2*eps)

John Machin (1705) computed 100 decimals of pi :
all.equal(pi/4, 4*atan(1/5) - atan(1/239), 4*eps)

contour 75
contour Display Contours contour
Description

Create a contour plot, or add contour lines to an existing plot.

Usage

contour(x = se
z,
nlevel
x1lim =
ylim =
zlim =
labcex
vfont
col =
add =

Arguments

X,y

Z

nlevels

levels

labels

labcex

drawlabels

method

viont

xlim, ylim, zl

col
1ty
lwd
add

q(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)),

s = 10, levels = pretty(zlim, nlevels), labels = NULL,
range(x, finite = TRUE),
range(y, finite = TRUE),
range(z, finite TRUE) ,
= 0.6, drawlabels = TRUE, method = "flattest",
= c("sans serif", "plain"),
par("fg"), lty = par("lty"), lwd = par("lwd"),
FALSE, ...)

locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

number of contour levels desired iff levels is not supplied.

numeric vector of levels at which to draw contour lines.

a vector giving the labels for the contour lines. If NULL then the levels are
used as labels.

cex for contour labelling.

logical. Contours are labelled if TRUE.

character string specifying where the labels will be located. Possible values

are "simple", "edge" and "flattest" (the default). See the Details
section.

if a character vector of length 2 is specified, then Hershey vector fonts
are used for the contour labels. The first element of the vector selects a
typeface and the second element selects a fontindex (see text for more
information).

im

x-, y- and z-limits for the plot.

color for the lines drawn.

line type for the lines drawn.

line width for the lines drawn.

logical. If TRUE, add to a current plot.

additional graphical parameters (see par) and the arguments to title
may also be supplied.

76 contour

Details

There is currently no documentation about the algorithm. The source code is in
‘$R_HOME /src/main/plot3d.c’.

The methods for positioning the labels on contours are "simple" (draw at the edge of the
plot, overlaying the contour line), "edge" (draw at the edge of the plot, embedded in the
contour line, with no labels overlapping) and "flattest" (draw on the flattest section of
the contour, embedded in the contour line, with no labels overlapping). The second and
third may not draw a label on every contour line.

For information about vector fonts, see the help for text and Hershey.

See Also

filled.contour for “color-filled” contours, image and the graphics demo which can be
invoked as demo(graphics).

Examples
x <- -6:16
op <- par(mfrow = c(2, 2))
contour (outer(x, x), method = "edge", vfont = c("sans serif", "plain"))

z <- outer(x, sqrt(abs(x)), FUN = "/")
Should not be necessary:
z['is.finite(z)] <- NA
image(x, x, z)
contour(x, x, z, col = "pink", add = TRUE, method = "edge",
vfont = c("sans serif", "plain"))
contour(x, x, z, ylim = c(1, 6), method = "simple", labcex = 1)
contour(x, x, z, ylim = c(-6, 6), nlev = 20, 1ty = 2, method = "simple")
par (op)

Persian Rug Art:

x <~ y <- seq(-4xpi, 4*pi, len = 27)

r <- sqgrt(outer(x”2, y~2, "+"))

opar <- par(mfrow = c(2, 2), mar = rep(0, 4))

for(f in pi~(0:3)) contour(cos(r~2)*exp(-r/f), drawlabels = F)

data("volcano")
rx <- range(x <- 10*1:nrow(volcano))
ry <- range(y <- 10*1:ncol(volcano))
ry <- ry + c(-1,1) * (diff(rx) - diff(ry))/2
tcol <- terrain.colors(12)
par(opar); par(mfrow=c(1,1)); opar <- par(pty = "s", bg = "lightcyan")
plot(x = 0, y = O,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")
u <- par("usr")
rect(ul1], ul3], ul2], ul4], col = tcol[8], border = "red")
contour(x, y, volcano, col = tcol[2], 1ty = "solid", add = TRUE,
vfont = c("sans serif", "plain"))
title("A Topographic Map of Maunga Whau", font = 4)
abline(h = 200%0:4, v = 200%0:4, col = "lightgray", lty = 2, lwd = 0.1)
par (opar)

contrast 77

contrast Contrast Matrices contrast

Description

Return a matrix of contrasts.

Usage

contr.helmert(n, contrasts = TRUE)
contr.poly(n, contrasts = TRUE)

contr.sum(n, contrasts = TRUE)
contr.treatment(n, base = 1, contrasts = TRUE)

Arguments

n a vector of levels for a factor, or the number of levels.

contrasts a logical indicating whether contrasts should be computed.

base an integer specifying which group is considered the baseline group.
Details

These functions are used for creating contrast matrices for use in fitting analysis of variance
and regression models. The columns of the resulting matrices contain contrasts which can be
used for coding a factor with n levels. The returned value contains the computed contrasts.
If the argument contrasts is FALSE then an additional column of ones is prepended to the
matrix.

Note that as from R version 0.62.2, contr.poly returns contrasts based on orthogonal
(rather than raw) polynomials.

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts
is FALSE.

See Also

contrasts, C, and aov, glm, 1lm.

Examples

(cH <- contr.helmert(4))
apply(cH, 2,sum)# column sums are O!
crossprod(cH)# diagonal -- columns are orthogonal

(cT <- contr.treatment(5))
all(crossprod(cT) == diag(4))# TRUE: even orthonormal

(cP <- contr.poly(3))# Linear and Quadratic
zapsmall (crossprod(cP), dig=15) # orthonormal up to fuzz

78 contributors

contrasts Get and Set Contrast Matrices contrasts

Description

Set and view the contrasts associated with a factor.

Usage

contrasts(x)
contrasts(x) <- ctr

Arguments
X a factor.
ctr either a matrix whose columns give coefficients for contrasts in the levels
of x, or the (quoted) name of a function which computes such matrices.
Details
If contrasts are not set for a factor the default functions from options("contrasts") are
used.
See Also

C, contr.helmert, contr.poly, contr.sum, contr.treatment; glm, aov, 1m.

Examples

example(factor)

(fff <- factor(ff))
contrasts(fff) # treatment
contrasts(C(£fff, sum))

contributors R Project Contributors contributors

Description

The R Who-is-who.

The R Project

R is a project which is attempting to provide a modern piece of statistical software for the
GNU suite of software.

Control 79

Contributors

The current R is the result of a collaborative effort authors from all over the world.

R was initially written by Robert Gentleman and Ross Thaka—also known as “R & R”—of
the Statistics Department of the University of Auckland.

Since mid-1997 there has been a core group with write access to the R source, currently
consisting of

e Douglas Bates

e Peter Dalgaard

e Robert Gentleman
o Kurt Hornik

e Ross Thaka

e Friedrich Leisch

e Thomas Lumley

e Martin Maechler
e Guido Masarotto
e Paul Murrell

e Brian Ripley

e Duncan Temple Lang

e Luke Tierney

plus Heiner Schwarte up to October 1999.

In addition, a large group of individuals has contributed to R by donating code, bug reports
and documentation, notably

Valerio Aimale, Thomas Baier, Ben Bolker, Goran Brostrom, Saikat DebRoy, Lyndon
Drake, Paul Gilbert, Robert King, Philippe Lambert, Patrick Lindsey, Jim Lindsey, John
Maindonald, Jens Oehlschaegel-Akiyoshi, Steve Oncley and Gordon Maclean, Richard
Okeefe, Hubert Palme, Jose Pinheiro, Martyn Plummer, Jonathan Rougier, Bill Simpson,
Adrian Trapletti, Terry Therneau, Bill Venables, Gregory R. Warnes, and Andreas Wein-
gessel.

We have probably omitted some important names here because of incomplete record keep-
ing. If we have overlooked you, please let us know and we’ll update the list.

A special debt is owed to John Chambers who has graciously contributed advice and en-
couragement.

Control Control Flow Control

Description

These are the basic control-flow constructs of the R language. They function in much the
same way as control statements in any algol-like language.

80 convolve

Usage

if (cond) expr

if(cond) cons.expr else alt.expr
for(var in seq) expr

while(cond) expr

repeat expr

break

next

See Also

ifelse, switch.

Examples

for(i in 1:5) print(1:i)

convolve Fast Convolution convolve

Description

Use the Fast Fourier Transform to compute the several kinds of convolutions of two se-
quences.

Usage

convolve(x, y, conj = TRUE, type = c("circular", "open", "filter"))

Arguments
X,y numeric sequences of the same length to be convolved.
conj logical; if TRUE, take the complex conjugate before back-transforming (de-
fault, and used for usual convolution).
type character; one of "circular", "open", "filter" (beginning of word is
ok). For circular, the two sequences are treated as circular, i.e., periodic.
For open and filter, the sequences are padded with Os (from left and
right) first; "filter" returns the middle sub-vector of "open", namely,
the result of running a weighted mean of x with weights y.
Details

The Fast Fourier Transform, fft, is used for efficiency.
The input sequences x and y must have the same length if circular is true.

Note that the usual definition of convolution of two sequences x and y is given by con-
volve(x, rev(y), type = "o").

coplot 81

Value

If r <~ convolve(x,y, type = "open") and n <- length(x), m <- length(y), then
Tk = Zwk—mﬂyi
i

where the sum is over all valid indices i, for k=1,...,n+m — 1

If type == "circular", n = m is required, and the above is true for i,k = 1,...,n when
Tj 1= Tpyj for j < 1.

References

Brillinger, D. R. (1981) Time Series: Data Analysis and Theory, Second Edition. San
Francisco: Holden-Day.

See Also

fft, nextn.

Examples

x <- ¢(0,0,0,100,0,0,0)
y <- ¢(0,0,1, 2 ,1,0,0)/4
zapsmall(convolve(x,y)) # *NOT* what you first thought..
zapsmall(convolve(x, y[3:5], type="f")) # rather
x <- rnorm(50)
y <- rnorm(50)
Circular convolution *has* this symmetry:
all.equal(convolve(x,y, conj = FALSE),
rev(convolve(rev(y),x)))

n <- length(x <- -20:24)
y <- (x-10)"2/1000 + rnorm(x)/8

Han <- function(y) # Hanning
convolve(y, c(1,2,1)/4, type = "filter")

plot(x,y, main="Using convolve(.) for Hanning filters")
lines(x[-c(1 , n)], Han(y), col="red")
lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd=2, col="dark blue")

coplot Conditioning Plots coplot

Description

This function produces two variants of the conditioning plots discussed in the reference
below.

82

Usage

coplot

coplot(formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),

xlab =
ylab =
number

paste("Given :", a.name),
paste("Given :", b.name),
= 6, overlap = 0.5, ...)

co.intervals(x, number = 6, overlap = 0.5)

Arguments

formula

data

given.values

panel

rows

columns

show.given

col

pch

xlab
ylab

number

overlap

a formula describing the form of conditioning plot. A formula of the form y
" x | aindicates that plots of y versus x should be produced conditional
on the variable a. A formula of the form y ~ x| a * b indicates that
plots of y versus x should be produced conditional on the two variables a
and b.

x and y must be numeric, but a and b may be either numeric or factors.

a data frame containing values for any variables in the formula. By default
the environment where coplot was called from is used.

a value or list of two values which determine how the conditioning on a
and b is to take place.

When there is no b (i.e., conditioning only on a), usually this is a matrix
with two columns each row of which gives an interval, to be conditioned
on, but is can also be a single vector of numbers or a set of factor levels
(if the variable being conditioned on is a factor). In this case (no b),
the result of co.intervals(..) can be used directly as given.values
argument.

a function(x,y, col, pch, ...) which gives the action to be carried
out in each panel of the display. The default is points.

the panels of the plot are laid out in a rows by columns array. rows gives
the number of rows in the array.

the number of columns in the panel layout array.

logical (possibly of length 2 for 2 conditioning variables): should condi-
tioning plots be shown for the corresponding conditioning variables (de-
fault TRUE)

a vector of colors to be used to plot the points. If too short, the values
are recycled.

a vector of plotting symbols or characters. If too short, the values are
recycled.

character; label to use for the 1st conditioning variable.
character; label to use for the 2nd conditioning variable.

integer; the number of conditioning intervals, possibly of length 2 for x
and y direction.

numeric < 1; the fraction of overlap of the conditioning variables, possibly
of length 2 for x and y direction. When overlap < 0, there will be gaps
between the data slices.

additional arguments to the panel function.

copyright

Value

83

co.intervals(., number, .) returns a (number X 2) matrix, say ci, where cilk,] is

the range of x values for the k-th interval.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also

pairs, panel.smooth, points.

Examples

Tonga Trench Earthquakes

data(quakes)

coplot(long ~ lat | depth, data = quakes)

given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)
coplot(long ~ lat | depth, data = quakes, given.values=given.depth)

Conditioning on 2 variables:
1l.dm <- long ~ lat | depth * mag
coplot(ll.dm, data = quakes)
coplot(1l.dm, data = quakes, number=c(4,7), show.given = c(T,F))
coplot(ll.dm, data = quakes, number=c(3,7),
overlap=c(-.5,.1)) # negative overlap DROPS values

data(warpbreaks)
given two factors

coplot(breaks ~ 1:54 | wool * tension, data = warpbreaks, col = ’red’)

Example with empty panels:

data(state)

attach(data.frame(state.x77))#> don’t need ‘data’ arg. below

coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,
panel = function(x, y, ...) panel.smooth(x, y, span = .8,

detach() # data.frame(state.x77)

copyright Copyrights of Files Used to Build R

copyright

Description

R is released under the ‘GNU Public License’: see ?1license for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some
of the software used has conditions that the copyright must be explicitly stated: see the
Details section. We are grateful to these people and other contributors (see ?contributors)

for the ability to use their work.

Details
The file ‘SR_.HOME/COPYRIGHTS’ lists the copyrights in full detail.

84 cor

cor Correlation and Covariance Matrices cor

Description

Compute the correlation or covariance matrix of the columns of x and the columns of y.

Usage

cor(x, y=x, use="all.obs")
cov(x, y=x, use="all.obs")

Arguments
X a matrix or data frame.
y a matrix or data frame.
use a character string giving the method for handling missing observations.
This must be one of the stringss "all.obs", "complete.obs" or "pair-
wise.complete.obs" (abbreviations are acceptable).
Details

If use is "all.obs", then the presence of missing observations will cause the computation
to fail. If use has the value "complete.obs" then missing values are handled by casewise
deletion. Finally, if use has the value "pairwise.complete.obs" then the correlation
between each pair of variables is computed using all complete pairs of observations on
those variables. This can result in covariance or correlation matrices which are not positive
semidefinite.

See Also

cov.wt for weighted covariance computation.

Examples

Two simple vectors
cor(1:10,2:11)# ==

Correlation Matrix of Multivariate sample:
data(longley)

(C1 <- cor(longley))

Graphical Correlation Matrix:

symnum(Cl) # highly correlated

##--- Missing value treatment:

data(swiss)

C1 <- cov(swiss)

range(eigen(Cl, only=T)$val) # 6.19 1921

swiss[1,2] <- swiss[7,3] <- swiss[25,5] <- NA # create 3 "missing"

C2 <- cov(swiss) # Error: missing obs...

C2 <- cov(swiss, use = "complete")

count.fields 85

range(eigen(C2, only=T)$val) # 6.46 1930
C3 <- cov(swiss, use = "pairwise")
range(eigen(C3, only=T)$val) # 6.19 1938

count.fields Count the Number of Fields per Line count.fields

Description

count.fields counts the number of fields, as separated by sep, in each of the lines of file
read. It is used by read.table; a user will typically have no need for it.

Usage
count.fields(file, sep = "", quote = "", skip = 0)
Arguments
file a character string naming an ASCII data file
sep the field separator character. Values on each line of the file are separ-
ated by this character. By default, arbitrary amounts of whitespace can
separate fields.
quote the set of quoting characters
skip the number of lines of the data file to skip before beginning to read data.
Value

A vector with the numbers of fields found.

See Also

read.table

Examples

cat ("NAME", "1:John", "2:Paul", file = "foo", sep = "\n")
count.fields("foo", sep = ":")
unlink("foo")

86 cov.wt

cov.wt Weighted Covariance Matrices cov.wt

Description

Returns a list containing estimates of the weighted covariance matrix and the mean of the
data, and optionally of the (weighted) correlation matrix.

Usage

cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE)

Arguments
X a matrix or data frame. As usual, rows are observations and columns are
variables.
Wt a non-negative and non-zero vector of weights for each observation. Its
length must equal the number of rows of x.
cor A logical indicating whether the estimated correlation weighted matrix
will be returned as well.
center Either a logical or a numeric vector specifying the centers to be used when
computing covariances. If TRUE, the (weighted) mean of each variable is
used, if FALSE, zero is used. If center is numeric, its length must equal
the number of columns of x.
Detalils

The covariance matrix is divided by one minus the sum of squares of the weights, so if the
weights are the default (1/n) the conventional unbiased estimate of the covariance matrix
with divisor (n — 1) is obtained. This differs from the behaviour in S-PLUS.

Value

A list containing the following named components:

cov the estimated (weighted) covariance matrix
center an estimate for the center (mean) of the data.
n.obs the number of observations (rows) in x.
wt the weights used in the estimation. Only returned if given as an argument.
cor the estimated correlation matrix. Only returned if cor is TRUE.
See Also

cov and var.

crossprod 87

crossprod Matriz Crossproduct crossprod

Description
Given matrices x and y as arguments, crossprod returns their matrix cross-product. This
is formally equivalent to, but faster than, the call t(x) %*% y.

Usage

crossprod(x, y=x)

See Also

%*% and outer product %o%.

Examples

crossprod(1:4) # = sum(1l + 272 + 372 + 472)
drop(.Last.value) # scalarized

cumsum Cumulative Sums, Products, and FExtremes cumsum

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of
the elements of the argument.

Usage

cumsum (x)
cumprod (x)
cummax (x)
cummin (x)

Arguments

X a numeric object.

Details

An NA value in x causes the corresponding and following elements of the return value to be
NA.

Examples

cumsum(1:10)
cumprod (1:10)
cummin(c(3:1,
cummax(c(3:1,

NN
o O

88 curve

curve Draw Function Plots curve

Description

Draws a curve corresponding to the given function or expression (in x) over the interval

[from,to].
Usage

curve(expr, from, to, n = 101, add = FALSE, type = "1",

ylab = NULL, log = NULL, ...)

plot.function(fn, from = 0, to = 1, n = 101, ...)
Arguments

expr an expression written as a function of x, or alternatively a function which

will be plotted.

fn a ‘vectorizing’ numeric R function.

from,to the range over which the function will be plotted.

n integer; the number of x values at which to evaluate.

add logical; if TRUE add to already existing plot.

graphical parameters can also be specified as arguments. plot.function
passes all these to curve.

Detalils

The evaluation of expr is at n points equally spaced over the range [from, to]. The points
determined in this way are then joined with straight lines. fn(x) or expr (with x inside)
must return a numeric of the same length as x.

This used to be a quick hack which seems to serve a useful purpose, but can give bad results
for functions which are not smooth.
Value

NULL. For “expensive” expressions, you should use smarter tools.

See Also

splinefun for spline interpolation, lines.

Examples

par (mfrow=c(2,2))
curve(x~3-3*x, -2, 2)
curve(x~2-2, add = TRUE, col = "violet")

curve(sin, -pi, 3*pi)

plot(cos)

chippy <- function(x) sin(cos(x)*exp(-x/2))
curve(chippy, -8, 7, n=2001)

cut 89

for(ll in C("","X","y","Xy"))
curve(log(1+x), 1,100, log=11, sub=paste("log=",11))

cut Convert Numeric to Factor cut

Description

cut divides the range of x into intervals and codes the values in x according to which interval
they fall. The leftmost interval corresponds to level one, the next leftmost to level two and
SO on.

Usage

cut(x, ...)
cut.default(x, breaks, labels = NULL,
include.lowest = FALSE, right = TRUE, dig.lab = 3)

Arguments
X a numeric vector which is to be converted to a factor by cutting.
break either a vector of cut points or number giving the number of intervals
which x is to be cut into.
labels labels for the levels of the resulting category. By default, labels are con-

structed using "(a,b]" interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor.

include.lowest
logical, indicating if an ‘x[i]” equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should closed on the right (and open on
the left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number
of digits used in formatting the break numbers.
Details

If a labels parameter is specified, its values are used to name the factor levels. If none
is specified, the factor level labels are constructed as "(b1l, b2]", "(b2, b3]" etc. for
right=TRUE and as "[bl, b2)", ...if right=FALSE. In this case, dig.lab indicates how
many digits should be used in formatting the numbers b1, b2,

Value

A factor is returned, unless labels = FALSE which results in the mere integer level codes.

Note

Instead of table(cut(x, br)), hist(x, br, plot = FALSE) is more efficient and less
memory hungry.

90

See Also

data

split for splitting a variable according to a group factor; factor, tabulate, table.

Examples

Z <- rnorm(10000)

table(cut(Z, br

= -6:6))
system.time(print (sum(table(cut(Z, br
system.time(print(sum(hist (Z, br

-6:6, labels=FALSE)))))
-6:6, plot=FALSE)$counts)))

cut(rep(1,5),4)#-- dummy
tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <- rep(0:8, tx0)

tx <- table(x)
all(tx == tx0)

table(cut(x, b = 8))

table(cut(x, br
table(cut(x, br

= 3x(-2:5)))
= 3%(-2:5), right = F))

##--- some values OUTSIDE the breaks :

table(cx <- cut(x, br = 2%(0:4)))

table(cxl <- cut(x, br = 2x(0:4), right = F))
which(is.na(cx)); =x[is.na(cx)] #-- the first 9 values O
which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 values 8

Label construction:

y <- rnorm(100)

table(cut(y, breaks = pi/3*(-3:3)))

table(cut(y, breaks

table(cut(y, breaks
table(cut(y, breaks

pi/3%(-3:3), dig.lab=4))

1%(-3:3), dig.lab=4))# extra digits don’t "harm" here
1%(-3:3), right = F))#- the same, since no exact INT!

data

Data Sets data

Description

data loads a data set or lists (via show.data) the available data sets.

Usage

data(..., list
lib.loc =

= character(0), package = .packages(),
.lib.loc)

show.data(package = .packages(), lib.loc = .1lib.loc)

Arguments

list
package

lib.1loc

a sequence of names or character strings
a character vector

a name or character vector giving the packages to look into for data sets.
By default, all packages in the search path are used.

a character vector of directory names of R libraries. Defaults to all lib-
raries currently known.

data 91

Details

Currently, four formats of data files are supported:

1. files ending ‘.RData’ or ‘.rda’ are load()ed.

2. files ending ‘.R’ or ‘.r’ are source()d in, with the R working directory changed tem-
porarily to the directory containing the respective file.

3. files ending ‘.tab’ or ‘.txt’ are read using read.table(..., header = TRUE), and
hence result in a data frame.

4. files ending ‘.csv’ are read using read.table(..., header = TRUE, sep = ";"), and
also result in a data frame.

The data sets to be loaded can be specified as a sequence of names or character strings, or
as the character vector 1ist, or as both. If no data sets are specified or show.data is called
directly, the available data sets are displayed.

If no data sets are specified, data calls show.data. show.data looks for a file ‘00Index’ in a
‘data’ directory of each specified package, and uses these files to prepare a listing. If there
is a ‘data’ area but no index a warning is given: such packages are incomplete.

If 1ib.loc is not specified, the packages are searched for amongst those already loaded,
followed by the data directory (if any) of the currrent working directory. If 1ib.loc is
specified, they are searched for in the specified libraries, even if they are already loaded
from another library.

To just look in the data directory of the current working directory, set package = NULL.

Value
data() returns a character vector of all data sets specified, an empty character vector if
none were specified.

Note

The data files can be many small files. On some file systems it is desirable to save space,
and the text files in the ‘help’ directory of an installed package can be zipped up as a zip
archive ‘Rdata.zip’. You will need to proved a single-column file “filelist’ of file names.

See Also

help for obtaining documentation on data sets.

Examples
data() # list all available data sets
data(package = base) # list the data sets in the base package

data(USArrests, "VADeaths") # load the data sets ‘USArrests and ‘VADeaths’
help (USArrests) # give information on data set ‘USArrests’

92 data.frame

data.class Object Classes data.class

Description

Determine the class of an arbitrary R object.

Usage

data.class(x)

Arguments

X an R object.

Value

character string giving the “class” of x.

The “class” is the (first element) of the class attribute if this is non-NULL, or inferred from
the object’s dim attribute if this is non-NULL, or mode (x).

Simply speaking, data.class(x) returns what is typically useful for method dispatching.
(Or, what the basic creator functions already and maybe eventually all will attach as a class
attribute.)

See Also

class

Examples

x <- LETTERS

data.class(factor(x)) # has a class attribute
data.class(matrix(x, nc = 13)) # has a dim attribute
data.class(list(x)) # the same as mode(x)
data.class(x) # the same as mode(x)
data.frame Data Frames data.frame
Description

These functions create or manipulate data frames, tightly coupled collections of variables
which share many of the properties of matrices and of lists, used as the fundamental data
structure by most of R’s modeling software.

data.frame 93

Usage

data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE)

as.data.frame(x)
is.data.frame(x)

row.names (data.frame.obj)

row.names (data.frame.obj) <- names

print(data.frame.obj, ..., digits = NULL, quote = FALSE, right = TRUE)
plot (data.frame.obj, ...)

Arguments

these arguments are of either the form value or tag=value. Component
names are created based on the tag (if present) or the deparsed argument

itself.
row.names a character vector giving the row names for the data frame.
check.rows if TRUE then the rows are checked for consistency of length and names.
check.names if TRUE then the names of the variables in the data frame are checked to

ensure that they are valid variable names. If necessary they are adjusted
(by make.names) so that they are.

data.frame.obj
objects of class data.frame.

optional arguments to print or plot methods.

Details

Non-numeric variables passed to data.frame are converted to factor columns unless pro-
tected by I. This applies to character and logical variables, in particular. It also applies to
adding columns to a data frame.

If a list or data frame or matrix is passed to data.frame it is as if each column had been
passed as a separate argument, with the exception of matrices of class model .matrix.

Value

For data.frame(.) a data frame, a matrix-like stucture whose columns may be of differing
types (numeric, factor and character).

as.data.frame is generic function with many methods. It attempts to coerce its argument
to be a data frame.

is.data.frame returns TRUE if its argument is a data frame and FALSE otherwise.

row.names can be used to set and retrieve the row names of a data frame, similarly to
rownames for arrays.

plot.data.frame, a method of the plot generic, uses stripplot for one variable,
plot.default (scatterplot) for two variables, and pairs (scatterplot matrix) otherwise.

For the print method (print.data.frame), see print.matrix.

xpdrows.data. frame is an auxiliary function which expands the rows of a data frame. It is
used by the data frame methods of [<- and [[<- (which perform subscripted assignments
on a data frame), and not intended to be called directly.

94 dataentry

See Also

read.table, Math.data.frame,etc, about Group methods for data.frames; make.names.

Examples

L3 <- LETTERS[1:3]

str(d <- data.frame(cbind(x=1, y=1:10), ch=sample(L3, 10, repl=TRUE)))
str(data.frame(cbind(1, 1:10), sample (L3, 10, repl=TRUE)))
is.data.frame(d)

all(1:10 == row.names(d))# TRUE (coercion)

data.matrix Data Frame to Numeric Matrix data.matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode
and then binding them together as the columns of a matrix. Factors and ordered factors
are replaced by their codes.

Usage

data.matrix(frame)

Arguments
frame a data frame whose components are either logical vectors, factors or nu-
meric vectors.
See Also

as.matrix, codes, data.frame, matrix.

dataentry Spreadsheet Interface for Entering Data dataentry

Description
This is a suite of functions designed to make the interface to the spreadsheet painless for
users.

Usage

data.entry(..., Modes = NULL, Names = NULL)
dataentry(data, modes)
de(..., Modes = NULL, Names = NULL)

date 95

Details

data.entry has side effects, any changes made in the spreadsheet are reflected in the
variables. The functions de, de.ncols, de.setup and de.restore are designed to help
achieve these side effects. If the user passes in a matrix, X say, then the matrix is broken
into columns before dataentry is called. Then on return the columns are collected and glued
back together and the result assigned to the variable X. If you don’t want this behaviour
use dataentry directly.

The primitive function is dataentry. It takes a list of vectors of possibly different lengths
and modes (the second argument) and opens a spreadsheet with these variables being the
columns. The columns of the dataentry window are returned as vectors in a list when the
spreadsheet is closed.

de.ncols counts the number of columns which are supplied as arguments to data.entry.
It attempts to count columns in lists, matrices and vectors. de.setup sets things up so
that on return the columns can be regrouped and reassigned to the correct name. This is
handled by de.restore.

See Also

vi, edit.

Examples

call data entry with variables x and y
data.entry(x,y)

date System Date and Time date

Description

Returns a character string of the current system date and time.

Usage

date()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e. length 24, since it relies on
POSIX’ ctime ensuring the above fixed format. Timezone and Daylight Saving Time are
taken account of, but not indicated in the result.

Examples

(d <- date())
nchar(d) == 24

96 debugger

debug Debug a function debug

Description

Set or unset the debugging flag on a function.

Usage

debug (fun)
undebug (fun)

Arguments

fun any interpreted R function.

Details

When a function flagged for debugging is entered, normal execution is suspended and the
body of function is executed one statement at a time. A new browser context is initiated for
each step (and the previous one destroyed). Currently you can only debug functions that
have bodies enclosed in braces. This is a bug and will be fixed soon. You take the next step
by typing carriage return, n or next. You can see the values of variables by typing their
names. Typing c or cont causes the debugger to continue to the end of the function. You
can debug new functions before you step in to them from inside the debugger. Typing Q
quits the current execution and returns you to the top—level prompt. If you have variables
with names that are identical to the controls (eg. ¢ or n) then you need to use print(c)
and print(n) to evaluate them.

See Also
browser, traceback to see the stack after an Error: ... message.
debugger Post-Mortem Debugging debugger
Description

Functions to dump the evaluation environments (frames) and to examine dumped frames.

Usage

dump . frames (dumpto = "last.dump", to.file = FALSE)
debugger (dump = last.dump)

Arguments
dumpto a character string. The name of the object or file to dump to.
to.file logical. Should the dump be to an R object or to a file?

dump An R dump object created by dump.frames

debugger 97

Details

To use post-mortem debugging, set the option error to be a call to dump.frames. By
default this dumps to an R object "last.dump" in the workspace, but it can be set to
dump to a file (as dump of the object produced by a call to save). The dumped object
contain the call stack, the active environments and the last error message as returned by
geterrmessage.

When dumping to file, dumpto gives the name of the dumped object and the file name has
.rda appended.

A dump object of class "dump.frames" can be examined by calling debugger. This will
give the error message and a list of environments from which to select repeatedly. When
an environment is selected, it is copied and the browser called from within the copy.

If dump.frames is installed as the error handler, execution will continue even in non-
interactive sessions. See the examples for how to dump and then quit.

Value

None.

Author(s)
B. D. Ripley

See Also

options for setting error options.
Examples

options(error=quote (dump.frames("testdump", TRUE)))

f <- function() {
g <- function() stop("test dump.frames")
g()
}
f() # will generate a dump on file "testdump.rda"
options (error=NULL)

possibly in another R session
load("testdump.rda")

debugger (testdump)

Available environments had calls:
1: £0O

2: g0

3: stop("test dump.frames")

Enter an environment number, or O to exit
Selection: 1

Browsing in the environment with call:
£0O

Called from: debugger.look(ind)
Browse[1]> 1s()

[11 "g"

Browse[1]> g

98

Defunct

function() stop("test dump.frames")
<environment: 759818>

Browse[1]>

Available environments had calls:
1: £O

2: g0

3: stop("test dump.frames")

Enter an environment number, or O to exit
Selection: 0O

A possible setting for non-interactive sessions
options(error=quote ({dump.frames(to.file=TRUE); q()1}))

Defunct Defunct Functions Defunct

Description

The functions listed here are no longer part of R as they are not needed (any more).

Usage

.Defunct ()

category(x, levels, labels, ordered, exclude)
dnchisq(.)

pnchisq(.)

gnchisq(.)

rnchisq(.)

print.anova.lm(.)

print.anova.glm(.)

print.tabular(.)

print.plot(.)

save.plot(.)

Detalils

category has been an old-S function before there were factors; should be replaced by factor
throughout!

The *chisq() functions now take an optional non-centrality argument, so the *nchisq()
functions are no longer needed.

The new function dev.print() should now be used for saving plots to a file or printing
them.

.Defunct is the function to which defunct functions are set.

See Also

Deprecated

delay 99

delay Delay Evaluation delay

Description

delay creates a promise to evaluate the given expression in the specifies environment if its
value is requested. This provides direct access to lazy evaluation mechanism used by R for
the evaluation of (interpreted) functions.

Usage

delay(expr, env=.GlobalEnv)

Arguments

expr an expression.

env an evaluation environment
Details

This is an experimental feature and its addition is purely for evaluation purposes.

Value

A promise to evaluate the expression. The value which is returned by delay can be assigned
without forcing its evaluation, but any further accesses will cause evaluation.

Examples

x <- delay({
for(i in 1:7)
cat ("yippee!\n")
10
1))

x"2#- yippee
X" 2#- simple number

delete.response Modify Terms Objects delete.response

Description

delete.response returns a terms object for the same model but with no response variable.
drop.terms removes variables from the right-hand side of the model.

reformulate creates a formula from a vector of strings.

Usage

delete.response(termobj)
reformulate(termlabels,response=NULL)
drop.terms(termobj, dropx = NULL, keep.response = FALSE)

100 demo

Arguments
termobj A terms object
termlabels vector of strings giving the right-hand side of a model formula
response string giving the left-hand side of a model formula
dropx vector of positions of variables to drop from the right-hand side of the

model

keep.response Keep the response in the resulting object?

Value

delete.response and drop.terms return a terms object.

reformulate returns a formula.

See Also

terms

Examples

ff<-y " z+x+w

tt <- terms(ff)

tt

delete.response(tt)

drop.terms(tt, 2:3, keep.response = T)
reformulate(attr(tt, "term.labels"))

demo Demonstrations of R functions demo

Description
demo is a user-friendly interface to running some demonstration R scripts. demo() gives the
list of available topics.

Usage

demo(topic, device = getOption("device"))

Arguments
topic The topic which should be demonstrated. If omitted, the list of available
topics is displayed.
device The graphics device to be used.
See Also

source which is called by demo.

Examples

demo (1m. glm)

density 101
density Kernel Density Estimation density
Description

The function density computes kernel density estimates with the given kernel and band-

width.

The generic functions plot and print have methods for density objects.

Usage

density(x, bw,

adjust =1,

kernel=c("gaussian", "epanechnikov", "rectangular", "triangular",

window

"biweight", "cosine", "optcosine"),
= kernel, width,

give.Rkern = FALSE,

n = 512, from, to, cut = 3, na.rm = FALSE)
print (dobj)
plot(dobj, main = NULL, xlab = NULL, ylab = "Density", type = "1",
zero.line = TRUE, ...)
Arguments

X the data from which the estimate is to be computed.

bw the smoothing bandwidth to be used. The kernels are scaled such that
this is the standard deviation of the smoothing kernel. It defaults to 0.9
times the minimum of the standard deviation and the interquartile range
divided by 1.34 times the sample size to the negative one-fifth power (=
Silverman’s “rule of thumb”) unless the quartiles coincide where bw > 0
will be guaranteed. The specified (or default) value of bw is multiplied by
adjust.

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify

kernel ,window

width

give.Rkern

from,to

values like “half the default” bandwidth.

a character string giving the smoothing kernel to be used. This must
be one of "gaussian", "rectangular", "triangular", "epanechnikov",
"biweight", "cosine" or "optcosine", with default "gaussian", and

may be abbreviated to a unique prefix (single letter).

"cosine" is smoother than "optcosine", which is the usual “cosine” ker-
nel in the literature and almost MSE-efficient.

this exists for compatibility with S; if given, and bw is not, will set bw =
width/4.

logical; if true, no density is estimated, and the “canonical bandwidth” of
the chosen kernel is returned instead.

the number of equally spaced points at which the density is to be estim-
ated. Whenn > 512, it is rounded up to the next power of 2 for efficiency
reasons (fft).

the left and right-most points of the grid at which the density is to be
estimated.

102 density

cut by default, the values of left and right are cut bandwidths beyond
the extremes of the data. This allows the estimated density to drop to
approximately zero at the extremes.

na.rm logical; if TRUE, missing values are removed from x. If FALSE any missing
values cause an error.

dobj a “density” object.
main, xlab, ylab, type
plotting parameters with useful defaults.

further plotting parameters.

zero.line logical; if TRUE, add a base line at y =0

Details

The algorithm used in density disperses the mass of the empirical distribution function over
a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this
approximation with a discretized version of the kernel and then uses linear approximation
to evaluate the density at the specified points.

The statistical properties of a kernel are determined by o7 = [#*K(t)dt which is always
= 1 for our kernels (and hence the bandwidth bw is the standard deviation of the kernel)
and R(K) = [K?(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional to ox R(K) which is
scale invariant and for our kernels equal to R(K). This value is returned when give.Rkern
= TRUE. See the examples for using exact equivalent bandwidths.

Infinite values in x are assumed to correspond to a point mass at +/-Inf and the density
estimate is of the sub-density on (-Inf, +Inf).

Value

If give.Rkern is true, the number R(K), otherwise an object with class "density" whose
underlying structure is a list containing the following components.

X the n coordinates of the points where the density is estimated.
y the estimated density values.
bw the bandwidth used.
N the sample size after elimination of missing values.
call the call which produced the result.
data.name the deparsed name of the x argument.
has.na logical, for compatibility (always FALSE).
References

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and B. D. Ripley (1994, 7, 9) Modern Applied Statistics with S-PLUS. New
York: Springer.

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization.
New York: Wiley.

Sheather, S. J. and Jones M. C. (1991) A reliable data-based bandwidth selection method
for kernel density estimation. J. Roy. Statist. Soc. B, 683-690.

deparse 103

See Also

hist.

Examples

plot(density(c(-20,rep(0,98),20)), xlim = c(-4,4))# IQR = O

The 01d Faithful geyser data
data(faithful)

d <- density(faithful$eruptions, bw = 0.15)
d

plot(d)

plot(d, type = "n"
polygon(d, col = "wheat")

Missing values:

x <- xx <- faithful$eruptions

x[i.out <- sample(length(x), 10)] <- NA
doR <- density(x, bw = 0.15, na.rm = TRUE)
lines(doR, col = "blue")

points(xx[i.out], rep(.01,10))

(kernels <- eval(formals(density)$kernel))

plot (density(0,bw = 1))
for(i in 2:length(kernels))
lines(density(0,bw = 1, kern = kernels[i]), col = i)
mtext(side = 3, "R’s density() kernels with bw = 1")
legend(1.5,.4, leg = kernels, col = seq(kernels),lty = 1, cex = .8, y.int = 1)

(RKs <- cbind(sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))))
100*round (RKs ["epanechnikov",]/RKs, 4) ## Efficiencies

data(precip)
plot(density(precip, n = 2713))
for(i in 2:length(kernels))
lines(density(precip, kern = kernels[i], n = 2713), col = i)
mtext(side = 3, "same scale bandwidths, 7 different kernels")

Bandwidth Adjustment for "Exactly Equivalent Kernels"

h.f <- sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))
(h.f <~ (h.f["gaussian"] / h.£)"~ .2)

-> 1, 1.01, .995, 1.007,... close to 1 => adjustment barely visible..

plot(density(precip, n = 2713))
for(i in 2:length(kernels))
lines(density(precip, adjust = h.f[i], kern = kernels[i], n = 2713),
col = i)
mtext(side = 3, "equivalent bandwidths, 7 different kernels")
legend(55,.035, leg = kernels, col = seq(kernels), 1ty = 1)

deparse Ezxpression Deparsing deparse

104 Deprecated

Description

Turn unevaluated expressions into character strings.

Usage

deparse (expr, width.cutoff = 60)

Arguments

expr any R expression.

width.cutoff integer in [20,500] determining the cutoff at which line-breaking is tried.

Detalils

This function turns unevaluated expressions (where “expression” is taken in a wider sense
than the strict concept of a vector of mode "expression" used in expression) into char-
acter strings (a kind of inverse parse).

A typical use of this is to create informative labels for data sets and plots. The example
shows a simple use of this facility. It uses the functions deparse and substitute to create
labels for a plot which are character string versions of the actual arguments to the function
myplot.

See Also

substitute, parse, expression.

Examples

deparse (args(1m))
deparse(args(lm), width = 100)
myplot <-
function(x, y)
plot(x, y, xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)))

Deprecated Deprecated Functions Deprecated

Description

These functions are provided for compatibility with older versions of R only, and may be
defunct as soon as of the next release.

.Deprecated("<new name>") is called from deprecated functions.

Usage

.Deprecated (new)

See Also

Defunct

deriv 105
deriv Symbolic and Algomthmlc.Derwatwes of Simple deriv
FExpressions
Description

Compute derivatives of simple expressions, symbolically.

Usage
D(expr, namevec)
deriv(expr, namevec, function.arg = NULL, tag = ".expr")
Arguments
expr expression which should be differentiated.
namevec character vector, giving the variable names with respect to which deriv-

function.arg

tag

Detalils

atives will be computed.

NOT YET IMPLEMENTED. 1If specified, a function ‘prototype’ (with
empty body) which will be used to return a function with the given argu-
ment list, instead of an expression.

character; the prefix to be used for the locally created variables in result..

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is a generic function with a default and a formula method. It returns a call for com-
puting the expr and its (partial) derivatives, simultaneously. It uses so-called “algorithmic

derivatives”.

Currently, deriv.formula just calls deriv.default after extracting the expression to the

right of ~.

Value

D returns an expression and therefore can easily be iterated for higher derivatives.

deriv returns a call object which becomes an expression when evaluated once. Eval-
uation of the latter expression returns the function values with a ".gradient" attribute
containing the gradient matrix.

Note

This help page should be fixed up by one of R&R or someone else who fluently speaks the
language in ‘6R_HOME /src/main/deriv.c’.

It’s author, MM, has only got a vague idea and thinks that a help page is better than none.

References

Griewank, A. and Corliss, G. F. (1991) Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM proceedings, Philadelphia.

106 detach

See Also

nlm for numeric minimization which should make use of derivatives.

Examples

formula argument :

dx2x <- deriv(~ x~2, "x") ; dx2x

expression({
.value <- x72
.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))
.grad[, "x"] <- 2 * x
attr(.value, "gradient") <- .grad
.value

19

mode (dx2x)

x <- -1:2

eval (dx2x)

Something ‘tougher’:
trig.exp <- expression(sin(cos(x + y~2)))
(D.sc <- D(trig.exp, c("x", "y")))

(dxy <- deriv(trig.exp, c("x", "y")))
y <-1

eval (dxy)

eval(D.sc)

detach Detach Objects from the Search Path detach

Description

Detach a database, i.e., remove it from the search() patch of available R objects. Usu-
ally, this either a data.frame which has been attached or a package which was required
previously.

Usage

detach(name, pos = 2)

Arguments
name The object to detach. Defaults to search() [pos].
pos Index position in search () of database to detach. When name is numeric,
pos = name is used.
Value

The attached database is returned invisibly, either as data.frame or as list.

See Also

attach, library, search, objects.

dev.xxx 107

Examples

require (eda)#package
detach(package:eda)

library(mva)

detach(2)# ‘pos’ used for ‘name’

dev.xXxx Control Multiple Devices dev.xxx

Description

These functions provide control over multiple graphics devices.

Only one device is the active device. This is the device in which all graphics operations
occur.

Devices are associated with a name (e.g., "X11” or "postscript”) and a number; the "null
device” is always device 1.

dev.off shuts down the specified (by default the current) device. graphics.off () shuts
down all open graphics devices.

dev.set makes the specified device the active device.

A list of device names is stored in .Devices. The name of the active device is stored in
.Device.

Usage

dev.cur()

dev.list()

dev.next(which = dev.cur())
dev.prev(which = dev.cur())
dev.off (which = dev.cur())
dev.set(which = dev.next())
graphics.off ()

Arguments

which An integer specifying a device number

Value

dev.cur returns the number and name of the active device.

dev.list returns the numbers and names of all devices.

dev.next returns the number and name of the next device in the list of devices.
dev.prev returns the number and name of the previous device in the list of devices.

dev.off returns the name and number of the new active device (after the specified device
has been shut down).

dev.set returns the name and number of the new active device.

See Also

Devices, such as postscript, etc; graphics.off for closing all devices; layout and its
links for setting up plotting regions on the current device.

108 dev2

Examples

x110

plot(1:10)

x110

plot(rnorm(10))

dev.set(dev.prev())

abline(0,1)# through the 1:10 points
dev.set(dev.next())

abline(h=0, col="gray")# for the residual plot
dev.set(dev.prev())

dev.off(); dev.off O#- close the two X devices

dev2 Copy Graphics Between Multiple Devices dev2

Description

dev. copy copies the graphics contents of the current device to the device specified by which
or to a new device which has been created by the function specified by device (it is an
error to specify both which and device).

dev.print copies the graphics contents of the current device to a new device which has
been created by the function specified by device and then shuts the new device. This is
most useful for producing a postscript copy from an on-screen device.

dev.control allows the user to control the recording of graphics operations in a device. If
displaylist is "inhibit” then recording is turned off.

Usage
dev.copy(device, ..., which=dev.next())
dev.print(device=postscript, ...)

dev.control(displaylist)

Arguments
device A device function (e.g., x11, postscript, ...)
Arguments to the device function above. For dev.print, this includes
which and by default any postscript arguments.
which A device number specifying the device to copy to

displaylist A character string

Value

dev.copy returns the name and number of the device which has been copied to.

dev.print returns the name and number of the device which has been copied from.

dev2bitmap 109

Note

Every device has a display list which records all of the graphics operations that occur in the
device. dev.copy and dev.print copy graphics contents by copying the display list from
one device to another device. Also, automatic redrawing of graphics contents following the
resizing of a device depends on the contents of the display list.

After the command dev.control("inhibit"), graphics operations are not recorded in the
display list so that dev.copy and dev.print will not copy anything and the contents of a
device will not be redrawn automatically if the device is resized.

The recording of graphics operations is relatively expensive in terms of memory so the
command dev.control ("inhibit") can be useful if memory usage is an issue.

See Also

dev.cur and other dev.xxx functions

Examples

x110)

plot(rnorm(10), main="Plot 1")
dev.copy(device=x11)

mtext ("Copy 1", 3)

dev.print (width=6, height=6, horizontal=FALSE)
dev.off (dev.prev())

dev.off ()

dev2bitmap Copy Graphics Device to Bitmap File dev2bitmap

Description

Copy the current graphics device to a file in a bitmap graphics format.

Usage
dev2bitmap(file, type = "png256", height = 6, width = 6, res = 72,
pointsize, ...)
Arguments
file The putput file name, with an appropriate extension.
type The type of bitmap. the default is "png256".
height The plot height, in inches.
width The plot width, in inches.
res Resolution, in dots per inch.
pointsize The pointsize to be used for text: defaults to something reasonable given

the width and height

Other parameters passes to postscript.

110 deviance

Details

dev2bitmap works by copying the current device to a postscript device, and post-
processing the output file using ghostscript. You will need a recent version of ghost-
script (5.10 and later have been tested): the full path to the executable can be set by the
environment variable "R_GSCMD".

The types available will depend on the version of ghostscript, but are likely to in-

clude "pcxmono", "pcxgray", "pcx16", "pcx256", "pcx24b", "pcxcmyk", "pbm", "pbm-

rawll, llpgmll’ "pgmraw"7 |ngnmll’ Ilpgnmrawll’ llpnmll’ "leIIlI'aW", Ilppmll’ "ppmraW"’ "pkm",

"pkmraw", "tiffcrle", "tiffg3", "tiffg32d", "tiffgd", "tifflzw", "tiffpack",

"tiff12nc", "tiff24nc", "psmono", "psgray", "psrgb", "bit", "bitrgb", "bitcmyk",

"lengIlO", Ilpnggrayll, llpng16", "png256"7 Ilpng16ml|) "jpeg"7 lljpeggrayll, llpdfwrltell
Value

None.

Warning

This is experimental and may be withdrawn in favour of an equivalent device in a later
version.

Author(s)
B. D. Ripley

See Also

postscript

deviance Model Deviance deviance

Description

Returns the deviance of a fitted model object.

Usage
deviance(x, ...)
deviance.lm (x, ...)
deviance.glm(x, ...)
deviance.mlm(x, ...)
deviance.default(x, ...)
Arguments
X an object for which the deviance is desired.

additional optional argument.

Devices

Details

111

This is a generic function which can be used to extract deviances for fitted models. Consult
the individual modeling functions for details details on how to use this function.

There is no default method for this function.

Value

The value of the deviance extracted from the object x.

See Also

df .residual, extractAIC, glm, 1m.

Devices List of Graphical Devices Devices

Description

The following graphics devices are currently available:

postscript Writes PostScript graphics commands to a file
pictex Writes LaTeX /PicTeX graphics commands to a file

windows The graphics driver for Windows (on screen, to printer and to Windows
metalfile.

png PNG bitmap device
jpeg JPEG bitmap device
bmp BMP bitmap device

Usage
postscript(...)
pictex(...)
windows(...)
png(...)
jpeg(...)
bmp(...)

See Also

the individual help files for further information on any of the devices listed here;

dev.

cur, dev.print, graphics.off, image, dev2bitmap

112 diag

df .residual Residual Degrees-of-Freedom df .residual

Usage

df .residual(x, ...)

Arguments
X an object for which the degrees-of-freedom are desired.
additional optional arguments.
Details

This is a generic function which can be used to extract residual degrees-of-freedom for fitted
models. Consult the individual modeling functions for details details on how to use this
function.

There is no default method for this function.

Value

The value of the residual degrees-of-freedom extracted from the object x.

See Also

deviance, glm, 1m.

diag Matriz Diagonals diag

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x, nrow, ncol)
diag(x) <- value

Value

If x is a matrix then diag(x) returns the diagonal of x. The resulting vector will have
names if the matrix x has matching column and row names.

If x is a vector (or a 1-d array) then diag(x) returns a diagonal matrix whose diagonal is
x. If x is an integer then diag(x) returns an identity matrix of order x. The dimension of
the returned matrix can be specified by nrow and ncol (the default is square).

The assignment form sets the diagonal of the matrix x to the given value(s).

See Also

matrix.

diff 113

Examples

dim(diag(3))
diag(10,3,4) # guess what?
all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X=1:5, Y=rnorm(5))))#-> vector with names "X" and "Y"
rownames (M) <- c(colnames(M),rep("",3));
M; diag(M) # named as well

diff Lagged Differences diff

Description

Returns suitably lagged and iterated differences.

Usage

diff(x, ...)
diff.default(x, lag=1, differences=1)

Arguments
X a numeric vector or matrix containing the values to be differenced.
lag an integer indicating which lag to use.
differences an integer indicating the order of the difference.

Details

NA’s propagate.

Value

If x is a vector of length n and differences=1, then the computed result is equal to the
successive differences x[(1:n-1lag)] - x[(lag:n)]. If difference is larger than one this
algorithm is applied recursively to x. Note that the returned value is a vector which is
shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

Examples

diff(1:10, 2)
diff(1:10, 2, 2)

114 dimnames

dim Dimensions of an Object dim

Description

Retrieve or set the dimension of an object.

Usage

dim(x)
dim(x) <- values

Details

The functions dim and dim<- are generic.

For an array (and hence in particular, for a matrix) they retrieve or set the dim attribute
of the object.

dim has a method for data frames, which returns the length of the row.names attribute of
x and the length of x (the numbers of “rows” and “columns”).

See Also

ncol, nrow and dimnames.

Examples

x <- 1:12 ; dim(x) <- c(3,4)
x

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x) [1]
ncol0 <- function(x) dim(x)[2]

dimnames Dimnames of an Object dimnames

Description

Retrieve or set the dimnames of an object.

Usage

dimnames (x)
dimnames(x) <- nlist

Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a matrix), they retrieve or set the dimnames
attribute (see attributes) of the object.

Both have methods for data frames. The dimnames of a data frame are its row.names
attribute and its names.

discoveries 115

See Also

rownames, colnames; array, matrix, data.frame.

Examples

simple versions of rownames and colnames
could be defined as follows

rownamesO <- function(x) dimnames(x) [[1]]
colnames0 <- function(x) dimnames(x) [[2]]

discoveries Numbers of Important Discoveries discoveries

Description

The numbers of “great” inventions and scientific discoveries in each year from 1860 to 1959.

Usage

data(discoveries)

Format

A time series of 100 values.

Source

The World Almanac and Book of Facts, 1975 Edition, pages 315-318.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(discoveries)

plot(discoveries, ylab = "Number of important discoveries",
las = 1)

title(main = "discoveries data set")

116 dotplot

do.call FExecute a Function Call do.call

Description

do.call executes a function call from the name of the function and a list of arguments to
be passed to it.

Usage

do.call(what, args)

Arguments
what a character string naming the function to be called.
args a list of arguments to the function call. The names attribute of args gives
the argument names.
Value

The result of the (evaluated) function call.

See Also

call which creates an unevaluated call.

Examples

do.call("complex", list(imag = 1:3))

dotplot Cleveland Dot Plots dotplot

Description

Draw a Cleveland dot plot.

Usage

dotplot(x, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"),
pch = 21, gpch = 21, bg = par("bg"), color = par("fg"),
gcolor = par("fg"), lcolor = "gray", ...)

double 117

Arguments
X either a vector or matrix of numeric values (NAs are allowed). If x is a
matrix the overall plot consists of juxtaposed dotplots for each row.
labels a vector of labels for each point. For vectors the default is to use names (x)
and for matrices the row labels dimnames (x) [[1]].
groups an optional factor indicating how the elements of x are grouped. If x is a
matrix, groups will default to the columns of x.
gdata data values for the groups. This is typically a summary such as the median
or mean of each group.
cex the character size to be used. Setting cex to a value smaller than one can
be a useful way of avoiding label overlap.
pch the plotting character or symbol to be used.
gpch the plotting character or symbol to be usea for group values.
bg the background color to be used.
color the color to be used for points an labels.
gcolor the color to be used for group labels and values.
lcolor the color to be used for the horizontal lines.
graphical parameters can also be specified as arguments.
Value

This function is invoked for its side effect, which is to produce two variants of dotplots as
described in Cleveland (1985).

Dot plots are a reasonable substitute for bar plots.

References

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Examples

data(VADeaths)
dotplot (VADeaths, main = "Death Rates in Virginia - 1940")
dotplot (t(VADeaths), main = "Death Rates in Virginia - 1940")

double Double Precision Vectors double

Description

Create, coerce to or test for a double-precision vector.

Usage
double(length = 0)
as.double(x)
is.double(x)
single(length = 0)

as.single(x)

118 download.file

Value

double creates a double precision vector of the specified length. The elements of the vector
are all equal to 0.

as.double attempts to coerce its argument to be of double type.

is.double returns TRUE or FALSE depending on whether its argument is of double type or
not.

Note

R has no single precision data type. All real numbers are stored in double precision format.
The functions as.single and single are identical to as.double and double except they
set the attribute Csingle that is used in the .C and .Fortran interface, and they are
intended only to be used in that context.

See Also

integer.

Examples

is.double (1)
all(double(3) == 0)

download.file Download File from the Internet download.file

Description

This function can be used to download a file from the Internet either using a helper applic-
ation such as wget or by making a direct socket connection.

Usage

download.file(url, destfile, method = "auto", quiet=FALSE)

Arguments
url A character string with the URL of a file to be downloaded.
destfile A character string with the name where the downloaded file is saved.
method Tool to be used for downloading files. Currently download methods

"auto", "wget", "lynx" "cp" and "socket" are available. To use "wget"
or "lynx" the executable must be installed on your system and in your
path. To use "socket" the file must be on an HTTP server, in plain text,
and your system must allow socket connections to be opened to that
server.

quiet If TRUE, suppress status messages from the download tool (if any).

dput 119

Details

The function download.file can be used to download a single file as described by url
from the internet and store it in destfile. It makes a system call to the tool given by
method, the respective program must be installed on your system and be in the search path
for executables. If method "cp" is used, then the url must start with "file:" and give the
path to a local file. Method "auto" (the default) searches for available tools at runtime.
The url must start with a type specification such as "http://", "ftp://" or "file:".

Note

Cacheing proxies and firewalls may well not allow method "socket" socket to be used.

dput Write an Internal Object to a File dput

Description

Writes an ASCII text representation of an R object to a file, or uses one to recreate the
object.

Usage

dput(x, file = "")
dget (file)

Details

dput opens file and deparses the object x into that file. The object name is not written
(contrary to dump). If x is a function the associated environment is stripped. Hence scoping
information can be lost.

Using dget, the object can be recreated (with the limitations mentioned above).

See Also

deparse, dump, write.

Examples

Write an ASCII version of mean to the file "foo"
dput (mean, "foo")

And read it back into ‘bar’

bar <- dget("foo")

unlink("foo")

120 dummy.coef

drop Drop Redundant Extent Information drop

Description

Delete the dimensions of an array which have only one level.

Usage
drop(x)

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object
like x, but with any extents of length one removed. Any accompanying dimnames attribute
is adjusted and returned with x.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes
it is useful to invoke drop directly.
See Also

drop1 which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))# =3 2 2
drop(1:3 %*) 2:4)# scalar product

dummy . coef Ezxtract Coefficients in Original Coding dummy . coef

Description

This extracts coefficients in terms of the original levels of the coefficients rather than the
coded variables.

Usage

dummy . coef (object, ...)
dummy . coef.1lm(object, use.na = FALSE)
dummy . coef .aovlist(object, use.na = FALSE)

Arguments
object a linear model fit
use.na logical flag for coefficients in a singular model. If use.na is true, un-

determined coefficients will be missing; if false they will get one possible
value.

dump 121

Details

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in
number than the number of levels. This function re-expresses the coefficients in the original
coding; as the coefficients will have been fitted in the reduced basis, any implied constraints
(e.g. zero sum for contr.helmert or contr.sum will be respected. There will be little
point in using dummy.coef for contr.treatment contrasts, as the missing coefficients are
by definition zero.

Value
A list giving for each term the values of the coefficients. For a multistratum aov model,
such a list for each stratum.

Warning

This function is intended for human inspection of the output: it should not be used for
calculations. Use coded variables for all calculations.

The results differ from S for singular values, where S can be incorrect.

Author(s)
B.D. Ripley

See Also

aov, model.tables

Examples

options(contrasts=c("contr.helmert", "contr.poly"))
From Venables and Ripley (1997) p.210.

N <- ¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- ¢(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- ¢(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c¢(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

dummy . coef (npk.aov)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

dummy . coef (npk.aovE)

dump Text Representations of R Objects dump

Description

This function takes a vector of names of R objects and produces text representations of the
objects in the file fileout. This file, can be sourced into another R (or S) session.

122 duplicated

Usage

dump(1list, fileout="dumpdata")

Detalils

At present the implementation of dump is very incomplete and it really only works for
functions and simple vectors.

The function save is designed to be used for transporting R data between machines.

See Also

dput, dget,write.

Examples

x <- 1; y <= 1:10
dump (1s(patt=’"[xyz]’), "xyz.Rdmped")
unlink("xyz.Rdmped")

duplicated Determine Duplicate Elements duplicated

Description

Determines which elements of a vector are duplicates of elements with smaller subscripts,
and returns a logical vector indicating which elements are duplicates.

Usage

duplicated(x)

Arguments

b4 an atomic vector

See Also

unique.

Examples

x <- ¢c(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <- x[!duplicated(x)])

all(xu == unique(x)) # TRUE, but unique(x) is more efficient
all(0:20 == sort(x[!duplicated(x)]))

dyn.load 123

dyn.load Foreign Function Interface dyn.load

Description

Load or unload shared libraries, and test whether a C function or Fortran subroutine is
available.

Usage

dyn.load(libname, local = TRUE, now = TRUE)
dyn.unload(libname)

is.loaded(symbol)
symbol.C(name)
symbol.For (name)

Arguments
libname a character string giving the pathname to a DLL.
local a logical value controlling whether the symbols in the DLL are stored in
their own local table and not shared across DLLs, or added to the global
symbol table. Whether this has any effect is system-dependent.
now a logical controlling whether all symbols are resolved (and relocated) im-
mediately the library is loaded or deferred until they are used. This
control is useful for developers testing whether a library is complete and
has all the necessary symbols and for users to ignore missing symbols.
symbol a character string giving a symbol name.
name a character string giving either the name of a C function or Fortran sub-
routine. Fortran names probably need to be given entirely in lower case
(but this may be system-dependent).
Details

The additional arguments to dyn.load mirror the different aspects of the mode argument
to the dlopen() routine on UNIX systems. They are available so that users can exercise
greater control over the loading process for an individual library. In general, the defaults
values are appropriate and one should override them only if there is good reason and you
understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached
are visible to other DLLs. While maintaining the symbols in their own namespace is good
practice, the ability to share symbols across related “chapters” is useful in many cases.
Additionally, on certain platforms and versions of an operating system, certain libraries
must have their symbols loaded globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the ‘now’ argu-
ment as FALSE. If a routine is called that has a missing symbol, the process will terminate
immediately and unsaved session variables will be lost. The intended use is for library
developers to call specify a value TRUE to check that all symbols are actually resolved and
for regular users to all with FALSE so that missing symbols can be ignored and the available
ones can be called.

124 dyn.load

The initial motivation for adding these was to avoid such termination in the _init()
routines of the Java virtual machine library. However, symbols loaded locally may not
be (read probably) available to other DLLs. Those added to the global table are available
to all other elements of the application and so can be shared across two different DLLs.

Some systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning
messages emitted when unsupported options are used. This is done by setting either of
the options verbose or warn to be non-zero via the options function. Currently, we know
of only 2 platforms that do not provide a value for local load (RTLD_LOCAL). These are
TRIX6.4 and unpatched versions of Solaris 2.5.1.

There is a short discussion of these additional arguments with some example code available
at http://cm.bell-labs.com/stat/duncan/R/dynload.

Value

The function dyn.load is used for its side effect which links the specified shared library to
the executing R image. Calls to .C, .Fortran and .External can then be used to execute
compiled C functions or Fortran subroutines contained in the library.

The function dyn.unload unlinks the shared library.

Functions symbol.C and symbol.For map function or subroutine names to the symbol name
in the compiled code: is.loaded checks if the symbol name is loaded and hence available
for use in .C or .Fortran.

Note

The creation of shared libraries and the runtime linking of them into executing programs is
very platform dependent. In recent years there has been some simplification in the process
because the C subroutine call dlopen has become the standard for doing this under UNIX.
Under UNIX dyn.load uses the dlopen mechanism and should work on all platforms which
support it. On Windows it uses the standard mechanisms for loading 32-bit DLLs.

The original code for loading DLLs in UNIX was provided by Heiner Schwarte. The com-
patibility code for HP-UX was provided by Luke Tierney.

See Also

library.dynam to be used inside a package’s .First.lib initialization.

.C, .Fortran, .External, .Call.

Examples

is.loaded(symbol.For("hcass2")) #-> probably FALSE
library(mva)
is.loaded(symbol.For("hcass2")) #-> TRUE

http://cm.bell-labs.com/stat/duncan/R/dynload

edit 125

edit Invoke a Text Editor edit

Description

Invoke a text editor on an R object.

Usage
edit(name = NULL, file = "", editor = getOption("editor"))
vi(name = NULL, file = "")
emacs(name = NULL, file = "")
pico(name = NULL, file = "")
xemacs (name = NULL, file = "")
xedit(name = NULL, file = "")
Arguments
name a named object that you want to edit. If name is missing then the file
specified by file is opened for editing.
file a string naming the file to write the edited version to.
editor a string naming the text editor you want to use. On Unix the default is
set from the EDITOR environmental variable. On Windows it defaults to
notepad.
Detalils

edit invokes the text editor specified by editor with the object name to be edited. It is a
generic function, currently with a default method and one for data frames.

data.entry can be used to edit data, and is used by edit to edit data frames on systems
for which data.entry is available.

It is important to realize that edit does not change the object called name. Instead, a copy
of name is made and it is that copy which is changed. Should you want the changes to
apply to the object name you must assign the result of edit to name. (Try fix if you want
to make permanent changes to an object.)

In the form edit(name), edit deparses name into a temporary file and invokes the editor
editor on this file. Quiting from the editor causes file to be parsed and that value
returned. Should an error occur in parsing, possibly due to incorrect syntax, no value
is returned. Calling edit(), with no arguments, will result in the temporary file being
reopened for further editing.

Note

The functions vi, emacs, pico, xemacs, xedit rely on the corresponding editor being
available and being on the path. This is system-dependent.

See Also

edit.data.frame, data.entry, fix.

126 edit.data.frame

Examples

use xedit on the function mean and assign the changes
mean <- edit(mean, editor = "xedit")

use vi on mean and write the result to file mean.out
vi(mean, file = "mean.out")

edit.data.frame Edit data frames edit.data.frame

Description

Use data editor on data frame contents.

Usage

edit.data.frame(name, factor.mode=c("numeric", "character"))
Arguments

name A data frame.

factor.mode How to handle factors (as integers or using character levels).
Details

At present, this only works on simple data frames containing numeric or character vectors
and factors. Factors are represented in the spreadsheet as either numeric vectors (which
is more suitable for data entry) or character vectors (better for browsing). After editing,
vectors are padded with NA to have the same length and factor attributes are restored. The
set of factor levels can not be changed by the editing; invalid levels are changed to NA and
a warning is issued.

Value

The edited data frame.

Note

fix(dataframe) works for in-place editing by calling this function.

If the data editor is not available, a dump of the object is presented for editing using the
default method of edit.

Author(s)
Peter Dalgaard

See Also

data.entry, edit

eff.aovlist 127

Examples

data(airquality)
edit(airquality)
edit(airquality, factor.mode="character")

Compute Efficiencies of Multistratum Analysis of

) eff.aovlist
Variance

eff.aovlist

Description

Computes the efficiencies of fixed-effect terms in an analysis of variance model with multiple
strata.

Usage

eff.aovlist(aovlist)

Arguments

aovlist The result of a call to aov with a Error term.

Detalils

Fixed-effect terms in an analysis of variance model with multiple strata may be estimable in
more than one stratum, in which case there is less than complete information in each. The
efficiency is the fraction of the maximum possible precision (inverse variance) obtainable by
estimating in just that stratum.

This is used to pick strata in which to estimate terms in model.tables.aovlist and
elsewhere.

Value

A matrix giving for each non-pure-error stratum (