
The R Reference Index

The R Core Team

Version 1.0.0 (February 29, 2000)

Copyright (c©) 1999 R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to
redistribute it under the terms of the GNU General Public License. For more information
about these matters, see http://www.gnu.org/copyleft/gpl.html.

Contents

1 The base package 1
.Alias . 1
abbreviate . 2
abline . 3
abs . 4
add1 . 4
aggregate . 6
airmiles . 7
airquality . 8
alias . 9
all . 10
all.equal . 11
all.names . 12
anova . 12
anscombe . 13
any . 14
aov . 15
aperm . 16
append . 17
apply . 17
approxfun . 19
apropos . 20
args . 21
Arithmetic . 22
array . 23
arrows . 24
as.char.or.expr . 25
as.function . 25
assign . 26
attach . 27
attenu . 28
attitude . 29
attr . 30
attributes . 31
autoload . 31
ave . 32
axis . 33
backsolve . 34
barplot . 35
Bessel . 37
Beta . 38

i

ii CONTENTS

Binomial . 40
body . 41
box . 42
boxplot . 42
boxplot.stats . 44
browser . 45
bug.report . 46
builtins . 48
bxp . 48
by . 49
C . 50
c . 51
call . 52
cars . 53
case/variable.names . 53
cat . 54
Cauchy . 55
cbind . 56
char.expand . 57
character . 58
charmatch . 58
check.options . 59
chickwts . 60
Chisquare . 60
chol . 62
chol2inv . 63
chull . 63
class . 64
close.socket . 65
co2 . 66
codes . 66
coefficients . 67
col . 68
colors . 69
commandArgs . 69
comment . 70
Comparison . 71
complete.cases . 71
complex . 72
conflicts . 73
Constants . 74
contour . 75
contrast . 77
contrasts . 78
contributors . 78
Control . 79
convolve . 80
coplot . 81
copyright . 83
cor . 84
count.fields . 85
cov.wt . 86

CONTENTS iii

crossprod . 87
cumsum . 87
curve . 88
cut . 89
data . 90
data.class . 92
data.frame . 92
data.matrix . 94
dataentry . 94
date . 95
debug . 96
debugger . 96
Defunct . 98
delay . 99
delete.response . 99
demo . 100
density . 101
deparse . 103
Deprecated . 104
deriv . 105
detach . 106
dev.xxx . 107
dev2 . 108
dev2bitmap . 109
deviance . 110
Devices . 111
df.residual . 112
diag . 112
diff . 113
dim . 114
dimnames . 114
discoveries . 115
do.call . 116
dotplot . 116
double . 117
download.file . 118
dput . 119
drop . 120
dummy.coef . 120
dump . 121
duplicated . 122
dyn.load . 123
edit . 125
edit.data.frame . 126
eff.aovlist . 127
effects . 128
eigen . 129
environment . 130
esoph . 131
euro . 133
eurodist . 134
eval . 134

iv CONTENTS

example . 136
exists . 137
expand.grid . 138
Exponential . 138
expression . 139
Extract . 140
extractAIC . 141
Extremes . 142
factor . 143
factor.scope . 145
faithful . 146
family . 147
FDist . 148
fft . 150
file . 151
file.choose . 152
file.path . 153
file.show . 153
filled.contour . 154
fitted.values . 156
fivenum . 156
fix . 157
Foreign . 158
Formaldehyde . 161
formals . 162
format . 162
format.info . 163
formatC . 164
formula . 166
frame . 167
freeny . 168
ftable . 169
ftable.formula . 170
function . 171
GammaDist . 172
gc . 173
gctorture . 174
Geometric . 174
get . 175
getenv . 176
getwd . 177
gl . 177
glm . 178
glm.summaries . 180
gray . 181
grep . 182
grid . 183
HairEyeColor . 184
help . 185
help.search . 186
help.start . 188
Hershey . 189

CONTENTS v

hist . 198
hsv . 200
httpclient . 201
Hyperbolic . 201
Hypergeometric . 202
identify . 203
ifelse . 204
image . 205
index.search . 206
infert . 207
influence.measures . 208
InsectSprays . 209
integer . 211
interaction . 212
interactive . 212
Internal . 213
invisible . 213
IQR . 214
iris . 214
is.empty.model . 215
is.finite . 216
is.function . 218
is.language . 219
is.object . 219
is.R . 220
is.recursive . 220
is.single . 221
is.symbol . 221
islands . 222
Japanese . 222
jitter . 236
kappa . 237
kronecker . 238
labels . 239
lapply . 239
Last.value . 240
layout . 241
legend . 242
length . 244
levels . 245
levels.factor . 246
library . 246
library.dynam . 249
license . 250
LifeCycleSavings . 255
lines . 256
list . 256
list.files . 258
lm . 259
lm.influence . 260
lm.summaries . 262
load . 263

vi CONTENTS

locator . 264
log . 265
Logic . 266
logical . 266
Logistic . 267
loglin . 268
Lognormal . 270
longley . 271
lower.tri . 271
lowess . 272
ls . 273
ls.diag . 274
ls.print . 275
lsfit . 275
Machine . 276
machine . 278
mad . 279
mahalanobis . 280
make.function.html . 281
make.link . 281
make.names . 282
make.socket . 283
make.tables . 284
margin.table . 284
mat.or.vec . 285
match . 285
match.arg . 286
match.call . 287
match.fun . 288
matmult . 289
matplot . 290
matrix . 291
mean . 292
median . 293
Memory . 294
memory.profile . 295
menu . 296
merge . 296
Methods . 297
methods . 299
missing . 300
mode . 301
model.extract . 302
model.frame . 303
model.matrix . 304
model.tables . 305
mosaicplot . 306
mtcars . 308
mtext . 308
NA . 310
na.action . 311
na.fail . 311

CONTENTS vii

name . 312
names . 312
nargs . 313
nchar . 313
NegBinomial . 314
nextn . 315
nhtemp . 316
nlevels . 316
nlm . 317
noquote . 318
Normal . 319
NotYet . 321
nrow . 321
NULL . 322
numeric . 322
offset . 323
on.exit . 323
optim . 324
optimize . 327
options . 328
OrchardSprays . 331
order . 332
outer . 333
p.adjust . 334
package.contents . 335
package.dependencies . 335
page . 336
pairs . 336
pairs.formula . 338
palette . 339
Palettes . 340
panel.smooth . 341
par . 342
Paren . 347
parse . 348
parse.dcf . 348
paste . 349
persp . 350
phones . 352
pictex . 353
piechart . 354
PlantGrowth . 355
Platform . 356
plot . 357
plot.default . 358
plot.factor . 360
plot.formula . 360
plot.lm . 361
plot.window . 363
plot.xy . 364
plotmath . 365
pmatch . 371

viii CONTENTS

png . 372
points . 373
Poisson . 374
poly . 375
polygon . 376
polyroot . 377
pos.to.env . 378
postscript . 378
power . 380
ppoints . 381
precip . 381
predict . 382
predict.glm . 383
predict.lm . 384
preplot . 385
presidents . 386
pressure . 387
pretty . 387
Primitive . 389
print . 389
print.coefmat . 390
print.default . 391
print.matrix . 392
proc.time . 393
prod . 394
profile . 394
proj . 395
prompt . 396
prop.table . 397
qqnorm . 398
qr . 399
QR.Auxiliaries . 400
quakes . 402
quantile . 402
quit . 403
R.home . 404
R.Version . 404
Random . 405
Random.user . 408
randu . 409
range . 410
rank . 411
read.fwf . 411
read.socket . 412
read.table . 413
read.table.url . 415
readline . 416
real . 416
Recall . 417
rect . 417
relevel . 418
remove . 419

CONTENTS ix

rep . 419
replace . 420
replications . 420
residuals . 421
restart . 422
rev . 423
rgb . 423
rivers . 424
rle . 424
Round . 425
row . 426
row/colnames . 427
rowsum . 427
rug . 428
Rwin configuration . 429
sample . 430
save . 431
savePlot . 431
scale . 432
scan . 433
screen . 435
sd . 436
se.aov . 437
se.contrast . 437
search . 438
segments . 439
seq . 440
sequence . 441
sets . 441
shell . 442
shell.exec . 443
sign . 444
SignRank . 444
sink . 445
sleep . 446
solve . 447
sort . 447
source . 448
Special . 449
splinefun . 450
split . 451
stackloss . 452
stars . 453
start . 454
Startup . 455
stat.anova . 456
state . 456
stem . 457
step . 458
stop . 459
str . 460
stripplot . 462

x CONTENTS

strsplit . 463
structure . 464
strwidth . 464
subset . 465
substitute . 466
substr . 468
sum . 469
summary . 469
sunflowerplot . 470
sunspots . 472
svd . 472
sweep . 473
swiss . 474
switch . 475
symnum . 476
sys.parent . 478
sys.source . 479
system . 480
system.file . 481
system.time . 482
t . 483
table . 484
tabulate . 485
tapply . 485
TDist . 487
tempfile . 488
terms . 489
text . 489
time . 491
Titanic . 492
title . 493
ToothGrowth . 494
trace . 494
traceback . 495
transform . 495
trees . 496
Trig . 497
ts . 498
tsp . 499
Tukey . 500
typeof . 501
UCBAdmissions . 502
Uniform . 503
unique . 504
uniroot . 504
units . 505
unlink . 506
unlist . 507
unname . 507
update . 508
update.formula . 509
update.packages . 510

CONTENTS xi

USArrests . 511
USJudgeRatings . 512
USPersonalExpenditure . 513
uspop . 514
VADeaths . 514
var . 515
vector . 516
volcano . 517
warning . 518
warnings . 518
warpbreaks . 519
Weibull . 520
weighted.mean . 521
weighted.residuals . 521
which . 522
Wilcoxon . 523
winDialog . 525
window . 525
windows . 526
winextras . 527
winMenus . 528
women . 529
write . 529
write.table . 530
xy.coords . 531
zip.file.extract . 532

2 The ctest package 533
ansari.test . 533
bartlett.test . 534
binom.test . 535
chisq.test . 537
cor.test . 538
fisher.test . 540
fligner.test . 542
friedman.test . 543
kruskal.test . 545
ks.test . 546
mantelhaen.test . 547
mcnemar.test . 548
mood.test . 549
pairwise.prop.test . 551
pairwise.t.test . 551
pairwise.table . 552
pairwise.wilcox.test . 553
power.prop.test . 553
power.t.test . 554
print.pairwise.htest . 555
print.power.htest . 556
prop.test . 557
shapiro.test . 558
t.test . 559
var.test . 561

xii CONTENTS

wilcox.test . 562

3 The eda package 565
line . 565
medpolish . 566
smooth . 567

4 The lqs package 569
cov.rob . 569
lqs . 571
predict.lqs . 573

5 The modreg package 575
ksmooth . 575
loess . 576
loess.control . 578
modreg-internal . 579
plot.ppr . 579
ppr . 580
predict.loess . 583
predict.smooth.spline . 584
rock . 585
scatter.smooth . 586
smooth.spline . 587
supsmu . 588

6 The mva package 591
as.hclust . 591
biplot . 592
biplot.princomp . 593
cancor . 594
cmdscale . 595
cutree . 596
dist . 597
hclust . 598
identify.hclust . 600
kmeans . 602
prcomp . 603
princomp . 604
rect.hclust . 606

7 The nls package 607
asOneSidedFormula . 607
BOD . 608
ChickWeight . 608
clearNames . 609
CO2 . 610
DNase . 611
formula.nls . 612
getInitial . 612
Indometh . 613
Loblolly . 614
logLik . 615

CONTENTS xiii

nls . 615
nls.control . 617
nlsModel . 618
NLSstAsymptotic . 619
NLSstClosestX . 620
NLSstLfAsymptote . 621
NLSstRtAsymptote . 621
Orange . 622
plot.profile.nls . 623
predict.nls . 624
profile.nls . 625
profiler . 626
profiler.nls . 627
Puromycin . 629
selfStart . 630
selfStart.default . 631
selfStart.formula . 632
setNames . 633
sortedXyData . 634
SSasymp . 635
SSasympOff . 636
SSasympOrig . 637
SSbiexp . 638
SSfol . 639
SSfpl . 640
SSlogis . 641
SSmicmen . 642

8 The splines package 643
asVector . 643
backSpline . 644
bs . 645
interpSpline . 646
ns . 647
periodicSpline . 648
polySpline . 649
predict.bs . 650
predict.bSpline . 650
splineDesign . 652
splineKnots . 653
splineOrder . 653
xyVector . 654

9 The stepfun package 655
ecdf . 655
plot.stepfun . 656
stepfun . 658

xiv CONTENTS

10 The ts package 661
acf . 661
ar . 663
ar.ols . 666
arima0 . 668
austres . 670
beavers . 671
BJsales . 672
Box.test . 672
cpgram . 673
diff.ts . 674
diffinv . 674
embed . 675
EuStockMarkets . 676
filter . 676
kernapply . 678
kernel . 678
lag . 680
LakeHuron . 681
lh . 681
lynx . 681
na.omit.ts . 682
nottem . 682
PP.test . 683
spec.ar . 684
spec.pgram . 685
spec.taper . 687
spectrum . 688
stl . 690
sunspot . 691
toeplitz . 692
treering . 693
ts-internal . 693
ts.plot . 694
ts.union . 695
UKDriverDeaths . 696
UKLungDeaths . 696
USAccDeaths . 696

Index 697

Chapter 1

The base package

.Alias Create Alias (Pointer) to R Object .Alias

Description

.Alias creates an alias to another (part of) an R object which is more (memory-) efficient
than usual assignment.

Usage

new <- .Alias(expr)

Arguments

expr an R expression; typically a name.

new new name by which expr can be accessed.

Value

an identical copy of expr.

Warning

This has a dangerous semantic, and consequences can be unexpected (it can be used to
defeat the call-by-value illusion). Know what you are doing before using .Alias!

See Also

<- for usual assignments.

Examples

mop <- options()

mop$browser <- "a browser" # not set on all platforms

Op <- .Alias(mop)

A change to mop is reflected in Op and vice versa

-- ONLY if no new slots are created ...

mop$digits <- "Wow!"

1

2 abbreviate

Op$browser <- "another one"

mop$browser; Op$digits

all(names(mop) == names(Op) &

sapply(seq(mop), function(i) all(Op[[i]] == mop[[i]])))

##> TRUE -- Op and mop ARE the same thing !

mop$newslot <- pi #--->> ’newslot’ ==> (shallow) COPY of ’mop’

Op$newslot # R: still the old one, i.e. NULL

all(names(mop) == names(Op))# no longer TRUE

abbreviate Abbreviate Strings abbreviate

Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they
were).

Usage

abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE)

Arguments

names.arg a vector of names to be abbreviated.

minlength the minimum length of the abbreviations.

use.classes logical (currently ignored by R).

dot logical; should a dot (".") be appended?

Details

The algorithm used is similar to that of S. First spaces at the beginning of the word are
stripped. Then any other spaces are stripped. Next lower case vowels are removed followed
by lower case consonants. Finally if the abbreviation is still longer than minlength upper
case letters are stripped.

Letters are always stripped from the end of the word first. If an element of names.arg
contains more than one word (words are separated by space) then at least one letter from
each word will be retained. If a single string is passed it is abbreviated in the same manner
as a vector of strings.

If use.classes is FALSE then the only distinction is to be between letters and space. This
has NOT been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates
in the original names.arg will be given identical abbreviations. If any non-duplicated
elements have the same minlength abbreviations then minlength is incremented by one
and new abbreviations are found for those elements only. This process is repeated until all
unique elements of names.arg have unique abbreviations.

The character version of names.arg is attached to the returned value as a names argument.

abline 3

See Also

substr.

Examples

x <- c("abcd", "efgh", "abce")

abbreviate(x, 2)

data(state)

(st.abb <- abbreviate(state.name, 2))

table(nchar(st.abb))# out of 50, 3 need 4 letters

abline Add a Straight Line to a Plot abline

Description

This function adds one or more straight lines through the current plot.

Usage

abline(a, b, ...)
abline(h=, ...)
abline(v=, ...)
abline(untf=, ...)
abline(coef=, ...)
abline(reg=, ...)

Details

The first form specifies the line in intercept/slope form (alternatively a can be specified on
its own and is taken to contain the slope and intercept in vector form).

The h= and v= forms draw horizontal and vertical lines at the specified coordinates.

The coef form specifies the line by a vector containing the slope and intercept.

reg is a regression object which contains reg$coef. If it is of length 1 then the value is
taken to be the slope of a line through the origin, otherwise, the first 2 values are taken to
be the intercept and slope.

If untf is true, and one or both axes are log-transformed, then a curve is drawn correspond-
ing to a line in original coordinates, otherwise a line is drawn in the transformed coordinate
system. The h and v parameters alway refer to original coordinates.

The graphical parameters col and lty can be specified as arguments to abline; see par
for details.

See Also

lines and segments for connected and arbitrary lines given by their endpoints. par.

4 add1

Examples

data(cars)

z <- lm(dist ~ speed, data = cars)

plot(cars)

abline(z)

abs Miscellaneous Mathematical Functions abs

Description

These functions compute miscellaneous mathematical functions. The naming follows the
standard for computer languages such as C or Fortran.

Usage

abs(x)
sqrt(x)

See Also

Arithmetic for simple, log for logarithmic, sin for trigonometric, and Special for special
mathematical functions.

Examples

xx <- -9:9

plot(xx, sqrt(abs(xx)), col = "red")

lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

add1 Add or Drop All Possible Single Terms to a Model add1

Description

Compute all the single terms in the scope argument that can be added to or dropped from
the model, fit those models and compute a table of the changes in fit.

Usage

add1(object, scope, ...)
add1.default(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)
add1.lm(object, scope, scale = 0, test = c("none", "Chisq", "F"),

x = NULL, k = 2, ...)
add1.glm(object, scope, scale = 0, x = NULL, test = c("none", "Chisq"),

k = 2, ...)

drop1(object, scope, ...)
drop1.default(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)

add1 5

drop1.lm(object, scope, scale = 0, all.cols = TRUE,
test=c("none", "Chisq", "F"),k = 2, ...)

drop1.glm(object, scope, scale = 0, test = c("none", "Chisq"),
k = 2, ...)

Arguments

object a fitted models object.
scope a formula giving the terms to be considered for adding or dropping.
scale an estimate of the residual mean square to be used in computing Cp.

Ignored if 0 or NULL.
test should the results include a test statistic relative to the original model?

The F test is only appropriate for lm and aov models. The χ2 test can
be an exact test (lm models with known scale) or a likelihood-ratio test
depending on the method.

k the penalty constant in AIC / Cp.
trace if TRUE, print out progress reports.
x a model matrix containing columns for the fitted model and all terms in

the upper scope. Useful if add1 is to be called repeatedly.
all.cols (Provided for compatibility with S.) Logical to specify whether all columns

of the design matrix should be used. If FALSE then non-estimable columns
are dropped, but the result is not usually statistically meaningful.

Details

For drop methods, a missing scope is taken to be all terms in the model. The hierarchy is
respected when considering terms to be added or dropped: all main effects contained in a
second-order interaction must remain, and so on.

The methods for lm and glm are more efficient in that they do not recompute the model
matrix and call the fit methods directly.

The default output table gives AIC, defined as minus twice log likelihood plus 2p where p
is the rank of the model (the number of effective parameters). This is only defined up to
an additive constant (like log-likelihoods). For linear Gaussian models with fixed scale, the
constant is chosen to give Mallows’ Cp, RSS/scale+ 2p−n. Where Cp is used, the column
is labelled as Cp rather than AIC.

Value

An object of class "anova" summarizing the differences in fit between the models.

Warning

The model fitting must apply the models to the same dataset. This may be a problem if
there are missing values and R’s default of na.action = na.omit is used, although it is
not for methods for "lm" and "glm".

Note

These are not fully equivalent to the functions in S. There is no keep argument, and the
methods used are not quite so computationally efficient.

Their authors’ definitions of Mallows’ Cp and Akaike’s AIC are used, not those of the
authors of the models chapter of S.

6 aggregate

Author(s)

B. D. Ripley

See Also

step, aov, lm, extractAIC.

Examples

example(step)#-> swiss

(alm1 <- add1(lm1, ~ I(Education^2) + .^2))

aggregate Compute Summary Statistics of Data Subsets aggregate

Description

Splits the data into subsets, computes summary statistics for each, and returns the result
in a convenient form.

Usage

aggregate(x, ...)
aggregate.default(x, ...)
aggregate.data.frame(x, by, FUN, ...)
aggregate.ts(x, nfrequency = 1, FUN = sum, ndeltat = 1)

Arguments

x an R object.

by a list of grouping elements, each as long as the variables in x. Names for
the grouping variables are provided if they are not given.

FUN a scalar function to compute the summary statistics which can be applied
to all data subsets.

nfrequency new number of observations per unit of time; must be a divisor of the
frequency of x.

ndeltat new fraction of the sampling period between successive observations; must
be a divisor of the sampling interval of x.

... further arguments passed to the method used.

Details

aggregate is a generic functions with methods for data frames and time series.

The default method aggregate.default uses the time series method if x is a time series,
and otherwise coerces x to a data frame and calls the data frame method.

aggregate.data.frame is the data frame method. If x is not a data frame, it is coerced
to one. Then, each of the variables (columns) in x is split into subsets of cases (rows) of
identical combinations of the components of by, and FUN is applied to each such subset with
further arguments in ... passed to it. (I.e., tapply(VAR, by, FUN, ..., simplify =
FALSE) is done for each variable VAR in x, conveniently wrapped into one call to lapply().)

airmiles 7

Empty subsets are removed, and the result is reformatted into a data frame containing the
variables in by and x. The ones arising from by contain the unique combinations of grouping
values used for determining the subsets, and the ones arising from x the corresponding
summary statistics for the subset of the respective variables in x.

aggregate.ts is the time series method. If x is not a time series, it is coerced to one. Then,
the variables in x are split into appropriate blocks of length frequency(x) / nfrequency,
and FUN is applied to each such block. The result returned is a time series with frequency
nfrequency holding the aggregated values.

Author(s)

Kurt Hornik

See Also

apply, lapply, tapply.

Examples

data(state)

Compute the averages for the variables in ‘state.x77’, grouped

according to the region (Northeast, South, North Central, West) that

each state belongs to.

aggregate(state.x77, list(Region = state.region), mean)

Compute the averages according to region and the occurrence of more

than 130 days of frost.

aggregate(state.x77,

list(Region = state.region,

Cold = state.x77[,"Frost"] > 130),

mean)

(Note that no state in ‘South’ is THAT cold.)

data(presidents)

Compute the average annual approval ratings for American presidents.

aggregate(presidents, nf = 1, FUN = mean)

airmiles Commercial Airline Mileage airmiles

Description

The revenue passenger miles flown by commercial airlines in the United States for each year
from 1937 to 1960.

Usage

data(airmiles)

Format

A time-series of 24 observations; yearly, 1937–1960.

8 airquality

Source

F.A.A. Statistical Handbook of Aviation.

References

Brown, R. G. (1963) Smoothing, Forecasting and Prediction of Discrete Time Series.
Prentice-Hall.

Examples

data(airmiles)

plot(airmiles, main = "airmiles data",

xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)

airquality New York Air Quality Measurements airquality

Description

Daily air quality measurements in New York, May to September 1973.

Usage

data(airquality)

Format

A data frame with 154 observations on 6 variables.

[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1–12)
[,6] Day numeric Day of month (1–31)

Details

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September
30, 1973.

• Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island

• Solar.R: Solar radiation in Langleys in the frequency band 4000–7700 Angstroms from
0800 to 1200 hours at Central Park

• Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia
Airport

• Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Source

The data were obtained from the New York State Department of Conservation (ozone data)
and the National Weather Service (meteorological data).

alias 9

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods
for Data Analysis. Belmont, CA: Wadsworth.

Examples

data(airquality)

pairs(airquality, panel = panel.smooth, main = "airquality data")

alias Find Aliases (Dependencies) in a Model alias

Description

Find aliases (linearly dependent terms) in a linear model specified by a formula.

Usage

alias(object, ...)
alias.formula(object, data, ...)
alias.lm(object, complete = TRUE, partial = FALSE, partial.pattern = FALSE)

Arguments

object A fitted model object, for example from lm or aov, or a formula for
alias.formula.

data Optionally, a data frame to search for the objects in the formula.

complete Should information on complete aliasing be included?

partial Should information on partial aliasing be included?
partial.pattern

Should partial aliasing be presented in a schematic way? If this is done,
the results are presented in a more compact way, usually giving the deciles
of the coefficients.

Details

Although the main method is for class "lm", alias is most useful for experimental designs
and so is used with fits from aov. Complete aliasing refers to effects in linear models that
cannot be estimated independently of the terms which occur earlier in the model and so
have their coefficients omitted from the fit. Partial aliasing refers to effects that can be
estimated less precisely because of correlations induced by the design.

Value

A list (of class "listof") containing components

Model Description of the model; usually the formula.

Complete A matrix with columns corresponding to effects that are linearly depend-
ent on the rows; may be of class "mtable" which has its own print
method.

Partial The correlations of the estimable effects, with a zero diagonal.

10 all

Note

The aliasing pattern may depend on the contrasts in use: Helmert contrasts are probably
most useful.

The defaults are different from those in S.

Author(s)

B.D. Ripley

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

The next line is optional (for fractions package which gives neater

results.)

has.VR <- require(MASS, quietly = TRUE)

op <- options(contrasts=c("contr.helmert", "contr.poly"))

npk.aov <- aov(yield ~ block + N*P*K, npk)

alias(npk.aov)

if(has.VR) detach(package:MASS)

options(op)# reset

all Are All Values True? all

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

... one or more logical vectors.

na.rm logical. If true NA values are removed before the result is computed.

Value

Given a sequence of logical arguments, a logical value indicating whether or not all of the
elements of x are TRUE.

The value returned is TRUE if all the values in x are TRUE, and FALSE if any the values in x
are FALSE.

If x consists of a mix of TRUE and NA values, then value is NA.

all.equal 11

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))

if(all(x < 0)) cat("all x values are negative\n")

all.equal Test if Two Objects are (Nearly) Equal all.equal

Description

all.equal(x,y) is a utility to compare R objects x and y testing “near equality”. If they
are different, comparison is still made to some extent, and a report of the differences is
returned.

Usage

all.equal(target, current, ...)

all.equal.numeric(target, current,
tolerance= .Machine$double.eps ^ 0.5, scale=NULL)

Details

There are several methods available, most of which are dispatched by the default method, see
methods("all.equal"). all.equal.list and all.equal.language provide comparison
of recursive objects.

Numerical comparison is done using averge (mean) relative error, unless scale is used
or when the absolute difference is less than tolerance. For complex arguments, Mod of
difference is used.

attr.all.equal is used for comparing attributes, returning NULL or character.

Value

Either TRUE or a vector of mode "character" describing the differences between target
and current.

Numerical differences are reported by relative error

See Also

==, and all for exact equality testing.

Examples

all.equal(pi, 355/113) # not precise enough (default tol) > relative error

all.equal(gamma(2:14), cumprod(1:13)) # TRUE, but

all (gamma(2:14) == cumprod(1:13)) # FALSE, since not exactly

all.equal(gamma(2:14), cumprod(1:13), tol=0) # to see difference

all.equal(options(), .Options)

.Options $ myopt <- TRUE

all.equal(options(), as.list(.Options))

rm(.Options)

12 anova

all.names Find All Names in an Expression all.names

Description

Return a character vector containing all the names which occur in an expression or call.

Usage

all.names(expr, functions = TRUE,
max.names = 200, unique = FALSE)

all.vars(expr, functions = FALSE,
max.names = 200, unique = TRUE)

Arguments

expr an expression or call from which the names are to be extracted.

functions a logical value indicating whether function names should be included in
the result.

max.names the maximum number of names to be returned.

unique a logical value which indicates whether duplicate names should be re-
moved from the value.

Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

Examples

all.names(expression(sin(x+y)))

all.vars(expression(sin(x+y)))

anova Anova Tables anova

Description

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage

anova(object, ...)
print(anova.object)

anscombe 13

Arguments

object an object containing the results returned by a model fitting function (e.g.
lm or glm).

... additional objects of the same type.

Value

This (generic) function returns an object of class anova. These objects represent analysis-
of-variance and analysis-of-deviance tables. When given a single argument it produces a
table which tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in the order
specified.

The print method for anova objects prints tables in a “pretty” form.

Warning

The comparison between two or more models will only be valid if they are fitted to the same
dataset. This may be a problem if there are missing values and R’s default of na.action
= na.omit is used.

See Also

coefficients, effects, fitted.values, residuals, summary.

anscombe
Anscombe’s Quartet of “Identical” Simple Linear

Regressions anscombe

Description

Four x-y datasets which have the same traditional statistical properties (mean, variance,
correlation, regression line, etc.), yet are quite different.

Usage

data(anscombe)

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged
x4 values 8 and 19

y1, y2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03

Source

Tufte, Edward R. (1989) The Visual Display of Quantitative Information, 13–14. Graphics
Press.

14 any

References

Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27,
17–21.

Examples

data(anscombe)

summary(anscombe)

##-- now some "magic" to do the 4 regressions in a loop:

ff <- y ~ x

for(i in 1:4) {

ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)

or ff[[2]] <- as.name(paste("y", i, sep=""))

ff[[3]] <- as.name(paste("x", i, sep=""))

assign(paste("lm.",i,sep=""), lmi <- lm(ff, data= anscombe))

print(anova(lmi))

}

See how close they are (numerically!)

sapply(objects(pat="lm\.[1-4]$"), function(n) coef(get(n)))

lapply(objects(pat="lm\.[1-4]$"), function(n) summary(get(n))$coef)

Now, do what you should have done in the first place: PLOTS

op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma= c(0,0,2,0))

for(i in 1:4) {

ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)

plot(ff, data =anscombe, col="red", pch=21, bg = "orange", cex = 1.2,

xlim=c(3,19), ylim=c(3,13))

abline(get(paste("lm.",i,sep="")), col="blue")

}

mtext("Anscombe’s 4 Regression data sets", outer = TRUE, cex=1.5)

par(op)

any Are Values True? any

Description

Given a set of logical vectors, are all or any of the values true?

Usage

any(..., na.rm = FALSE)

Arguments

... one or more logical vectors.

na.rm logical. If true NA values are removed before the result is computed.

aov 15

Value

Given a sequence of logical arguments, a logical value indicating whether or not any of the
elements of x are TRUE.

The value returned is TRUE if any the values in x are TRUE, and FALSE if all the values in x
are FALSE.

If x consists of a mix of FALSE and NA values, the value is NA.

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))

if(any(x < 0)) cat("x contains negative values\n")

aov Fit an Analysis of Variance Model aov

Description

Fit an analysis of variance model by a call to lm for each stratum.

Usage

aov(formula, data = NULL, projections = FALSE, contrasts = NULL, ...)
se.aov(object, n, type = "means")

Arguments

formula A formula specifying the model.
data A data frame in which the variables specified in the formula will be found.

If missing, the variables are searched for in the standard way.
projections Logical flag: should the projections be returned?
contrasts A list of contrasts to be used for some of the factors in the formula. These

are not used for any Error term, and supplying contrasts for factors only
in the Error term will give a warning.

... Arguments to be passed to lm, such as subset or na.action.

Details

This provides a wrapper to lm for fitting linear models to balanced or unbalanced experi-
mental designs.

The main difference from lm is in the way print, summary and so on handle the fit: this
is expressed in the traditional language of the analysis of variance rather than of linear
models.

If the formula contains a single Error term, this is used to specify error strata, and appro-
priate models are fitted within each error stratum.

The formula can specify multiple responses.

Value

An object of class c("aov", "lm") or for multiple responses of class c("maov", "aov",
"mlm", "lm") or for multiple error strata of class "aovlist". There are print and summary
methods available for these.

16 aperm

Author(s)

B. D. Ripley

See Also

lm, alias, proj, model.tables

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

(npk.aov <- aov(yield ~ block + N*P*K, npk))

summary(npk.aov)

coefficients(npk.aov)

as a test, not particularly sensible statistically

op <- options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

npk.aovE

summary(npk.aovE)

options(op)# reset to previous

aperm Array Transposition aperm

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, resize = TRUE)

Arguments

a the array to be transposed.

perm the subscript permutation vector.

resize a flag indicating whether the vector should be resized as well as having
its elements reordered (default TRUE.)

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm.
If resize is TRUE, the array is reshaped as well as having its elements permuted.

The function t provides a faster and more convenient way of transposing matrices.

append 17

See Also

t.

Examples

interchange the first two subscripts on a 3-way array x

x <- array(1:24, 2:4)

xt <- aperm(x, c(2,1,3))

all(t(xt[,,2]) == x[,,2])

append Vector Merging append

Description

Add elements to a vector.

Usage

append(x, values, after=length(x))

Arguments

x the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.

Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

Examples

all(append(1:5, 0:1, after=3) ==

append(1:3, c(0:1, 4:5)))

apply Apply Functions Over Array Margins apply

Description

Returns a vector or array or list of values obtained by applying a function to margins of an
array.

Usage

apply(x, MARGIN, FUN, ...)

18 apply

Arguments

x the array to be used.

MARGIN a vector giving the subscripts which the function will be applied over. 1
indicates rows, 2 indicates columns, c(1,2) indicates rows and columns.

FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted.

... optional arguments to FUN.

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension
c(n,dim(x)[MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length
1 and an array of dimension dim(x)[MARGIN] otherwise.

If the calls to FUN return vectors of different lengths, apply returns a list of length
dim(x)[MARGIN].

See Also

lapply, tapply, and convenience functions sweep and aggregate.

Examples

Compute row and column sums for a matrix:

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

dimnames(x)[[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

all(apply(x,2, is.vector)) # TRUE [was not in R <= 0.63.2]

Sort the columns of a matrix

apply(x, 2, sort)

##- function with extra args:

cave <- function(x, c1,c2) c(mean(x[c1]),mean(x[c2]))

apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nr = 2)

ma

apply(ma, 1, table) #--> a list of length 2

apply(ma, 1, quantile)# 5 x n matrix with rownames

all(dim(ma) == dim(apply(ma, 1:2, sum)))## wasn’t ok before R 0.63.1

approxfun 19

approxfun Interpolation Functions approxfun

Description

Return a list of points which linearly interpolate given data points, or a function performing
the linear (or constant) interpolation.

Usage

approx (x, y, xout, method="linear", n=50,
yleft, yright, rule=1, f=0)

approxfun(x, y, method="linear",
yleft, yright, rule=1, f=0)

Arguments

x,y vectors giving the coordinates of the points to be interpolated. Alternat-
ively a single plotting structure can be specified.

xout an optional set of values specifying where interpolation is to take place.

method specifies the interpolation method to be used. Choices are "linear" or
"constant".

n If xout is not specified, interpolation takes place at n equally spaced
points spanning the interval [min(x), max(x)].

yleft the value to be returned when input x values less than min(x). The
default is defined by the value of rule given below.

yright the value to be returned when input x values greater than max(x). The
default is defined by the value of rule given below.

rule an integer describing how interpolation is to take place outside the interval
[min(x), max(x)]. If rule is 1 then NAs are returned for such points and
if it is 2, the value at the closest data extreme is used.

f For method="constant" a number between 0 and 1 inclusive, indicating
a compromise between left- and right-continuous step functions. If y0
and y1 are the values to the left and right of the point then the value is
y0*f+y1*(1-f) so that f=0 is right-continuous and f=1 is left-continuous.

Details

The inputs can contain missing values which are deleted, so at least two complete (x, y)
pairs are required.

Value

approx returns a list with components x and y, containing n coordinates which interpolate
the given data points according to the method (and rule) desired.

The function approxfun returns a function performing (linear or constant) interpolation of
the given data points. For a given set of x values, this function will return the corresponding
interpolated values. This is often more useful than approx.

20 apropos

See Also

spline and splinefun for spline interpolation.

Examples

x <- 1:10

y <- rnorm(10)

par(mfrow = c(2,1))

plot(x, y, main = "approx(.) and approxfun(.)")

points(approx(x, y), col = 2, pch = "*")

points(approx(x, y, method = "constant"), col = 4, pch = "*")

f <- approxfun(x, y)

curve(f(x), 0, 10, col = "green")

points(x, y)

is.function(fc <- approxfun(x, y, method = "const")) # T

curve(fc(x), 0, 10, col = "darkblue", add = TRUE)

apropos Find Objects by (Partial) Name apropos

Description

apropos returns a vector of character strings giving the names of all objects in the search
list matching what.

find is a different user interface to the same task as apropos.

Usage

apropos(what, where = FALSE, mode = "any")
find(what, mode = "any", numeric. = FALSE, simple.words = TRUE)

Arguments

what name of an object, or regular expression to match against
where, numeric.

a logical indicating whether positions in the search list should also be
returned

mode character; if not "any", only objects who’s mode equals mode are searched.

simple.words logical; if TRUE, the what argument is only searched as whole only word.

Details

apropos returns a vector of character strings giving the names of all objects in the search
list matching what. If mode != "any" only those objects which are of mode mode are
considered. If where is TRUE, their position in the search list is returned as their names
attribute.

find is a different user interface to the same task as apropos. However, by default
(simple.words == TRUE), only full words are searched.

args 21

Author(s)

Kurt Hornik and Martin Maechler (May 1997).

See Also

objects for listing objects from one place, search for the search path.

Examples

apropos("lm")

apropos(ls)

apropos("lq")

lm <- 1:pi

find(lm) ##> ".GlobalEnv" "package:base"

find(lm, num=T) ## .. numbers with these names

find(lm, num=T, mode="function")# only the second one

rm(lm)

apropos(".", mode="list")

need a DOUBLE backslash ‘\\’ (in case you don’t see it anymore)

apropos("\\[")

everything

length(apropos("."))

those starting with ‘pr’

apropos("^pr")

the 1-letter things

apropos("^.$")

the 1-2-letter things

apropos("^..?$")

the 2-to-4 letter things

apropos("^.{2,4}$")

the 8-and-more letter things

apropos("^.{8,}$")

table(nchar(apropos("^.{8,}$")))

args Argument List of a Function args

Description

Displays the argument names and corresponding default values of a function.

Usage

args(name)

22 Arithmetic

Arguments

name an interpreted function. If name is a character string then the function
with that name is found and used.

Details

This function is mainly used interactively. For programming, use formals instead.

Value

A function with identical formal argument list but an empty body if given an interpreted
function; NULL in case of a variable or primitive (non-interpreted) function.

See Also

formals, help.

Examples

args(c) # -> NULL (c is a ‘primitive’ function)

args(plot.default)

Arithmetic Arithmetic Operators Arithmetic

Description

These binary operators perform arithmetic on vector objects.

Usage

x + y
x - y
x * y
x / y
x ^ y
x %% y
x %/% y

Details

1 ˆ y and y ˆ 0 are 1, always. x ˆ y should also give the proper “limit” result when either
argument is infinite (i.e., +- Inf).

Objects such as arrays or time-series can be operated on this way provided they are con-
formable.

array 23

Value

They return numeric vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled
only fractionally). The operators are + for addition, - for subtraction * for multiplication,
/ for division and ˆ for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that x == (x
%% y) + y * (x %/% y) unless y == 0 where the result is NA or NaN (depending on the
typeof of the arguments).

See Also

Math for miscellaneous and Special for special mathematical functions.

Examples

x <- -1:12

x + 1

2 * x + 3

x %% 2 #-- is periodic

x %/% 5

array Multi-way Arrays array

Description

Creates or tests for arrays.

Usage

array(x, dim = length(x), dimnames = NULL)
as.array(x)
is.array(x)

Value

array returns an array with the extents specified in dim and naming information in dim-
names. The values in x are taken to be those in the array with the leftmost subscript
moving fastest. If there are too few elements in x to fill the array, then the elements in x
are recycled.

as.array() coerces its argument to be an array by attaching a dim attribute to it. It also
attaches dimnames if x has names. The sole purpose of this is to make it possible to access
the dim[names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., has
a dim attribute) or not.

See Also

aperm, matrix.

24 arrows

Examples

dim(as.array(letters))

array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"

[,1] [,2] [,3] [,4]

#[1,] 1 3 2 1

#[2,] 2 1 3 2

arrows Add Arrows to a Plot arrows

Description

Draw arrows between pairs of points.

Usage

arrows(x0, y0, x1, y1, length = 0.25, angle = 30, code = 2,
col = par("fg"), lty = NULL, xpd = FALSE)

Arguments

x0,y0 coordinates of points from which to draw.

x1,y1 coordinates of points to which to draw.

length length of the edges of the arrow head (in inches).

angle angle from the shaft of the arrow to the edge of the arrow head.

code integer code, determining kind of arrows to be drawn.

col, lty, xpd usual graphical parameters as in par.

Details

For each i, an arrow is drawn between the point (x0[i], y0[i]) and the point
(x1[i],y1[i]).

If code=2 an arrowhead is drawn at (x0[i],y0[i]) and if code=1 an arrowhead is drawn
at (x1[i],y1[i]). If code=3 a head is drawn at both ends of the arrow.

The graphical parameters col and lty can be used to specify a color and line texture for
the line segments which make up the arrows (col may be a vector).

See Also

segments to draw segments.

Examples

x <- runif(12); y <- rnorm(12)

i <- order(x,y); x <- x[i]; y <- y[i]

plot(x,y, main="arrows(.) and segments(.)")

draw arrows from point to point :

s <- seq(length(x)-1)# one shorter than data

arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)

s <- s[-length(s)]

segments(x[s], y[s], x[s+2], y[s+2], col= ’pink’)

as.char.or.expr 25

as.char.or.expr Coerce to Character or Expression as.char.or.expr

Description

Coerce expression and call objects to expressions, and all other objects to character.

Usage

as.char.or.expr(x)

Arguments

x an arbitrary R object.

Details

This function is used for handling the text arguments to the text-drawing functions. These
arguments can be character strings or expressions (which are interpreted as mathematical
expressions and typeset according to TeX-like rules, see plotmath for more details). Users
will typically have no need for it.

Examples

as.char.or.expr("This is a string.")

as.char.or.expr(call("round", 10.5))

as.function Convert Object to Function as.function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

as.function.default(l, envir = sys.frame(sys.parent()))

Arguments

x object to convert

... additional arguments, depending on object

l a list

envir environment in which the function should be defined

26 assign

Value

The desired function.

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist(a=,b=2,a+b))

as.function(alist(a=,b=2,a+b))(3)

assign Assign a Value to a Name assign

Description

Assign a value to a name in an environment.

Usage

assign(x, value, pos = -1, envir = pos.to.env(pos),
inherits = FALSE, immediate = TRUE)

x <- value
x <<- value
value -> x
value ->> x

Arguments

x a variable name (given as a quoted string).

value a value to be assigned to x.

pos an index into the search list which determines which environment the
assignment is to take place in. A character string may also be used. The
environment can also be specified directly with envir.

envir the environment in which to assign. The default is the environment where
the call to assign takes place.

inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

attach 27

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no
envir is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until
the variable x is encountered. The value is then assigned in the environment in which the
variable is encountered. If the symbol is not encountered then assignment takes place in
the global environment.

If inherits is FALSE, assignment takes place in the initial frame of envir.

The arrow forms of assignment provide shortcut ways to carry out assignment. The <- and
-> forms carry out assignment in the local environment frame, while the <<- and ->> forms
cause a search to made through the environment for an existing definition of the variable
being assigned. If such a variable is found then its value is redefined, otherwise assignment
takes place globally.

Note that the action of <<- and ->> differs from that in the S language, but is useful in
conjunction with the scoping rules of R.

See Also

get, exists, environment.

Examples

for(i in 1:6) { #-- Create objects ’r1’, ’r2’, ... ’r6’ --

nam <- paste("r",i, sep=".")

assign(nam, 1:i)

}

ls(pat="^r..$")

##-- Global assignment within a function:

myf <- function(x) {

innerf <- function(x) assign("Global.res", x^2, env = .GlobalEnv)

innerf(x+1)

}

myf(3)

Global.res # 16

attach Attach Set of R Objects to Search Path attach

Description

A new database is attached. This means that its objects are made available to R.

—— should say more here ——

Usage

attach(what, pos = 2, name = deparse(substitute(what)))

28 attenu

Arguments

what “database” to attach. Typically a data.frame or list.

pos integer specifying position in search() where to attach.

name alternative way to specify the database to be attached.

Value

The environment is returned invisibly with a "name" attribute.

See Also

library, detach, search, objects, environment.

Examples

data(women)

attach(women)

summary(height) #- which belongs to ‘women’

detach("women")

attenu The Joyner-Boore Attenuation Data attenu

Description

This data gives peak accelerations measured at various observation stations for 23 earth-
quakes in California. The data have been used by various workers to estimate the attenu-
ating affect of distance on ground acceleration.

Usage

data(attenu)

Format

A dataframe with 182 observations on 5 variables.

[,1] event numeric Event Number
[,2] mag numeric Moment Magnitude
[,3] station factor Station Number
[,4] dist numeric Station-hypocenter distance (km)
[,5] accel numeric Peak acceleration (g)

Source

Joyner, W.B., D.M. Boore and R.D. Porcella (1981). Peak horizontal acceleration and velo-
city from strong-motion records including records from the 1979 Imperial Valley, California
earthquake. USGS Open File report 81-365. Menlo Park, Ca.

attitude 29

References

Boore, D. M. and Joyner, W.B.(1982) The empirical prediction of ground motion, Bull.
Seism. Soc. Am., 72, S269–S268.

Bolt, B. A. and Abrahamson, N. A. (1982) New attenuation relations for peak and expected
accelerations of strong ground motion, Bull. Seism. Soc. Am., 72, 2307–2321.

Bolt B. A. and Abrahamson, N. A. (1983) Reply to W. B. Joyner & D. M. Boore’s “Com-
ments on: New attenuation relations for peak and expected accelerations for peak and
expected accelerations of strong ground motion”, Bull. Seism. Soc. Am., 73, 1481–1483.

Brillinger, D. R. and Preisler, H. K. (1984) An exploratory analysis of the Joyner-Boore
attenuation data, Bull. Seism. Soc. Am. 74, 1441–1449.

Brillinger, D. R. and Preisler, H. K. (1984) Further analysis of the Joyner-Boore attenuation
data. Manuscript.

Examples

data(attenu)

check the data class of the variables

sapply(attenu, data.class)

summary(attenu)

pairs(attenu, main = "attenu data")

coplot(accel ~ dist | as.factor(event), data = attenu, show = FALSE)

coplot(log(accel) ~ log(dist) | as.factor(event),

data = attenu, panel = panel.smooth, show.given = FALSE)

attitude Attitudes Toward Supervisors attitude

Description

Not available (yet).

Usage

data(attitude)

Format

A data from with 30 observations on 7 variables.

[,1] rating numeric Overall rating
[,2] complaints numeric Handling of employee complaints
[,3] privileges numeric Gives special privileges
[,4] learning numeric Opportunity to learn
[,5] raises numeric Gives raises
[,6] critical numeric Too critical
[,7] advancel numeric Advancement

Source

Chatterjee, S. and Price, B. (1977) Regression Analysis by Example. New York: Wiley.

30 attr

Examples

data(attitude)

pairs(attitude, main = "attitude data")

summary(attitude)

summary(fm1 <- lm(rating ~ ., data = attitude))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

summary(fm2 <- lm(rating ~ complaints, data = attitude))

plot(fm2)

par(opar)

attr Object Attributes attr

Description

Get or set specific attributes of an object.

Usage

attr(x, which)
attr(x, which) <- value

Arguments

x an object whose attributes are to be accessed.

which a character string specifying which attribute is to be accessed.

Value

This function provides access to a single object attribute. The simple form above returns
the value of the named attribute. The assignment form causes the named attribute to take
the value on the right of the assignment symbol.

See Also

attributes

Examples

create a 2 by 5 matrix

x <- 1:10

attr(x,"dim") <- c(2, 5)

attributes 31

attributes Object Attribute Lists attributes

Description

These functions access an object’s attribute list. The first form above returns the an object’s
attribute list. The assignment forms make the list on the right-hand side of the assignment
the object’s attribute list (if appropriate).

Usage

attributes(obj)
attributes(obj) <- list
mostattributes(obj) <- list

Details

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when that is valid whereas as attributes assignment would
give an error in that case.

See Also

attr.

Examples

x <- cbind(a=1:3, pi=pi) # simple matrix w/ dimnames

str(attributes(x))

strip an objects attributes:

attributes(x) <- NULL

x # now just a vector of length 6

mostattributes(x) <- list(mycomment = "really special", dim = 3:2,

dimnames = list(LETTERS[1:3], letters[1:5]), names = paste(1:6))

x # dim(), but not {dim}names

autoload On-demand Loading of Packages autoload

Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in .Auto-
loadEnv environment. When R attempts to evaluate name, autoloader is run, the package
is loaded and name is re-evaluated in the new package’s environment. The result is that R
behaves as if file was loaded but it does not occupy memory.

Usage

autoload(name, file)
autoloader(name, file)
.AutoloadEnv

32 ave

Arguments

name string giving the name of an object

file string giving the name of a package containing the object

Value

This function is invoked for its side-effect.

See Also

delay, library

Examples

autoload("line","eda")

search()

ls("Autoloads")

all(ls("Autoloads") == ls(envir = .AutoloadEnv))

data(cars)

plot(cars)

z<-line(cars)

abline(coef(z))

search()

detach("package:eda")

search()

z<-line(cars)

search()

ave Group Averages Over Level Combinations of Factors ave

Description

Subsets of x[] are averaged, where each subset consist of those observations with the same
factor levels.

Usage

ave(x, ..., FUN = mean)

Arguments

x A numeric.

... Grouping variables, typically factors, all of the same length as x.

FUN Function to apply for each factor level combination.

Value

A numeric vector, say y of length length(x). If ... is g1,g2, e.g., y[i] is equal to
FUN(x[j], for all j with g1[j]==g1[i] and g2[j]==g2[i]).

axis 33

See Also

mean, median.

Examples

data(warpbreaks)

attach(warpbreaks)

ave(breaks, wool)

ave(breaks, tension)

ave(breaks, tension, FUN = function(x)mean(x, trim=.1))

plot(breaks, main =

"ave(Warpbreaks) for wool x tension combinations")

lines(ave(breaks, wool, tension), type=’s’, col = "blue")

lines(ave(breaks, wool, tension, FUN=median), type=’s’, col = "green")

legend(40,70, c("mean","median"), lty=1,col=c("blue","green"), bg="gray90")

detach()

axis Add an Axis to a Plot axis

Description

Adds an axis to the current plot, allowing the specification of the side, position, labels, and
other options.

Usage

axis(side, at, labels = TRUE, ...)

Arguments

side an integer specifying which side of the plot the axis is to be drawn on.

at the points at which tick-marks are to be drawn. Non-finite (infinite, NaN
or NA) values are omitted.

labels this can either be a logical value specifying whether (numerical) annota-
tions are to be made at the tickmarks, or a vector of character strings to
be placed at the tickpoints.

... graphical parameters may also be passed as arguments to this function.

Details

The axis line is drawn from the lowest to the highest value of at, but will be clipped at
the plot region. Only ticks which are drawn from points within the plot region (up to a
tolerance for rounding error) are plotted, but the ticks and their labels may well extend
outside the plot region.

Value

This function is invoked for its side effect, which is to add an axis to an already existing
plot. The axis is placed as follows: 1=below, 2=left, 3=above and 4=right.

34 backsolve

Examples

plot(1:4, rnorm(4), axes=FALSE)

axis(1, 1:4, LETTERS[1:4])

axis(2)

box() #- to make it look "as usual"

plot(1:7, rnorm(7), type = ’s’, xaxt=’n’, col = ’red’)

axis(1, 1:7, LETTERS[1:7], col.axis = ’blue’)

backsolve Solve an Upper or Lower Triangular System backsolve

Description

Solves a system of linear equations where the coefficient matrix is upper or lower triangular.

Usage

backsolve(r, x, k= ncol(r), upper.tri = TRUE, transpose = FALSE)
forwardsolve(l, x, k= ncol(l), upper.tri = FALSE, transpose = FALSE)

Value

The solution of the triangular system. The result will be a vector if x is a vector and a
matrix if x is a matrix.

References

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

See Also

chol, qr, solve.

Examples

upper triangular matrix ‘r’:

r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))

(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1

r %*% y # == x = (8,4,2)

(y2 <- backsolve(r, x, transpose = TRUE)) # 8 -12 -5

all(t(r) %*% y2 == x)# exactly on Linux (Pentium)

all(y == backsolve(t(r), x, upper = FALSE, transpose = TRUE))

all(y2 == backsolve(t(r), x, upper = FALSE, transpose = FALSE))

barplot 35

barplot Bar Plots barplot

Description

Creates a bar plot with vertical or horizontal bars.

Usage

barplot(height, width = 1, space = NULL, names.arg = NULL,
legend.text = NULL, beside = FALSE, horiz = FALSE,
col = heat.colors(NR), border = par("fg"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL,
axes = TRUE, axisnames = TRUE, inside = TRUE, plot = TRUE, ...)

Arguments

height either a vector or matrix of values describing the bars which make up the
plot. If height is a vector, the plot consists of a sequence of rectangular
bars with heights given by the values in the vector. If height is a matrix
and beside is FALSE then each bar of the plot corresponds to a column
of height, with the values in the column giving the heights of stacked
“sub-bars” making up the bar. If height is a matrix and beside is TRUE,
then the values in each column are juxtaposed rather than stacked.

width optional vector of bar widths.

space the amount of space (as a fraction of the average bar width) left before
each bar. May be given as a single number or one number per bar. If
height is a matrix and beside is TRUE, space may be specified by two
numbers, where the first is the space between bars in the same group,
and the second the space between the groups. If not given explicitly, it
defaults to c(0,1) if height is a matrix and beside is TRUE, and to 0.2
otherwise.

names.arg a vector of names to be plotted below each bar or group of bars. If this
argument is omitted, then the names are taken from the names attribute
of height if this is a vector, or the column names if it is a matrix.

legend.text a vector of text used to construct a legend for the plot. This is only useful
when height is a matrix. In that case the legend labels should correspond
to the rows of height.

beside a logical value. If FALSE, the columns of height are portrayed as stacked
bars, and if TRUE the columns are portrayed as juxtaposed bars.

horiz a logical value. If FALSE, the bars are drawn vertically with the first bar
to the left. If TRUE, the bars are drawn horizontally with the first at the
bottom.

col a vector of colors for the bars or bar components.

border the color to be used for the border of the bars.

main,sub overall and sub title for the plot.

xlab a label for the x axis.

36 barplot

ylab a label for the y axis.

xlim limits for the x axis.

ylim limits for the y axis.

axes logical. If TRUE, a vertical (or horizontal, if horiz is true) axis is drawn.

axisnames logical. If TRUE, and if there are names.arg (see above), the other axis is
drawn (with lty=0) and labeled.

plot logical. If FALSE, nothing is plotted.

... further graphical parameters (par) are passed to plot.window() and
title().

Details

This is a generic function, it currently only has a default method. A formula interface may
be added eventually.

Value

A numeric vector (or matrix, when beside = TRUE), say mp, giving the coordinates of all
the bar midpoints drawn, useful for adding to the graph.

If beside is true, use apply(mp, 2, mean) for the midpoints of each group of bars, see
example.

See Also

plot(..., type="h"), dotplot, hist.

Examples

tN <- table(Ni <- rpois(100, lambda=5))

r <- barplot(tN, col=’gray’)

#- type = "h" plotting *is* ‘bar’plot

lines(r, tN, type=’h’, col=’red’, lwd=2)

barplot(tN, space = 1.5, axisnames=FALSE,

sub = "barplot(...., space= 1.5, axisnames = FALSE)")

data(VADeaths, package = "base")

barplot(VADeaths, plot = FALSE)

barplot(VADeaths, plot = FALSE, beside = TRUE)

mp <- barplot(VADeaths) # default

tot <- apply(VADeaths, 2, sum)

text(mp, tot + 3, format(tot), xpd = NA, col = "blue")

barplot(VADeaths, beside = TRUE,

col = c("lightblue", "mistyrose", "lightcyan",

"lavender", "cornsilk"),

legend = rownames(VADeaths), ylim = c(0, 100))

title(main = "Death Rates in Virginia", font.main = 4)

hh <- t(VADeaths)[, 5:1]

mybarcol <- "gray20"

mp <- barplot(hh, beside = TRUE,

col = c("lightblue", "mistyrose",

"lightcyan", "lavender"),

Bessel 37

legend = colnames(VADeaths), ylim= c(0,100),

main = "Death Rates in Virginia", font.main = 4,

sub = "Faked upper 2*sigma error bars", col.sub = mybarcol)

segments(mp, hh, mp, hh + 2*sqrt(1000*hh/100), col = mybarcol, lwd = 1.5)

all(dim(mp) == dim(hh))# corresponding matrices

mtext(side = 1, at = apply(mp, 2, mean), line = -2,

text = paste("Mean", formatC(apply(hh, 2, mean))), col = "red")

Bessel Bessel Functions Bessel

Description

Bessel Functions of integer and fractional order, of first and second kind, Jν and Yν , and
Modified Bessel functions (of first and third kind), Iν and Kν .

gammaCody is the (Γ) function as from the Specfun package and originally used in the Bessel
code.

Usage

besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)
gammaCody(x)

Arguments

x numeric, ≥ 0.

nu numeric; ≥ 0 unless in besselK which is symmetric in nu. The order of
the corresponding Bessel function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid
overflow (Iν) or underflow (Kν), respectively.

Details

The underlying C code stems from Netlib (http://www.netlib.org/specfun/r[ijky]
besl).

If expon.scaled = TRUE, e−xIν(x), or exKν(x) are returned.

gammaCody may be somewhat faster but less precise and/or robust than R’s standard gamma.
It is here for experimental purpose mainly, and may be defunct very soon.

Value

Numeric vector of the same length of x with the (scaled, if expon.scale=TRUE) values of
the corresponding Bessel function.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover,
New York; Chapter 9: Bessel Functions of Integer Order.

http://www.netlib.org/specfun/r[ijky]besl
http://www.netlib.org/specfun/r[ijky]besl

38 Beta

See Also

Other special mathematical functions, as the gamma, Γ(x), and beta, B(x).

Examples

nus <- c(0:5,10,20)

x <- seq(0,4, len= 501)

plot(x,x, ylim = c(0,6), ylab="",type=’n’, main = "Bessel Functions I_nu(x)")

for(nu in nus) lines(x,besselI(x,nu=nu), col = nu+2)

legend(0,6, leg=paste("nu=",nus), col = nus+2, lwd=1)

x <- seq(0,40,len=801); yl <- c(-.8,.8)

plot(x,x, ylim = yl, ylab="",type=’n’, main = "Bessel Functions J_nu(x)")

for(nu in nus) lines(x,besselJ(x,nu=nu), col = nu+2)

legend(32,-.18, leg=paste("nu=",nus), col = nus+2, lwd=1)

x0 <- 2^(-20:10)

plot(x0,x0^-8, log=’xy’, ylab="",type=’n’,

main = "Bessel Functions J_nu(x) near 0\n log - log scale")

for(nu in sort(c(nus,nus+.5))) lines(x0,besselJ(x0,nu=nu), col = nu+2)

legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

plot(x0,x0^-8, log=’xy’, ylab="",type=’n’,

main = "Bessel Functions K_nu(x) near 0\n log - log scale")

for(nu in sort(c(nus,nus+.5))) lines(x0,besselK(x0,nu=nu), col = nu+2)

legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

x <- x[x > 0]

plot(x,x, ylim=c(1e-18,1e11),log="y", ylab="",type=’n’,

main = "Bessel Functions K_nu(x)")

for(nu in nus) lines(x,besselK(x,nu=nu), col = nu+2)

legend(0,1e-5, leg=paste("nu=",nus), col = nus+2, lwd=1)

Check the Scaling :

for(nu in nus)

print(all(abs(1- besselK(x,nu)*exp(x) / besselK(x,nu,expo=TRUE)) < 2e-15))

for(nu in nus)

print(all(abs(1- besselI(x,nu)*exp(-x) / besselI(x,nu,expo=TRUE)) < 1e-15))

yl <- c(-1.6, .6)

plot(x,x, ylim = yl, ylab="",type=’n’, main = "Bessel Functions Y_nu(x)")

for(nu in nus){xx <- x[x > .6*nu]; lines(xx,besselY(xx,nu=nu), col = nu+2)}

legend(25,-.5, leg=paste("nu=",nus), col = nus+2, lwd=1)

Beta The Beta Distribution Beta

Description

Density, distribution function, quantile function and random generation for the Beta distri-
bution with parameters shape1 and shape2 (and optional non-centrality parameter ncp).

Beta 39

Usage

dbeta(x, shape1, shape2, ncp=0, log = FALSE)
pbeta(q, shape1, shape2, ncp=0, lower.tail = TRUE, log.p = FALSE)
qbeta(p, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rbeta(n, shape1, shape2)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations to generate.

shape1, shape2

positive parameters of the Beta distribution.

ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The Beta distribution with parameters shape1 = a and shape2 = b has density

f(x) =
Γ(a+ b)
Γ(a)Γ(b)

xa(1− x)b

for a > 0, b > 0 and 0 < x < 1.

Value

dbeta gives the density, pbeta the distribution function, qbeta the quantile function, and
rbeta generates random deviates.

See Also

beta for the Beta function, and dgamma for the Gamma distribution.

Examples

x <- seq(0, 1, length=21)

dbeta(x, 1, 1)

pbeta(x, 1, 1)

40 Binomial

Binomial The Binomial Distribution Binomial

Description

Density, distribution function, quantile function and random generation for the binomial
distribution with parameters size and prob.

Usage

dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations to generate.

size number of trials.

prob probability of success on each trial.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The binomial distribution with size = n and prob = p has density

p(x) =
(
n

x

)
px(1− p)n−x

for x = 0, . . . , n.

If an element of x is not integer, the result of dbinom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distri-
bution function.

Value

dbinom gives the density, pbinom gives the distribution function, qbinom gives the quantile
function and rbinom generates random deviates.

See Also

dnbinom for the negative binomial, and dpois for the Poisson distribution.

body 41

Examples

Compute P(45 < X < 55) for X Binomial(100,0.5)

sum(dbinom(46:54, 100, 0.5))

Using "log = TRUE" for an extended range :

n <- 2000

plot (0:n, dbinom(0:n, n, pi/10, log=TRUE), type=’l’,

main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")

lines(0:n, log(dbinom(0:n, n, pi/10)), col=’red’, lwd=2)

mtext("dbinom(k, log=TRUE)", adj=0)

mtext("extended range", adj=0, line = -1, font=4)

mtext("log(dbinom(k))", col="red", adj=1)

body Access to and Manipulation of the Body of a Function body

Description

Get or set the body of a function.

Usage

body(fun = sys.function(sys.parent()))
body(fun) <- list

Arguments

fun a function object or a character string naming the function to be manip-
ulated. If not specified, the function calling body is used.

list a list of R expressions.

Value

body returns the body of the function specified.

The assignment form sets the body of a function to the list on the right hand side.

See Also

alist, args, function.

Examples

body(body)

f <- function(x) x^5

body(f) <- expression(5^x)

f(3) # = 125

str(body(f))

42 boxplot

box Draw a Box around a Plot box

Description

This function draws a box around the current plot in the given color and linetype. The bty
parameter determines the type of box drawn. See par for details.

Usage

box(which="plot", lty="solid", ...)

Arguments

which character, one of "plot", "figure", "inner" and "outer".

lty line type of the box.

... further graphical parameters, such as bty, col, or lwd, see par.

See Also

rect for drawing of arbitrary rectangles.

Examples

plot(1:7,abs(rnorm(7)), type=’h’, axes = F)

axis(1, labels = letters[1:7])

box(lty=’137’, col = ’red’)

boxplot Box Plots boxplot

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

Usage

boxplot(x, ...)
boxplot.default(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

notch = FALSE, names, data = sys.frame(sys.parent()),
plot = TRUE, border = par("fg"), col = NULL, log = "",
pars = NULL)

boxplot.formula(formula, data = NULL, subset, na.action, ...)

boxplot 43

Arguments

x an R object.

... methods may have additional arguments.

x, ... the data from which the boxplots are to be produced. The data can be
specified as separate vectors, each corresponding to a component boxplot,
or as a single list containing such vectors. Alternatively a symbolic spe-
cification of the form x ˜ g can be given, indicating that the observations
in the vector x are to be grouped according to the levels of the factor
g. In this case the argument data can be used to provide values for the
variables in the specification. NAs are allowed in the data.

range this determines how far the plot whiskers extend out from the box. If
range is positive, the whiskers extend to the most extreme data point
which is no more than range times the interquartile range from the box.
A value of zero causes the whiskers to extend to the data extremes.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.

names group labels which will be printed under each boxplot.

data data.frame, list, or environment in which variable names are evaluated
when x is a formula.

plot if TRUE (the default) then a boxplot is produced. If not, the summaries
which the boxplots are based on are returned.

border an optional vector of colors for the outlines of the boxplots. The values
in border are recycled if the length of border is less than the number of
plots.

col if col is non-null it is assumed to contain colors to be used to col the
bodies of the box plots.

log character indicating if x or y or both coordinates should be plotted in log
scale.

pars, ... graphical parameters can also be passed as arguments to boxplot.

formula a formula, such as y ˜ x.

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

na.action a function which indicates what should happen when the data contain
NAs.

... further arguments to the default boxplot method and graphical paramet-
ers may also be passed as arguments, see par.

Details

This is a generic function. It currently has a default method (boxplot.default) and a
formula interface (boxplot.formula).

44 boxplot.stats

Value

List with one component corresponding to each plot. The components are themselves lists
with named components as follows:

stats a vector containing the extreme of the lower whisker, the lower hinge, the
median, the upper hinge and the extreme of the upper whisker.

n the number of observations in the sample.
conf the lower and upper extremes of the notch.
out the values of any data points which lie beyond the extremes of the

whiskers.

See Also

boxplot.stats which does the computation, bxp for the plotting, and stripplot for an
alternative (with small data sets).

Examples

boxplot on a formula:

data(InsectSprays)

boxplot(count ~ spray, data = InsectSprays, col = "lightgray")

data(OrchardSprays)

boxplot(decrease ~ treatment, data = OrchardSprays,

log = "y", col="bisque")

boxplot on a matrix:

mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),

T5 = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))

boxplot(data.frame(mat), main = "boxplot(data.frame(mat), main = ...)")

boxplot.stats Box Plot Statistics boxplot.stats

Description

This function is typically is called by boxplot to gather the statistics necessary for producing
box plots, but may be invoked separately.

Usage

boxplot.stats(x, coef = 1.5, do.conf=TRUE, do.out=TRUE)

Arguments

x a numeric vector for which the boxplot will be constructed (NAs and NaNs
are allowed and omitted).

coef this determines how far the plot “whiskers” extend out from the box. If
coef is positive, the whiskers extend to the most extreme data point
which is no more than coef times the interquartile coef from the box. A
value of zero causes the whiskers to extend to the data extremes.

do.conf,do.out

logicals; if FALSE, the conf or out component respectively will be empty
in the result.

browser 45

Value

List with named components as follows:

stats a vector of length 5, containing the extreme of the lower whisker, the
lower“hinge”, the median, the upper“hinge”and the extreme of the upper
whisker.

n the number of of non-NA observations in the sample.

conf the lower and upper extremes of the “notch”.

out the values of any data points which lie beyond the extremes of the
whiskers.

Note that $stats and $conf are sorted in increasing order, unlike S, and that $n and $out
include any +- Inf values.

See Also

fivenum, boxplot, bxp.

Examples

x <- c(1:100, 1000)

str(boxplot.stats(x))

str(boxplot.stats(x, do.conf=FALSE, do.out=FALSE))

str(boxplot.stats(x, coef = 3, do.conf=FALSE))

str(boxplot.stats(x, coef = 0))

str(boxplot.stats(c(x, NA)))

str(boxplot.stats(c(x, -1:1/0)))

browser Environment Browser browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser()

Details

A call to browser causes a pause in the execution of the current expression and runs a copy
of the R interpreter which has access to variables local to the environment where the call
took place.

Local variables can be listed with ls, and manipulated with R expressions typed to this
sub-interpreter. The interpreter copy is exited by typing c. Execution then resumes at the
statement following the call to browser.

Typing n causes the step-through-debugger, to start and it is possible to step through the
remainder of the function one line at a time.

Typing Q quits the current execution and returns you to the top-level prompt.

46 bug.report

See Also

debug, and traceback for the stack on error.

bug.report Send a Bug Report bug.report

Description

Invokes an editor to write a bug report and optionally mail it to the R-bugs list at 〈r-
bugs@biostat.ku.dk〉. Some standard information on the current version and configuration
of R are included automatically.

Usage

bug.report(subject = "", ccaddress = getenv("USER"),
method = getOption("mailer"), address = "r-bugs@biostat.ku.dk",
file = "R.bug.report")

Arguments

subject Subject of the email. Please do not use single quotes (’) in the subject!

ccaddress Optional email address for copies (default is current user). Use ccaddress
= FALSE for no copies.

method Submission method.

address Recipient’s email address.

method Submission method, one of "mailx", "gnuclient", "none", or "ess".

address Recipient’s email address.

file File to use for setting up the email (or storing it when method is "none"
or sending mail fails).

Details

Currently direct submission of bug reports works only on Unix systems. If the submission
method is "mailx", then the default editor is used to write the bug report. Which editor
is used can be controlled using options, type getOption("editor") to see what editor is
currently defined. Please use the help pages of the respective editor for details of usage.
After saving the bug report (in the temporary file opened) and exiting the editor the report
is mailed using a Unix command line mail utility such as mailx. A copy of the mail is sent
to the current user.

If method is "gnuclient", then an emacs mail buffer is opened and used for sending the
email.

If method is "none" or NULL (which is the default on Windows systems), then only an editor
is opened to help writing the bug report. The report can then be copied to your favorite
email program and be sent to the R-bugs list.

If method is "ess" the body of the mail is simply sent to stdout.

Value

Nothing useful.

bug.report 47

When is there a bug?

If R executes an illegal instruction, or dies with an operating system error message that
indicates a problem in the program (as opposed to something like “disk full”), then it is
certainly a bug.

Taking forever to complete a command can be a bug, but you must make certain that it
was really R’s fault. Some commands simply take a long time. If the input was such that
you KNOW it should have been processed quickly, report a bug. If you don’t know whether
the command should take a long time, find out by looking in the manual or by asking for
assistance.

If a command you are familiar with causes an R error message in a case where its usual
definition ought to be reasonable, it is probably a bug. If a command does the wrong thing,
that is a bug. But be sure you know for certain what it ought to have done. If you aren’t
familiar with the command, or don’t know for certain how the command is supposed to
work, then it might actually be working right. Rather than jumping to conclusions, show
the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for statistical analysis. This is
a very important sort of problem, but it is also a matter of judgment. Also, it is easy to
come to such a conclusion out of ignorance of some of the existing features. It is probably
best not to complain about such a problem until you have checked the documentation in
the usual ways, feel confident that you understand it, and know for certain that what you
want is not available. If you are not sure what the command is supposed to do after a
careful reading of the manual this indicates a bug in the manual. The manual’s job is to
make everything clear. It is just as important to report documentation bugs as program
bugs. However, we know that the introductory documentation is seriously inadequate, so
you don’t need to report this.

If the online argument list of a function disagrees with the manual, one of them must be
wrong, so report the bug.

How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands you
type, from when you start R until the problem happens. Always include the version of R,
machine, and operating system that you are using; type ‘version’ in R to print this.

The most important principle in reporting a bug is to report FACTS, not hypotheses or
categorizations. It is always easier to report the facts, but people seem to prefer to strain
to posit explanations and report them instead. If the explanations are based on guesses
about how R is implemented, they will be useless; we will have to try to figure out what
the facts must have been to lead to such speculations. Sometimes this is impossible. But
in any case, it is unnecessary work for us.

For example, suppose that on a data set which you know to be quite large the com-
mand data.frame(x, y, z, monday, tuesday) never returns. Do not report that
data.frame() fails for large data sets. Perhaps it fails when a variable name is a day
of the week. If this is so then when we got your report we would try out the data.frame()
command on a large data set, probably with no day of the week variable name, and not see
any problem. There is no way in the world that we could guess that we should try a day of
the week variable name.

Or perhaps the command fails because the last command you used was a [method that had
a bug causing R’s internal data structures to be corrupted and making the data.frame()

48 bxp

command fail from then on. This is why we need to know what other commands you have
typed (or read from your startup file).

It is very useful to try and find simple examples that produce apparently the same bug, and
somewhat useful to find simple examples that might be expected to produce the bug but
actually do not. If you want to debug the problem and find exactly what caused it, that is
wonderful. You should still report the facts as well as any explanations or solutions.

Invoking R with the --vanilla option may help in isolating a bug. This ensures that the
site profile and saved data files are not read.

On some systems a bug report can be generated using the bug.report() function. This
automatically includes the version information and sends the bug to the correct address.
Alternatively the bug report can be emailed to 〈r-bugs@biostat.ku.dk〉 or submitted to the
Web page at http://r-bugs.biostat.ku.dk/R.

Author(s)

This help page is adapted from the Emacs manual

See Also

R FAQ

builtins Returns the names of all built-in objects builtins

Description

Return the names of all the built-in objects. These are fetched directly from the symbol
table of the R interpreter.

Usage

builtins(internal = FALSE)

Arguments

internal a logical indicating whether only “internal” functions (which can be called
via .Internal) should be returned.

bxp Box Plots from Summaries bxp

Description

bxp(..) draws box plots based on the given summaries in z. It is usually called from
within boxplot(..), but can be invoked directly.

Usage

bxp(z, notch = FALSE, width = NULL, varwidth = FALSE, notch.frac = 0.5,
border = par("fg"), col = NULL, log = "", pars = NULL, ...)

http://r-bugs.biostat.ku.dk/R

by 49

Arguments

z a list containing data summaries to be used in constructing the plots.
These are usually the result of a call to boxplot, but can be generated in
any fashion.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

notch.frac numeric in (0,1). When notch=TRUE, the fraction of the box width that
the notches should use.

border character, the color of the box borders. Is recycled for multiple boxes.

col character; the color within the box. Is recycled for multiple boxes

log character, indicating if any axis should be drawn in logarithmic scale, as
in plot.default.

pars,... Graphical parameters can be passed as arguments to this function, either
as a list (pars) or normally(...).

Value

An invisible vector with the x-coordinates of box centers, useful for adding to the plot.

Examples

str(bx.p <- boxplot(split(rnorm(100), gl(5,20)), plot = FALSE))

op <- par(mfrow= c(2,2))

bxp(bx.p)

bxp(bx.p, notch = TRUE)

bxp(bx.p, notch = TRUE, col= ’lightblue’)

bxp(bx.p, notch = TRUE, col= ’lightblue’, border=’red’, log = ’x’)

par(op)

by Apply a Function to a Data Frame split by Factors by

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage

by(data, INDICES, FUN, ...)

Arguments

data an R object, normally a data frame, possibly a matrix.

INDICES a factor or a list of factors, each of length nrow(x).

FUN a function to be applied to data frame subsets of x.

... further arguments to FUN.

50 C

Details

A data frame is split by row into data frames subsetted by the values of one or more factors,
and function FUN is applied to each subset in term.

Object data will be coerced to a data frame by default.

Value

A list of class "by", giving the results for each subset.

See Also

tapply

Examples

data(warpbreaks)

attach(warpbreaks)

by(warpbreaks[, 1:2], tension, summary)

by(warpbreaks[, 1], list(wool=wool, tension=tension), summary)

by(warpbreaks, tension, function(x) lm(breaks ~ wool, data=x))

detach("warpbreaks")

C Sets Contrasts for a Factor C

Description

Sets the "contrasts" attribute for the factor.

Usage

C(object, contr, how.many, ...)

Arguments

object a factor or ordered factor

contr which contrasts to use. Can be a matrix with one row for each level of the
factor or a suitable function like contr.poly or a character string giving
the name of the function

how.many the number of contrasts to set, by default one less than nlevels(object).

... Additional arguments for the function contr.

Details

For compatibility with S, contr can be treatment, helmert, sum or poly (without quotes)
as shorthand for contr.treatment and so on.

Value

The factor object with the "contrasts" attribute set.

c 51

Author(s)

B.D. Ripley

See Also

contrasts, contr.sum, etc.

Examples

reset contrasts to defaults

options(contrasts=c("contr.treatment", "contr.poly"))

data(warpbreaks)

attach(warpbreaks)

tens <- C(tension, poly, 1)

attributes(tens)

detach()

tension SHOULD be an ordered factor, but as it is not we can use

aov(breaks ~ wool + tens + tension, data=warpbreaks)

show the use of ... The default contrast is contr.treatment here

summary(lm(breaks ~ wool + C(tension, base=2), data=warpbreaks))

data(esoph) # following on from help(esoph)

model3 <- glm(cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +

C(alcgp, , 1), data = esoph, family = binomial())

summary(model3)

c Combine Values into a Vector or List c

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to
a common type which is the type of the returned value. If recursive=TRUE, the function
recursively descends through lists combining all their elements into a vector.

Usage

c(..., recursive=FALSE)

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(1,7:9)

c(1:5, 10.5, "next")

c(list(A=c(B=1)),recursive=T)

c(options(), recursive=T)

c(list(A=c(B=1,C=2),B=c(E=7)),recursive=T)

52 call

call Function Calls call

Description

Create or test for objects of mode "call".

Usage

call(name, ...)
is.call(x)
as.call(x)

Arguments

name a character string naming the function to be called.

x an arbitrary R object.

Value

call returns an unevaluated function call, that is, an unevaluated expression which consists
of the named function applied to the given arguments (name must be a quoted string which
gives the name of a function to be called).

is.call is used to determine whether x is a call (i.e., of mode "call").

It is not possible to coerce objects to mode call (objects either are calls or they are not
calls). as.call returns its argument if it is a call and otherwise terminates with an error
message.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of
functions; further is.language, expression, function.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5

cl <- call("round", 10.5)

is.call(cl)# TRUE

cl

such a call can also be evaluated.

eval(cl)# [1] 10

case/variable.names 53

cars Stopping Distances of Cars cars

Description

The data give the speed of cars and the distances taken to stop. Note that the data were
recorded in the 1920s.

Usage

data(cars)

Format

A data frame with 50 observations on 2 variable.

[,1] speed numeric Speed (mph)
[,2] dist numeric Stopping distance (ft)

Source

Ezekiel, M. (1930) Methods of Correlation Analysis. Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

case/variable.names Case and Variable Names of Fitted Models case/variable.names

Description

Simple utilities returning (non-missing) case names, and (non-eliminated) variable names.

Usage

case.names(obj, ...)
case.names.lm(obj, full = FALSE)

variable.names(obj, ...)
variable.names.lm(obj, full = FALSE)

Arguments

obj an R object, typically a fitted model.

full logical; if TRUE, all names (including zero weights,..) are returned.

Value

A character vector

54 cat

See Also

lm

Examples

x <- 1:20

y <- x + (x/4 - 2)^3 + rnorm(20, s=3)

names(y) <- paste("O",x,sep=".")

ww <- rep(1,20); ww[13] <- 0

summary(lmxy <- lm(y ~ x + I(x^2)+I(x^3) + I((x-10)^2),

weights = ww), cor = TRUE)

variable.names(lmxy)

variable.names(lmxy, full= TRUE)# includes the last

case.names(lmxy)

case.names(lmxy, full = TRUE)# includes the 0-weight case

cat Concatenate and Print cat

Description

Prints the arguments, coercing them if necessary to character mode first.

Usage

cat(... , file = "", sep = " ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments

... R objects which are coerced to character strings, concatenated, and prin-
ted, with the remaining arguments controlling the output.

file character string naming the file to print to. If "" (the default), cat prints
to the standard output.

sep character string to insert between the objects to print.

fill a logical or numeric controlling how the output is broken into successive
lines. If FALSE, only newlines created explicitly by
n are printed. Otherwise, the output is broken into lines with print width
equal to the option width if fill is TRUE, or the value of fill if this is
numeric.

labels character vector of labels for the lines printed. Ignored if fill is FALSE.

append if TRUE, output will be appended to file; otherwise, it will overwrite the
contents of file.

Details

cat converts its arguments to character strings, concatenates them, separating them by the
given sep= string, and then prints them.

No linefeeds are printed unless explicitly requested by "
n" or if generated by filling (if argument fill is TRUE or numeric.)

cat is useful for producing output in user defined functions.

Cauchy 55

Value

None (invisible NULL).

See Also

print, format

Examples

print an informative message

cat("iteration = ", iter <- iter + 1, "\n")

Cauchy The Cauchy Distribution Cauchy

Description

Density, distribution function, quantile function and random generation for the Cauchy
distribution with location parameter location and scale parameter scale.

Usage

dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations to generate.
location, scale

location and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If location or scale are not specified, they assume the default values of 0 and 1 respect-
ively.

The Cauchy distribution with location l and scale s has density

f(x) =
1
πs

(
1 +

(
x− l
s

)2
)−1

for all x.

56 cbind

Value

dcauchy, pcauchy, and qcauchy are respectively the density, distribution function and
quantile function of the Cauchy distribution. rcauchy generates random deviates from the
Cauchy.

See Also

dt for the t distribution which generalizes dcauchy(*, l = 0, s = 1).

Examples

all.equal(dcauchy(-1:4), 1 / (pi*(1 + (-1:4)^2)))

cbind Combine Columns/Rows into a Matrix cbind

Description

Take a sequence of vector and/or matrix arguments and combine them as the columns or
rows, respectively, of a matrix.

Usage

cbind(...)
rbind(...)

Details

The functions cbind and rbind are generic, with methods for data frames.

If there are several matrix arguments, they must all have the same number of columns (or
rows) and this will be the number of columns (or rows) of the result. If all the arguments
are vectors, the number of columns (rows) in the result is equal to the length of the longest
vector. Values in shorter arguments are recycled to achieve this length (with a warning
when they are recycled only fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rosw)
of the result is determined by the number of columns (rows) of the matrix arguments. Any
vectors have their values recycled or subsetted to achieve this length.

Note

The method dispatching is not done via UseMethod(..), but by C-internal dispatching.
Therefore, there’s no need for, e.g., rbind.default.

See Also

c to combine vectors (and lists).

char.expand 57

Examples

cbind(1,1:7) # the ’1’ (= shorter vector) is recycled

cbind(1:7, diag(3))# vector is subset -> warning

cbind(0,rbind(1,1:3))

cbind(0, matrix(1, nrow=0, ncol=4))#> Warning (making sense)

dim(cbind(0, matrix(1, nrow=2, ncol=0)))#-> 2 x 1

char.expand Expand a String with Respect to a Target Table char.expand

Description

Seeks a unique match of its first argument among the elements of its second. If successful,
it returns this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.

Details

This function is particularly useful when abbreviations are allowed in function arguments,
and need to be uniquely expanded with respect to a target table of possible values.

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")

char.expand("me", locPars, warning("Could not expand!"))

char.expand("mo", locPars)

58 charmatch

character Character Vectors character

Description

Create or test for objects of type "character".

Usage

character(length = 0)
as.character(x)
is.character(x)

Value

character creates a character vector of the specified length. The elements of the vector
are all equal to "".

as.character attempts to coerce its argument to be of character type.

is.character returns TRUE or FALSE depending on whether its argument is of character
type or not.

charmatch Partial String Matching charmatch

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA)

Arguments

x the values to be matched.

table the values to be matched against.

nomatch the value returned at non-matching positions.

Details

Exact matches are preferred to partial matches (those where the value to be matched has
an exact match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the
index of the matching value is returned; if multiple exact or multiple partial matches are
found then 0 is returned and if no match is found then NA is returned.

Author(s)

This function is based on a C function written by Terry Therneau.

check.options 59

See Also

match, pmatch.

Examples

charmatch("", "") # returns 1

charmatch("m", c("mean", "median", "mode")) # returns 0

charmatch("med", c("mean", "median", "mode")) # returns 2

check.options Set Options with Consistency Checks check.options

Description

Utility function for setting options with some consistency checks. The attributes of
the new settings in new are checked for consistency with the model (often default) list
in name.opt.

Usage

check.options(new, name.opt, reset = FALSE, assign.opt = FALSE,
envir = .GlobalEnv, check.attributes = c("mode", "length"),
override.check = FALSE)

Arguments

new a named list

name.opt character with the name of R object containing the “model” (default) list.

reset logical; if TRUE, reset the options from name.opt. If there is more than
one R object with name name.opt, remove the first one in the search()
path.

assign.opt logical; if TRUE, assign the . . .

envir the environment used for get and assign.
check.attributes

character containing the attributes which check.options should check.
override.check

logical vector of length length(new) (or 1 which entails recycling). For
those new[i] where override.check[i] == TRUE, the checks are over-
riden and the changes made anyway.

Value

A list of components with the same names as the one called name.opt. The values of the
components are changed from the new list, as long as these pass the checks (when these are
not overridden according to override.check).

Author(s)

Martin Maechler

60 Chisquare

See Also

ps.options which uses check.options.

Examples

L1 <- list(a=1:3, b=pi, ch="CH")

str(L2 <- check.options(list(a=0:2), name.opt = "L1"))

str(check.options(NULL, reset = TRUE, name.opt = "L1"))

chickwts Chicken Weights by Feed Type chickwts

Description

An experiment was conducted to measure and compare the effectiveness of various feed
supplements on the growth rate of chickens.

Usage

data(chickwts)

Format

A data frame with 71 observations on 2 variables.

[1,] weight numeric Chick weight
[2,] feed factor Feed type

Details

Newly hatched chicks were randomly allocated into six groups, and each group was given a
different feed supplement. Their weights in grams after six weeks are given along with feed
types.

Source

Anonymous (1948) Biometrika, 35, p.214.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Chisquare The (non-central) Chi-Square Distribution Chisquare

Description

Density, distribution function, quantile function and random generation for the chi-square
(χ2) distribution with df degrees of freedom and optional non-centrality parameter ncp.

Chisquare 61

Usage

dchisq(x, df, ncp=0, log = FALSE)
pchisq(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations to generate.

df degrees of freedom.

ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The chi-square distribution with df= n degrees of freedom has density

fn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

for x > 0. Mean and variance are n and 2n, respectively.

The non-central chi-square distribution with df= n degrees of freedom and non-centrality
parameter ncp = λ has density

f(x) = e−λ/2
∞∑
r=0

(λ/2)r

r!
fn+2r(x)

for x ≥ 0.

Value

dchisq gives the density, pchisq gives the distribution function, qchisq gives the quantile
function, and rchisq generates random deviates.

See Also

dgamma for the Gamma distribution which generalizes the chi-square one.

Examples

dchisq(1, df=1:3)

pchisq(1, df= 3)

pchisq(1, df= 3, ncp = 0:4)# includes the above

x <- 1:10

Chisquare(df = 2) is a special exponential distribution

all.equal(dchisq(x, df=2), dexp(x, 1/2))

all.equal(pchisq(x, df=2), pexp(x, 1/2))

62 chol

chol The Choleski Decomposition chol

Description

Compute the Choleski factorization of a symmetric (Hermitian), positive definite square
matrix.

Usage

chol(x)

Arguments

x a symmetric, positive definite matrix.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that
R′R = x (see example).

Note that effectively, only the upper triangular part of x is used such that the above only
holds when x is symmetric.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

See Also

chol2inv for its inverse, backsolve for solving linear systems with upper triangular left
sides.

qr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))

(cm <- chol(m))

t(cm) %*% cm #-- = ’m’

all(abs(m - t(cm) %*% cm) < 100* .Machine$double.eps) # TRUE

chol2inv 63

chol2inv Inverse from Choleski Decomposition chol2inv

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition.

Usage

chol2inv(x, size = ncol(x))

Arguments

x a matrix. The first nc columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.

size the number of columns of x containing the Choleski decomposition.

Value

The inverse of the decomposed matrix.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))

t(cma) %*% cma # = ma

all.equal(diag(3), ma %*% chol2inv(cma))

chull Compute Convex Hull of a Set of Points chull

Description

Computes the subset of points which lie on the convex hull of the set of points specified.

Usage

chull(x, y=NULL)

Arguments

x, y coordinate vectors of points. This can be specified as two vectors x and
y, a 2-column matrix x, a list x with components x and y

64 class

Details

xy.coords is used to interpret the specification of the points. The algorithm is that given
by Eddy (1977).

‘Peeling’ as used in the S function chull can be implemented by calling chull recursively.

Value

An integer vector giving the indices of the points lying on the convex hull, in clockwise
order.

Author(s)

B. D. Ripley

References

Eddy, W. F. (1977) A new convex hull algorithm for planar sets. ACM Transactions on
Mathematical Software, 3, 398–403.

Eddy, W. F. (1977) Algorithm 523. CONVEX, A new convex hull algorithm for planar
sets[Z]. ACM Transactions on Mathematical Software, 3, 411–412.

See Also

xy.coords,polygon

Examples

X <- matrix(rnorm(2000), ncol=2)

plot(X, cex=0.5)

hpts <- chull(X)

hpts <- c(hpts, hpts[1])

lines(X[hpts,])

class Object Classes class

Description

R possesses a simple generic function mechanism which can be used for an object-oriented
style of programming. Method despatch takes place based on the class of the first argument
to the generic function.

Usage

class(x)
class(x) <- names
unclass(x)
inherits(x, name)

close.socket 65

Details

An R “object” is a data object which has a class attribute. A class attribute is a vector of
character strings giving the names of the classes which the object “inherits” from. When a
generic function fun is applied to an object with class attribute c("first", "second"),
the system searches for a function called fun.first and, if it finds it, applies it to the
object. If no such function is found, a function called fun.second is tried. If no class name
produces a suitable function, the function fun.default is used.

The function class prints the vector of names of classes an object inherits from. Corres-
pondingly, class<- sets the classes an object inherits from.

unclass returns (a copy of) its argument with its class information removed.

inherits indicates whether its first argument inherits from a class with name equal to its
second argument.

See Also

UseMethod, NextMethod.

close.socket Close a Socket close.socket

Description

Closes the socket and frees the space in the file descriptor table. The port may not be freed
immediately.

Usage

close.socket(socket)

Arguments

socket A socket object

Value

logical indicating success or failure

Author(s)

Thomas Lumley

See Also

make.socket, read.socket

66 codes

co2 Mauna Loa Atmospheric CO2 Concentration co2

Description

Atmospheric concentrations of CO2 are expressed in parts per million (ppm) and reported
in the preliminary 1997 SIO manometric mole fraction scale.

Usage

data(co2)

Format

A time series of 468 observations; monthly from 1959 to 1997.

Details

The values for February, March and April of 1964 were missing and have been obtained by
interpolating linearly between the values for January and May of 1964.

Source

Keeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), University of
California, La Jolla, California USA 92093-0220.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

Examples

data(co2)

plot(co2, ylab = expression("Atmospheric concentration of CO"[2]),

las = 1)

title(main = "co2 data set")

codes Factor Codes codes

Description

This (generic) function returns a numeric coding of a factor. It can also be used to assign
to a factor using the coded form.

Usage

codes(x)
codes(x) <- value

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2

coefficients 67

Value

For an ordered factor, it returns the internal coding (1 for the lowest group, 2 for the second
lowest, etc.).

For an unordered factor, an alphabetical ordering of the levels is assumed, i.e the level
that is coded 1 is the one whose name is sorted first according to the prevailing collating
sequence. Warning: the sort order may well depend on the locale, and should not be
assumed to be ASCII.

Note

Normally codes is not the appropriate function to use with an unordered factor. Use
unclass or as.numeric to extract the codes used in the internal representation of the
factor, as these do not assume that the codes are sorted.

See Also

factor, levels, nlevels.

Examples

codes(rep(factor(c(20,10)),3))

x <- gl(3,5)

codes(x)[3] <- 2

x

data(esoph)

(ag <- esoph$alcgp[12:1])

codes(ag)

codes(factor(1:10)) # BEWARE!

coefficients Extract Model Coefficients coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by mod-
eling functions. coefficients is an alias (.Alias) for it.

Usage

coef(x, ...)
coefficients(x, ...)

Arguments

x an object for which the extraction of model coefficients is meaningful.

... other arguments.

68 col

Details

All object classes which are returned by model fitting functions should provide a coef
method. (Note that the method is coef and not coefficients.)

Value

Coefficients extracted from the model object x.

See Also

fitted.values and residuals for related methods; glm, lm for model fitting.

Examples

x <- 1:5; coef(lm(c(1:3,7,6) ~ x))

col Column Indexes col

Description

Returns a matrix of integers indicating their column number in the matrix.

Usage

col(x, as.factor=FALSE)

Arguments

x a matrix.

as.factor a logical value indicating whether the value should be returned as a factor
rather than as numeric.

Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to j.

See Also

row to get rows.

Examples

extract an off-diagonal of a matrix

ma <- matrix(1:12, 3, 4)

ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix

x <- matrix(0, nr = 5, nc = 5)

x[row(x) == col(x)] <- 1

colors 69

colors Color Names colors

Description

Returns the built-in color names which R knows about.

Usage

colors()

Details

These color names can be used with a col= specification in graphics functions.

An even wider variety of colors can be created with primitives rgb and hsv or the derived
rainbow, heat.colors, etc.

Value

A character vector containing all the built-in color names.

See Also

palette for setting the “palette” of colors for par(col=<num>); rgb, hsv, gray; rainbow
for a nice example; and heat.colors, topo.colors for images.

Examples

str(colors())

commandArgs Extract Command Line Arguments commandArgs

Description

Provides access to a copy of the command line arguments supplied when this R session was
invoked.

Usage

commandArgs()

Details

These arguments are captured before the standard R command line processing takes place.
This means that they are the unmodified values. If it were useful, we could provide support
an argument which indicated whether we want the unprocessed or processed values.

70 comment

Value

A character vector containing the name of the executable and the user-supplied command
line arguments. The first element is the name of the executable by which R was invoked.
As far as I am aware, the exact form of this element is platform dependent. It may be the
fully qualified name, or simply the last component (or basename) of the application.

Examples

commandArgs()

Spawn a copy of this application as it was invoked.

system(paste(commandArgs(), collapse=" "))

comment Query or Set a ‘Comment’ Attribute comment

Description

These functions set and query a comment attribute for any R objects. This is typically
useful for data.frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Usage

comment(x)
comment(x) <- value

Arguments

x any R object

value a character vector

See Also

attributes and attr for “normal” attributes.

Examples

x <- matrix(1:12, 3,4)

comment(x) <- c("This is my very important data from experiment #0234",

"Jun 5, 1998")

x

comment(x)

Comparison 71

Comparison Relational Operators Comparison

Description

Binary operators which allow the comparison of values in vectors.

Usage

x < y
x > y
x <= y
x >= y
x == y
x != y

Value

A vector of logicals indicating the result of the element by element comparison. The elements
of shorter vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conform-
able.

Examples

x <- rnorm(20)

x < 1

x[x > 0]

complete.cases Find Complete Cases complete.cases

Description

Return a logical vector indicating which cases are complete, i.e., have no missing values.

Usage

complete.cases(...)

Arguments

... a sequence of vectors, matrices and data frames.

Value

A logical vector specifying which observations/rows have no missing values across the entire
sequence.

See Also

is.na, na.omit, na.fail.

72 complex

Examples

data(airquality)

x <- airquality[, -1] # x is a regression design matrix

y <- airquality[, 1] # y is the corresponding response

all(!complete.cases(y) == is.na(y)) #--> TRUE

ok <- complete.cases(x,y)

sum(!ok) # how many are not "ok" ?

x <- x[ok,]

y <- y[ok]

complex Complex Vectors complex

Description

These are basic functions which support complex arithmetic in R. Complex vectors can be
created with complex. The vector can be specified either by giving its length, its real and
imaginary parts, or modulus and argument.

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(z)
is.complex(z)

Re(z)
Im(z)
Mod(z)
Arg(z)
Conj(z)

Details

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the
real part, imaginary part, modulus, argument and complex conjugate for complex values.
Modulus and argument are also called the polar coordinates. If z = x+ iy with real x and
y, Mod(z) =

√
x2 + y2, and for φ = Arg(z), x = cos(φ) and y = sin(φ).

In addition, the elementary trigonometric, logarithmic and exponential functions are avail-
able for complex values.

Examples

(z <- 0i ^ (-3:3))

all(Re(z) == 0 ^ (-3:3))

matrix(1i^ (-6:5), nr=4)#- all columns are the same

0 ^ 1i # a complex NaN

create a complex normal vector

z <- complex(real = rnorm(100), imag = rnorm(100))

conflicts 73

or also (less efficiently):

z2 <- 1:2 + 1i*(8:9)

all(Mod (1 - sin(z) / ((exp(1i*z)-exp(-1i*z))/(2*1i)))

< 100*.Machine$double.eps)

The Arg(.) is an angle:

zz <- (rep(1:4,len=9) + 1i*(9:1))/10

zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)

plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste("Rotation by "," ", pi == 180^o)))

abline(h=0,v=0, col="blue", lty=3)

points(zz.shift, col="orange")

conflicts Search for Masked Objects on the Search Path conflicts

Description

conflicts reports on objects that exist with the same name in two or more places on the
search path, usually because an object in the global environment or a package is masking
a system object of the same name. This helps discover unintentional masking.

Usage

conflicts(where=search(), detail=FALSE)

Arguments

where A subset of the search path, by default the whole search path.

detail If TRUE, give the masked or masking functions for all members of the
search path.

Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty
vectors are omitted.

Author(s)

B.D. Ripley

Examples

lm <- 1:3

conflicts(, TRUE)

gives something like

$.GlobalEnv

[1] "lm"

#

$package:base

[1] "lm"

#

74 Constants

Constants Built-in Constants Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name
pi

Details

R has a limited number of built-in constants (there is also a rather larger library of data
sets which can be loaded with the function data).

The following constants are available:

• LETTERS: the 26 upper-case letters of the Roman alphabet;

• letters: the 26 lower-case letters of the Roman alphabet;

• month.abb: the three-letter abbreviations for the English month names;

• month.name: the English names for the months of the year;

• pi: the ratio of the circumference of a circle to its diameter.

See Also

data.

Examples

all(nchar(letters) == 1) # TRUE

all(month.abb == substr(month.name, 1, 3)) # TRUE

eps <- .Machine$double.eps

all.equal(pi, 4*atan(1), tol= 2*eps)

John Machin (1705) computed 100 decimals of pi :

all.equal(pi/4, 4*atan(1/5) - atan(1/239), 4*eps)

contour 75

contour Display Contours contour

Description

Create a contour plot, or add contour lines to an existing plot.

Usage

contour(x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)),
z,
nlevels = 10, levels = pretty(zlim, nlevels), labels = NULL,
xlim = range(x, finite = TRUE),
ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE),
labcex = 0.6, drawlabels = TRUE, method = "flattest",
vfont = c("sans serif", "plain"),
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
add = FALSE, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

nlevels number of contour levels desired iff levels is not supplied.
levels numeric vector of levels at which to draw contour lines.
labels a vector giving the labels for the contour lines. If NULL then the levels are

used as labels.
labcex cex for contour labelling.
drawlabels logical. Contours are labelled if TRUE.
method character string specifying where the labels will be located. Possible values

are "simple", "edge" and "flattest" (the default). See the Details
section.

vfont if a character vector of length 2 is specified, then Hershey vector fonts
are used for the contour labels. The first element of the vector selects a
typeface and the second element selects a fontindex (see text for more
information).

xlim, ylim, zlim

x-, y- and z-limits for the plot.
col color for the lines drawn.
lty line type for the lines drawn.
lwd line width for the lines drawn.
add logical. If TRUE, add to a current plot.
... additional graphical parameters (see par) and the arguments to title

may also be supplied.

76 contour

Details

There is currently no documentation about the algorithm. The source code is in
‘$R HOME/src/main/plot3d.c’.

The methods for positioning the labels on contours are "simple" (draw at the edge of the
plot, overlaying the contour line), "edge" (draw at the edge of the plot, embedded in the
contour line, with no labels overlapping) and "flattest" (draw on the flattest section of
the contour, embedded in the contour line, with no labels overlapping). The second and
third may not draw a label on every contour line.

For information about vector fonts, see the help for text and Hershey.

See Also

filled.contour for “color-filled” contours, image and the graphics demo which can be
invoked as demo(graphics).

Examples

x <- -6:16

op <- par(mfrow = c(2, 2))

contour(outer(x, x), method = "edge", vfont = c("sans serif", "plain"))

z <- outer(x, sqrt(abs(x)), FUN = "/")

Should not be necessary:

z[!is.finite(z)] <- NA

image(x, x, z)

contour(x, x, z, col = "pink", add = TRUE, method = "edge",

vfont = c("sans serif", "plain"))

contour(x, x, z, ylim = c(1, 6), method = "simple", labcex = 1)

contour(x, x, z, ylim = c(-6, 6), nlev = 20, lty = 2, method = "simple")

par(op)

Persian Rug Art:

x <- y <- seq(-4*pi, 4*pi, len = 27)

r <- sqrt(outer(x^2, y^2, "+"))

opar <- par(mfrow = c(2, 2), mar = rep(0, 4))

for(f in pi^(0:3)) contour(cos(r^2)*exp(-r/f), drawlabels = F)

data("volcano")

rx <- range(x <- 10*1:nrow(volcano))

ry <- range(y <- 10*1:ncol(volcano))

ry <- ry + c(-1,1) * (diff(rx) - diff(ry))/2

tcol <- terrain.colors(12)

par(opar); par(mfrow=c(1,1)); opar <- par(pty = "s", bg = "lightcyan")

plot(x = 0, y = 0,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")

u <- par("usr")

rect(u[1], u[3], u[2], u[4], col = tcol[8], border = "red")

contour(x, y, volcano, col = tcol[2], lty = "solid", add = TRUE,

vfont = c("sans serif", "plain"))

title("A Topographic Map of Maunga Whau", font = 4)

abline(h = 200*0:4, v = 200*0:4, col = "lightgray", lty = 2, lwd = 0.1)

par(opar)

contrast 77

contrast Contrast Matrices contrast

Description

Return a matrix of contrasts.

Usage

contr.helmert(n, contrasts = TRUE)
contr.poly(n, contrasts = TRUE)
contr.sum(n, contrasts = TRUE)
contr.treatment(n, base = 1, contrasts = TRUE)

Arguments

n a vector of levels for a factor, or the number of levels.

contrasts a logical indicating whether contrasts should be computed.

base an integer specifying which group is considered the baseline group.

Details

These functions are used for creating contrast matrices for use in fitting analysis of variance
and regression models. The columns of the resulting matrices contain contrasts which can be
used for coding a factor with n levels. The returned value contains the computed contrasts.
If the argument contrasts is FALSE then an additional column of ones is prepended to the
matrix.

Note that as from R version 0.62.2, contr.poly returns contrasts based on orthogonal
(rather than raw) polynomials.

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts
is FALSE.

See Also

contrasts, C, and aov, glm, lm.

Examples

(cH <- contr.helmert(4))

apply(cH, 2,sum)# column sums are 0!

crossprod(cH)# diagonal -- columns are orthogonal

(cT <- contr.treatment(5))

all(crossprod(cT) == diag(4))# TRUE: even orthonormal

(cP <- contr.poly(3))# Linear and Quadratic

zapsmall(crossprod(cP), dig=15) # orthonormal up to fuzz

78 contributors

contrasts Get and Set Contrast Matrices contrasts

Description

Set and view the contrasts associated with a factor.

Usage

contrasts(x)
contrasts(x) <- ctr

Arguments

x a factor.

ctr either a matrix whose columns give coefficients for contrasts in the levels
of x, or the (quoted) name of a function which computes such matrices.

Details

If contrasts are not set for a factor the default functions from options("contrasts") are
used.

See Also

C, contr.helmert, contr.poly, contr.sum, contr.treatment; glm, aov, lm.

Examples

example(factor)

(fff <- factor(ff))

contrasts(fff) # treatment

contrasts(C(fff, sum))

contributors R Project Contributors contributors

Description

The R Who-is-who.

The R Project

R is a project which is attempting to provide a modern piece of statistical software for the
GNU suite of software.

Control 79

Contributors

The current R is the result of a collaborative effort authors from all over the world.

R was initially written by Robert Gentleman and Ross Ihaka—also known as “R & R”—of
the Statistics Department of the University of Auckland.

Since mid-1997 there has been a core group with write access to the R source, currently
consisting of

• Douglas Bates

• Peter Dalgaard

• Robert Gentleman

• Kurt Hornik

• Ross Ihaka

• Friedrich Leisch

• Thomas Lumley

• Martin Maechler

• Guido Masarotto

• Paul Murrell

• Brian Ripley

• Duncan Temple Lang

• Luke Tierney

plus Heiner Schwarte up to October 1999.

In addition, a large group of individuals has contributed to R by donating code, bug reports
and documentation, notably

Valerio Aimale, Thomas Baier, Ben Bolker, Goran Brostrom, Saikat DebRoy, Lyndon
Drake, Paul Gilbert, Robert King, Philippe Lambert, Patrick Lindsey, Jim Lindsey, John
Maindonald, Jens Oehlschaegel-Akiyoshi, Steve Oncley and Gordon Maclean, Richard
Okeefe, Hubert Palme, Jose Pinheiro, Martyn Plummer, Jonathan Rougier, Bill Simpson,
Adrian Trapletti, Terry Therneau, Bill Venables, Gregory R. Warnes, and Andreas Wein-
gessel.

We have probably omitted some important names here because of incomplete record keep-
ing. If we have overlooked you, please let us know and we’ll update the list.

A special debt is owed to John Chambers who has graciously contributed advice and en-
couragement.

Control Control Flow Control

Description

These are the basic control-flow constructs of the R language. They function in much the
same way as control statements in any algol-like language.

80 convolve

Usage

if(cond) expr
if(cond) cons.expr else alt.expr
for(var in seq) expr
while(cond) expr
repeat expr
break
next

See Also

ifelse, switch.

Examples

for(i in 1:5) print(1:i)

convolve Fast Convolution convolve

Description

Use the Fast Fourier Transform to compute the several kinds of convolutions of two se-
quences.

Usage

convolve(x, y, conj = TRUE, type = c("circular", "open", "filter"))

Arguments

x,y numeric sequences of the same length to be convolved.

conj logical; if TRUE, take the complex conjugate before back-transforming (de-
fault, and used for usual convolution).

type character; one of "circular", "open", "filter" (beginning of word is
ok). For circular, the two sequences are treated as circular, i.e., periodic.
For open and filter, the sequences are padded with 0s (from left and
right) first; "filter" returns the middle sub-vector of "open", namely,
the result of running a weighted mean of x with weights y.

Details

The Fast Fourier Transform, fft, is used for efficiency.

The input sequences x and y must have the same length if circular is true.

Note that the usual definition of convolution of two sequences x and y is given by con-
volve(x, rev(y), type = "o").

coplot 81

Value

If r <- convolve(x,y, type = "open") and n <- length(x), m <- length(y), then

rk =
∑
i

xk−m+iyi

where the sum is over all valid indices i, for k = 1, . . . , n+m− 1

If type == "circular", n = m is required, and the above is true for i, k = 1, . . . , n when
xj := xn+j for j < 1.

References

Brillinger, D. R. (1981) Time Series: Data Analysis and Theory, Second Edition. San
Francisco: Holden-Day.

See Also

fft, nextn.

Examples

x <- c(0,0,0,100,0,0,0)

y <- c(0,0,1, 2 ,1,0,0)/4

zapsmall(convolve(x,y)) # *NOT* what you first thought..

zapsmall(convolve(x, y[3:5], type="f")) # rather

x <- rnorm(50)

y <- rnorm(50)

Circular convolution *has* this symmetry:

all.equal(convolve(x,y, conj = FALSE),

rev(convolve(rev(y),x)))

n <- length(x <- -20:24)

y <- (x-10)^2/1000 + rnorm(x)/8

Han <- function(y) # Hanning

convolve(y, c(1,2,1)/4, type = "filter")

plot(x,y, main="Using convolve(.) for Hanning filters")

lines(x[-c(1 , n)], Han(y), col="red")

lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd=2, col="dark blue")

coplot Conditioning Plots coplot

Description

This function produces two variants of the conditioning plots discussed in the reference
below.

82 coplot

Usage

coplot(formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),
xlab = paste("Given :", a.name),
ylab = paste("Given :", b.name),
number = 6, overlap = 0.5, ...)

co.intervals(x, number = 6, overlap = 0.5)

Arguments

formula a formula describing the form of conditioning plot. A formula of the form y
˜ x | a indicates that plots of y versus x should be produced conditional
on the variable a. A formula of the form y ˜ x| a * b indicates that
plots of y versus x should be produced conditional on the two variables a
and b.
x and y must be numeric, but a and b may be either numeric or factors.

data a data frame containing values for any variables in the formula. By default
the environment where coplot was called from is used.

given.values a value or list of two values which determine how the conditioning on a
and b is to take place.
When there is no b (i.e., conditioning only on a), usually this is a matrix
with two columns each row of which gives an interval, to be conditioned
on, but is can also be a single vector of numbers or a set of factor levels
(if the variable being conditioned on is a factor). In this case (no b),
the result of co.intervals(..) can be used directly as given.values
argument.

panel a function(x,y, col, pch, ...) which gives the action to be carried
out in each panel of the display. The default is points.

rows the panels of the plot are laid out in a rows by columns array. rows gives
the number of rows in the array.

columns the number of columns in the panel layout array.

show.given logical (possibly of length 2 for 2 conditioning variables): should condi-
tioning plots be shown for the corresponding conditioning variables (de-
fault TRUE)

col a vector of colors to be used to plot the points. If too short, the values
are recycled.

pch a vector of plotting symbols or characters. If too short, the values are
recycled.

xlab character; label to use for the 1st conditioning variable.

ylab character; label to use for the 2nd conditioning variable.

number integer; the number of conditioning intervals, possibly of length 2 for x
and y direction.

overlap numeric < 1; the fraction of overlap of the conditioning variables, possibly
of length 2 for x and y direction. When overlap < 0, there will be gaps
between the data slices.

... additional arguments to the panel function.

copyright 83

Value

co.intervals(., number, .) returns a (number × 2) matrix, say ci, where ci[k,] is
the range of x values for the k-th interval.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also

pairs, panel.smooth, points.

Examples

Tonga Trench Earthquakes

data(quakes)

coplot(long ~ lat | depth, data = quakes)

given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)

coplot(long ~ lat | depth, data = quakes, given.values=given.depth)

Conditioning on 2 variables:

ll.dm <- long ~ lat | depth * mag

coplot(ll.dm, data = quakes)

coplot(ll.dm, data = quakes, number=c(4,7), show.given = c(T,F))

coplot(ll.dm, data = quakes, number=c(3,7),

overlap=c(-.5,.1)) # negative overlap DROPS values

data(warpbreaks)

given two factors

coplot(breaks ~ 1:54 | wool * tension, data = warpbreaks, col = ’red’)

Example with empty panels:

data(state)

attach(data.frame(state.x77))#> don’t need ‘data’ arg. below

coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,

panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))

detach() # data.frame(state.x77)

copyright Copyrights of Files Used to Build R copyright

Description

R is released under the ‘GNU Public License’: see ?license for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some
of the software used has conditions that the copyright must be explicitly stated: see the
Details section. We are grateful to these people and other contributors (see ?contributors)
for the ability to use their work.

Details

The file ‘$R HOME/COPYRIGHTS’ lists the copyrights in full detail.

84 cor

cor Correlation and Covariance Matrices cor

Description

Compute the correlation or covariance matrix of the columns of x and the columns of y.

Usage

cor(x, y=x, use="all.obs")
cov(x, y=x, use="all.obs")

Arguments

x a matrix or data frame.

y a matrix or data frame.

use a character string giving the method for handling missing observations.
This must be one of the stringss "all.obs", "complete.obs" or "pair-
wise.complete.obs" (abbreviations are acceptable).

Details

If use is "all.obs", then the presence of missing observations will cause the computation
to fail. If use has the value "complete.obs" then missing values are handled by casewise
deletion. Finally, if use has the value "pairwise.complete.obs" then the correlation
between each pair of variables is computed using all complete pairs of observations on
those variables. This can result in covariance or correlation matrices which are not positive
semidefinite.

See Also

cov.wt for weighted covariance computation.

Examples

Two simple vectors

cor(1:10,2:11)# == 1

Correlation Matrix of Multivariate sample:

data(longley)

(Cl <- cor(longley))

Graphical Correlation Matrix:

symnum(Cl) # highly correlated

##--- Missing value treatment:

data(swiss)

C1 <- cov(swiss)

range(eigen(C1, only=T)$val) # 6.19 1921

swiss[1,2] <- swiss[7,3] <- swiss[25,5] <- NA # create 3 "missing"

C2 <- cov(swiss) # Error: missing obs...

C2 <- cov(swiss, use = "complete")

count.fields 85

range(eigen(C2, only=T)$val) # 6.46 1930

C3 <- cov(swiss, use = "pairwise")

range(eigen(C3, only=T)$val) # 6.19 1938

count.fields Count the Number of Fields per Line count.fields

Description

count.fields counts the number of fields, as separated by sep, in each of the lines of file
read. It is used by read.table; a user will typically have no need for it.

Usage

count.fields(file, sep = "", quote = "", skip = 0)

Arguments

file a character string naming an ASCII data file

sep the field separator character. Values on each line of the file are separ-
ated by this character. By default, arbitrary amounts of whitespace can
separate fields.

quote the set of quoting characters

skip the number of lines of the data file to skip before beginning to read data.

Value

A vector with the numbers of fields found.

See Also

read.table

Examples

cat("NAME", "1:John", "2:Paul", file = "foo", sep = "\n")

count.fields("foo", sep = ":")

unlink("foo")

86 cov.wt

cov.wt Weighted Covariance Matrices cov.wt

Description

Returns a list containing estimates of the weighted covariance matrix and the mean of the
data, and optionally of the (weighted) correlation matrix.

Usage

cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE)

Arguments

x a matrix or data frame. As usual, rows are observations and columns are
variables.

wt a non-negative and non-zero vector of weights for each observation. Its
length must equal the number of rows of x.

cor A logical indicating whether the estimated correlation weighted matrix
will be returned as well.

center Either a logical or a numeric vector specifying the centers to be used when
computing covariances. If TRUE, the (weighted) mean of each variable is
used, if FALSE, zero is used. If center is numeric, its length must equal
the number of columns of x.

Details

The covariance matrix is divided by one minus the sum of squares of the weights, so if the
weights are the default (1/n) the conventional unbiased estimate of the covariance matrix
with divisor (n− 1) is obtained. This differs from the behaviour in S-PLUS.

Value

A list containing the following named components:

cov the estimated (weighted) covariance matrix

center an estimate for the center (mean) of the data.

n.obs the number of observations (rows) in x.

wt the weights used in the estimation. Only returned if given as an argument.

cor the estimated correlation matrix. Only returned if cor is TRUE.

See Also

cov and var.

crossprod 87

crossprod Matrix Crossproduct crossprod

Description

Given matrices x and y as arguments, crossprod returns their matrix cross-product. This
is formally equivalent to, but faster than, the call t(x) %*% y.

Usage

crossprod(x, y=x)

See Also

%*% and outer product %o%.

Examples

crossprod(1:4) # = sum(1 + 2^2 + 3^2 + 4^2)

drop(.Last.value) # scalarized

cumsum Cumulative Sums, Products, and Extremes cumsum

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of
the elements of the argument.

Usage

cumsum(x)
cumprod(x)
cummax(x)
cummin(x)

Arguments

x a numeric object.

Details

An NA value in x causes the corresponding and following elements of the return value to be
NA.

Examples

cumsum(1:10)

cumprod(1:10)

cummin(c(3:1, 2:0, 4:2))

cummax(c(3:1, 2:0, 4:2))

88 curve

curve Draw Function Plots curve

Description

Draws a curve corresponding to the given function or expression (in x) over the interval
[from,to].

Usage

curve(expr, from, to, n = 101, add = FALSE, type = "l",
ylab = NULL, log = NULL, ...)

plot.function(fn, from = 0, to = 1, n = 101, ...)

Arguments

expr an expression written as a function of x, or alternatively a function which
will be plotted.

fn a ‘vectorizing’ numeric R function.

from,to the range over which the function will be plotted.

n integer; the number of x values at which to evaluate.

add logical; if TRUE add to already existing plot.

... graphical parameters can also be specified as arguments. plot.function
passes all these to curve.

Details

The evaluation of expr is at n points equally spaced over the range [from, to]. The points
determined in this way are then joined with straight lines. fn(x) or expr (with x inside)
must return a numeric of the same length as x.

This used to be a quick hack which seems to serve a useful purpose, but can give bad results
for functions which are not smooth.

Value

NULL. For “expensive” expressions, you should use smarter tools.

See Also

splinefun for spline interpolation, lines.

Examples

par(mfrow=c(2,2))

curve(x^3-3*x, -2, 2)

curve(x^2-2, add = TRUE, col = "violet")

curve(sin, -pi, 3*pi)

plot(cos)

chippy <- function(x) sin(cos(x)*exp(-x/2))

curve(chippy, -8, 7, n=2001)

cut 89

for(ll in c("","x","y","xy"))

curve(log(1+x), 1,100, log=ll, sub=paste("log=",ll))

cut Convert Numeric to Factor cut

Description

cut divides the range of x into intervals and codes the values in x according to which interval
they fall. The leftmost interval corresponds to level one, the next leftmost to level two and
so on.

Usage

cut(x, ...)
cut.default(x, breaks, labels = NULL,

include.lowest = FALSE, right = TRUE, dig.lab = 3)

Arguments

x a numeric vector which is to be converted to a factor by cutting.

break either a vector of cut points or number giving the number of intervals
which x is to be cut into.

labels labels for the levels of the resulting category. By default, labels are con-
structed using "(a,b]" interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor.

include.lowest

logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should closed on the right (and open on
the left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number
of digits used in formatting the break numbers.

Details

If a labels parameter is specified, its values are used to name the factor levels. If none
is specified, the factor level labels are constructed as "(b1, b2]", "(b2, b3]" etc. for
right=TRUE and as "[b1, b2)", . . . if right=FALSE. In this case, dig.lab indicates how
many digits should be used in formatting the numbers b1, b2,

Value

A factor is returned, unless labels = FALSE which results in the mere integer level codes.

Note

Instead of table(cut(x, br)), hist(x, br, plot = FALSE) is more efficient and less
memory hungry.

90 data

See Also

split for splitting a variable according to a group factor; factor, tabulate, table.

Examples

Z <- rnorm(10000)

table(cut(Z, br = -6:6))

system.time(print(sum(table(cut(Z, br = -6:6, labels=FALSE)))))

system.time(print(sum(hist (Z, br = -6:6, plot=FALSE)$counts)))

cut(rep(1,5),4)#-- dummy

tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)

x <- rep(0:8, tx0)

tx <- table(x)

all(tx == tx0)

table(cut(x, b = 8))

table(cut(x, br = 3*(-2:5)))

table(cut(x, br = 3*(-2:5), right = F))

##--- some values OUTSIDE the breaks :

table(cx <- cut(x, br = 2*(0:4)))

table(cxl <- cut(x, br = 2*(0:4), right = F))

which(is.na(cx)); x[is.na(cx)] #-- the first 9 values 0

which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 values 8

Label construction:

y <- rnorm(100)

table(cut(y, breaks = pi/3*(-3:3)))

table(cut(y, breaks = pi/3*(-3:3), dig.lab=4))

table(cut(y, breaks = 1*(-3:3), dig.lab=4))# extra digits don’t "harm" here

table(cut(y, breaks = 1*(-3:3), right = F))#- the same, since no exact INT!

data Data Sets data

Description

data loads a data set or lists (via show.data) the available data sets.

Usage

data(..., list = character(0), package = .packages(),
lib.loc = .lib.loc)

show.data(package = .packages(), lib.loc = .lib.loc)

Arguments

... a sequence of names or character strings
list a character vector
package a name or character vector giving the packages to look into for data sets.

By default, all packages in the search path are used.
lib.loc a character vector of directory names of R libraries. Defaults to all lib-

raries currently known.

data 91

Details

Currently, four formats of data files are supported:

1. files ending ‘.RData’ or ‘.rda’ are load()ed.

2. files ending ‘.R’ or ‘.r’ are source()d in, with the R working directory changed tem-
porarily to the directory containing the respective file.

3. files ending ‘.tab’ or ‘.txt’ are read using read.table(..., header = TRUE), and
hence result in a data frame.

4. files ending ‘.csv’ are read using read.table(..., header = TRUE, sep = ";"), and
also result in a data frame.

The data sets to be loaded can be specified as a sequence of names or character strings, or
as the character vector list, or as both. If no data sets are specified or show.data is called
directly, the available data sets are displayed.

If no data sets are specified, data calls show.data. show.data looks for a file ‘00Index’ in a
‘data’ directory of each specified package, and uses these files to prepare a listing. If there
is a ‘data’ area but no index a warning is given: such packages are incomplete.

If lib.loc is not specified, the packages are searched for amongst those already loaded,
followed by the data directory (if any) of the currrent working directory. If lib.loc is
specified, they are searched for in the specified libraries, even if they are already loaded
from another library.

To just look in the data directory of the current working directory, set package = NULL.

Value

data() returns a character vector of all data sets specified, an empty character vector if
none were specified.

Note

The data files can be many small files. On some file systems it is desirable to save space,
and the text files in the ‘help’ directory of an installed package can be zipped up as a zip
archive ‘Rdata.zip’. You will need to proved a single-column file ‘filelist’ of file names.

See Also

help for obtaining documentation on data sets.

Examples

data() # list all available data sets

data(package = base) # list the data sets in the base package

data(USArrests, "VADeaths") # load the data sets ‘USArrests and ‘VADeaths’

help(USArrests) # give information on data set ‘USArrests’

92 data.frame

data.class Object Classes data.class

Description

Determine the class of an arbitrary R object.

Usage

data.class(x)

Arguments

x an R object.

Value

character string giving the “class” of x.

The “class” is the (first element) of the class attribute if this is non-NULL, or inferred from
the object’s dim attribute if this is non-NULL, or mode(x).

Simply speaking, data.class(x) returns what is typically useful for method dispatching.
(Or, what the basic creator functions already and maybe eventually all will attach as a class
attribute.)

See Also

class

Examples

x <- LETTERS

data.class(factor(x)) # has a class attribute

data.class(matrix(x, nc = 13)) # has a dim attribute

data.class(list(x)) # the same as mode(x)

data.class(x) # the same as mode(x)

data.frame Data Frames data.frame

Description

These functions create or manipulate data frames, tightly coupled collections of variables
which share many of the properties of matrices and of lists, used as the fundamental data
structure by most of R’s modeling software.

data.frame 93

Usage

data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE)

as.data.frame(x)
is.data.frame(x)

row.names(data.frame.obj)
row.names(data.frame.obj) <- names
print(data.frame.obj, ..., digits = NULL, quote = FALSE, right = TRUE)
plot (data.frame.obj, ...)

Arguments

... these arguments are of either the form value or tag=value. Component
names are created based on the tag (if present) or the deparsed argument
itself.

row.names a character vector giving the row names for the data frame.

check.rows if TRUE then the rows are checked for consistency of length and names.

check.names if TRUE then the names of the variables in the data frame are checked to
ensure that they are valid variable names. If necessary they are adjusted
(by make.names) so that they are.

data.frame.obj

objects of class data.frame.

... optional arguments to print or plot methods.

Details

Non-numeric variables passed to data.frame are converted to factor columns unless pro-
tected by I. This applies to character and logical variables, in particular. It also applies to
adding columns to a data frame.

If a list or data frame or matrix is passed to data.frame it is as if each column had been
passed as a separate argument, with the exception of matrices of class model.matrix.

Value

For data.frame(.) a data frame, a matrix-like stucture whose columns may be of differing
types (numeric, factor and character).

as.data.frame is generic function with many methods. It attempts to coerce its argument
to be a data frame.

is.data.frame returns TRUE if its argument is a data frame and FALSE otherwise.

row.names can be used to set and retrieve the row names of a data frame, similarly to
rownames for arrays.

plot.data.frame, a method of the plot generic, uses stripplot for one variable,
plot.default (scatterplot) for two variables, and pairs (scatterplot matrix) otherwise.

For the print method (print.data.frame), see print.matrix.

xpdrows.data.frame is an auxiliary function which expands the rows of a data frame. It is
used by the data frame methods of [<- and [[<- (which perform subscripted assignments
on a data frame), and not intended to be called directly.

94 dataentry

See Also

read.table, Math.data.frame,etc, about Group methods for data.frames; make.names.

Examples

L3 <- LETTERS[1:3]

str(d <- data.frame(cbind(x=1, y=1:10), ch=sample(L3, 10, repl=TRUE)))

str(data.frame(cbind(1, 1:10), sample(L3, 10, repl=TRUE)))

is.data.frame(d)

all(1:10 == row.names(d))# TRUE (coercion)

data.matrix Data Frame to Numeric Matrix data.matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode
and then binding them together as the columns of a matrix. Factors and ordered factors
are replaced by their codes.

Usage

data.matrix(frame)

Arguments

frame a data frame whose components are either logical vectors, factors or nu-
meric vectors.

See Also

as.matrix, codes, data.frame, matrix.

dataentry Spreadsheet Interface for Entering Data dataentry

Description

This is a suite of functions designed to make the interface to the spreadsheet painless for
users.

Usage

data.entry(..., Modes = NULL, Names = NULL)
dataentry(data, modes)
de(..., Modes = NULL, Names = NULL)

date 95

Details

data.entry has side effects, any changes made in the spreadsheet are reflected in the
variables. The functions de, de.ncols, de.setup and de.restore are designed to help
achieve these side effects. If the user passes in a matrix, X say, then the matrix is broken
into columns before dataentry is called. Then on return the columns are collected and glued
back together and the result assigned to the variable X. If you don’t want this behaviour
use dataentry directly.

The primitive function is dataentry. It takes a list of vectors of possibly different lengths
and modes (the second argument) and opens a spreadsheet with these variables being the
columns. The columns of the dataentry window are returned as vectors in a list when the
spreadsheet is closed.

de.ncols counts the number of columns which are supplied as arguments to data.entry.
It attempts to count columns in lists, matrices and vectors. de.setup sets things up so
that on return the columns can be regrouped and reassigned to the correct name. This is
handled by de.restore.

See Also

vi, edit.

Examples

call data entry with variables x and y

data.entry(x,y)

date System Date and Time date

Description

Returns a character string of the current system date and time.

Usage

date()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e. length 24, since it relies on
POSIX’ ctime ensuring the above fixed format. Timezone and Daylight Saving Time are
taken account of, but not indicated in the result.

Examples

(d <- date())

nchar(d) == 24

96 debugger

debug Debug a function debug

Description

Set or unset the debugging flag on a function.

Usage

debug(fun)
undebug(fun)

Arguments

fun any interpreted R function.

Details

When a function flagged for debugging is entered, normal execution is suspended and the
body of function is executed one statement at a time. A new browser context is initiated for
each step (and the previous one destroyed). Currently you can only debug functions that
have bodies enclosed in braces. This is a bug and will be fixed soon. You take the next step
by typing carriage return, n or next. You can see the values of variables by typing their
names. Typing c or cont causes the debugger to continue to the end of the function. You
can debug new functions before you step in to them from inside the debugger. Typing Q
quits the current execution and returns you to the top–level prompt. If you have variables
with names that are identical to the controls (eg. c or n) then you need to use print(c)
and print(n) to evaluate them.

See Also

browser, traceback to see the stack after an Error: ... message.

debugger Post-Mortem Debugging debugger

Description

Functions to dump the evaluation environments (frames) and to examine dumped frames.

Usage

dump.frames(dumpto = "last.dump", to.file = FALSE)
debugger(dump = last.dump)

Arguments

dumpto a character string. The name of the object or file to dump to.

to.file logical. Should the dump be to an R object or to a file?

dump An R dump object created by dump.frames

debugger 97

Details

To use post-mortem debugging, set the option error to be a call to dump.frames. By
default this dumps to an R object "last.dump" in the workspace, but it can be set to
dump to a file (as dump of the object produced by a call to save). The dumped object
contain the call stack, the active environments and the last error message as returned by
geterrmessage.

When dumping to file, dumpto gives the name of the dumped object and the file name has
.rda appended.

A dump object of class "dump.frames" can be examined by calling debugger. This will
give the error message and a list of environments from which to select repeatedly. When
an environment is selected, it is copied and the browser called from within the copy.

If dump.frames is installed as the error handler, execution will continue even in non-
interactive sessions. See the examples for how to dump and then quit.

Value

None.

Author(s)

B. D. Ripley

See Also

options for setting error options.

Examples

options(error=quote(dump.frames("testdump", TRUE)))

f <- function() {

g <- function() stop("test dump.frames")

g()

}

f() # will generate a dump on file "testdump.rda"

options(error=NULL)

possibly in another R session

load("testdump.rda")

debugger(testdump)

Available environments had calls:

1: f()

2: g()

3: stop("test dump.frames")

Enter an environment number, or 0 to exit

Selection: 1

Browsing in the environment with call:

f()

Called from: debugger.look(ind)

Browse[1]> ls()

[1] "g"

Browse[1]> g

98 Defunct

function() stop("test dump.frames")

<environment: 759818>

Browse[1]>

Available environments had calls:

1: f()

2: g()

3: stop("test dump.frames")

Enter an environment number, or 0 to exit

Selection: 0

A possible setting for non-interactive sessions

options(error=quote({dump.frames(to.file=TRUE); q()}))

Defunct Defunct Functions Defunct

Description

The functions listed here are no longer part of R as they are not needed (any more).

Usage

.Defunct()

category(x, levels, labels, ordered, exclude)
dnchisq(.)
pnchisq(.)
qnchisq(.)
rnchisq(.)
print.anova.lm(.)
print.anova.glm(.)
print.tabular(.)
print.plot(.)
save.plot(.)

Details

category has been an old-S function before there were factors; should be replaced by factor
throughout!

The *chisq() functions now take an optional non-centrality argument, so the *nchisq()
functions are no longer needed.

The new function dev.print() should now be used for saving plots to a file or printing
them.

.Defunct is the function to which defunct functions are set.

See Also

Deprecated

delay 99

delay Delay Evaluation delay

Description

delay creates a promise to evaluate the given expression in the specifies environment if its
value is requested. This provides direct access to lazy evaluation mechanism used by R for
the evaluation of (interpreted) functions.

Usage

delay(expr, env=.GlobalEnv)

Arguments

expr an expression.
env an evaluation environment

Details

This is an experimental feature and its addition is purely for evaluation purposes.

Value

A promise to evaluate the expression. The value which is returned by delay can be assigned
without forcing its evaluation, but any further accesses will cause evaluation.

Examples

x <- delay({

for(i in 1:7)

cat("yippee!\n")

10

})

x^2#- yippee

x^2#- simple number

delete.response Modify Terms Objects delete.response

Description

delete.response returns a terms object for the same model but with no response variable.

drop.terms removes variables from the right-hand side of the model.

reformulate creates a formula from a vector of strings.

Usage

delete.response(termobj)
reformulate(termlabels,response=NULL)
drop.terms(termobj, dropx = NULL, keep.response = FALSE)

100 demo

Arguments

termobj A terms object

termlabels vector of strings giving the right-hand side of a model formula

response string giving the left-hand side of a model formula

dropx vector of positions of variables to drop from the right-hand side of the
model

keep.response Keep the response in the resulting object?

Value

delete.response and drop.terms return a terms object.

reformulate returns a formula.

See Also

terms

Examples

ff <- y ~ z + x + w

tt <- terms(ff)

tt

delete.response(tt)

drop.terms(tt, 2:3, keep.response = T)

reformulate(attr(tt, "term.labels"))

demo Demonstrations of R functions demo

Description

demo is a user-friendly interface to running some demonstration R scripts. demo() gives the
list of available topics.

Usage

demo(topic, device = getOption("device"))

Arguments

topic The topic which should be demonstrated. If omitted, the list of available
topics is displayed.

device The graphics device to be used.

See Also

source which is called by demo.

Examples

demo(lm.glm)

density 101

density Kernel Density Estimation density

Description

The function density computes kernel density estimates with the given kernel and band-
width.

The generic functions plot and print have methods for density objects.

Usage

density(x, bw, adjust = 1,
kernel=c("gaussian", "epanechnikov", "rectangular", "triangular",

"biweight", "cosine", "optcosine"),
window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE)

print(dobj)
plot(dobj, main = NULL, xlab = NULL, ylab = "Density", type = "l",

zero.line = TRUE, ...)

Arguments

x the data from which the estimate is to be computed.

bw the smoothing bandwidth to be used. The kernels are scaled such that
this is the standard deviation of the smoothing kernel. It defaults to 0.9
times the minimum of the standard deviation and the interquartile range
divided by 1.34 times the sample size to the negative one-fifth power (=
Silverman’s “rule of thumb”) unless the quartiles coincide where bw > 0
will be guaranteed. The specified (or default) value of bw is multiplied by
adjust.

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify
values like “half the default” bandwidth.

kernel,window a character string giving the smoothing kernel to be used. This must
be one of "gaussian", "rectangular", "triangular", "epanechnikov",
"biweight", "cosine" or "optcosine", with default "gaussian", and
may be abbreviated to a unique prefix (single letter).
"cosine" is smoother than "optcosine", which is the usual “cosine” ker-
nel in the literature and almost MSE-efficient.

width this exists for compatibility with S; if given, and bw is not, will set bw =
width/4.

give.Rkern logical; if true, no density is estimated, and the “canonical bandwidth” of
the chosen kernel is returned instead.

n the number of equally spaced points at which the density is to be estim-
ated. When n > 512, it is rounded up to the next power of 2 for efficiency
reasons (fft).

from,to the left and right-most points of the grid at which the density is to be
estimated.

102 density

cut by default, the values of left and right are cut bandwidths beyond
the extremes of the data. This allows the estimated density to drop to
approximately zero at the extremes.

na.rm logical; if TRUE, missing values are removed from x. If FALSE any missing
values cause an error.

dobj a “density” object.
main, xlab, ylab, type

plotting parameters with useful defaults.

... further plotting parameters.

zero.line logical; if TRUE, add a base line at y = 0

Details

The algorithm used in density disperses the mass of the empirical distribution function over
a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this
approximation with a discretized version of the kernel and then uses linear approximation
to evaluate the density at the specified points.

The statistical properties of a kernel are determined by σ2
K =

∫
t2K(t)dt which is always

= 1 for our kernels (and hence the bandwidth bw is the standard deviation of the kernel)
and R(K) =

∫
K2(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional to σKR(K) which is
scale invariant and for our kernels equal to R(K). This value is returned when give.Rkern
= TRUE. See the examples for using exact equivalent bandwidths.

Infinite values in x are assumed to correspond to a point mass at +/-Inf and the density
estimate is of the sub-density on (-Inf, +Inf).

Value

If give.Rkern is true, the number R(K), otherwise an object with class "density" whose
underlying structure is a list containing the following components.

x the n coordinates of the points where the density is estimated.

y the estimated density values.

bw the bandwidth used.

N the sample size after elimination of missing values.

call the call which produced the result.

data.name the deparsed name of the x argument.

has.na logical, for compatibility (always FALSE).

References

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and B. D. Ripley (1994, 7, 9) Modern Applied Statistics with S-PLUS. New
York: Springer.

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization.
New York: Wiley.

Sheather, S. J. and Jones M. C. (1991) A reliable data-based bandwidth selection method
for kernel density estimation. J. Roy. Statist. Soc. B, 683–690.

deparse 103

See Also

hist.

Examples

plot(density(c(-20,rep(0,98),20)), xlim = c(-4,4))# IQR = 0

The Old Faithful geyser data

data(faithful)

d <- density(faithful$eruptions, bw = 0.15)

d

plot(d)

plot(d, type = "n")

polygon(d, col = "wheat")

Missing values:

x <- xx <- faithful$eruptions

x[i.out <- sample(length(x), 10)] <- NA

doR <- density(x, bw = 0.15, na.rm = TRUE)

lines(doR, col = "blue")

points(xx[i.out], rep(.01,10))

(kernels <- eval(formals(density)$kernel))

plot (density(0,bw = 1))

for(i in 2:length(kernels))

lines(density(0,bw = 1, kern = kernels[i]), col = i)

mtext(side = 3, "R’s density() kernels with bw = 1")

legend(1.5,.4, leg = kernels, col = seq(kernels),lty = 1, cex = .8, y.int = 1)

(RKs <- cbind(sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))))

100*round(RKs["epanechnikov",]/RKs, 4) ## Efficiencies

data(precip)

plot(density(precip, n = 2^13))

for(i in 2:length(kernels))

lines(density(precip, kern = kernels[i], n = 2^13), col = i)

mtext(side = 3, "same scale bandwidths, 7 different kernels")

Bandwidth Adjustment for "Exactly Equivalent Kernels"

h.f <- sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))

(h.f <- (h.f["gaussian"] / h.f)^ .2)

-> 1, 1.01, .995, 1.007,... close to 1 => adjustment barely visible..

plot(density(precip, n = 2^13))

for(i in 2:length(kernels))

lines(density(precip, adjust = h.f[i], kern = kernels[i], n = 2^13),

col = i)

mtext(side = 3, "equivalent bandwidths, 7 different kernels")

legend(55,.035, leg = kernels, col = seq(kernels), lty = 1)

deparse Expression Deparsing deparse

104 Deprecated

Description

Turn unevaluated expressions into character strings.

Usage

deparse(expr, width.cutoff = 60)

Arguments

expr any R expression.

width.cutoff integer in [20, 500] determining the cutoff at which line-breaking is tried.

Details

This function turns unevaluated expressions (where “expression” is taken in a wider sense
than the strict concept of a vector of mode "expression" used in expression) into char-
acter strings (a kind of inverse parse).

A typical use of this is to create informative labels for data sets and plots. The example
shows a simple use of this facility. It uses the functions deparse and substitute to create
labels for a plot which are character string versions of the actual arguments to the function
myplot.

See Also

substitute, parse, expression.

Examples

deparse(args(lm))

deparse(args(lm), width = 100)

myplot <-

function(x, y)

plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

Deprecated Deprecated Functions Deprecated

Description

These functions are provided for compatibility with older versions of R only, and may be
defunct as soon as of the next release.

.Deprecated("<new name>") is called from deprecated functions.

Usage

.Deprecated(new)

See Also

Defunct

deriv 105

deriv
Symbolic and Algorithmic Derivatives of Simple

Expressions deriv

Description

Compute derivatives of simple expressions, symbolically.

Usage

D(expr, namevec)
deriv(expr, namevec, function.arg = NULL, tag = ".expr")

Arguments

expr expression which should be differentiated.

namevec character vector, giving the variable names with respect to which deriv-
atives will be computed.

function.arg NOT YET IMPLEMENTED. If specified, a function ‘prototype’ (with
empty body) which will be used to return a function with the given argu-
ment list, instead of an expression.

tag character; the prefix to be used for the locally created variables in result..

Details

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is a generic function with a default and a formula method. It returns a call for com-
puting the expr and its (partial) derivatives, simultaneously. It uses so-called “algorithmic
derivatives”.

Currently, deriv.formula just calls deriv.default after extracting the expression to the
right of .̃

Value

D returns an expression and therefore can easily be iterated for higher derivatives.

deriv returns a call object which becomes an expression when evaluated once. Eval-
uation of the latter expression returns the function values with a ".gradient" attribute
containing the gradient matrix.

Note

This help page should be fixed up by one of R&R or someone else who fluently speaks the
language in ‘$R HOME/src/main/deriv.c’.

It’s author, MM, has only got a vague idea and thinks that a help page is better than none.

References

Griewank, A. and Corliss, G. F. (1991) Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM proceedings, Philadelphia.

106 detach

See Also

nlm for numeric minimization which should make use of derivatives.

Examples

formula argument :

dx2x <- deriv(~ x^2, "x") ; dx2x

expression({

.value <- x^2

.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))

.grad[, "x"] <- 2 * x

attr(.value, "gradient") <- .grad

.value

})

mode(dx2x)

x <- -1:2

eval(dx2x)

Something ‘tougher’:

trig.exp <- expression(sin(cos(x + y^2)))

(D.sc <- D(trig.exp, c("x", "y")))

(dxy <- deriv(trig.exp, c("x", "y")))

y <- 1

eval(dxy)

eval(D.sc)

detach Detach Objects from the Search Path detach

Description

Detach a database, i.e., remove it from the search() patch of available R objects. Usu-
ally, this either a data.frame which has been attached or a package which was required
previously.

Usage

detach(name, pos = 2)

Arguments

name The object to detach. Defaults to search()[pos].

pos Index position in search() of database to detach. When name is numeric,
pos = name is used.

Value

The attached database is returned invisibly, either as data.frame or as list.

See Also

attach, library, search, objects.

dev.xxx 107

Examples

require(eda)#package

detach(package:eda)

library(mva)

detach(2)# ‘pos’ used for ‘name’

dev.xxx Control Multiple Devices dev.xxx

Description

These functions provide control over multiple graphics devices.

Only one device is the active device. This is the device in which all graphics operations
occur.

Devices are associated with a name (e.g., ”X11” or ”postscript”) and a number; the ”null
device” is always device 1.

dev.off shuts down the specified (by default the current) device. graphics.off() shuts
down all open graphics devices.

dev.set makes the specified device the active device.

A list of device names is stored in .Devices. The name of the active device is stored in
.Device.

Usage

dev.cur()
dev.list()
dev.next(which = dev.cur())
dev.prev(which = dev.cur())
dev.off(which = dev.cur())
dev.set(which = dev.next())
graphics.off()

Arguments

which An integer specifying a device number

Value

dev.cur returns the number and name of the active device.

dev.list returns the numbers and names of all devices.

dev.next returns the number and name of the next device in the list of devices.

dev.prev returns the number and name of the previous device in the list of devices.

dev.off returns the name and number of the new active device (after the specified device
has been shut down).

dev.set returns the name and number of the new active device.

See Also

Devices, such as postscript, etc; graphics.off for closing all devices; layout and its
links for setting up plotting regions on the current device.

108 dev2

Examples

x11()

plot(1:10)

x11()

plot(rnorm(10))

dev.set(dev.prev())

abline(0,1)# through the 1:10 points

dev.set(dev.next())

abline(h=0, col="gray")# for the residual plot

dev.set(dev.prev())

dev.off(); dev.off()#- close the two X devices

dev2 Copy Graphics Between Multiple Devices dev2

Description

dev.copy copies the graphics contents of the current device to the device specified by which
or to a new device which has been created by the function specified by device (it is an
error to specify both which and device).

dev.print copies the graphics contents of the current device to a new device which has
been created by the function specified by device and then shuts the new device. This is
most useful for producing a postscript copy from an on-screen device.

dev.control allows the user to control the recording of graphics operations in a device. If
displaylist is ”inhibit” then recording is turned off.

Usage

dev.copy(device, ..., which=dev.next())
dev.print(device=postscript, ...)
dev.control(displaylist)

Arguments

device A device function (e.g., x11, postscript, . . .)

... Arguments to the device function above. For dev.print, this includes
which and by default any postscript arguments.

which A device number specifying the device to copy to

displaylist A character string

Value

dev.copy returns the name and number of the device which has been copied to.

dev.print returns the name and number of the device which has been copied from.

dev2bitmap 109

Note

Every device has a display list which records all of the graphics operations that occur in the
device. dev.copy and dev.print copy graphics contents by copying the display list from
one device to another device. Also, automatic redrawing of graphics contents following the
resizing of a device depends on the contents of the display list.

After the command dev.control("inhibit"), graphics operations are not recorded in the
display list so that dev.copy and dev.print will not copy anything and the contents of a
device will not be redrawn automatically if the device is resized.

The recording of graphics operations is relatively expensive in terms of memory so the
command dev.control("inhibit") can be useful if memory usage is an issue.

See Also

dev.cur and other dev.xxx functions

Examples

x11()

plot(rnorm(10), main="Plot 1")

dev.copy(device=x11)

mtext("Copy 1", 3)

dev.print(width=6, height=6, horizontal=FALSE)

dev.off(dev.prev())

dev.off()

dev2bitmap Copy Graphics Device to Bitmap File dev2bitmap

Description

Copy the current graphics device to a file in a bitmap graphics format.

Usage

dev2bitmap(file, type = "png256", height = 6, width = 6, res = 72,
pointsize, ...)

Arguments

file The putput file name, with an appropriate extension.

type The type of bitmap. the default is "png256".

height The plot height, in inches.

width The plot width, in inches.

res Resolution, in dots per inch.

pointsize The pointsize to be used for text: defaults to something reasonable given
the width and height

... Other parameters passes to postscript.

110 deviance

Details

dev2bitmap works by copying the current device to a postscript device, and post-
processing the output file using ghostscript. You will need a recent version of ghost-
script (5.10 and later have been tested): the full path to the executable can be set by the
environment variable "R_GSCMD".

The types available will depend on the version of ghostscript, but are likely to in-
clude "pcxmono", "pcxgray", "pcx16", "pcx256", "pcx24b", "pcxcmyk", "pbm", "pbm-
raw", "pgm", "pgmraw", "pgnm", "pgnmraw", "pnm", "pnmraw", "ppm", "ppmraw", "pkm",
"pkmraw", "tiffcrle", "tiffg3", "tiffg32d", "tiffg4", "tifflzw", "tiffpack",
"tiff12nc", "tiff24nc", "psmono", "psgray", "psrgb", "bit", "bitrgb", "bitcmyk",
"pngmono", "pnggray", "png16", "png256", "png16m", "jpeg", "jpeggray", "pdfwrite".

Value

None.

Warning

This is experimental and may be withdrawn in favour of an equivalent device in a later
version.

Author(s)

B. D. Ripley

See Also

postscript

deviance Model Deviance deviance

Description

Returns the deviance of a fitted model object.

Usage

deviance(x, ...)
deviance.lm (x, ...)
deviance.glm(x, ...)
deviance.mlm(x, ...)
deviance.default(x, ...)

Arguments

x an object for which the deviance is desired.

... additional optional argument.

Devices 111

Details

This is a generic function which can be used to extract deviances for fitted models. Consult
the individual modeling functions for details details on how to use this function.

There is no default method for this function.

Value

The value of the deviance extracted from the object x.

See Also

df.residual, extractAIC, glm, lm.

Devices List of Graphical Devices Devices

Description

The following graphics devices are currently available:

• postscript Writes PostScript graphics commands to a file

• pictex Writes LaTeX/PicTeX graphics commands to a file

• windows The graphics driver for Windows (on screen, to printer and to Windows
metafile.

• png PNG bitmap device

• jpeg JPEG bitmap device

• bmp BMP bitmap device

Usage

postscript(...)
pictex(...)
windows(...)
png(...)
jpeg(...)
bmp(...)

See Also

the individual help files for further information on any of the devices listed here;

dev.cur, dev.print, graphics.off, image, dev2bitmap

112 diag

df.residual Residual Degrees-of-Freedom df.residual

Usage

df.residual(x, ...)

Arguments

x an object for which the degrees-of-freedom are desired.

... additional optional arguments.

Details

This is a generic function which can be used to extract residual degrees-of-freedom for fitted
models. Consult the individual modeling functions for details details on how to use this
function.

There is no default method for this function.

Value

The value of the residual degrees-of-freedom extracted from the object x.

See Also

deviance, glm, lm.

diag Matrix Diagonals diag

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x, nrow, ncol)
diag(x) <- value

Value

If x is a matrix then diag(x) returns the diagonal of x. The resulting vector will have
names if the matrix x has matching column and row names.

If x is a vector (or a 1-d array) then diag(x) returns a diagonal matrix whose diagonal is
x. If x is an integer then diag(x) returns an identity matrix of order x. The dimension of
the returned matrix can be specified by nrow and ncol (the default is square).

The assignment form sets the diagonal of the matrix x to the given value(s).

See Also

matrix.

diff 113

Examples

dim(diag(3))

diag(10,3,4) # guess what?

all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X=1:5, Y=rnorm(5))))#-> vector with names "X" and "Y"

rownames(M) <- c(colnames(M),rep("",3));

M; diag(M) # named as well

diff Lagged Differences diff

Description

Returns suitably lagged and iterated differences.

Usage

diff(x, ...)
diff.default(x, lag=1, differences=1)

Arguments

x a numeric vector or matrix containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

Details

NA’s propagate.

Value

If x is a vector of length n and differences=1, then the computed result is equal to the
successive differences x[(1:n-lag)] - x[(lag:n)]. If difference is larger than one this
algorithm is applied recursively to x. Note that the returned value is a vector which is
shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

114 dimnames

dim Dimensions of an Object dim

Description

Retrieve or set the dimension of an object.

Usage

dim(x)
dim(x) <- values

Details

The functions dim and dim<- are generic.

For an array (and hence in particular, for a matrix) they retrieve or set the dim attribute
of the object.

dim has a method for data frames, which returns the length of the row.names attribute of
x and the length of x (the numbers of “rows” and “columns”).

See Also

ncol, nrow and dimnames.

Examples

x <- 1:12 ; dim(x) <- c(3,4)

x

simple versions of nrow and ncol could be defined as follows

nrow0 <- function(x) dim(x)[1]

ncol0 <- function(x) dim(x)[2]

dimnames Dimnames of an Object dimnames

Description

Retrieve or set the dimnames of an object.

Usage

dimnames(x)
dimnames(x) <- nlist

Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a matrix), they retrieve or set the dimnames
attribute (see attributes) of the object.

Both have methods for data frames. The dimnames of a data frame are its row.names
attribute and its names.

discoveries 115

See Also

rownames, colnames; array, matrix, data.frame.

Examples

simple versions of rownames and colnames

could be defined as follows

rownames0 <- function(x) dimnames(x)[[1]]

colnames0 <- function(x) dimnames(x)[[2]]

discoveries Numbers of Important Discoveries discoveries

Description

The numbers of “great” inventions and scientific discoveries in each year from 1860 to 1959.

Usage

data(discoveries)

Format

A time series of 100 values.

Source

The World Almanac and Book of Facts, 1975 Edition, pages 315–318.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(discoveries)

plot(discoveries, ylab = "Number of important discoveries",

las = 1)

title(main = "discoveries data set")

116 dotplot

do.call Execute a Function Call do.call

Description

do.call executes a function call from the name of the function and a list of arguments to
be passed to it.

Usage

do.call(what, args)

Arguments

what a character string naming the function to be called.

args a list of arguments to the function call. The names attribute of args gives
the argument names.

Value

The result of the (evaluated) function call.

See Also

call which creates an unevaluated call.

Examples

do.call("complex", list(imag = 1:3))

dotplot Cleveland Dot Plots dotplot

Description

Draw a Cleveland dot plot.

Usage

dotplot(x, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"),
pch = 21, gpch = 21, bg = par("bg"), color = par("fg"),
gcolor = par("fg"), lcolor = "gray", ...)

double 117

Arguments

x either a vector or matrix of numeric values (NAs are allowed). If x is a
matrix the overall plot consists of juxtaposed dotplots for each row.

labels a vector of labels for each point. For vectors the default is to use names(x)
and for matrices the row labels dimnames(x)[[1]].

groups an optional factor indicating how the elements of x are grouped. If x is a
matrix, groups will default to the columns of x.

gdata data values for the groups. This is typically a summary such as the median
or mean of each group.

cex the character size to be used. Setting cex to a value smaller than one can
be a useful way of avoiding label overlap.

pch the plotting character or symbol to be used.

gpch the plotting character or symbol to be usea for group values.

bg the background color to be used.

color the color to be used for points an labels.

gcolor the color to be used for group labels and values.

lcolor the color to be used for the horizontal lines.

... graphical parameters can also be specified as arguments.

Value

This function is invoked for its side effect, which is to produce two variants of dotplots as
described in Cleveland (1985).

Dot plots are a reasonable substitute for bar plots.

References

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Examples

data(VADeaths)

dotplot(VADeaths, main = "Death Rates in Virginia - 1940")

dotplot(t(VADeaths), main = "Death Rates in Virginia - 1940")

double Double Precision Vectors double

Description

Create, coerce to or test for a double-precision vector.

Usage

double(length = 0)
as.double(x)
is.double(x)
single(length = 0)
as.single(x)

118 download.file

Value

double creates a double precision vector of the specified length. The elements of the vector
are all equal to 0.

as.double attempts to coerce its argument to be of double type.

is.double returns TRUE or FALSE depending on whether its argument is of double type or
not.

Note

R has no single precision data type. All real numbers are stored in double precision format.
The functions as.single and single are identical to as.double and double except they
set the attribute Csingle that is used in the .C and .Fortran interface, and they are
intended only to be used in that context.

See Also

integer.

Examples

is.double(1)

all(double(3) == 0)

download.file Download File from the Internet download.file

Description

This function can be used to download a file from the Internet either using a helper applic-
ation such as wget or by making a direct socket connection.

Usage

download.file(url, destfile, method = "auto", quiet=FALSE)

Arguments

url A character string with the URL of a file to be downloaded.

destfile A character string with the name where the downloaded file is saved.

method Tool to be used for downloading files. Currently download methods
"auto", "wget", "lynx" "cp" and "socket" are available. To use "wget"
or "lynx" the executable must be installed on your system and in your
path. To use "socket" the file must be on an HTTP server, in plain text,
and your system must allow socket connections to be opened to that
server.

quiet If TRUE, suppress status messages from the download tool (if any).

dput 119

Details

The function download.file can be used to download a single file as described by url
from the internet and store it in destfile. It makes a system call to the tool given by
method, the respective program must be installed on your system and be in the search path
for executables. If method "cp" is used, then the url must start with "file:" and give the
path to a local file. Method "auto" (the default) searches for available tools at runtime.
The url must start with a type specification such as "http://", "ftp://" or "file:".

Note

Cacheing proxies and firewalls may well not allow method "socket" socket to be used.

dput Write an Internal Object to a File dput

Description

Writes an ASCII text representation of an R object to a file, or uses one to recreate the
object.

Usage

dput(x, file = "")
dget(file)

Details

dput opens file and deparses the object x into that file. The object name is not written
(contrary to dump). If x is a function the associated environment is stripped. Hence scoping
information can be lost.

Using dget, the object can be recreated (with the limitations mentioned above).

See Also

deparse, dump, write.

Examples

Write an ASCII version of mean to the file "foo"

dput(mean, "foo")

And read it back into ‘bar’

bar <- dget("foo")

unlink("foo")

120 dummy.coef

drop Drop Redundant Extent Information drop

Description

Delete the dimensions of an array which have only one level.

Usage

drop(x)

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object
like x, but with any extents of length one removed. Any accompanying dimnames attribute
is adjusted and returned with x.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes
it is useful to invoke drop directly.

See Also

drop1 which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))# = 3 2 2

drop(1:3 %*% 2:4)# scalar product

dummy.coef Extract Coefficients in Original Coding dummy.coef

Description

This extracts coefficients in terms of the original levels of the coefficients rather than the
coded variables.

Usage

dummy.coef(object, ...)
dummy.coef.lm(object, use.na = FALSE)
dummy.coef.aovlist(object, use.na = FALSE)

Arguments

object a linear model fit

use.na logical flag for coefficients in a singular model. If use.na is true, un-
determined coefficients will be missing; if false they will get one possible
value.

dump 121

Details

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in
number than the number of levels. This function re-expresses the coefficients in the original
coding; as the coefficients will have been fitted in the reduced basis, any implied constraints
(e.g. zero sum for contr.helmert or contr.sum will be respected. There will be little
point in using dummy.coef for contr.treatment contrasts, as the missing coefficients are
by definition zero.

Value

A list giving for each term the values of the coefficients. For a multistratum aov model,
such a list for each stratum.

Warning

This function is intended for human inspection of the output: it should not be used for
calculations. Use coded variables for all calculations.

The results differ from S for singular values, where S can be incorrect.

Author(s)

B.D. Ripley

See Also

aov, model.tables

Examples

options(contrasts=c("contr.helmert", "contr.poly"))

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

dummy.coef(npk.aov)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

dummy.coef(npk.aovE)

dump Text Representations of R Objects dump

Description

This function takes a vector of names of R objects and produces text representations of the
objects in the file fileout. This file, can be sourced into another R (or S) session.

122 duplicated

Usage

dump(list, fileout="dumpdata")

Details

At present the implementation of dump is very incomplete and it really only works for
functions and simple vectors.

The function save is designed to be used for transporting R data between machines.

See Also

dput, dget,write.

Examples

x <- 1; y <- 1:10

dump(ls(patt=’^[xyz]’), "xyz.Rdmped")

unlink("xyz.Rdmped")

duplicated Determine Duplicate Elements duplicated

Description

Determines which elements of a vector are duplicates of elements with smaller subscripts,
and returns a logical vector indicating which elements are duplicates.

Usage

duplicated(x)

Arguments

x an atomic vector

See Also

unique.

Examples

x <- c(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <- x[!duplicated(x)])

all(xu == unique(x)) # TRUE, but unique(x) is more efficient

all(0:20 == sort(x[!duplicated(x)]))

dyn.load 123

dyn.load Foreign Function Interface dyn.load

Description

Load or unload shared libraries, and test whether a C function or Fortran subroutine is
available.

Usage

dyn.load(libname, local = TRUE, now = TRUE)
dyn.unload(libname)

is.loaded(symbol)
symbol.C(name)
symbol.For(name)

Arguments

libname a character string giving the pathname to a DLL.

local a logical value controlling whether the symbols in the DLL are stored in
their own local table and not shared across DLLs, or added to the global
symbol table. Whether this has any effect is system-dependent.

now a logical controlling whether all symbols are resolved (and relocated) im-
mediately the library is loaded or deferred until they are used. This
control is useful for developers testing whether a library is complete and
has all the necessary symbols and for users to ignore missing symbols.

symbol a character string giving a symbol name.

name a character string giving either the name of a C function or Fortran sub-
routine. Fortran names probably need to be given entirely in lower case
(but this may be system-dependent).

Details

The additional arguments to dyn.load mirror the different aspects of the mode argument
to the dlopen() routine on UNIX systems. They are available so that users can exercise
greater control over the loading process for an individual library. In general, the defaults
values are appropriate and one should override them only if there is good reason and you
understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached
are visible to other DLLs. While maintaining the symbols in their own namespace is good
practice, the ability to share symbols across related “chapters” is useful in many cases.
Additionally, on certain platforms and versions of an operating system, certain libraries
must have their symbols loaded globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the ‘now’ argu-
ment as FALSE. If a routine is called that has a missing symbol, the process will terminate
immediately and unsaved session variables will be lost. The intended use is for library
developers to call specify a value TRUE to check that all symbols are actually resolved and
for regular users to all with FALSE so that missing symbols can be ignored and the available
ones can be called.

124 dyn.load

The initial motivation for adding these was to avoid such termination in the _init()
routines of the Java virtual machine library. However, symbols loaded locally may not
be (read probably) available to other DLLs. Those added to the global table are available
to all other elements of the application and so can be shared across two different DLLs.

Some systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning
messages emitted when unsupported options are used. This is done by setting either of
the options verbose or warn to be non-zero via the options function. Currently, we know
of only 2 platforms that do not provide a value for local load (RTLD LOCAL). These are
IRIX6.4 and unpatched versions of Solaris 2.5.1.

There is a short discussion of these additional arguments with some example code available
at http://cm.bell-labs.com/stat/duncan/R/dynload.

Value

The function dyn.load is used for its side effect which links the specified shared library to
the executing R image. Calls to .C, .Fortran and .External can then be used to execute
compiled C functions or Fortran subroutines contained in the library.

The function dyn.unload unlinks the shared library.

Functions symbol.C and symbol.For map function or subroutine names to the symbol name
in the compiled code: is.loaded checks if the symbol name is loaded and hence available
for use in .C or .Fortran.

Note

The creation of shared libraries and the runtime linking of them into executing programs is
very platform dependent. In recent years there has been some simplification in the process
because the C subroutine call dlopen has become the standard for doing this under UNIX.
Under UNIX dyn.load uses the dlopen mechanism and should work on all platforms which
support it. On Windows it uses the standard mechanisms for loading 32-bit DLLs.

The original code for loading DLLs in UNIX was provided by Heiner Schwarte. The com-
patibility code for HP-UX was provided by Luke Tierney.

See Also

library.dynam to be used inside a package’s .First.lib initialization.

.C, .Fortran, .External, .Call.

Examples

is.loaded(symbol.For("hcass2")) #-> probably FALSE

library(mva)

is.loaded(symbol.For("hcass2")) #-> TRUE

http://cm.bell-labs.com/stat/duncan/R/dynload

edit 125

edit Invoke a Text Editor edit

Description

Invoke a text editor on an R object.

Usage

edit(name = NULL, file = "", editor = getOption("editor"))
vi(name = NULL, file = "")
emacs(name = NULL, file = "")
pico(name = NULL, file = "")
xemacs(name = NULL, file = "")
xedit(name = NULL, file = "")

Arguments

name a named object that you want to edit. If name is missing then the file
specified by file is opened for editing.

file a string naming the file to write the edited version to.

editor a string naming the text editor you want to use. On Unix the default is
set from the EDITOR environmental variable. On Windows it defaults to
notepad.

Details

edit invokes the text editor specified by editor with the object name to be edited. It is a
generic function, currently with a default method and one for data frames.

data.entry can be used to edit data, and is used by edit to edit data frames on systems
for which data.entry is available.

It is important to realize that edit does not change the object called name. Instead, a copy
of name is made and it is that copy which is changed. Should you want the changes to
apply to the object name you must assign the result of edit to name. (Try fix if you want
to make permanent changes to an object.)

In the form edit(name), edit deparses name into a temporary file and invokes the editor
editor on this file. Quiting from the editor causes file to be parsed and that value
returned. Should an error occur in parsing, possibly due to incorrect syntax, no value
is returned. Calling edit(), with no arguments, will result in the temporary file being
reopened for further editing.

Note

The functions vi, emacs, pico, xemacs, xedit rely on the corresponding editor being
available and being on the path. This is system-dependent.

See Also

edit.data.frame, data.entry, fix.

126 edit.data.frame

Examples

use xedit on the function mean and assign the changes

mean <- edit(mean, editor = "xedit")

use vi on mean and write the result to file mean.out

vi(mean, file = "mean.out")

edit.data.frame Edit data frames edit.data.frame

Description

Use data editor on data frame contents.

Usage

edit.data.frame(name, factor.mode=c("numeric", "character"))

Arguments

name A data frame.

factor.mode How to handle factors (as integers or using character levels).

Details

At present, this only works on simple data frames containing numeric or character vectors
and factors. Factors are represented in the spreadsheet as either numeric vectors (which
is more suitable for data entry) or character vectors (better for browsing). After editing,
vectors are padded with NA to have the same length and factor attributes are restored. The
set of factor levels can not be changed by the editing; invalid levels are changed to NA and
a warning is issued.

Value

The edited data frame.

Note

fix(dataframe) works for in-place editing by calling this function.

If the data editor is not available, a dump of the object is presented for editing using the
default method of edit.

Author(s)

Peter Dalgaard

See Also

data.entry, edit

eff.aovlist 127

Examples

data(airquality)

edit(airquality)

edit(airquality, factor.mode="character")

eff.aovlist Compute Efficiencies of Multistratum Analysis of
Variance

eff.aovlist

Description

Computes the efficiencies of fixed-effect terms in an analysis of variance model with multiple
strata.

Usage

eff.aovlist(aovlist)

Arguments

aovlist The result of a call to aov with a Error term.

Details

Fixed-effect terms in an analysis of variance model with multiple strata may be estimable in
more than one stratum, in which case there is less than complete information in each. The
efficiency is the fraction of the maximum possible precision (inverse variance) obtainable by
estimating in just that stratum.

This is used to pick strata in which to estimate terms in model.tables.aovlist and
elsewhere.

Value

A matrix giving for each non-pure-error stratum (row) the efficiencies for each fixed-effect
term in the model.

Author(s)

B.D. Ripley

See Also

aov, model.tables.aovlist, se.contrast.aovlist

128 effects

Examples

for balanced designs all efficiencies are zero or one.

so as a statistically meaningless test:

options(contrasts=c("contr.helmert", "contr.poly"))

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

eff.aovlist(npk.aovE)

effects Effects from Fitted Model effects

Description

Returns (orthogonal) effects from a fitted model, usually a linear model. This is a generic
function, but currently only has a method for objects inheriting from class "lm".

Usage

effects(object, ...)
effects.lm(object, set.sign=FALSE)

Arguments

object an R object; typically, the result of a model fitting function such as lm.

set.sign logical. If TRUE, the sign of the effects corresponding to coefficients in the
model will be set to agree with the signs of the corresponding coefficients,
otherwise the sign is arbitrary.

Details

For a linear model fitted by lm or aov, the effects are the uncorrelated single-degree-of-
freedom values obtained by projecting the data onto the successive orthogonal subspaces
generated by the QR decomposition during the fitting process. The first r (the rank of the
model) are associated with coefficients and the remainder span the space of residuals (but
are not associated with particular residuals).

Value

A (named) numeric vector of the same length as residuals, or a matrix if there were
multiple responses in the fitted model, in either case of class "coef".

The first r rows are labelled by the corresponding coefficients, and the remaining rows are
unlabelled. Note that in rank-deficient models the “corresponding” coefficients will be in a
different order if pivoting occurred.

eigen 129

See Also

coef

Examples

y <- c(1:3,7,5)

x <- c(1:3,6:7)

(ee <- effects(lm(y ~ x)))

c(round(ee - effects(lm(y+10 ~ I(x-3.8))),3))# just the first is different

eigen Spectral Decomposition of a Matrix eigen

Description

This function computes eigenvalues and eigenvectors by providing an interface to the EIS-
PACK routines RS, RG, CH and CG.

Usage

eigen(x, symmetric, only.values=FALSE)

Arguments

x a matrix whose spectral decomposition is to be computed.

symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex)
and only its lower triangle is used. If symmetric is not specified, the
matrix is inspected for symmetry.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both
eigenvalues and eigenvectors are returned.

Value

The spectral decomposition of x is returned as components of a list.

values a vector containing the p eigenvalues of x, sorted in decreasing order,
according to Mod(values) if they are complex.

vectors a p × p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE.

Note

To compute the determinant of a matrix (do you really need it?), it is much more efficient
to use the QR decomposition, see qr.

References

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler,
C. B. (1976). Matrix Eigensystems Routines – EISPACK Guide. Springer-Verlag Lecture
Notes in Computer Science.

130 environment

See Also

svd, a generalization of eigen; qr, and chol for related decompositions.

Examples

eigen(cbind(c(1,-1),c(-1,1)))

eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)# same (different algorithm).

eigen(cbind(1,c(1,-1)), only.values = TRUE)

eigen(cbind(-1,2:1)) # complex values

eigen(print(cbind(c(0,1i), c(-1i,0))))# Hermite ==> real Eigen values

3 x 3:

eigen(cbind(1,3:1,1:3))

eigen(cbind(-1,c(1:2,0),0:2)) # complex values

Meps <- .Alias(.Machine$double.eps)

m <- matrix(round(rnorm(25),3), 5,5)

sm <- m + t(m) #- symmetric matrix

em <- eigen(sm); V <- em$vect

print(lam <- em$values) # ordered DEcreasingly

all(abs(sm %*% V - V %*% diag(lam)) < 60*Meps)

all(abs(sm - V %*% diag(lam) %*% t(V)) < 60*Meps)

##------- Symmetric = FALSE: -- different to above : ---

em <- eigen(sm, symmetric = FALSE); V2 <- em$vect

print(lam2 <- em$values) # ordered decreasingly in ABSolute value !

and V2 is not normalized (where V is):

print(i <- rev(order(lam2)))

all(abs(1 - lam2[i] / lam) < 60 * Meps)# [1] TRUE

zapsmall(Diag <- t(V2) %*% V2) # orthogonal, but not normalized

print(norm2V <- apply(V2 * V2, 2, sum))

all(abs(1- norm2V / diag(Diag)) < 60*Meps) #> TRUE

V2n <- sweep(V2,2, STATS= sqrt(norm2V), FUN="/")## V2n are now Normalized EV

apply(V2n * V2n, 2, sum)

##[1] 1 1 1 1 1

Both are now TRUE:

all(abs(sm %*% V2n - V2n %*% diag(lam2)) < 60*Meps)

all(abs(sm - V2n %*% diag(lam2) %*% t(V2n)) < 60*Meps)

Re-ordered as with symmetric:

sV <- V2n[,i]

slam <- lam2[i]

all(abs(sm %*% sV - sV %*% diag(slam)) < 60*Meps)

all(abs(sm - sV %*% diag(slam) %*% t(sV)) < 60*Meps)

sV *is* now equal to V -- up to sign (+-) and rounding errors

all(abs(c(1 - abs(sV / V))) < 1000*Meps) # TRUE (P ~ 0.95)

environment Environment Access environment

esoph 131

Description

Get, set, test for and create environments.

Usage

environment(fun = NULL)
environment(fun) <- value
is.environment(obj)
.GlobalEnv
new.env()

Arguments

fun a function or NULL, which is the default.

value

obj an arbitrary R object.

Value

If fun is a function then environment(fun) returns the environment associated with that
function. If fun is NULL then the global environment, .GlobalEnv, is returned. This variable
is currently defined as globalenv().

The assignment form sets the environment of the function fun to the value given.

is.environment(obj) returns TRUE iff obj is an environment.

new.env returns a new (empty) environment enclosed in the parent’s environment.

See Also

The envir argument of eval.

Examples

##-- all three give the same:

environment()

environment(environment)

.GlobalEnv

ls(envir=environment(approxfun(1:2,1:2, method="const")))

is.environment(.GlobalEnv)# TRUE

esoph Smoking, Alcohol and (O)esophageal Cancer esoph

Description

Data from a case-control study of (o)esophageal cancer in Ile-et-Vilaine, France.

Usage

data(esoph)

132 esoph

Format

data frame with records for 88 age/alcohol/tobacco combinations.

[,1] ”agegp” Age group 1 25–34 years
2 35–44
3 45–54
4 55–64
5 65–74
6 75+

[,2] ”alcgp” Alcohol consumption 1 0–39 gm/day
2 40–79
3 80–119
4 120+

[,3] ”tobgp” Tobacco consumption 1 0– 9 gm/day
2 10–19
3 20–29
4 30+

[,4] ”ncases” Number of cases
[,5] ”ncontrols” Number of subjects

Author(s)

Thomas Lumley

Source

Breslow, N. E. and Day, N. E. (1980) Statistical Methods in Cancer Research. 1: The
Analysis of Case-Control Studies. IARC Lyon / Oxford University Press.

Examples

data(esoph)

summary(esoph)

effects of alcohol, tobacco and interaction, age-adjusted

model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,

data = esoph, family = binomial())

anova(model1)

Try a linear effect of alcohol and tobacco

model2 <- glm(cbind(ncases, ncontrols) ~ agegp + codes(tobgp)

+ codes(alcgp),

data = esoph, family = binomial())

summary(model2)

Re-arrange data for a mosaic plot

ttt <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)

ttt[ttt == 1] <- esoph$ncases

tt1 <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)

tt1[tt1 == 1] <- esoph$ncontrols

tt <- array(c(ttt, tt1), c(dim(ttt),2),

c(dimnames(ttt), list(c("Cancer", "control"))))

mosaicplot(tt, main = "esoph data set", color = TRUE)

euro 133

euro Euro Conversion Rates euro

Description

Conversion rates between the various Euro currencies.

Usage

data(euro)

Format

euro is a named vector of length 11, euro.cross a named matrix of size 11 by 11.

Details

The data set euro contains the value of 1 Euro in all currencies participating in the European
monetary union (Austrian Schilling ATS, Belgian Franc BEF, German Mark DEM, Span-
ish Peseta ESP, Finnish Markka FIM, French Franc FRF, Irish Punt IEP, Italian Lira ITL,
Luxembourg Franc LUF, Dutch Guilder NLG and Portugese Escudo PTE). These conver-
sion rates were fixed by the European Union on December 31, 1998. To convert old prices
to Euro prices, divide by the respective rate and round to 2 digits.

The data set euro.cross contains conversion rates between the various Euro currencies,
i.e., the result of outer(1 / euro, euro).

Examples

data(euro)

cbind(euro)

all(euro == signif(euro,6))# TRUE: [6 digit precision in Euro’s definition]

all(euro.cross == outer(1/euro, euro)) # TRUE

Convert 20 Euro to Belgian Franc

20 * euro["BEF"]

Convert 20 Austrian Schilling to Euro

20 / euro["ATS"]

Convert 20 Spanish Pesetas to Italian Lira

20 * euro.cross["ESP", "ITL"]

dotplot(euro, main = "euro data: 1 Euro in currency unit")

dotplot(1/euro, main = "euro data: 1 currency unit in Euros")

dotplot(log(euro, 10), main = "euro data: log10(1 Euro in currency unit)")

134 eval

eurodist Distances Between Cities in Europe eurodist

Description

The data give the road distances (in km) between 21 cities in Europe. The data are taken
from a table in “The Cambridge Encyclopaedia”.

Usage

data(eurodist)

Format

A dist object based on 21 objects. (You must have the mva package loaded to have the
methods for this kind of object available).

Source

Crystal, D. Ed. (1990) The Cambridge Encyclopaedia. Cambridge: Cambridge University
Press,

eval Evaluate an (Unevaluated) Expression eval

Description

Evaluate an R expression in a specified environment.

Usage

eval(expr, envir = sys.frame(sys.parent()),
enclos = if(is.list(envir) || is.pairlist(envir))

sys.frame(sys.parent()))
evalq(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

Arguments

expr object of mode expression orcall or an “unevaluated expression”.

envir the environment in which expr is to be evaluated. May also be a list or
an integer as in sys.call.

enclos Only relevant if envir is a list. Specifies the enclosure, i.e., where R looks
for objects not found in envir.

n parent generations to go back

eval 135

Details

eval evaluates the expression expr argument in the environment specified by envir and
returns the computed value. If envir is not specified, then sys.frame(sys.frame()), the
environment where the call to eval was made is used.

The evalq form is equivalent to eval(quote(expr), ...).

As eval evaluates its first argument before passing it to the evaluator, it allows you to
assign complicated expressions to symbols and then evaluate them. evalq avoids this.

eval.parent(expr, n) is a shorthand for eval(expr, parent.frame(n)).

local evaluates an expression in a local environment. It is equivalent to evalq except the
its default argument creates a new, empty environment. This is useful to create anonymous
recursive functions and as a kind of limited namespace feature since variables defined in the
environment are not visible from the outside.

Note

Due to the difference in scoping rules, there are some differences between R and S in this
area. In particular, the default enclosure in S is the global environment.

When evaluating expressions in dataframes that has been passed as argument to a function,
the relevant enclosure is often the caller’s environment, i.e., one needs eval(x, data,
sys.frame(sys.parent())).

See Also

expression, quote, sys.frame, environment.

Examples

eval(2 ^ 2 ^ 3)

mEx <- expression(2^2^3); mEx; 1 + eval(mEx)

eval({ xx <- pi; xx^2}) ; xx

a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, list(a=1)), list(b=5)) # == 10

a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, 1), list(b=5)) # == 12

ev <- function() {

e1 <- sys.frame(sys.parent())

Evaluate a in e1

aa <- eval(expression(a),e1)

evaluate the expression bound to a in e1

a <- expression(x+y)

list(aa = aa, eval = eval(a, e1))

}

tst.ev <- function(a = 7) { x <- pi; y <- 1; ev() }

tst.ev()#-> aa : 7, eval : 4.14

##

Uses of local()

##

Mutual recursives.

gg gets value of last assignment, an anonymous version of f.

gg <- local({

136 example

k <- function(y)f(y)

f <- function(x) if(x) x*k(x-1) else 1

})

gg(10)

sapply(1:5, gg)

Nesting locals. a is private storage accessible to k

gg <- local({

k <- local({

a <- 1

function(y){print(a <<- a+1);f(y)}

})

f <- function(x) if(x) x*k(x-1) else 1

})

sapply(1:5, gg)

ls(envir=environment(gg))

ls(envir=environment(get("k", envir=environment(gg))))

example Run an Examples Section from the Online Help example

Description

Run all the R code from the EXAMPLES part of R’s online help topic topic.

Usage

example(topic, package = .packages(), lib,
echo = TRUE, verbose = getOption("verbose"),
prompt.echo = paste(abbreviate(topic, 6),"> ", sep=""))

Arguments

topic name or character: The online help topic the examples of which should
be run.

package a character vector with package names.

lib a character vector with path names of R package libraries.

echo logical; if TRUE, show the R input when sourcing.

verbose logical; if TRUE, show even more when running example code.

prompt.echo character; gives the prompt to be used if echo = TRUE.

Details

If lib.loc is not specified, the packages are searched for amongst those already loaded. If
lib.loc is specified, they are searched for in the specified libraries, even if they are already
loaded from another library. An attempt is made to load the package before running the
examples, but this will not replace a pacakge loaded from another location.

Value

(the value of the last evaluated expression).

exists 137

Note

The examples can be many small files. On some file systems it is desirable to save space,
and the files in the ‘R-ex’ directory of an installed package can be zipped up as a zip archive
‘Rex.zip’.

Author(s)

Martin Maechler and others

See Also

demo

Examples

example("smooth", package="eda", lib.loc=.lib.loc)

example(dbinom)

exists Is an Object Defined? exists

Description

Search for an R object of the given name on the search path.

Usage

exists(x, where = NULL, envir = sys.frame(sys.parent()),
frame = NULL, mode = "any", inherits = TRUE)

Arguments

x a variable name (given as a character string).
where, envir, frame

an environment to be searched. By default this is the environment where
the call to envir takes place.

mode the type of interest for the object.

inherits should the enclosing frames of the environment be inspected.

Details

This function looks to see if the name x has a value bound to it. If inherits is TRUE and
a value is not found for x, then the parent frames of envir are searched until the name x
is encountered. Warning: This is the default behaviour for R but not for S.

If mode is specified then only objects of that mode are sought. The function returns TRUE
if the variable is encountered and FALSE if not.

See Also

get.

138 Exponential

Examples

Define a substitute function if necessary:

if(!exists("some.fun", mode="function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }

search()

exists("ls", 2) # true even though ls is in pos=3

exists("ls", 2, inherits=F) # false

expand.grid Create a Data Frame from All Combinations of Factors expand.grid

Description

Create a data frame from all combinations of the supplied vectors or factors. See the
description of the return value for precise details of the way this is done.

Usage

expand.grid(...)

Arguments

... Vectors, factors or a list containing these.

Value

A data frame containing one row for each combination of the supplied factors. The first
factors vary fastest. The columns are labelled by the factors if these are supplied as named
arguments or named components of a list.

Author(s)

B.D. Ripley

Examples

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),

sex = c("Male","Female"))

Exponential The Exponential Distribution Exponential

Description

Density, distribution function, quantile function and random generation for the exponential
distribution with rate rate (i.e., mean 1/rate).

Usage

dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)

expression 139

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations to generate.

rate vector of rates.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If rate is not specified, it assumes the default value of 1.

The exponential distribution with rate λ has density

f(x) = λe−λx

for x ≥ 0.

Value

dexp gives the density, pexp gives the distribution function, qexp gives the quantile function,
and rexp generates random deviates.

See Also

exp for the exponential function, dgamma for the gamma distribution and dweibull for the
Weibull distribution, both of which generalize the exponential.

Examples

dexp(1) - exp(-1) #-> 0

r <- rexp(100)

all(abs(1 - dexp(1, r) / (r*exp(-r))) < 1e-14)

expression Unevaluated Expressions expression

Description

Creates or tests for objects of mode "expression".

Usage

expression(...)

is.expression(x)
as.expression(x)

Arguments

... valid R expressions.

x an arbitrary R object.

140 Extract

Value

expression returns a vector of mode "expression" containing its arguments as unevalu-
ated “calls”.

is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object.

See Also

call, eval, function. Further, text and legend for plotting math expressions.

Examples

length(ex1 <- expression(1+ 0:9))# 1

ex1

eval(ex1)# 1:10

length(ex3 <- expression(u,v, 1+ 0:9))# 3

mode(ex3 [3]) # expression

mode(ex3[[3]])# call

rm(ex3)

Extract Extract or Replace Parts of an Object Extract

Description

Operators act on vectors, arrays, dataframes and lists to extract or replace subsets.

Usage

x[i]
x[i, j, ...]
x[i, j, ... , drop=TRUE]
x[[i]]
x[[i, j, ...]]
x$name

Details

If one of these expressions appears on the left side of an assignment then that part of x is
set to the value of the right hand side of the assignment.

These operators are generic. You can write methods to handle subsetting of specific classes
of data.

The [[operator requires all relevant subscripts be supplied. With the [operator a comma
separated blank indicates that all entries in that dimension are selected.

When operating on a list, the [[operator gives the specified element of the list while the
[operator returns a list with the specified element(s) in it.

See Also

list, array, matrix.

extractAIC 141

Examples

x <- 1:12; m <- matrix(1:6,nr=2); li <- list(pi=pi, e = exp(1))

x[10] # the tenth element of x

m[1,] # the first row of matrix m

m[1, , drop = FALSE] # is a 1-row matrix

li[[1]] # the first element of list li

y <- list(1,2,a=4,5)

y[c(3,4)] # a list containing elements 3 and 4 of y

y$a # the element of y named a

extractAIC Extract AIC from a Fitted Model extractAIC

Description

Computes the (generalized) Akaike Information Criterion for a fitted parametric model.

Usage

extractAIC (fit, scale, k = 2, ...)
extractAIC.lm (fit, scale = 0, k = 2, ...)
extractAIC.glm(fit, scale = 0, k = 2, ...)
extractAIC.aov(fit, scale = 0, k = 2, ...)
extractAIC.coxph (fit, scale, k = 2, ...)
extractAIC.negbin (fit, scale, k = 2, ...)
extractAIC.survreg(fit, scale, k = 2, ...)

Arguments

fit fitted model, usually the result of a fitter like lm.

scale optional numeric specifying the scale parameter of the model, see scale
in step.

k numeric specifying the “weight” of the equivalent degrees of freedom
(≡edf) part in the AIC formula.

... further arguments (currently unused in base R).

Details

The criterion used is
AIC = −2 logL+ k × edf,

where L is the likelihood and edf the equivalent degrees of freedom (i.e., the number of
parameters for usual parametric models) of fit.

For generalized linear models (i.e., for lm, aov, and glm), −2 logL is the deviance, as
computed by deviance(fit).

k = 2 corresponds to the traditional AIC, using k = log(n) provides the BIC (Bayes IC)
instead.

For further information, particularly about scale, see step.

142 Extremes

Value

A numeric vector of length 2, giving

edf the “equivalent degrees of freedom” of the fitted model fit.

AIC the (generalized) Akaike Information Criterion for fit.

Note

These functions are used in add1, drop1 and step and that may be their main use.

Author(s)

B. D. Ripley

References

Venables, W. N. and Ripley, B. D. (1997) Modern Applied Statistics with S-PLUS. New
York: Springer (2nd ed).

See Also

deviance, add1, step

Examples

example(glm)

extractAIC(glm.D93)#>> 5 15.129

Extremes Maxima and Minima Extremes

Description

Returns the (parallel) maxima and minima of the input values.

Usage

max(..., na.rm=FALSE)
min(..., na.rm=FALSE)

pmax(..., na.rm=FALSE)
pmin(..., na.rm=FALSE)

Arguments

... numeric arguments.

na.rm a logical indicating whether missing values should be removed.

factor 143

Value

max and min return the maximum or minimum of all the values present in their arguments,
as double. If na.rm is FALSE an NA value in any of the arguments will cause a value of NA
to be returned, otherwise NA values are ignored.

pmax and pmin take several vectors as arguments and return a single vector giving the
parallel maxima (or minima) of the vectors. The first element of the result is the maximum
(minimum) of the first elements of all the arguments, the second element of the result is
the maximum (minimum) of the second elements of all the arguments and so on. Shorter
vectors are recycled if necessary. If na.rm is FALSE, NA values in the input vectors will
produce NA values in the output. If na.rm is TRUE, NA values are ignored. attributes
(such as names or dim) are transferred from the first argument (if applicable).

See Also

range.

Examples

min(5:1,pi)

pmin(5:1, pi)

x <- sort(rnorm(100)); cH <- 1.35

pmin(cH, quantile(x)) # no names

pmin(quantile(x), cH) # has names

plot(x, pmin(cH, pmax(-cH, x)), type=’b’, main= "Huber’s function")

factor Factors factor

Description

The function factor is used to encode a vector as a factor (the names category and enu-
merated type are also used for factors). If ordered is TRUE, the factor levels are assumed
to be ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.

Usage

factor(x, levels = sort(unique(x), na.last = TRUE), labels,
exclude = NA, ordered = FALSE)

ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

144 factor

Arguments

x a vector of data, usually taking a small number of distinct values

levels an optional vector of the values that x might have taken. The default is
the set of values taken by x, sorted into increasing order.

labels either an optional vector of labels for the levels (in the same order as
levels after removing those in exclude), or a character string of length
1.

exclude a vector of values to be excluded when forming the set of levels. This
should be of the same type as x, and will be coerced if necessary.

ordered logical flag to determine if the levels should be regraded as ordered (in
the order given).

... (in ordered(.)): any of the above, apart from ordered itself.

Details

The type of the vector x is not restricted.

Ordered factors differ from factors only in their class, but methods and the model-fitting
functions treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed
from levels. If x[i] equals levels[j], then the i-th element of the result is j. If no
match is found for x[i] in levels, then the i-th element of the result is set to NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after
removing those in exclude, but this can be altered by supplying labels. This should either
be a set of new labels for the levels, or a character string, in which case the levels are that
character string with a sequence number appended.

factor(x) applied to a factor is a no-operation unless there are unused levels: in that case,
a factor with the reduced level set is returned. If exclude is used it should also be a factor
with the same level set as x or a set of codes for the levels to be excluded.

The codes of a factor may contain NA. For a numeric x, set exclude=NULL to make NA an
extra level ("NA"), by default the last level.

Value

factor returns an object of class "factor" which has a set of numeric codes the length of
x with a "levels" attribute of mode character. If ordered is true (or ordered is used)
the result has class c("ordered", "factor").

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or
not. Correspondingly, is.ordered returns TRUE when its argument is ordered and FALSE
otherwise.

as.factor coerces its argument to a factor. It is an abbreviated form of factor.

as.ordered(x) returns x if this is ordered, and ordered(x) otherwise.

Warning

The interpretation of a factor depends on both the codes and the "levels" attribute. Be
careful only to compare factors with the same set of levels (in the same order). In particular,
as.numeric applied to a factor is meaningless, and may happen by implicit coercion.

The levels of a factor are by default sorted, but the sort order may well depend on the locale
at the time of creation, and should not be assumed to be ASCII.

factor.scope 145

See Also

gl for construction of “balanced” factors and C for factors with specified contrasts. levels
and nlevels for accessing the levels, and codes to get integer codes.

Examples

ff <- factor(substring("statistics", 1:10, 1:10), levels=letters)

ff

codes(ff)

factor(ff)# drops the levels that do not occur

factor(factor(letters[7:10])[2:3]) # exercise indexing and reduction

factor(letters[1:20], label="letter")

class(ordered(4:1))# "ordered", inheriting from "factor"

factor.scope
Compute Allowed Changes in Adding to or Dropping

from a Formula factor.scope

Description

add.scope and drop.scope compute those terms that can be individually added to or
dropped from a model while respecting the hierarchy of terms.

Usage

add.scope(terms1, terms2)
drop.scope(terms1, terms2)
factor.scope(factor, scope)

Arguments

terms1 the terms or formula for the base model.

terms2 the terms or formula for the upper (add.scope) or lower (drop.scope)
scope. If missing for drop.scope it is taken to be the null formula, so all
terms (except any intercept) are candidates to be dropped.

factor the "factor" attribute of the terms of the base object.

scope a list with one or both components drop and add giving the "factor"
attribute of the lower and upper scopes respectively.

Details

factor.scope is not intended to be called directly by users.

Value

For add.scope and drop.scope a character vector of terms labels. For factor.scope, a
list with components drop and add, character vectors of terms labels.

Author(s)

B.D. Ripley

146 faithful

See Also

add1, drop1, aov, lm

Examples

add.scope(~ a + b + c + a:b, ~ (a + b + c)^3)

[1] "a:c" "b:c"

drop.scope(~ a + b + c + a:b)

[1] "c" "a:b"

faithful Old Faithful Geyser Data faithful

Description

The ‘faithful’ data frame has 272 rows and 2 columns; the waiting time between eruptions
and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park,
Wyoming, USA.

Usage

data(faithful)

Format

A data frame with 272 observations on 2 variables.

[,1] eruptions numeric Eruption time in mins
[,2] waiting numeric Waiting time to next eruption

Details

A closer look at faithful$eruptions reveals that these are heavily rounded times origin-
ally in seconds, where multiples of 5 are more frequent than expected under non-human
measurement. For a “better” version of the eruptions times, see the example below.

There are many versions of this dataset around: Azzalini and Bowman (1990) use a more
complete version.

Source

W. Härdle.

References

Härdle, W. (1991) Smoothing Techniques with Implementation in S. New York: Springer.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser.
Applied Statistics 39, 357–365.

See Also

geyser in package MASS for the Azzalini–Bowman version.

family 147

Examples

data(faithful)

f.tit <- "faithful data: Eruptions of Old Faithful"

ne60 <- round(e60 <- 60 * faithful$eruptions)

all.equal(e60, ne60)# relative diff. ~ 1/10000

table(zapsmall(abs(e60 - ne60)))# 0, 0.02 or 0.04

faithful$better.eruptions <- ne60 / 60

te <- table(ne60)

te[te >= 4] #-- (too) many multiples of 5 !

plot(names(te), te, type="h", main = f.tit, xlab = "Eruption time (sec)")

plot(faithful[, -3], main = f.tit,

xlab = "Eruption time (min)",

ylab = "Waiting time to next eruption (min)")

lines(lowess(faithful$eruptions, faithful$waiting, f = 2/3, iter = 3),

col = "red")

family Family Objects for Models family

Description

Family objects provide a convenient way to specify the details of the models used by func-
tions such as glm. See the documentation for glm for the details on how such model fitting
takes place.

Usage

family(object)

binomial(link = "logit")
gaussian(link ="identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")

print.family(x, ...)

Arguments

link a specification for the model link function. The binomial family admits
the links "logit", "probit", "log", and "cloglog" (complementary log-
log); the Gamma family the links "identity", "inverse", and "log"; the
poisson family the links "identity", "log", and "sqrt"; the quasi
family the links "logit", "probit", "cloglog", "identity", "inverse",
"log", "1/mu 2̂" and "sqrt". The function power can also be used to
create a power link function for the quasi family.
The other families have only one permissible link function: "identity"
for the gaussian family, and "1/mu 2̂" for the inverse.gaussian family.

148 FDist

variance for all families, other than quasi, the variance function is determined by
the family. The quasi family will accept the specifications "constant",
"mu(1-mu)", "mu", "mu 2̂" and "mu 3̂" for the variance function.

object the function family accesses the family objects which are stored within
objects created by modelling functions (e.g. glm).

References

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Cox, D. R. and Snell, E. J. (1981). Applied Statistics; Principles and Examples. London:
Chapman and Hall.

See Also

glm, power.

Examples

nf <- gaussian()# Normal family

nf

str(nf)# internal STRucture

gf <- Gamma()

gf

str(gf)

gf$linkinv

all(1:10 == gf$linkfun(gf$linkinv(1:10)))# is TRUE

gf$variance(-3:4) #- == (.)^2

tests of quasi

x <- rnorm(100)

y <- rpois(100, exp(1+x))

glm(y ~x, family=quasi(var="mu", link="log"))

which is the same as

glm(y ~x, family=poisson)

glm(y ~x, family=quasi(var="mu^2", link="log"))

glm(y ~x, family=quasi(var="mu^3", link="log")) # should fail

y <- rbinom(100, 1, plogis(x))

needs to set a starting value for the next fit

glm(y ~x, family=quasi(var="mu(1-mu)", link="logit"), start=c(0,1))

FDist The F Distribution FDist

Description

Density, distribution function, quantile function and random generation for the F distribu-
tion with df1 and df2 degrees of freedom (and optional non-centrality parameter ncp).

FDist 149

Usage

df(x, df1, df2, log = FALSE)
pf(q, df1, df2, ncp=0, lower.tail = TRUE, log.p = FALSE)
qf(p, df1, df2, lower.tail = TRUE, log.p = FALSE)
rf(n, df1, df2)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations to generate.

df1, df2 degrees of freedom.

ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The F distribution with df1 = n1 and df2 = n2 degrees of freedom has density

f(x) =
Γ(n1/2 + n2/2)
Γ(n1/2)Γ(n2/2)

(
n1

n2

)n1/2

xn1/2−1

(
1 +

n1x

n2

)−(n1+n2)/2

for x > 0.

Value

df gives the density, pf gives the distribution function qf gives the quantile function, and
rf generates random deviates.

See Also

dt for Student’s t distribution, the square of which is (almost) equivalent to the F distri-
bution with df2 = 1.

Examples

df(1,1,1) == dt(1,1)# TRUE

Identity: qf(2*p -1, 1, df)) == qt(p, df)^2) for p >= 1/2

p <- seq(1/2, .99, length=50); df <- 10

rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y))))

quantile(rel.err(qf(2*p -1, df1=1, df2=df), qt(p, df)^2), .90)# ~= 7e-9

150 fft

fft Fast Discrete Fourier Transform fft

Description

Performs the Fast Fourier Transform of an array.

Usage

fft(z, inverse = FALSE)
mvfft(z, inverse = FALSE)

Arguments

z a real or complex array containing the values to be transformed.

inverse if TRUE, the unnormalized inverse transform is computed (the inverse has
a + in the exponent of e, but here, we do not divide by 1/length(x)).

Value

When z is a vector, the value computed and returned by fft is the unnormalized univariate
Fourier transform of the sequence of values in z. When z contains an array, fft computes
and returns the multivariate (spatial) transform. If inverse is TRUE, the (unnormalized)
inverse Fourier transform is returned, i.e., if y <- fft(z), then z is fft(y, inverse =
TRUE) / length(y).

By contrast, mvfft takes a real or complex matrix as argument, and returns a similar
shaped matrix, but with each column replaced by its discrete Fourier transform. This is
useful for analyzing vector-valued series.

The FFT is fastest when the length of of the series being transformed is highly composite
(i.e. has many factors). If this is not the case, the transform may take a long time to
compute and will use a large amount of memory.

References

Singleton, R. C. (1979) Mixed Radix Fast Fourier Transforms, in Programs for Digital Signal
Processing, IEEE Digital Signal Processing Committee eds. IEEE Press.

See Also

convolve, nextn.

Examples

x <- 1:4

fft(x)

all(fft(fft(x), inverse = TRUE)/(x*length(x)) == 1+0i)

eps <- 1e-11 ## In general, not exactly, but still:

for(N in 1:130) {

cat("N=",formatC(N,wid=3),": ")

x <- rnorm(N)

if(N %% 5 == 0) {

m5 <- matrix(x,ncol=5)

file 151

cat("mvfft:",all(apply(m5,2,fft) == mvfft(m5)),"")

}

dd <- Mod(1 - (f2 <- fft(fft(x), inverse=TRUE)/(x*length(x))))

cat(if(all(dd < eps))paste(" all < ", formatC(eps)) else

paste("NO: range=",paste(formatC(range(dd)),collapse=",")),"\n")

}

plot(fft(c(9:0,0:13, numeric(301))), type = "l")

periodogram <- function(x, mean.x = mean(x)) { # simple periodogram

n <- length(x)

x <- unclass(x) - mean.x

Mod(fft(x))[2:(n%/%2 + 1)]^2 / (2*pi*n) # drop I(0)

}

data(sunspots)

plot(10*log10(periodogram(sunspots)), type = "b", col = "blue")

file File Manipulation file

Description

These functions provide a very basic interface to the computer’s filestore.

Usage

file.create(...)
file.exists(...)
file.remove(...)
file.append(file1, file2)
dir.create(path)
basename(path)
dirname(path)

Arguments

..., file1, file2, path

character vectors, containing file names.

Details

The ... arguments are concatenated to form one character string: you can specify the files
separately or as one vector.

file.create creates files with the given names if they do not already exist and truncates
them if they do. It returns a logical vector indicating the success or failure of the operation
for each file.

file.exists returns a logical vector indicating whether the files named by its argument
exist.

file.remove attempts to remove the files named in its argument. It returns a logical vector
indicating whether or not it succeeded in removing each file.

file.append attempts to append the files named by its second argument to those named
by its first. The R subscript recycling rule is used to align names given in vectors of different
lengths.

152 file.choose

dir.create creates the last element of the path. It returns a logical, true for success.

basename removes all of the path up to the last path separator (if any).

dirname returns the part of the path up to (but excluding) the last path separator, or "."
if there is no path separator.

In both basename and dirname trailing file separators are removed before dissecting the
path, and for dirname any trailing file separators are removed from the result.

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.show, list.files.

Examples

cat("file A\n", file="A")

cat("file B\n", file="B")

file.append("A", "B")

file.create("A")

file.append("A", rep("B", 10))

if(interactive()) file.show("A")

file.remove("A","B")

basename(file.path("","p1","p2","p3","filename"))

dirname(file.path("","p1","p2","p3","filename"))

file.choose Choose a File Interactively file.choose

Description

Choose a file interactively.

Usage

file.choose(new=FALSE)

Arguments

new Logical: choose the style of dialog box presented to the user: at present
only new = FALSE is used.

Value

A character vector of length one giving the file path.

file.path 153

file.path Construct Path to File file.path

Description

Construct the path to a file from components in a platform-independent way.

Usage

file.path(..., fsep=.Platform$file.sep)

Arguments

... Character vectors

fsep The path separator to use

Value

A character vector of length one.

file.show Display One or More Files file.show

Description

This function provides the core of the R help system, but it can be used for other purposes
as well.

Usage

file.show(..., header, title="R Information",
delete.file=FALSE, pager=getOption("pager"))

Arguments

... one or more character vectors containing the names of the files to be
displayed.

header vector (of the same length as the number of files specified in ...) giving
a header for each file being displayed. Defaults to empty strings.

title an overall title for the display. If a separate window is used for the display,
title will be used as the window title.

delete.file should the files be deleted after display? Used for temporary files.

pager the pager to be used.

Note

How the pager is implemented is system dependent. At present the Unix version concat-
entates files and displays them in the pager set by the pager option setting. However, a
GUI model might be to put up a file in a separate window and let the user leave it up while
R continues running.

154 filled.contour

Author(s)

Ross Ihaka, Brian Ripley.

See Also

file, list.files, help.

Examples

file.show(paste(R.home(),

"COPYRIGHTS", sep=.Platform$file.sep))

filled.contour Level (Contour) Plots filled.contour

Description

This function produces a contour plot with the areas between the contours filled in solid
color (Cleveland calls this a level plot). A key showing how the colors map to z values is
shown to the right of the plot.

Usage

filled.contour(x = seq(0, 1, len = nrow(z)),
y = seq(0, 1, len = ncol(z)),
z,
xlim = range(x, finite=TRUE),
ylim = range(y, finite=TRUE),
zlim = range(z, finite=TRUE),
nlevels = 20, levels = pretty(zlim, nlevels),
color.palette = cm.colors,
col = color.palette(length(levels) - 1),
plot.title, plot.axes, key.title, key.axes,
asp = NA, xaxs = "i", yaxs = "i", las = 1, axes = TRUE,
...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

xlim x limits for the plot.

ylim y limits for the plot.

zlim z limits for the plot.

levels a set of levels which are used to partition the range of z. Areas with z
values between consecutive levels are painted with the same color.

filled.contour 155

nlevels if levels is not specified, the range of z, values is divided into approx-
imately this many levels.

color.palette a color palette function to be used to assign colors in the plot.

col an explicit set of colors to be used in the plot. This argument overrides
any palette function specification.

plot.title statements which add titles the main plot.

plot.axes statements which draw axes on the main plot. This overrides the default
axes.

key.title statements which add titles for the plot key.

key.axes statements which draw axes on the plot key. This overrides the default
axis.

asp the y/x aspect ratio, see plot.window.

xaxs the x axis style. The default is to use internal labeling.

yaxs the y axis style. The default is to use internal labeling.

las the style of labeling to be used. The default is to use horizontal labeling.

... additional graphical parameters.

Note

This function currently uses the layout function and so is restricted to a full page display.
In future it is likely to be replaced by a genuine levelplot function which will work in
multipanel displays.

Author(s)

Ross Ihaka.

References

Cleveland, W. S. (1993) Visualizing Data. Summit, New Jersey: Hobart.

See Also

contour, image, palette.

Examples

data(volcano)

filled.contour(volcano, color = terrain.colors, asp = 1)# simple

x <- 10*1:nrow(volcano)

y <- 10*1:ncol(volcano)

filled.contour(x, y, volcano, color = terrain.colors,

plot.title = title(main = "The Topography of Maunga Whau",

xlab = "Meters North", ylab = "Meters West"),

plot.axes = { axis(1, seq(100, 800, by = 100))

axis(2, seq(100, 600, by = 100)) },

key.title = title(main="Height\n(meters)"),

key.axes = axis(4, seq(90, 190, by = 10)))# maybe also asp=1

mtext(paste("filled.contour(.) from", R.version.string),

side = 1, line = 4, adj = 1, cex = .66)

156 fivenum

fitted.values Extract Model Fitted Values fitted.values

Description

fitted is a generic function which extracts fitted values from objects returned by modeling
functions. fitted.values is an alias for it.

All object classes which are returned by model fitting functions should provide a fitted
method. (Note that the generic is fitted and not fitted.values.)

Usage

fitted(x, ...)
fitted.values(x, ...)

Arguments

x an object for which the extraction of model fitted values is meaningful.

... other arguments.

Value

Fitted values extracted from the object x.

See Also

coefficients, glm, lm, residuals.

fivenum Tukey Five-Number Summaries fivenum

Description

Returns Tukey’s five number summary (minimum, lower-hinge, median, upper-hinge, max-
imum) for the input data.

Usage

fivenum(x, na.rm = TRUE)

Arguments

x numeric, maybe including NAs and +/-Infs.

na.rm logical; if TRUE, all NA and NaNs are dropped, before the statistics are
computed.

Value

A numeric vector of length 5 containing the summary information.

fix 157

See Also

IQR, boxplot.stats, median, quantile, range.

Examples

fivenum(c(rnorm(100),-1:1/0))

fix Fix an Object fix

Description

fix invokes the editor specified in options("editor") on x and then assigns the new
(edited) version of x in the global environment.

Usage

fix(x, ...)

Arguments

x An R object

... Arguments to pass to editor

See Also

edit, edit.data.frame

Examples

Assume ‘my.fun’ is a user defined function :

fix(my.fun)

now my.fun is changed

Also,

fix(my.data.frame) # calls up data editor

fix(my.data.frame, factor.mode="char") # use of ...

158 Foreign

Foreign Foreign Function Interface Foreign

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE)
.Fortran(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE)
.External(name, ...)

.Call(name, ...)

Arguments

name a character string giving the name of a C function or Fortran subroutine.

... arguments to be passed to the foreign function.

NAOK if TRUE then any NA or NaN or Inf values in the arguments are passed on
to the foreign function. If FALSE, the presence of NA or NaN or Inf values
is regarded as an error.

DUP if TRUE then arguments are “duplicated” before their address is passed to
C or Fortran.

PACKAGE if supplied, confine the search for the name to the DLL given by this
argument (plus the conventional extension, .so, .sl, .dll, . . .). This
is intended to add safety for packages, which can ensure that no other
package can override their external symbols by using this argument. Use
PACKAGE="base" for symbols linked in to R.

Details

The functions .C and .Fortran can be used to make calls to C and Fortran code.

.External can be used to call compiled code that uses R objects in the same way as internal
R functions.

.Call can be used call compiled code which makes use of internal R objects. The arguments
are passed to the C code as a sequence of R objects. It is included to provide compatibility
with S version 4.

For details about how to write code to use with .Call and .External, see the chapter
on “System and foreign language interfaces” in “Writing R Extensions” in the ‘doc/manual’
subdirectory of the R source tree).

Value

The functions .C and .Fortran return a list similar to the ... list of arguments passed in,
but reflecting any changes made by the C or Fortran code.

.External and .Call return an R object.

These calls are typically made in conjunction with dyn.load which links DLLs to R.

Foreign 159

Argument types

The mapping of the types of R arguments to C or Fortran arguments in .C or .Fortran is

160 Foreign

R C Fortran
integer int * integer
numeric double * double precision
– or – float * real
complex Rcomplex * double complex
logical int * integer
character char ** [see below]
list SEXP * not allowed
other SEXP not allowed

Numeric vectors in R will be passed as type double * to C (and as double precision
to Fortran) unless (i) .C or .Fortran is used, (ii) DUP is false and (iii) the argument has
attribute Csingle set to TRUE (use as.single or single). This mechanism is only intended
to be use to facilitate the interfacing of existing C and Fortran code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r; double
i;}. Fortran type double complex is an extension to the Fortran standard, and the avail-
ability of a mapping of complex to Fortran may be compiler dependent.

Note: The C types corresponding to integer and logical are int, not long as in S.

The first character string of a character vector is passed as a C character array to Fortran:
that string may be usable as character*255 if its true length is passed separately. Only
up to 255 characters of the string are passed back.

Functions, expressions, environments and other language elements are passed as the internal
R pointer type SEXP. This type is defined in ‘Rinternals.h’ or the arguments can be declared
as generic pointers, void *. Lists are passed as C arrays of SEXP and can be declared as
void * or SEXP *.

R functions can be invoked using call_S or call_R and can be passed lists or the simple
types as arguments.

Header files for external code

Writing code for use with .External and .Call will use internal R structures. If possible
use just those defined in ‘Rinternals.h’ and/or the macros in ‘Rdefines.h’, as other header
files are not installed and are even more likely to be changed.

Note

DUP=FALSE is dangerous.

There are three important dangers with DUP=FALSE. The first is that garbage collection
may move the object, resulting in the pointers pointing nowhere useful and causing hard-
to-reproduce bugs.

The second is that if you pass a formal parameter of the calling function to .C/.Fortran
with DUP=FALSE, it may not necessarily be copied. You may be able to change not only the
local variable but the variable one level up. This will also be very hard to trace.

The third is that lists are passed as a single R SEXP with DUP=FALSE, not as an array of
SEXP. This means the accessor macros in ‘Rinternals.h’ are needed to get at the list elements
and the lists cannot be passed to call_S/call_R.

1. If your C/Fortran routine calls back any R function including S_alloc/R_alloc then
do not use DUP=FALSE. Do not even think about it. Calling almost any R function could
trigger garbage collection.

Formaldehyde 161

2. If you don’t trigger garbage collection it is safe and useful to set DUP=FALSE if you don’t
change any of the variables that might be affected, e.g.,

.C("Cfunction", input=x, output=numeric(10)).

In this case the output variable didn’t exist before the call so it can’t cause trouble. If the
input variable is not changed in Cfunction you are safe.

See Also

dyn.load.

Formaldehyde Determination of Formaldehyde Formaldehyde

Description

These data are from a chemical experiment to prepare a standard curve for the determin-
ation of formaldehyde by the addition of chromatropic acid and concentrated sulpuric acid
and the reading of the resulting purple color on a spectophotometer.

Usage

data(Formaldehyde)

Format

A data frame with 6 observations on 2 variables.

[,1] carb numeric Carbohydrate (ml)
[,2] optden numeric Optical Density

Source

Bennett, N. A. and N. L. Franklin (1954) Statistical Analysis in Chemistry and the Chemical
Industry. New York: Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(Formaldehyde)

plot(optden ~ carb, data = Formaldehyde,

xlab = "Carbohydrate (ml)", ylab = "Optical Density",

main = "Formaldehyde data", col = 4, las = 1)

abline(fm1 <- lm(optden ~ carb, data = Formaldehyde))

summary(fm1)

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(fm1)

par(opar)

162 format

formals Access to and Manipulation of the Formal Arguments formals

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()))
formals(fun) <- list

Arguments

fun a function object or a character string naming the function to be manip-
ulated. If not specified, the function calling body is used.

list a list of R expressions.

Value

formals returns the formal argument list of the function specified.

The assignment form sets the formals of a function to the list on the right hand side.

See Also

args for a “human-readable” version, alist, body, function.

Examples

length(formals(lm)) # the number of formal arguments

names(formals(boxplot)) # formal arguments names

f <- function(x)a+b

formals(f) <- alist(a=,b=3) # function(a,b=3)a+b

f(2) # result = 5

format Encode in a Common Format format

Description

Format an R object for pretty printing: format.pval is intended for formatting p-values.

Usage

format(x, ...)
format.default(x, trim = FALSE, digits = getOption("digits"))
format.pval(x, digits = max(1, getOption("digits") - 2),

eps = .Machine$double.eps)

format.info 163

Arguments

x any R object (conceptually); typically numeric.

trim logical; if TRUE, leading blanks are trimmed off the strings.

digits how many significant digits are to be used for numeric x. This is a
suggestion: enough decimal places will be used so that the smallest (in
magnitude) number has this many significant digits.

Details

These functions convert their first argument to a vector (or array) of character strings which
have a common format (as is done by print). The trimming with trim = TRUE is useful
when the strings are to be used for plot axis annotation.

format.pval is mainly an auxiliary function for print.summary.lm etc., does separate
formatting for fixed, floating point and very small values (those < eps).

The function formatC provides a rather more flexible formatting facility for numbers, but
does not provide a common format for several numbers.

Note

Currently format loses trailing zeroes, so format(6.001, digits=2) gives "6" and
format(c(6.0, 13.1), digits=2) gives c(" 6", "13").

Character(s) " in input strings x are escaped to \".

See Also

formatC, paste, as.character.

Examples

format(1:10)

p <- c(47,13,2,.1,.023,.0045, 1e-100)/1000

format.pval(p)

format.pval(p / 0.9)

format.pval(p / 0.9, dig=3)

format.info format(.) Information format.info

Description

Information is returned on how format(x, digits = options("digits")) would be
formatted like.

Usage

format.info(x)

Arguments

x (numeric) vector; potential argument of format(x,...).

164 formatC

Value

An integer vector of length 3, say r.

r[1] width (number of characters) used for format(x)

r[2] number of digits after decimal point.

r[3] in 0:2; if ≥1, exponential representation would be used, with exponent
length of r[3]+1.

Note

The result depends on the value of options("digits").

See Also

format, formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following

format.info(123) # 3 0 0

format.info(pi) # 8 6 0

format.info(1e8) # 5 0 1 - exponential "1e+08"

format.info(1e222)#6 0 2 - exponential "1e+222"

x <- pi*10^c(-10,-2,0:2,8,20)

names(x) <- formatC(x,w=1,dig=3,format="g")

cbind(sapply(x,format))

t(sapply(x, format.info))

Reset old options:

options(dd)

formatC Formatting Using C-style Formats formatC

Description

Formatting numbers individually and flexibly, using C style format specifications.
format.char is a helper function for formatC.

Usage

formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL)

format.char(x, width = NULL, flag = "-")

formatC 165

Arguments

x an atomic numerical or character object, typically a vector of real num-
bers.

digits the desired number of digits after the decimal point (format = "f") or
significant digits (format = "g", = "e" or = "fg").
Default: 2 for integer, 4 for real numbers. If less than 0, the C default of
6 digits is used.

width the total field width; if both digits and width are unspecified, width
defaults to 1, otherwise to digits + 1. width = 0 will use width =
digits, width < 0 means left justify the number in this field (equivalent
to flag ="-"). If necessary, the result will have more characters than
width.

format equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or
"s" (for strings). Default is "d" for integers, "g" for reals.
"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x[i] into
scientific format only if it saves space to do so.
"fg" uses fixed format as "f", but digits as number of significant digits.
Note that this can lead to quite long result strings, see examples below.

flag format modifier as in Kernighan and Ritchie (1988, page 243). "0" pads
leading zeros; "-" does left adjustment, others are "+", " ", and "#".

mode "double" (or "real"), "integer" or "character". Default: Determined
from the storage mode of x.

Details

If you set format it over-rides the setting of mode, so formatC(123.45, mode="double",
format="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so formatC(c(6.11,
13.1), digits=2, format="fg") gives c("6.1", " 13"). If you want common format-
ting for several numbers, use format.

Value

A character object of same size and attributes as x. Unlike format, each number is format-
ted individually. Looping over each element of x, sprintf(...) is called (inside the C
function str_signif).

format.char(x) and formatC, for character x, do simple (left or right) padding with white
space.

Author(s)

Originally written by Bill Dunlap, later much improved by Martin Maechler, it was first
adapted for R by Friedrich Leisch.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition.
Prentice Hall.

166 formula

See Also

format.

Examples

xx <- pi * 10^(-5:4)

options(digits = 4) # only for format

cbind(format(xx), formatC(xx))

cbind(formatC(xx, wid = 9, flag = "-"))

cbind(formatC(xx, dig = 5, wid = 8, format = "f", flag = "0"))

format.char(c("a", "Abc", "no way"), wid = -7) # <=> flag = "-"

formatC(c("a", "Abc", "no way"), wid = -7) # <=> flag = "-"

formatC(c((-1:1)/0,c(1,100)*pi), wid=8, dig=1)

xx <- c(1e-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)

1 2 3 4 5 6

formatC(xx)

formatC(xx, format="fg") # special "fixed" format.

formatC(xx, format="f", dig=80)#>> also long strings

formula Model Formulae formula

Description

The generic function formula and its specific methods provide a way of extracting formulae
which have been included in other objects.

as.formula is almost identical, additionally preserving attributes when object already
inherits from "formula".

Usage

y ~ model
formula(object)
formula.default(anything)
formula.formula(formula.obj)
formula.terms(terms.obj)
formula.data.frame(df)
as.formula(object)
I(name)

Details

The models fit by, e.g., the lm and glm functions are specified in a compact symbolic form.
The ˜ operator is basic in the formation of such models. An expression of the form y ˜
model is interpreted as a specification that the response y is modelled by a linear predictor
specified symbolically by model. Such a model consists of a series of terms separated by
+ operators. The terms themselves consist of variable and factor names separated by :
operators. Such a term is interpreted as the interaction of all the variables and factors
appearing in the term.

frame 167

In addition to + and :, a number of other operators are useful in model formulae. The
* operator denotes factor crossing: a*b interpreted as a+b+a:b. The ˆ operator indicates
crossing to the specified degree. For example (a+b+c) 2̂ is identical to (a+b+c)*(a+b+c)
which in turn expands to a formula containing the main effects for a, b and c together with
their second-order interactions. The %in% operator indicates that the terms on its left are
nested within those on the right. For example a+b%in%a expands to the formula a+a:b.
The - operator removes the specified terms, so that (a+b+c) 2̂ - a:b is identical to a + b
+ c + b:c + a:c. It can also used to remove the intercept term: y x̃ - 1 is a line through
the origin. A model with no intercept can be also specified as y x̃ + 0 or 0 + y x̃.

While formulae usually involve just variable and factor names, they can also involve arith-
metic expressions. The formula log(y) ˜ a + log(x) is quite legal. When such arithmetic
expressions involve operators which are also used symbolically in model formulae, there can
be confusion between arithmetic and symbolic operator use.

To avoid this confusion, the function I() can be used to bracket those portions of a model
formula where the operators are used in their arithmetic sense. For example, in the formula
y ˜ a + I(b+c), the term b+c is to be interpreted as the sum of b and c.

Value

All the functions above produce an object of class formula which contains a symbolic model
formula.

See Also

lm, glm, terms.

Examples

class(fo <- y ~ x1*x2) # "formula"

fo

typeof(fo)# R internal : "language"

terms(fo)

Create a formula for a model with a large number of variables:

xnam <- paste("x", 1:25, sep="")

(fmla <- as.formula(paste("y ~ ", paste(xnam, collapse= "+"))))

frame Create / Start a New Plot Frame frame

Description

The function causes the completion of plotting in the current plot and an advance to a new
graphics frame. This is used in all high-level plotting functions and also useful for skipping
plots when a multi-figure region is in use.

Usage

plot.new(ask = NA)
frame(ask = NA)

168 freeny

Arguments

ask logical, defaulting to par("ask").

See Also

plot.window, plot.default.

freeny Freeny’s Revenue Data freeny

Description

Freeny’s data on quarterly revenue and explanatory variables.

Usage

data(freeny)

Format

There are three ‘freeny’ data sets.

freeny.y is a time series with 39 observations on quarterly revenue from (1962,2Q) to
(1971,4Q).

freeny.x is a matrix of explanatory variables. The columns are freeny.y lagged 1 quarter,
price index, income level, and market potential.

Finally, freeny is a data frame with variables y, lag.quarterly.revenue, price.index,
income.level, and market.potential obtained from the above two data objects.

Source

A. E. Freeny (1977) A Portable Linear Regression Package with Test Programs. Bell Labor-
atories memorandum.

Examples

data(freeny)

summary(freeny)

pairs(freeny, main = "freeny data")

summary(fm1 <- lm(y ~ ., data = freeny))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par(opar)

ftable 169

ftable Flat Contingency Tables ftable

Description

Create and manipulate “flat” contingency tables.

Usage

ftable(..., exclude = c(NA, NaN), row.vars = NULL, col.vars = NULL)
ftable2table(x)

Arguments

... R objects which can be interpreted as factors (including character strings),
or a list (or data frame) whose components can be so interpreted, or a
contingency table object of class "table" or "ftable".

exclude values to use in the exclude argument of factor when interpreting non-
factor objects.

row.vars a vector of integers giving the numbers of the variables, or a character
vector giving the names of the variables to be used for the rows of the flat
contingency table.

col.vars a vector of integers giving the numbers of the variables, or a character
vector giving the names of the variables to be used for the columns of the
flat contingency table.

x an arbitrary R object.

Details

ftable creates “flat” contingency tables. Similar to the usual contingency tables, these
contain the counts of each combination of the levels of the variables (factors) involved.
This information is then re-arranged as a matrix whose rows and columns correspond to
unique combinations of the levels of the row and column variables (as specified by row.vars
and col.vars, respectively). The combinations are created by looping over the variables in
reverse order (so that the levels of the “left-most” variable vary the slowest). Displaying a
contingency table in this flat matrix form (via print.ftable, the print method for objects
of class "ftable") is often preferable to showing it as a higher-dimensional array.

ftable is a generic function. Its default method, ftable.default, first creates a contin-
gency table in array form from all arguments except row.vars and col.vars. If the first
argument is of class "table", it represents a contingency table and is used as is; if it is
a flat table of class "ftable", the information it contains is converted to the usual array
representation using ftable2table. Otherwise, the arguments should be R objects which
can be interpreted as factors (including character strings), or a list (or data frame) whose
components can be so interpreted, which are cross-tabulated using table. Then, the argu-
ments row.vars and col.vars are used to collapse the contingency table into flat form. If
neither of these two is given, the last variable is used for the columns. If both are given and
their union is a proper subset of all variables involved, the other variables are summed out.

Function ftable.formula provides a formula method for creating flat contingency tables.

ftable2table converts a contingency table in flat matrix form to one in standard array
form.

170 ftable.formula

Value

ftable returns an object of class "ftable", which is a matrix with counts of each combin-
ation of the levels of variables with information on the names and levels of the (row and
columns) variables stored as attributes "row.vars" and "col.vars".

See Also

ftable.formula for the formula interface (which allows a data = . argument); table for
“ordinary” cross-tabulation.

Examples

Start with a contingency table.

data(Titanic)

ftable(Titanic, row.vars = 1:3)

ftable(Titanic, row.vars = 1:2, col.vars = "Survived")

ftable(Titanic, row.vars = 2:1, col.vars = "Survived")

Start with a data frame.

data(mtcars)

x <- ftable(mtcars[c("cyl", "vs", "am", "gear")])

x

ftable(x, row.vars = c(2, 4))

ftable.formula Formula Notation for Flat Contingency Tables ftable.formula

Description

Produce or manipulate a flat contingency table using formula notation.

Usage

ftable(formula, data = NULL, subset, na.action, ...)

Arguments

formula a formula object with both left and right hand sides specifying the column
and row variables of the flat table.

data a data frame, list or environment containing the variables to be cross-
tabulated, or a contingency table (see below).

subset an optional vector specifying a subset of observations to be used. Ignored
if data is a contingency table.

na.action a function which indicates what should happen when the data contain
NAs. Ignored if data is a contingency table.

... further arguments to the default ftable method may also be passed as
arguments, see ftable.default.

function 171

Details

This is a method of the generic function ftable.

The left and right hand side of formula specify the column and row variables, respectively,
of the flat contingency table to be created. Only the + operator is allowed for combining the
variables. A . may be used once in the formula to indicate inclusion of all the “remaining”
variables.

If data is an object of class "table" or an array with more than 2 dimensions, it is taken
as a contingency table, and hence all entries should be nonnegative. Otherwise, if it is not
a flat contingency table (i.e., an object of class "ftable"), it should be a data frame or
matrix, list or environment containing the variables to be cross-tabulated. In this case,
na.action is applied to the data to handle missing values, and, after possibly selecting a
subset of the data as specified by the subset argument, a contingency table is computed
from the variables.

The contingency table is then collapsed to a flat table, according to the row and column
variables specified by formula.

Value

A flat contingency table which contains the counts of each combination of the levels of the
variables, collapsed into a matrix for suitably displaying the counts.

See Also

ftable, ftable.default; table.

Examples

data(Titanic)

Titanic

x <- ftable(Survived ~ ., data = Titanic)

x

ftable(Sex ~ Class + Age, data = x)

function Function Definition function

Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
return(value)

Arguments

arglist Empty or one or more name or name=expression terms.

value An expression, or a series of expressions separated by commas.

172 GammaDist

Details

In R (unlike S) the names in an argument list cannot be quoted non-standard names.

If value is a series of expressions, the value returned is a list of the evaluated expressions,
with names set to the expressions where these are the names of R objects.

See Also

args and body for accessing the arguments and body of a function.

debug for debugging; invisible for return(.)ing invisibly.

Examples

norm <- function(x) sqrt(x%*%x)

norm(1:4)

An anonymous function:

(function(x,y){ z <- x^2 + y^2; x+y+z })(0:7, 1)

GammaDist The Gamma Distribution GammaDist

Description

Density, distribution function, quantile function and random generation for the Gamma
distribution with parameters shape and scale.

Usage

dgamma(x, shape, scale=1, log = FALSE)
pgamma(q, shape, scale=1, lower.tail = TRUE, log.p = FALSE)
qgamma(p, shape, scale=1, lower.tail = TRUE, log.p = FALSE)
rgamma(n, shape, scale=1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations.
shape, scale shape and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

If scale is omitted, it assumes the default value of 1.

The Gamma distribution with parameters shape = α and scale = σ has density

f(x) =
1

σαΓ(α)
xα−1e−x/σ

for x > 0, α > 0 and σ > 0.

gc 173

Value

dgamma gives the density, pgamma gives the distribution function qgamma gives the quantile
function, and rgamma generates random deviates.

See Also

gamma for the Gamma function, dbeta for the Beta distribution and dchisq for the chi-
square distribution which is a special case of the Gamma distribution.

Examples

-log(dgamma(1:4, shape=1))

p <- (1:9)/10

pgamma(qgamma(p,shape=2), shape=2)

1 - 1/exp(qgamma(p, shape=1))

gc Garbage Collection gc

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic
collection is either silent (verbose=FALSE) or prints memory use statistics (verbose=TRUE).

Usage

gc(verbose = getOption("verbose"))
gcinfo(verbose)

Arguments

verbose logical; if TRUE, the garbage collection prints statistics about cons cells [in
Bytes] and the vector heap [in KBytes].

Details

A call of gc causes a garbage collection to take place. This takes place automagically without
user intervention, and the primary purpose of calling gc is for the report on memory usage.

Value

gc returns a 2*3 matrix with rows "Ncells" (cons cells, usually 20 bytes each on 32-bit
systems, 36 bytes each on 64-bit systems) and "Vcells" (vector cells, 8 bytes each), and
columns "free", "total" and "(Mb)" (rounded up to the next 0.1Mb).

gcinfo returns the previous value of the flag.

See Also

Memory on R’s memory management and gctorture if you are an R hacker.

174 Geometric

Examples

gc() #- do it now

gcinfo(TRUE) #-- in the future, show when R does it

x <- integer(0); for(i in 1:18) x <- c(x,i,x)

gcinfo(verbose = FALSE)#-- don’t show it anymore

(rgc <- gc(TRUE))

(100*rgc[,"free"])%/% rgc[,"total"] # the percentages

rgc[2,"free"]/ (1024 / 8) # free vector heap in K bytes

gctorture Torture Garbage Collector gctorture

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out
memory protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture(on = TRUE)

Arguments

on logical; turning it on/off.

Value

None

Author(s)

Peter Dalgaard

Geometric The Geometric Distribution Geometric

Description

Density, distribution function, quantile function and random generation for the geometric
distribution with parameter prob.

Usage

dgeom(x, prob, log = FALSE)
pgeom(q, prob, lower.tail = TRUE, log.p = FALSE)
qgeom(p, prob, lower.tail = TRUE, log.p = FALSE)
rgeom(n, prob)

get 175

Arguments

x, q vector of quantiles representing the number of failures in a sequence of
Bernoulli trials before success occurs.

p vector of probabilities.

n number of observations to generate.

prob probability of success in each trial.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The geometric distribution with prob = p has density

p(x) = p(1− p)x

for x = 0, 1, 2, . . .

If an element of x is not integer, the result of pgeom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distri-
bution function.

Value

dgeom gives the density, pgeom gives the distribution function, qgeom gives the quantile
function, and rgeom generates random deviates.

See Also

dnbinom for the negative binomial which generalizes the geometric distribution.

Examples

pp <- sort(c((1:9)/10, 1 - .2^(2:8)))

print(qg <- qgeom(pp, prob = .2))

test that qgeom is an inverse of pgeom

print(qg1 <- qgeom(pgeom(qg, prob=.2), prob =.2))

all(qg == qg1)

Ni <- rgeom(20, prob = 1/4); table(factor(Ni, 0:max(Ni)))

get Return a Variable’s Value get

Description

Search for an R object with a given name and return it if found.

Usage

get(x, pos=-1, envir=pos.to.env(pos), mode="any", inherits=TRUE)

176 getenv

Arguments

x a variable name (given as a quoted string).

pos position in search list, can be numerical or a quoted string.

envir the environment to be used.

mode the type of object sought.

inherits should the enclosing frames of the environment be inspected?

Value

This function searches the specified environment for a bound variable whose name is given
by the string x. If the variable’s value is not of the correct mode, it is ignored.

If inherits is FALSE, only the first frame of the specified environment is inspected. If
inherits is TRUE, the search is continued up through the parent frames until a bound value
of the right mode is found.

Using a NULL environment is equivalent to using the current environment.

See Also

exists.

Examples

get("%o%")

getenv Get Environment Variables getenv

Description

getenv obtains the values of the environment variables named by x.

Usage

getenv(x)

Arguments

x a character vector, or missing

Value

A vector of the same length as x, with the variable names as its names attribute. Each
element holds the value of the environment variable named by the corresponding component
of x (or "" if no environment variable with that name was found).

On some platforms getenv() will return a named vector giving the values of all the envir-
onment variables.

See Also

getwd for the working directory.

getwd 177

Examples

getenv(c("R_HOME", "R_PAPERSIZE", "R_PRINTCMD", "HOST"))

getwd Get or Set Working Directory getwd

Description

getwd returns an absolute filename representing the current working directory of the R
process; setwd(dir) is used to set the working directory to dir.

Usage

getwd()
setwd(dir)

Arguments

dir A character string.

Examples

(WD <- getwd())

if (!is.null(WD)) setwd(WD)

gl Generate Factor Levels gl

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = n*k, labels=1:n, ordered=FALSE)

Arguments

n an integer giving the number of levels.

k an integer giving the number of replications.

length an integer giving the length of the result.

labels an optional vector of labels for the resulting factor levels.

ordered a logical indicating whether the result should be ordered or not.

Value

The result has levels from 1 to n with each value replicated in groups of length k out to a
total length of length.

gl is modelled on the GLIM function of the same name.

178 glm

See Also

the underlying factor(.).

Examples

First control, then treatment:

gl(2,8, label=c("Ctnrl","Treat"))

20 alternating 1s and 2s

gl(2, 1, 20)

alternating pairs of 1s and 2s

gl(2, 2, 20)

glm Fitting Generalized Linear Models glm

Description

glm is used to fit generalized linear models.

Models for glm are specified by giving a symbolic description of the linear predictor and a
description of the error distribution.

Usage

glm(formula, family = gaussian, data, weights = NULL, subset = NULL,
na.action, start = NULL, offset = NULL,
control = glm.control(epsilon=0.0001, maxit=10, trace=FALSE),
model = TRUE, method = "glm.fit", x = FALSE, y = TRUE,
contrasts = NULL, ...)

glm.control(epsilon = 0.0001, maxit = 10, trace = FALSE)
glm.fit(x, y, weights = rep(1, nrow(x)),

start = NULL, etastart = NULL, mustart = NULL,
offset = rep(0, nrow(x)),
family = gaussian(), control = glm.control(),
intercept = TRUE)

Arguments

formula a symbolic description of the model to be fit. The details of model spe-
cification are given below.

family a description of the error distribution and link function to be used in the
model. See family for details.

data an optional data frame containing the variables in the model. By default
the variables are taken from the environment ffrom which glm is called.

weights an optional vector of weights to be used in the fitting process.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

na.action a function which indicates what should happen when the data contain NAs.
The default is set by the na.action setting of options, and is na.fail
if that is unset. The “factory-fresh” default is na.omit.

glm 179

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart starting values for the vector of means.

offset this can be used to specify an a priori known component to be included
in the linear predictor during fitting.

control a list of parameters for controlling the fitting process. See the document-
ation for glm.control for details.

model a logical value indicating whether model frame should be included as a
component of the returned value.

method the method to be used in fitting the model. The default (and presently
only) method glm.fit uses iteratively reweighted least squares.

x, y logical values indicating whether the response vector and model matrix
used in the fitting process should be returned as components of the re-
turned value.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

Details

A typical predictor has the form response ˜ terms where response is the (numeric) re-
sponse vector and terms is a series of terms which specifies a linear predictor for response.
For binomial models the response can also be specified as a factor (when the first level
denotes failure and all others success) or as a two-column matrix with the columns giving
the numbers of successes and failures. A terms specification of the form first+second
indicates all the terms in first together with all the terms in second with duplicates
removed.

A specification of the form first:second indicates the the set of terms obtained by
taking the interactions of all terms in first with all terms in second. The specific-
ation first*second indicates the cross of first and second. This is the same as
first+second+first:second.

Value

glm returns an object of class glm which inherits from the class lm. The function summary
(i.e., summary.glm) can be used to obtain or print a summary of the results and the function
anova (i.e., anova.glm) to produce an analysis of variance table.

The generic accessor functions coefficients, effects, fitted.values and residuals
can be used to extract various useful features of the value returned by glm.

Note

Offsets specified by offset will not be included in predictions by predict.glm, whereas
those specified by an offset term in the formula will be.

See Also

anova.glm, summary.glm, etc. for glm methods, and the generic functions anova, summary,
effects, fitted.values, and residuals. Further, lm for non-generalized linear models.

180 glm.summaries

Examples

Annette Dobson (1990) "An Introduction to Generalized Linear Models".

Page 93: Randomized Controlled Trial :

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

print(d.AD <- data.frame(treatment, outcome, counts))

glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())

anova(glm.D93)

summary(glm.D93)

an example with offsets from Venables & Ripley (1999, pp.217-8)

Need the anorexia data from a 1999 version of the package MASS:

library(MASS)

data(anorexia)

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),

family = gaussian, data = anorexia)

summary(anorex.1)

glm.summaries Accessing Generalized Linear Model Fits glm.summaries

Description

These functions are all methods for class glm or summary.glm and anova.glm objects.

anova.glmlist is called from anova.glm for comparison of several glm models.

Usage

summary(object, dispersion = NULL, correlation = FALSE, ...)
anova(object, ..., test = NULL)
anova.glmlist(object, test = NULL, ...)
coefficients(x) ; coef(x)
df.residual(x)
family(x)
fitted.values(x) ; fitted(x)
residuals(x, type = c("deviance", "pearson", "working",

"response", "partial"), ...)
print.summary(summary.glm.obj, digits = max(3, getOption("digits") - 3),

na.print = "", symbolic.cor = p > 4,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object, x an object of class glm, typically the result of a call to glm.

dispersion the dispersion parameter for the fitting family. By default it is obtained
from glm.obj.

gray 181

correlation logical; if TRUE, the correlation matrix of the estimated parameters is
returned and printed.

test a character string, matching one of "Chisq", "F" or "Cp". See
stat.anova.

type the type of residuals which should be returned. The alternatives are: "de-
viance" (default), "pearson", "working", "response", and "partial".

Value

The function summary can be used to obtain or print a summary of the results and the
function anova and be used to produce and analysis of variance table.

Warning

The comparison between two or more models by anova or anova.glmlist will only be valid
if they are fitted to the same dataset. This may be a problem if there are missing values
and R’s default of na.action = na.omit is used.

See Also

glm for computing glm.obj; the corresponding generic functions, summary, anova, coef-
ficients, deviance, effects, fitted.values, residuals.

Examples

--- Continuing the Example from ‘‘?glm’’:

summary(glm.D93)

anova(glm.D93)

anova(glm.D93, test = "Cp")

gray Gray Level Specification gray

Description

Create a vector of colors from a vector of gray levels.

Usage

gray(level)
grey(level)

Arguments

level a vector of desired gray levels between 0 and 1; zero indicates "black"
and one indicates "white".

Details

The values returned by gray can be used with a col= specification in graphics functions or
in par.

grey is an alias for gray.

182 grep

Value

A vector of “colors” of the same length as level.

See Also

rainbow, hsv, rgb.

Examples

gray(0:8 / 8)

grep Pattern Matching and Replacement grep

Description

grep searches for matches to pattern (its first argument) within the vector x of character
strings (second argument). regexpr does too, but returns more detail in a different format.

sub and gsub perform replacement of matches determined by regular expression matching.

Usage

grep(pattern, x, ignore.case=FALSE, extended=TRUE, value=FALSE)
sub(pattern, replacement, x,

ignore.case=FALSE, extended=TRUE)
gsub(pattern, replacement, x,

ignore.case=FALSE, extended=TRUE)
regexpr(pattern, text, extended=TRUE)

Arguments

pattern character string containing a regular expression to be matched in the
vector of character string vec.

x, text a vector of character strings where matches are sought.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

extended if TRUE, extended regular expression matching is used, and if FALSE basic
regular expressions are used.

value if FALSE, a vector containing the (integer) indices of the matches determ-
ined by grep is returned, and if TRUE, a vector containing the matching
elements themselves is returned.

replacement a replacement for matched pattern in sub and gsub.

Details

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences.

The regular expressions used are those specified by POSIX 1003.2, either extended or basic,
depending on the value of the extended argument.

grid 183

Value

For gsub a vector giving either the indices of the elements of x that yielded a match or, if
value is TRUE, the matched elements.

For sub and gsub a character vector of the same length as the original.

For regexpr an integer vector of the same length as text giving the starting position of
the first match, or -1 if there is none, with attribute "match.length" giving the length of
the matched text (or -1 for no match).

See Also

charmatch, pmatch, match. apropos uses regexps and has nice examples.

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")

if(any(i <- grep("foo",txt)))

cat("‘foo’ appears at least once in\n\t",txt,"\n")

i # 2 and 4

txt[i]

Double all ’a’ or ’b’s; "\" must be escaped, i.e. ‘doubled’

gsub("([ab])", "\\1_\\1_", "abc and ABC")

txt <- c("The", "licenses", "for", "most", "software", "are",

"designed", "to", "take", "away", "your", "freedom",

"to", "share", "and", "change", "it.",

"", "By", "contrast,", "the", "GNU", "General", "Public", "License",

"is", "intended", "to", "guarantee", "your", "freedom", "to",

"share", "and", "change", "free", "software", "--",

"to", "make", "sure", "the", "software", "is",

"free", "for", "all", "its", "users")

(i <- grep("[gu]", txt)) # indices

all(txt[i] == grep("[gu]", txt, value = TRUE))

(ot <- sub("[b-e]",".", txt))

txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt[gsub("g","#", txt) !=

gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en", txt)

grid Add Grid to a Plot grid

Description

grid adds an nx by ny rectangular grid to an existing plot, using lines of type lty and color
col.

If more fine tuning is required, use abline(h = ., v = .) directly.

184 HairEyeColor

Usage

grid(nx = NULL, ny = NULL, col = "lightgray", lty = "dotted")

Arguments

nx,ny number of cells of the grid in x and y direction. Defaults to the number
of tick marks on the corresponding axis.

col character or (integer) numeric; color of the grid lines.

lty character or (integer) numeric; line type of the grid lines.

See Also

plot, abline, lines, points.

Examples

data(iris)

maybe change the desired number of tick marks: par(lab=c(mx,my,7))

plot(iris$Sepal.L, iris$Sepal.W, col = rep(1:3, rep(50, 3)),

xlim = c(4, 8), ylim = c(2, 4.5), panel.first = grid())

HairEyeColor Hair and Eye Color of Statistics Students HairEyeColor

Description

Distribution of hair and eye color and sex in 592 statistics students.

Usage

data(HairEyeColor)

Format

A 3-dimensional array resulting from cross-tabulating 592 observations on 3 variables. The
variables and their levels are as follows:

No Name Levels
1 Hair Black, Brown, Red, Blond
2 Eye Brown, Blue, Hazel, Green
3 Sex Male, Female

Details

This data set is useful for illustrating various techniques for the analysis of contingency
tables, such as the standard chi-square test or, more generally, log-linear modelling, and
graphical methods such as mosaic plots, sieve diagrams or association plots.

References

Snee, R. D. (1974), Graphical display of two-way contingency tables. The American Stat-
istician, 28, 9–12.

help 185

Friendly, M. (1992), Graphical methods for categorical data. SAS User Group Inter-
national Conference Proceedings, 17, 190–200. http://hotspur.psych.yorku.ca/SCS/
sugi/sugi17-paper.html

Friendly, M. (1992), Mosaic displays for loglinear models. Proceedings of the Statistical
Graphics Section, American Statistical Association, pp. 61–68. http://hotspur.psych.
yorku.ca/SCS/Papers/asa92.html

Examples

data(HairEyeColor)

Full mosaic

mosaicplot(HairEyeColor)

Aggregate over sex:

x <- apply(HairEyeColor, c(1, 2), sum)

x

mosaicplot(x, main = "Relation between hair and eye color")

help Documentation help

Description

These functions provide access to documentation. Documentation on a topic with name
name (typically, an R object or a data set) can be printed with either help(name) or ?name.

Usage

help(topic, offline = FALSE, package = .packages()
lib.loc = .lib.loc, verbose = getOption("verbose"),
chmhelp = getOption("chmhelp"),
htmlhelp = getOption("htmlhelp"), winhelp = getOption("winhelp"))

?topic

Arguments

topic a name or character string on which documentation is sought (but not a
variable containing a character string!).

offline a logical indicating whether documentation should be displayed on-line to
the screen (the default) or hardcopy of it should be produced.

package a name or character vector giving the packages to look into for document-
ation. By default, all packages in the search path are used.

lib.loc A character vector of directory names of R libraries. Defaults to all lib-
raries currently known.

verbose logical; if TRUE, the file name is reported.

chmhelp logical (or NULL). If TRUE the Compiled HTML version of the help will be
shown in a help viewer.

htmlhelp logical (or NULL). If TRUE, the HTML version of the help will be shown in
a browser.

winhelp logical (or NULL). If TRUE, a Windows .hlp file will be used if one is
available.

http://hotspur.psych.yorku.ca/SCS/sugi/sugi17-paper.html
http://hotspur.psych.yorku.ca/SCS/sugi/sugi17-paper.html
http://hotspur.psych.yorku.ca/SCS/Papers/asa92.html
http://hotspur.psych.yorku.ca/SCS/Papers/asa92.html

186 help.search

Details

In the case of unary and binary operators and control-flow special forms, the name may
need to be quoted.

If offline is TRUE, hardcopy of the documentation is produced by running the LaTeX ver-
sion of the help page through latex (note that LaTeX 2e is needed). You need to customize
the file ‘R HOME/bin/helpPRINT.bat’ which contains an example. The appearance of the
output can be customized through a file ‘Rhelp.cfg’ somewhere in your LaTeX search path.

Note

You will only get help for R objects in your search() path, i.e., help(dist) will only work
after library(mva). To look in all the packages in all the current libraries, use help(topic,
package=.packages(all=T), lib.loc=.lib.loc)

The help files can be many small files. On some file systems it is desirable to save space,
and the text files in the ‘help’ directory of an installed package can be zipped up as a zip
archive ‘Rhelp.zip’. Ensure the files ‘AnIndex’ and ‘00Titles’ remain un-zipped. Similarly, all
the files in the ‘latex’ directory can be zipped to ‘Rhelp.zip’.

See Also

help.search() for finding help pages on a ‘vague’ topic. help.start() which opens the
HTML version of the R Manual; library() for listing available packages and the user-level
objects they contain; data() for listing available data sets; methods().

See prompt() to get a prototype for writing help pages of private packages.

Examples

help()

help(help) # the same

help(lapply)

?lapply # the same

help("for") # or ?"for", but the quotes are needed

?"+"

help(package = stepfun) # get help even when it’s not present

data() # list all available data sets

?women # information about data set "women"

topi <- "women"

help(topi) ##--> Error: No documentation for ‘topi’

help.search Search the Help System help.search

Description

Allows for searching the help system for documentation matching a given regular expression
in its name, alias, title, or keyword entries (or any combination thereof). Names and titles
of the matched help entries are nicely displayed; currently, nothing is returned.

help.search 187

Usage

help.search(topic, fields = c("name", "title"),
apropos, keyword, whatis, ignore.case = TRUE,
packages = NULL, lib.loc = .lib.loc,
help.db = getOption("help.db"),
verbose = getOption("verbose"),
rebuild = FALSE)

Arguments

what a character string containing a regular expression to be matched in the
specified fields. If this is given, the arguments apropos, keyword, and
whatis are ignored.

fields a character vector specifying the fields of the help data bases to be
searched. The entries must be abbreviations of "name", "alias",
"title", and "keyword", corresponding to the help page’s (file) name,
the objects it provides documentation for, its title, and the keywords it
can be classified to.

apropos a character string containing a regular expression to be matched in the
help page names and titles.

keyword a character string containing a regular expression to be matched in the
help page keywords.

whatis a character string containing a regular expression to be matched in the
help page names.

ignore.case a logical. If TRUE, case is ignored during matching; if FALSE, pattern
matching is case sensitive.

packages a character vector with the names of packages to search through, or NULL
in which case all available packages in the specified library trees lib.loc
are searched.

lib.loc a character vector describing the location of R library trees to search
through.

help.db a character string giving the file path to a previously built and saved help
data base, or NULL.

verbose logical; if TRUE, the search process is traced.

rebuild a logical indicating whether the help data base should be rebuilt.

Details

Upon installation of a package, the Perl script Rd2contents creates a ‘CONTENTS’ data
base which contains the information on name, aliases, title and keywords (as well as the
URL of the HTML version of the help file) in Debian Control Format. This is the data base
searched by help.search().

The arguments apropos and whatis play a role similar to the Unix commands with the
same names.

If possible, the help data base is saved to the file ‘help.db’ in the ‘.R’ subdirectory of the
user’s home directory or the current working directory.

Note that currently, the aliases in the matching help files are not displayed.

188 help.start

See Also

help; help.start for starting the hypertext (currently HTML) version of R’s online doc-
umentation, which offers a similar search mechanism.

apropos uses regexps and has nice examples.

Examples

help.search("linear models") # In case you forgot how to fit linear

models

help.search("print") # All help pages with name or title

matching ‘print’

help.search(apropos = "print") # The same

help.search(keyword = "hplot") # All help pages documenting high-level

plots.

help.start Hypertext Documentation help.start

Description

Start the hypertext (currently HTML) version of R’s online documentation.

Usage

help.start(gui = "irrelevant", browser = "irrelevant")

Arguments

gui just for compatibility

browser the name of the program to be used as hypertext browser.

Details

The Windows file association mechanism is used to send the HTML file to a browser,
launching one if necessary.

Unlike Unix systems, running help.start does not send all future help requests to the
browser: use options(htmlhelp=TRUE) to set that.

See Also

help() for on- and off-line help in ASCII/Editor or PostScript format.

Examples

help.start()

Hershey 189

Hershey Hershey Vector Fonts in R Hershey

Description

If the vfont argument to one of the text-drawing functions (text and contour) is a char-
acter vector of length 2, hershey vector fonts are used to render the text.

These fonts have two advantages:

1. vector fonts describe each character in terms of a set of points; R renders the character
by joining up the points with straight lines. This intimate knowledge of the outline of
each character means that R can arbitrarily transform the characters, which can mean
that the vector fonts look better for rotated and 3d text.

2. this implementation was adapted from the GNU libplot library which provides support
for non-ASCII and non-English fonts. This means that it is possible, for example, to
produce wierd plotting symbols and Japanese characters.

Details

The Hershey characters are organised into a set of fonts, which are specified by a typeface
(e.g., serif or sans serif) and a fontindex (e.g., plain or italic). The first element of
vfont specifies the typeface and the second element specifies the fontindex. The first table
produced by example(Hershey) shows the character a produced by each of the different
fonts.

The available values for (typeface, fontindex) for Hershey vector fonts are:

serif plain
serif italic
serif bold
serif bold italic
serif cyrillic
serif oblique cyrillic
serif EUC
sans serif plain
sans serif italic
sans serif bold
sans serif bold italic
script plain
script italic
script bold
gothic english plain
gothic german plain
gothic italian plain
serif symbol plain
serif symbol italic
serif symbol bold
serif symbol bold italic
sans serif symbol plain
sans serif symbol italic

Escape sequences: The string to be drawn can include escape sequences, which all begin

190 Hershey

with a \. When R encounters a \, rather than drawing the \, it treats the subsequent
character(s) as a coded description of what to draw.

One useful escape sequence (in the current context) is of the form: \123. The three
digits following the \ specify an octal code for a character. For example, the octal code
for p is 160 so the strings "p" and "\160" are equivalent. This is useful for producing
characters when there is not an appropriate key on your keyboard.

The other useful escape sequences all begin with \\. These are described below.

Symbols: an entire string of Greek symbols can be produced by selecting the Serif Symbol
or Sans Serif Symbol typeface. To allow Greek symbols to be embedded in a string
which uses a non-symbol typeface, there are a set of symbol escape sequences of the
form \\ab. For example, the escape sequence *a produces a Greek alpha. The
second table in example(Hershey) shows all of the symbol escape sequences and the
symbols that they produce.

ISO Latin-1: further escape sequences of the form \\ab are provided for producing ISO
Latin-1 characters (for example, if you only have a US keyboard). Another option is
to use the appropriate octal code. The (non-ASCII) ISO Latin-1 characters are in the
range 241...377. For example, \366 produces the character o with an umlaut. The
third table in example(Hershey) shows all of the ISO Latin-1 escape sequences.

Special Characters: a set of characters are provided which do not fall into any standard
font. These can only be accessed by escape sequence. For example, \\LI produces the
zodiac sign for Libra, and \\JU produces the astronomical sign for Jupiter. The fourth
table in example(Hershey) shows all of the special character escape sequences.

Cyrillic Characters: cyrillic characters are implemented according to the K018-R encod-
ing. On a US keyboard, these can be produced using the Serif typeface and Cyrillic
(or Oblique Cyrillic) fontindex and specifying an octal code in the range 300 to 337
for lower case characters or 340 to 377 for upper case characters. The fifth table in
example(Hershey) shows the octal codes for the available cyrillic characters.

Japanese Characters: 83 Hiragana, 86 Katakana, and 603 Kanji characters are imple-
mented according to the EUC (Extended Unix Code) encoding. Each character is iden-
itified by a unique hexadecimal code. The Hiragana characters are in the range 0x2421
to 0x2473, Katakana are in the range 0x2521 to 0x2576, and Kanji are (scattered about)
in the range 0x3021 to 0x6d55.

When using the Serif typeface and EUC fontindex, these characters can be produced
by a pair of octal codes. Given the hexadecimal code (e.g., 0x2421), take the first two
digits and add 0x80 and do the same to the second two digits (e.g., 0x21 and 0x24
become 0xa4 and 0xa1), then convert both to octal (e.g., 0xa4 and 0xa1 become 244
and 241). For example, the first Hiragana character is produced by \244\241.

It is also possible to use the hexadecimal code directly. This works for all non-EUC
fonts by specifying an escape sequence of the form \\#J1234. For example, the first
Hiragana character is produced by \\#J2421.

The Kanji characters may be specified in a third way, using the so-called ”Nelson
Index”, by specifying an escape sequence of the form \\#N1234. For example, the
Kanji for “one” is produced by \\#N0001.

Raw Hershey Glyphs: all of the characters in the Hershey fonts are stored in a large
array. Some characters are not accessible in any of the Hershey fonts. These char-
acters can only be accessed via an escape sequence of the form \\#H1234. For ex-
ample, the fleur-de-lys is produced by \\#H0746. The sixth and seventh tables of
example(Hershey) shows all of the available raw glyphs.

Hershey 191

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

text, contour, Japanese

Examples

######

create tables of vector font functionality

######

make.table <- function(nr, nc) {

savepar <- par(mar=rep(0, 4), pty="s")

plot(c(0, nc*2 + 1), c(0, -(nr + 1)),

type="n", xlab="", ylab="", axes=F)

savepar

}

get.r <- function(i, nr) {

i %% nr + 1

}

get.c <- function(i, nr) {

i %/% nr + 1

}

draw.title <- function(title, nr, nc) {

r <- get.r(i, nr)

c <- get.c(i, nr)

text((nc*2 + 1)/2, 0, title, font=2)

}

draw.sample.cell <- function(typeface, fontindex, string, i, nr) {

r <- get.r(i, nr)

c <- get.c(i, nr)

text((2*(c - 1) + 1), -r, paste(typeface, fontindex))

text((2*c), -r, string, vfont=c(typeface, fontindex), cex=1.5)

rect((2*(c - 1) + .5), -(r - .5), (2*c + .5), -(r + .5), border="grey")

}

draw.vf.cell <- function(typeface, fontindex, string, i, nr, raw.string=NULL) {

r <- get.r(i, nr)

c <- get.c(i, nr)

if (is.null(raw.string))

raw.string <- paste("\\", string, sep="")

text((2*(c - 1) + 1), -r, raw.string, col="grey")

text((2*c), -r, string, vfont=c(typeface, fontindex))

rect((2*(c - 1) + .5), -(r - .5), (2*c + .5), -(r + .5), border="grey")

}

nr <- 23

nc <- 1

oldpar <- make.table(nr, nc)

i <- 0

draw.title("Sample ’a’ for each available font", nr, nc)

http://www.gnu.org/software/plotutils/plotutils.html

192 Hershey

draw.sample.cell("serif", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "italic", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "bold", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "bold italic", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "cyrillic", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "oblique cyrillic", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "EUC", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif", "italic", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif", "bold", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif", "bold italic", "a", i, nr); i <- i + 1

draw.sample.cell("script", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("script", "italic", "a", i, nr); i <- i + 1

draw.sample.cell("script", "bold", "a", i, nr); i <- i + 1

draw.sample.cell("gothic english", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("gothic german", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("gothic italian", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("serif symbol", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("serif symbol", "italic", "a", i, nr); i <- i + 1

draw.sample.cell("serif symbol", "bold", "a", i, nr); i <- i + 1

draw.sample.cell("serif symbol", "bold italic", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif symbol", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif symbol", "italic", "a", i, nr); i <- i + 1

nr <- 25

nc <- 6

tf <- "serif"

fi <- "plain"

make.table(nr, nc)

i <- 0

draw.title("Symbol Escape Sequences", nr, nc)

draw.vf.cell(tf, fi, "\\fa", i, nr); i<-i+1; { "universal"}

draw.vf.cell(tf, fi, "\\te", i, nr); i<-i+1; { "existential"}

draw.vf.cell(tf, fi, "\\st", i, nr); i<-i+1; { "suchthat"}

draw.vf.cell(tf, fi, "**", i, nr); i<-i+1; { "asteriskmath"}

draw.vf.cell(tf, fi, "\\=~", i, nr); i<-i+1; { "congruent"}

draw.vf.cell(tf, fi, "*A", i, nr); i<-i+1; { "Alpha"}

draw.vf.cell(tf, fi, "*B", i, nr); i<-i+1; { "Beta"}

draw.vf.cell(tf, fi, "*X", i, nr); i<-i+1; { "Chi"}

draw.vf.cell(tf, fi, "*D", i, nr); i<-i+1; { "Delta"}

draw.vf.cell(tf, fi, "*E", i, nr); i<-i+1; { "Epsilon"}

draw.vf.cell(tf, fi, "*F", i, nr); i<-i+1; { "Phi"}

draw.vf.cell(tf, fi, "*G", i, nr); i<-i+1; { "Gamma"}

draw.vf.cell(tf, fi, "*Y", i, nr); i<-i+1; { "Eta"}

draw.vf.cell(tf, fi, "*I", i, nr); i<-i+1; { "Iota"}

draw.vf.cell(tf, fi, "\\+h", i, nr); i<-i+1; { "theta1"}

draw.vf.cell(tf, fi, "*K", i, nr); i<-i+1; { "kappa"}

draw.vf.cell(tf, fi, "*L", i, nr); i<-i+1; { "Lambda"}

draw.vf.cell(tf, fi, "*M", i, nr); i<-i+1; { "Mu"}

draw.vf.cell(tf, fi, "*N", i, nr); i<-i+1; { "Nu"}

draw.vf.cell(tf, fi, "*O", i, nr); i<-i+1; { "Omicron"}

draw.vf.cell(tf, fi, "*P", i, nr); i<-i+1; { "Pi"}

draw.vf.cell(tf, fi, "*H", i, nr); i<-i+1; { "Theta"}

draw.vf.cell(tf, fi, "*R", i, nr); i<-i+1; { "Rho"}

draw.vf.cell(tf, fi, "*S", i, nr); i<-i+1; { "Sigma"}

draw.vf.cell(tf, fi, "*T", i, nr); i<-i+1; { "Tau"}

draw.vf.cell(tf, fi, "*U", i, nr); i<-i+1; { "Upsilon"}

Hershey 193

draw.vf.cell(tf, fi, "\\ts", i, nr); i<-i+1; { "sigma1"}

draw.vf.cell(tf, fi, "*W", i, nr); i<-i+1; { "Omega"}

draw.vf.cell(tf, fi, "*C", i, nr); i<-i+1; { "Xi"}

draw.vf.cell(tf, fi, "*Q", i, nr); i<-i+1; { "Psi"}

draw.vf.cell(tf, fi, "*Z", i, nr); i<-i+1; { "Zeta"}

draw.vf.cell(tf, fi, "\\tf", i, nr); i<-i+1; { "therefore"}

draw.vf.cell(tf, fi, "\\pp", i, nr); i<-i+1; { "perpendicular"}

draw.vf.cell(tf, fi, "\\ul", i, nr); i<-i+1; { "underline"}

draw.vf.cell(tf, fi, "\\rx", i, nr); i<-i+1; { "radicalex"}

draw.vf.cell(tf, fi, "*a", i, nr); i<-i+1; { "alpha"}

draw.vf.cell(tf, fi, "*b", i, nr); i<-i+1; { "beta"}

draw.vf.cell(tf, fi, "*x", i, nr); i<-i+1; { "chi"}

draw.vf.cell(tf, fi, "*d", i, nr); i<-i+1; { "delta"}

draw.vf.cell(tf, fi, "*e", i, nr); i<-i+1; { "epsilon"}

draw.vf.cell(tf, fi, "*f", i, nr); i<-i+1; { "phi"}

draw.vf.cell(tf, fi, "*g", i, nr); i<-i+1; { "gamma"}

draw.vf.cell(tf, fi, "*y", i, nr); i<-i+1; { "eta"}

draw.vf.cell(tf, fi, "*i", i, nr); i<-i+1; { "iota"}

draw.vf.cell(tf, fi, "\\+f", i, nr); i<-i+1; { "phi1"}

draw.vf.cell(tf, fi, "*k", i, nr); i<-i+1; { "kappa"}

draw.vf.cell(tf, fi, "*l", i, nr); i<-i+1; { "lambda"}

draw.vf.cell(tf, fi, "*m", i, nr); i<-i+1; { "mu"}

draw.vf.cell(tf, fi, "*n", i, nr); i<-i+1; { "nu"}

draw.vf.cell(tf, fi, "*o", i, nr); i<-i+1; { "omicron"}

draw.vf.cell(tf, fi, "*p", i, nr); i<-i+1; { "pi"}

draw.vf.cell(tf, fi, "*h", i, nr); i<-i+1; { "theta"}

draw.vf.cell(tf, fi, "*r", i, nr); i<-i+1; { "rho"}

draw.vf.cell(tf, fi, "*s", i, nr); i<-i+1; { "sigma"}

draw.vf.cell(tf, fi, "*t", i, nr); i<-i+1; { "tau"}

draw.vf.cell(tf, fi, "*u", i, nr); i<-i+1; { "upsilon"}

draw.vf.cell(tf, fi, "\\+p", i, nr); i<-i+1; { "omega1"}

draw.vf.cell(tf, fi, "*w", i, nr); i<-i+1; { "omega"}

draw.vf.cell(tf, fi, "*c", i, nr); i<-i+1; { "xi"}

draw.vf.cell(tf, fi, "*q", i, nr); i<-i+1; { "psi"}

draw.vf.cell(tf, fi, "*z", i, nr); i<-i+1; { "zeta"}

draw.vf.cell(tf, fi, "\\ap", i, nr); i<-i+1; { "similar"}

draw.vf.cell(tf, fi, "\\+U", i, nr); i<-i+1; { "Upsilon1"}

draw.vf.cell(tf, fi, "\\fm", i, nr); i<-i+1; { "minute"}

draw.vf.cell(tf, fi, "\\<=", i, nr); i<-i+1; { "lessequal"}

draw.vf.cell(tf, fi, "\\f/", i, nr); i<-i+1; { "fraction"}

draw.vf.cell(tf, fi, "\\if", i, nr); i<-i+1; { "infinity"}

draw.vf.cell(tf, fi, "\\Fn", i, nr); i<-i+1; { "florin"}

draw.vf.cell(tf, fi, "\\CL", i, nr); i<-i+1; { "club"}

draw.vf.cell(tf, fi, "\\DI", i, nr); i<-i+1; { "diamond"}

draw.vf.cell(tf, fi, "\\HE", i, nr); i<-i+1; { "heart"}

draw.vf.cell(tf, fi, "\\SP", i, nr); i<-i+1; { "spade"}

draw.vf.cell(tf, fi, "\\<>", i, nr); i<-i+1; { "arrowboth"}

draw.vf.cell(tf, fi, "\\<-", i, nr); i<-i+1; { "arrowleft"}

draw.vf.cell(tf, fi, "\\ua", i, nr); i<-i+1; { "arrowup"}

draw.vf.cell(tf, fi, "\\->", i, nr); i<-i+1; { "arrowright"}

draw.vf.cell(tf, fi, "\\da", i, nr); i<-i+1; { "arrowdown"}

draw.vf.cell(tf, fi, "\\de", i, nr); i<-i+1; { "degree"}

draw.vf.cell(tf, fi, "\\+-", i, nr); i<-i+1; { "plusminus"}

draw.vf.cell(tf, fi, "\\sd", i, nr); i<-i+1; { "second"}

draw.vf.cell(tf, fi, "\\>=", i, nr); i<-i+1; { "greaterequal"}

draw.vf.cell(tf, fi, "\\mu", i, nr); i<-i+1; { "multiply"}

draw.vf.cell(tf, fi, "\\pt", i, nr); i<-i+1; { "proportional"}

194 Hershey

draw.vf.cell(tf, fi, "\\pd", i, nr); i<-i+1; { "partialdiff"}

draw.vf.cell(tf, fi, "\\bu", i, nr); i<-i+1; { "bullet"}

draw.vf.cell(tf, fi, "\\di", i, nr); i<-i+1; { "divide"}

draw.vf.cell(tf, fi, "\\!=", i, nr); i<-i+1; { "notequal"}

draw.vf.cell(tf, fi, "\\==", i, nr); i<-i+1; { "equivalence"}

draw.vf.cell(tf, fi, "\\~~", i, nr); i<-i+1; { "approxequal"}

draw.vf.cell(tf, fi, "\\..", i, nr); i<-i+1; { "ellipsis"}

draw.vf.cell(tf, fi, "\\an", i, nr); i<-i+1; { "arrowhorizex"}

draw.vf.cell(tf, fi, "\\CR", i, nr); i<-i+1; { "carriagereturn"}

draw.vf.cell(tf, fi, "\\Ah", i, nr); i<-i+1; { "aleph"}

draw.vf.cell(tf, fi, "\\Im", i, nr); i<-i+1; { "Ifraktur"}

draw.vf.cell(tf, fi, "\\Re", i, nr); i<-i+1; { "Rfraktur"}

draw.vf.cell(tf, fi, "\\wp", i, nr); i<-i+1; { "weierstrass"}

draw.vf.cell(tf, fi, "\\c*", i, nr); i<-i+1; { "circlemultiply"}

draw.vf.cell(tf, fi, "\\c+", i, nr); i<-i+1; { "circleplus"}

draw.vf.cell(tf, fi, "\\es", i, nr); i<-i+1; { "emptyset"}

draw.vf.cell(tf, fi, "\\ca", i, nr); i<-i+1; { "cap"}

draw.vf.cell(tf, fi, "\\cu", i, nr); i<-i+1; { "cup"}

draw.vf.cell(tf, fi, "\\SS", i, nr); i<-i+1; { "superset"}

draw.vf.cell(tf, fi, "\\ip", i, nr); i<-i+1; { "reflexsuperset"}

draw.vf.cell(tf, fi, "\\n<", i, nr); i<-i+1; { "notsubset"}

draw.vf.cell(tf, fi, "\\SB", i, nr); i<-i+1; { "subset"}

draw.vf.cell(tf, fi, "\\ib", i, nr); i<-i+1; { "reflexsubset"}

draw.vf.cell(tf, fi, "\\mo", i, nr); i<-i+1; { "element"}

draw.vf.cell(tf, fi, "\\nm", i, nr); i<-i+1; { "notelement"}

draw.vf.cell(tf, fi, "\\/_", i, nr); i<-i+1; { "angle"}

draw.vf.cell(tf, fi, "\\gr", i, nr); i<-i+1; { "nabla"}

draw.vf.cell(tf, fi, "\\rg", i, nr); i<-i+1; { "registerserif"}

draw.vf.cell(tf, fi, "\\co", i, nr); i<-i+1; { "copyrightserif"}

draw.vf.cell(tf, fi, "\\tm", i, nr); i<-i+1; { "trademarkserif"}

draw.vf.cell(tf, fi, "\\PR", i, nr); i<-i+1; { "product"}

draw.vf.cell(tf, fi, "\\sr", i, nr); i<-i+1; { "radical"}

draw.vf.cell(tf, fi, "\\md", i, nr); i<-i+1; { "dotmath"}

draw.vf.cell(tf, fi, "\\no", i, nr); i<-i+1; { "logicalnot"}

draw.vf.cell(tf, fi, "\\AN", i, nr); i<-i+1; { "logicaland"}

draw.vf.cell(tf, fi, "\\OR", i, nr); i<-i+1; { "logicalor"}

draw.vf.cell(tf, fi, "\\hA", i, nr); i<-i+1; { "arrowdblboth"}

draw.vf.cell(tf, fi, "\\lA", i, nr); i<-i+1; { "arrowdblleft"}

draw.vf.cell(tf, fi, "\\uA", i, nr); i<-i+1; { "arrowdblup"}

draw.vf.cell(tf, fi, "\\rA", i, nr); i<-i+1; { "arrowdblright"}

draw.vf.cell(tf, fi, "\\dA", i, nr); i<-i+1; { "arrowdbldown"}

draw.vf.cell(tf, fi, "\\lz", i, nr); i<-i+1; { "lozenge"}

draw.vf.cell(tf, fi, "\\la", i, nr); i<-i+1; { "angleleft"}

draw.vf.cell(tf, fi, "\\RG", i, nr); i<-i+1; { "registersans"}

draw.vf.cell(tf, fi, "\\CO", i, nr); i<-i+1; { "copyrightsans"}

draw.vf.cell(tf, fi, "\\TM", i, nr); i<-i+1; { "trademarksans"}

draw.vf.cell(tf, fi, "\\SU", i, nr); i<-i+1; { "summation"}

draw.vf.cell(tf, fi, "\\lc", i, nr); i<-i+1; { "bracketlefttp"}

draw.vf.cell(tf, fi, "\\lf", i, nr); i<-i+1; { "bracketleftbt"}

draw.vf.cell(tf, fi, "\\ra", i, nr); i<-i+1; { "angleright"}

draw.vf.cell(tf, fi, "\\is", i, nr); i<-i+1; { "integral"}

draw.vf.cell(tf, fi, "\\rc", i, nr); i<-i+1; { "bracketrighttp"}

draw.vf.cell(tf, fi, "\\rf", i, nr); i<-i+1; { "bracketrightbt"}

draw.vf.cell(tf, fi, "\\~=", i, nr); i<-i+1; { "congruent"}

draw.vf.cell(tf, fi, "\\pr", i, nr); i<-i+1; { "minute"}

draw.vf.cell(tf, fi, "\\in", i, nr); i<-i+1; { "infinity"}

draw.vf.cell(tf, fi, "\\n=", i, nr); i<-i+1; { "notequal"}

Hershey 195

draw.vf.cell(tf, fi, "\\dl", i, nr); i<-i+1; { "nabla"}

nr <- 25

nc <- 4

make.table(nr, nc)

i <- 0

draw.title("ISO Latin-1 Escape Sequences", nr, nc)

draw.vf.cell(tf, fi, "\\r!", i, nr); i<-i+1; { "exclamdown"}

draw.vf.cell(tf, fi, "\\ct", i, nr); i<-i+1; { "cent"}

draw.vf.cell(tf, fi, "\\Po", i, nr); i<-i+1; { "sterling"}

draw.vf.cell(tf, fi, "\\Ye", i, nr); i<-i+1; { "yen"}

draw.vf.cell(tf, fi, "\\bb", i, nr); i<-i+1; { "brokenbar"}

draw.vf.cell(tf, fi, "\\sc", i, nr); i<-i+1; { "section"}

draw.vf.cell(tf, fi, "\\ad", i, nr); i<-i+1; { "dieresis"}

draw.vf.cell(tf, fi, "\\co", i, nr); i<-i+1; { "copyright"}

draw.vf.cell(tf, fi, "\\Of", i, nr); i<-i+1; { "ordfeminine"}

draw.vf.cell(tf, fi, "\\no", i, nr); i<-i+1; { "logicalnot"}

draw.vf.cell(tf, fi, "\\hy", i, nr); i<-i+1; { "hyphen"}

draw.vf.cell(tf, fi, "\\rg", i, nr); i<-i+1; { "registered"}

draw.vf.cell(tf, fi, "\\a-", i, nr); i<-i+1; { "macron"}

draw.vf.cell(tf, fi, "\\de", i, nr); i<-i+1; { "degree"}

draw.vf.cell(tf, fi, "\\+-", i, nr); i<-i+1; { "plusminus"}

draw.vf.cell(tf, fi, "\\S2", i, nr); i<-i+1; { "twosuperior"}

draw.vf.cell(tf, fi, "\\S3", i, nr); i<-i+1; { "threesuperior"}

draw.vf.cell(tf, fi, "\\aa", i, nr); i<-i+1; { "acute"}

draw.vf.cell(tf, fi, "*m", i, nr); i<-i+1; { "mu"}

draw.vf.cell(tf, fi, "\\md", i, nr); i<-i+1; { "periodcentered"}

draw.vf.cell(tf, fi, "\\S1", i, nr); i<-i+1; { "onesuperior"}

draw.vf.cell(tf, fi, "\\Om", i, nr); i<-i+1; { "ordmasculine"}

draw.vf.cell(tf, fi, "\\14", i, nr); i<-i+1; { "onequarter"}

draw.vf.cell(tf, fi, "\\12", i, nr); i<-i+1; { "onehalf"}

draw.vf.cell(tf, fi, "\\34", i, nr); i<-i+1; { "threequarters"}

draw.vf.cell(tf, fi, "\\r?", i, nr); i<-i+1; { "questiondown"}

draw.vf.cell(tf, fi, "\\‘A", i, nr); i<-i+1; { "Agrave"}

draw.vf.cell(tf, fi, "\\’A", i, nr); i<-i+1; { "Aacute"}

draw.vf.cell(tf, fi, "\\^A", i, nr); i<-i+1; { "Acircumflex"}

draw.vf.cell(tf, fi, "\\~A", i, nr); i<-i+1; { "Atilde"}

draw.vf.cell(tf, fi, "\\:A", i, nr); i<-i+1; { "Adieresis"}

draw.vf.cell(tf, fi, "\\oA", i, nr); i<-i+1; { "Aring"}

draw.vf.cell(tf, fi, "\\AE", i, nr); i<-i+1; { "AE"}

draw.vf.cell(tf, fi, "\\,C", i, nr); i<-i+1; { "Ccedilla"}

draw.vf.cell(tf, fi, "\\‘E", i, nr); i<-i+1; { "Egrave"}

draw.vf.cell(tf, fi, "\\’E", i, nr); i<-i+1; { "Eacute"}

draw.vf.cell(tf, fi, "\\^E", i, nr); i<-i+1; { "Ecircumflex"}

draw.vf.cell(tf, fi, "\\:E", i, nr); i<-i+1; { "Edieresis"}

draw.vf.cell(tf, fi, "\\‘I", i, nr); i<-i+1; { "Igrave"}

draw.vf.cell(tf, fi, "\\’I", i, nr); i<-i+1; { "Iacute"}

draw.vf.cell(tf, fi, "\\^I", i, nr); i<-i+1; { "Icircumflex"}

draw.vf.cell(tf, fi, "\\:I", i, nr); i<-i+1; { "Idieresis"}

draw.vf.cell(tf, fi, "\\~N", i, nr); i<-i+1; { "Ntilde"}

draw.vf.cell(tf, fi, "\\‘O", i, nr); i<-i+1; { "Ograve"}

draw.vf.cell(tf, fi, "\\’O", i, nr); i<-i+1; { "Oacute"}

draw.vf.cell(tf, fi, "\\^O", i, nr); i<-i+1; { "Ocircumflex"}

draw.vf.cell(tf, fi, "\\~O", i, nr); i<-i+1; { "Otilde"}

draw.vf.cell(tf, fi, "\\:O", i, nr); i<-i+1; { "Odieresis"}

draw.vf.cell(tf, fi, "\\mu", i, nr); i<-i+1; { "multiply"}

draw.vf.cell(tf, fi, "\\/O", i, nr); i<-i+1; { "Oslash"}

196 Hershey

draw.vf.cell(tf, fi, "\\‘U", i, nr); i<-i+1; { "Ugrave"}

draw.vf.cell(tf, fi, "\\’U", i, nr); i<-i+1; { "Uacute"}

draw.vf.cell(tf, fi, "\\^U", i, nr); i<-i+1; { "Ucircumflex"}

draw.vf.cell(tf, fi, "\\:U", i, nr); i<-i+1; { "Udieresis"}

draw.vf.cell(tf, fi, "\\’Y", i, nr); i<-i+1; { "Yacute"}

draw.vf.cell(tf, fi, "\\ss", i, nr); i<-i+1; { "germandbls"}

draw.vf.cell(tf, fi, "\\‘a", i, nr); i<-i+1; { "agrave"}

draw.vf.cell(tf, fi, "\\’a", i, nr); i<-i+1; { "aacute"}

draw.vf.cell(tf, fi, "\\^a", i, nr); i<-i+1; { "acircumflex"}

draw.vf.cell(tf, fi, "\\~a", i, nr); i<-i+1; { "atilde"}

draw.vf.cell(tf, fi, "\\:a", i, nr); i<-i+1; { "adieresis"}

draw.vf.cell(tf, fi, "\\oa", i, nr); i<-i+1; { "aring"}

draw.vf.cell(tf, fi, "\\ae", i, nr); i<-i+1; { "ae"}

draw.vf.cell(tf, fi, "\\,c", i, nr); i<-i+1; { "ccedilla"}

draw.vf.cell(tf, fi, "\\‘e", i, nr); i<-i+1; { "egrave"}

draw.vf.cell(tf, fi, "\\’e", i, nr); i<-i+1; { "eacute"}

draw.vf.cell(tf, fi, "\\^e", i, nr); i<-i+1; { "ecircumflex"}

draw.vf.cell(tf, fi, "\\:e", i, nr); i<-i+1; { "edieresis"}

draw.vf.cell(tf, fi, "\\‘i", i, nr); i<-i+1; { "igrave"}

draw.vf.cell(tf, fi, "\\’i", i, nr); i<-i+1; { "iacute"}

draw.vf.cell(tf, fi, "\\^i", i, nr); i<-i+1; { "icircumflex"}

draw.vf.cell(tf, fi, "\\:i", i, nr); i<-i+1; { "idieresis"}

draw.vf.cell(tf, fi, "\\~n", i, nr); i<-i+1; { "ntilde"}

draw.vf.cell(tf, fi, "\\‘o", i, nr); i<-i+1; { "ograve"}

draw.vf.cell(tf, fi, "\\’o", i, nr); i<-i+1; { "oacute"}

draw.vf.cell(tf, fi, "\\^o", i, nr); i<-i+1; { "ocircumflex"}

draw.vf.cell(tf, fi, "\\~o", i, nr); i<-i+1; { "otilde"}

draw.vf.cell(tf, fi, "\\:o", i, nr); i<-i+1; { "odieresis"}

draw.vf.cell(tf, fi, "\\di", i, nr); i<-i+1; { "divide"}

draw.vf.cell(tf, fi, "\\/o", i, nr); i<-i+1; { "oslash"}

draw.vf.cell(tf, fi, "\\‘u", i, nr); i<-i+1; { "ugrave"}

draw.vf.cell(tf, fi, "\\’u", i, nr); i<-i+1; { "uacute"}

draw.vf.cell(tf, fi, "\\^u", i, nr); i<-i+1; { "ucircumflex"}

draw.vf.cell(tf, fi, "\\:u", i, nr); i<-i+1; { "udieresis"}

draw.vf.cell(tf, fi, "\\’y", i, nr); i<-i+1; { "yacute"}

draw.vf.cell(tf, fi, "\\:y", i, nr); i<-i+1; { "ydieresis"}

nr <- 25

nc <- 2

make.table(nr, nc)

i <- 0

draw.title("Special Escape Sequences", nr, nc)

draw.vf.cell(tf, fi, "\\AR", i, nr); i<-i+1; { "aries"}

draw.vf.cell(tf, fi, "\\TA", i, nr); i<-i+1; { "taurus"}

draw.vf.cell(tf, fi, "\\GE", i, nr); i<-i+1; { "gemini"}

draw.vf.cell(tf, fi, "\\CA", i, nr); i<-i+1; { "cancer"}

draw.vf.cell(tf, fi, "\\LE", i, nr); i<-i+1; { "leo"}

draw.vf.cell(tf, fi, "\\VI", i, nr); i<-i+1; { "virgo"}

draw.vf.cell(tf, fi, "\\LI", i, nr); i<-i+1; { "libra"}

draw.vf.cell(tf, fi, "\\SC", i, nr); i<-i+1; { "scorpio"}

draw.vf.cell(tf, fi, "\\SG", i, nr); i<-i+1; { "sagittarius"}

draw.vf.cell(tf, fi, "\\CP", i, nr); i<-i+1; { "capricornus"}

draw.vf.cell(tf, fi, "\\AQ", i, nr); i<-i+1; { "aquarius"}

draw.vf.cell(tf, fi, "\\PI", i, nr); i<-i+1; { "pisces"}

draw.vf.cell(tf, fi, "\\~-", i, nr); i<-i+1; { "modifiedcongruent"}

draw.vf.cell(tf, fi, "\\hb", i, nr); i<-i+1; { "hbar"}

draw.vf.cell(tf, fi, "\\IB", i, nr); i<-i+1; { "interbang"}

Hershey 197

draw.vf.cell(tf, fi, "\\Lb", i, nr); i<-i+1; { "lambdabar"}

draw.vf.cell(tf, fi, "\\UD", i, nr); i<-i+1; { "undefined"}

draw.vf.cell(tf, fi, "\\SO", i, nr); i<-i+1; { "sun"}

draw.vf.cell(tf, fi, "\\ME", i, nr); i<-i+1; { "mercury"}

draw.vf.cell(tf, fi, "\\VE", i, nr); i<-i+1; { "venus"}

draw.vf.cell(tf, fi, "\\EA", i, nr); i<-i+1; { "earth"}

draw.vf.cell(tf, fi, "\\MA", i, nr); i<-i+1; { "mars"}

draw.vf.cell(tf, fi, "\\JU", i, nr); i<-i+1; { "jupiter"}

draw.vf.cell(tf, fi, "\\SA", i, nr); i<-i+1; { "saturn"}

draw.vf.cell(tf, fi, "\\UR", i, nr); i<-i+1; { "uranus"}

draw.vf.cell(tf, fi, "\\NE", i, nr); i<-i+1; { "neptune"}

draw.vf.cell(tf, fi, "\\PL", i, nr); i<-i+1; { "pluto"}

draw.vf.cell(tf, fi, "\\LU", i, nr); i<-i+1; { "moon"}

draw.vf.cell(tf, fi, "\\CT", i, nr); i<-i+1; { "comet"}

draw.vf.cell(tf, fi, "\\ST", i, nr); i<-i+1; { "star"}

draw.vf.cell(tf, fi, "\\AS", i, nr); i<-i+1; { "ascendingnode"}

draw.vf.cell(tf, fi, "\\DE", i, nr); i<-i+1; { "descendingnode"}

draw.vf.cell(tf, fi, "\\s-", i, nr); i<-i+1; { "s1"}

draw.vf.cell(tf, fi, "\\dg", i, nr); i<-i+1; { "dagger"}

draw.vf.cell(tf, fi, "\\dd", i, nr); i<-i+1; { "daggerdbl"}

draw.vf.cell(tf, fi, "\\li", i, nr); i<-i+1; { "line integral"}

draw.vf.cell(tf, fi, "\\-+", i, nr); i<-i+1; { "minusplus"}

draw.vf.cell(tf, fi, "\\||", i, nr); i<-i+1; { "parallel"}

draw.vf.cell(tf, fi, "\\rn", i, nr); i<-i+1; { "overscore"}

draw.vf.cell(tf, fi, "\\ul", i, nr); i<-i+1; { "underscore"}

nr <- 25

nc <- 3

make.table(nr, nc)

i <- 0

code <- c(300:307,310:317,320:327,330:337,340:347,350:357,360:367,370:377,

243,263)

string <- c(

"\300","\301","\302","\303","\304","\305","\306","\307",

"\310","\311","\312","\313","\314","\315",

"\316","\317","\320","\321","\322","\323",

"\324","\325","\326","\327","\330","\331",

"\332","\333","\334","\335","\336","\337",

"\340","\341","\342","\343","\344","\345","\346","\347",

"\350","\351","\352","\353","\354","\355",

"\356","\357","\360","\361","\362","\363",

"\364","\365","\366","\367","\370","\371",

"\372","\373","\374","\375","\376","\377","\243","\263")

draw.title("Cyrillic Octal Codes", nr ,nc)

for (i in 1:66)

draw.vf.cell(tf, "cyrillic", string[i], i-1, nr,

raw.string=paste("\\", as.character(code[i]), sep=""))

nr <- 25

nc <- 3

make.table(nr, nc)

i <- 0

code <- c(252,254,256,262:269,275,278:281,284,745,746,750:768,796:802,

804:807,809,814:828,830:834,840:844)

draw.title("Raw Hershey Escape Sequences", nr, nc)

for (i in 1:75)

draw.vf.cell(tf, fi, paste("\\#H",formatC(code[i],wid=4,flag=0),sep=""),

198 hist

i-1, nr)

make.table(nr, nc)

i <- 0

code <- c(845:847,850:856,860:874,899:909,2296:2299,2318:2332,2367:2382,

4014,4109)

draw.title("More Raw Hershey Escape Sequences", nr, nc)

for (i in 1:73)

draw.vf.cell(tf, fi, paste("\\#H",formatC(code[i],wid=4,flag=0),sep=""),

i-1, nr)

par(oldpar)

hist Histograms hist

Description

The generic function hist computes and plots (if plot=T) a histogram of the given data
values.

Usage

hist(x, ...)
hist.default(x, breaks, freq = NULL, probability = !freq,

include.lowest = TRUE, right = TRUE,
col = NULL, border = par("fg"),
main = paste("Histogram of", deparse(substitute(x))),
xlim = range(breaks), ylim = range(counts, 0),
xlab = deparse(substitute(x)), ylab,
axes = TRUE, plot = TRUE, labels = FALSE,
nclass = NULL, ...)

Arguments

x a vector of values for which the histogram is desired.

breaks either a single number giving the approximate number of cells for the
histogram or a vector giving the breakpoints between histogram cells.

freq logical; if TRUE, the histogram graphic is to present a representation of
frequencies, i.e, the counts component of the result; if FALSE, relative
frequencies (“probabilities”), the rel.freqs, are plotted. Defaults to TRUE
iff breaks are equidistant.

probability an alias for !freq, for S compatibility.
include.lowest

logical; if TRUE, an ‘x[i]’ equal to the ‘breaks’ value will be included in the
first (or last, for right = FALSE) bar.

right logical; if TRUE, the histograms cells are right-closed (left open) intervals.

col a colour to be used to fill the bars. The default of NULL yields unfilled
bars.

border the color of the border around the bars.
main, xlab, ylab

these arguments to title have useful defaults here.

hist 199

xlim, ylim the range of x and y values with sensible defaults.

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks
and counts is returned.

labels logical. Additionally draw labels on top of bars, if TRUE.

nclass numeric (integer). For S compatibility only, nclass=n is equivalent to
breaks=n (n scalar).

... further graphical parameters to title and axis.

Details

If right = TRUE (default), the histogram cells are intervals of the form (a,b], i.e. they
include their right-hand endpoint, but not their left one, with the exception of the first cell
when include.lowest is TRUE.

For right = FALSE, the intervals are of the form [a,b), and include.lowest really has
the meaning of “include highest”.

Value

a list with components:

breaks the n+ 1 cell boundaries (= breaks if that was a vector).

counts n integers; for each cell, the number of x[] inside.

intensities values f̂(xi), as estimated density values. If all(diff(breaks) ==
1), they are the relative frequencies counts/n and in general satisfy∑
i f̂(xi)(bi+1 − bi) = 1, where bi = breaks[i].

mids the n cell midpoints; useful for plotting.

Note

The resulting value does not depend on the values of the arguments freq (or probability)
or plot. This is intentionally different from S.

See Also

stem, density.

Examples

data(islands)

op <- par(mfrow=c(2,2))

hist(islands)

str(hist(islands, col="gray", labels = TRUE))

hist(sqrt(islands), br = 12, col="lightblue", border="pink")

##-- For non-equidistant breaks, counts should NOT be graphed unscaled:

r <- hist(sqrt(islands), br = c(4* 0:5,10* 3:5,70,100,140), col=’blue1’)

text(r$mids, r$intensities, r$counts, adj=c(.5,-.5), col=’blue3’)

sapply(r[2:3],sum)

sum(r$intensities * diff(r$breaks)) # == 1

par(op)

str(hist(islands, plot= F))

str(hist(islands, br=12, plot= F))

200 hsv

str(hist(islands, br=c(12,20,36,80,200,1000,17000), plot = F))

str(hist(islands, br=c(12,20,36,80,200,1000,17000), freq = TRUE))#warning

hsv HSV Color Specification hsv

Description

Create a vector of colors from vectors specifying hue, saturation and value.

Usage

hsv(h=1, s=1, v=1, gamma=1)

Arguments

h,s,v numeric vectors of values in the range [0,1] for “hue”, “saturation” and
“value” to be combined to form a vector of colors. Values in shorter
arguments are recycled.

gamma a “gamma correction”

Value

This function creates a vector of “colors” corresponding to the given values in HSV space.
The values returned by hsv can be used with a col= specification in graphics functions or
in par.

See Also

rainbow, rgb, gray.

Examples

hsv(.5,.5,.5)

Look at gamma effect:

n <- 20; y <- -sin(3*pi*((1:n)-1/2)/n)

op <- par(mfrow=c(3,2),mar=rep(1.5,4))

for(gamma in c(.4, .6, .8, 1, 1.2, 1.5))

plot(y,axes=F,frame.plot=T,xlab="",ylab="",pch=21,cex=30,

bg = rainbow(n, start=.85, end=.1, gamma = gamma),

main = paste("Red tones; gamma=",format(gamma)))

par(op)

httpclient 201

httpclient Read text from an HTTP server httpclient

Description

The function reads text from a URL on an HTTP server into the specified file. It checks
for HTTP errors but will behave incorrectly if the data being read contains binary zeros.
This function is used by the ”socket” method of download.file.

Usage

httpclient(url, port=80, error.is.fatal=TRUE, check.MIME.type=TRUE,
file=tempfile(), drop.ctrl.z=TRUE)

Arguments

url The URL to read from

port The port (usually 80)
error.is.fatal

Stop if an error is encountered
check.MIME.type

Require the URL to have a MIME type known to be plain ASCII

file The file to store the text.

drop.ctrl.z Drop ASCII EOF (CTRL-Z) characters from the text

Value

The name of the file containing the downloaded text.

See Also

download.file, read.table.url

Hyperbolic Hyperbolic Functions Hyperbolic

Description

These functions give the obvious hyperbolic functions. They respectively compute the
hyperbolic cosine, sine, tangent, arc-cosine, arc-sine, arc-tangent.

Usage

cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)

202 Hypergeometric

See Also

cos, sin, tan, acos, asin, atan.

Examples

Ceps <- .Machine$double.eps # ‘‘Computer epsilon’’

x <- rnorm(500)

all(abs(cosh(x) - (exp(x) + exp(-x))/2) < 10*Ceps)

all(abs(sinh(x) - (exp(x) - exp(-x))/2) < 10*Ceps)

all(Mod(cosh(x) - cos(1i*x)) < 10*Ceps)

all(Mod(sinh(x) - sin(1i*x)/1i) < 10*Ceps)

all(abs(tanh(x)*cosh(x) - sinh(x)) < 10*Ceps)

Inverse:

all(abs(asinh(sinh(x)) - x) < 10*Ceps)

x[abs(acosh(cosh(x)) - abs(x)) > 100*Ceps] #- imprecise for small x

all(abs(atanh(tanh(x)) - x) < 100*Ceps)

all(abs(asinh(x) - log(x + sqrt(x^2 + 1))) < 10*Ceps)

cx <- cosh(x)

all(abs(acosh(cx) - log(cx + sqrt(cx^2 - 1))) < 1000*Ceps)

Hypergeometric The Hypergeometric Distribution Hypergeometric

Description

Density, distribution function, quantile function and random generation for the hypergeo-
metric distribution.

Usage

dhyper(x, m, n, k, log = FALSE)
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper(nn, m, n, k)

Arguments

x, q vector of quantiles representing the number of white balls drawn without
replacement from an urn which contains both black and white balls.

m the number of white balls in the urn.

n the number of black balls in the urn.

k the number of balls drawn from the urn.

p probability, it must be between 0 and 1.

nn the number of observations to be generated.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

identify 203

Details

The hypergeometric distribution is used for sampling without replacement. The density of
this distribution with parameters m, n and k (named Np, N − Np, and n, respectively in
the reference below) is given by

p(x) =
(
m

x

)(
n

k − x

)/(
m+ n

k

)
for x = 0, . . . , k.

Value

dhyper gives the density, phyper gives the distribution function, qhyper gives the quantile
function, and rhyper generates random deviates.

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second
Edition. New York: Wiley.

Examples

m <- 10; n <- 7; k <- 8

x <- 0:m

rbind(phyper(x, m, n, k), dhyper(x, m, n, k))

all(phyper(x, m, n, k) == cumsum(dhyper(x, m, n, k)))# FALSE

Error :

signif(phyper(x, m, n, k) - cumsum(dhyper(x, m, n, k)), dig=3)

identify Identify Points in a Scatter Plot identify

Description

identify reads the position of the graphics pointer when the (first) mouse button is pressed.
It then searches the coordinates given in x and y for the point closest to the pointer. If this
point is close to the pointer, its index will be returned as part of the value of the call.

Usage

identify(x, ...)
identify.default(x, y = NULL, labels = seq(along = x), pos = FALSE,

n = length(x), plot = TRUE, offset = 0.5, ...)

Arguments

x,y coordinates of points in a scatter plot. Alternatively, any object which
defines coordinates (a plotting structure, time series etc.) can be given as
x and y left undefined.

labels an optional vector, the same length as x and y, giving labels for the points.

pos if pos is TRUE, a component is added to the return value which indicates
where text was plotted relative to each identified point (1=below, 2=left,
3=above and 4=right).

204 ifelse

n the maximum number of points to be identified.
plot if plot is TRUE, the labels are printed at the points and if FALSE they are

omitted.
offset the distance (in character widths) which separates the label from identified

points.
... further arguments to par(.).

Details

If in addition, plot is TRUE, the point is labelled with the corresponding element of text.

The labels are placed either below, to the left, above or to the right of the identified point,
depending on where the cursor was.

The identification process is terminated by pressing any mouse button other than the first,
or by clicking outside the graphics window.

If the window is resized or hidden and then exposed before the identification process has
terminated, any labels drawn by identify will disappear. These will reappear once the
identification process has terminated and the window is resized or hidden and exposed again.
This is because the labels drawn by identify are not recorded in the device’s display list
until the identification process has terminated.

Value

If pos is FALSE, an integer vector containing the indexes of the identified points.

If pos is TRUE, a list containing a component ind, indicating which points were identified
and a component pos, indicating where the labels were placed relative to the identified
points.

ifelse Conditional Element Selection ifelse

Description

ifelse returns a value with the same shape as test which is filled with elements selected
from either yes or no depending on whether the element of test is TRUE or FALSE. If yes
or no are too short, their elements are recycled.

Usage

ifelse(test, yes, no)

See Also

if.

Examples

x <- c(6:-4)

sqrt(x)#- gives warning

sqrt(ifelse(x >= 0, x, NA))# no warning

Note: the following also gives the warning !

ifelse(x >= 0, sqrt(x), NA)

image 205

image Display a Color Image image

Description

Creates a grid of colored or gray-scale rectangles with colors corresponding to the values in
z. This can be used to display three-dimensional or spatial data aka “images”.

The functions heat.colors, terrain.colors and topo.colors create heat-spectrum (red
to white) and topographical color schemes suitable for displaying ordered data, with n giving
the number of colors desired.

Usage

image(x, y, z, zlim, col = heat.colors(12),
add = FALSE, xaxs = "i", yaxs = "i", xlab, ylab, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

zlim the minimum and maximum z values for which colors will be plotted.
Each of the given colors will be used to color an equispaced interval of
this range.

col a list of colors such as that generated by rainbow, heat.colors,
topo.colors, terrain.colors or similar functions.

add logical; if TRUE, add to current plot (and disregard the following argu-
ments). This is rarely useful because image “paints” over existing graph-
ics.

xaxs, yaxs style of x and y axis. The default "i" is appropriate for images. See par.

xlab, ylab each a character string giving the labels for the x and y axis. Default to
the ‘call names’ of x or y, or to "" if these where unspecified.

... graphical parameters for plot may also be passed as arguments to this
function.

Details

The length of x should be equal to the nrow(x)+1 or nrow(x). In the first case x specifies
the boundaries between the cells: in the second case x specifies the midpoints of the cells.
Similar reasoning applies to y. It probably only makes sense to specify the midpoints of
an equally-spaced grid. If you specify just one row or column and a length-one x or y, the
whole user area in the corresponding direction is filled.

Note

Based on a function by Thomas Lumley 〈thomas@biostat.washington.edu〉.

206 index.search

See Also

contour, heat.colors, topo.colors, terrain.colors, rainbow, hsv, par.

Examples

x <- y <- seq(-4*pi, 4*pi, len=27)

r <- sqrt(outer(x^2, y^2, "+"))

image(z = z <- cos(r^2)*exp(-r/6), col=gray((0:32)/32))

image(z, axes=F, main="Math can be beautiful ...",

xlab=expression(cos(r^2) * e^{-r/6}))

contour(z, add=T, drawlabels=F)

data(volcano)

x <- 10*(1:nrow(volcano))

y <- 10*(1:ncol(volcano))

image(x, y, volcano, col = terrain.colors(100), axes = FALSE)

contour(x, y, volcano, levels = seq(90, 200, by=5), add = TRUE, col = "peru")

axis(1, at = seq(100, 800, by = 100))

axis(2, at = seq(100, 600, by = 100))

box()

title(main = "Maunga Whau Volcano", font.main = 4)

index.search Search Indices for Help Files index.search

Description

Used to search the indices for help files, possibly under aliases.

Usage

index.search(topic, path, file="AnIndex", type = "help")

Arguments

topic The keyword to be searched for in the indices.

path The path(s) to the packages to be searches.

file The index file to be searched. Normally ‘”AnIndex”’.

type The type of file required.

Details

For each package in path, examine the file file in directory ‘help’, and look up the matching
file stem for topic topic, if any.

Value

A character vector of matching files, as if they are in directory type of the corresponding
package. In the special cases of type = "html", "R-ex" and "latex" the file extensions
".html", ".R" and ".tex" are added.

infert 207

See Also

help, example

infert Infertility after Spontaneous and Induced Abortion infert

Description

This is a matched case-control study dating from before the availability of conditional
logistic regression.

Usage

data(infert)

Format

1. Education 0 = 0-5 years
1 = 6-11 years
2 = 12+ years

2. age age in years of case
3. parity count
4. number of prior 0 = 0

induced abortions 1 = 1
2 = 2 or more

5. case status 1 = case
0 = control

6. number of prior 0 = 0
spontaneous abortions 1 = 1

2 = 2 or more
7. matched set number 1-83
8. stratum number 1-63

Note

One case with two prior spontaneous abortions and two prior induced abortions is omitted.

Source

Trichopoulos et al. (1976) Br. J. of Obst. and Gynaec. 83, 645–650.

Examples

data(infert)

model1 <- glm(case ~ spontaneous+induced, data=infert,family=binomial())

summary(model1)

adjusted for other potential confounders:

summary(model2 <- glm(case ~ age+parity+education+spontaneous+induced,

data=infert,family=binomial()))

Really should be analysed by conditional logistic regression

208 influence.measures

which is equivalent to a Cox model :

if(require(survival5)){

faketime <- rep(42,nrow(infert))

model3 <- coxph(Surv(faketime,case)~spontaneous+induced+strata(stratum),

data=infert,method="exact")

summary(model3)

detach()# survival5 (conflicts)

}

influence.measures Regression Diagnostics influence.measures

Description

This suite of functions can be used to compute some of the regression diagnostics discussed
in Belsley, Kuh and Welsch (1980), and in Cook and Weisberg (1982).

Usage

influence.measures(lm.obj)
summary.infl (object, digits = max(2, getOption("digits") - 5), ...)
print.infl (x, digits = max(3, getOption("digits") - 4), ...)

rstandard(lm.obj,
infl = lm.influence(lm.obj),
res = weighted.residuals(lm.obj),
sd = sqrt(deviance(lm.obj)/df.residual(lm.obj)))

rstudent (lm.obj, infl = ..., res = ...)
dffits (lm.obj, infl = ..., res = ...)
dfbetas (lm.obj, infl = ...)
covratio (lm.obj, infl = ..., res = ...)
cooks.distance(lm.obj, infl = ..., res = ..., sd = ...)

hat(xmat)

Arguments

lm.obj the resulting object returned by lm.

infl influence structure as returned by lm.influence.

res (possibly weighted) residuals, with proper default.

sd standard deviation to use, see default.

xmat the ‘X’ or design matrix.

Details

The primary function is influence.measures which produces a class "infl" object tabular
display showing the DFBETAS for each model variable, DFFITS, covariance ratios, Cook’s
distances and the diagonal elements of the hat matrix. Cases which are influential with
respect to any of these measures are marked with an asterisk.

InsectSprays 209

The functions dfbetas, dffits, covratio and cooks.distance provide direct access to the
corresponding diagnostic quantities. Functions rstandard and rstudent give the stand-
ardized and Studentized residuals respectively. (These re-normalize the residuals to have
unit variance, using an overall and leave-one-out measure of the error variance respectively.)

The optional infl, res and sd arguments are there to encourage the use of these direct
access functions, in situations where, e.g., the underlying basic influence measures (from
lm.influence) are already available.

Note that cases with weights == 0 are dropped from all these functions.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisber,g S. (1982) Residuals and Influence in Regression. London:
Chapman and Hall.

See Also

lm.influence.

Examples

Analysis of the life-cycle savings data

given in Belsley, Kuh and Welsch.

data(LifeCycleSavings)

lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

summary(inflm.SR <- influence.measures(lm.SR))

inflm.SR

which(apply(inflm.SR$is.inf, 1, any)) # which observations ‘are’ influential

dim(dfb <- dfbetas(lm.SR)) # the 1st columns of influence.measures

all(dfb == inflm.SR$infmat[, 1:5])

rstandard(lm.SR)

rstudent(lm.SR)

dffits(lm.SR)

covratio(lm.SR)

Huber’s data [Atkinson 1985]

xh <- c(-4:0, 10)

yh <- c(2.48, .73, -.04, -1.44, -1.32, 0)

summary(lmH <- lm(yh ~ xh))

influence.measures(lmH)

InsectSprays Effectiveness of Insect Sprays InsectSprays

Description

The counts of insects in agricultural experimental units treated with different insecticides.

Usage

data(InsectSprays)

210 InsectSprays

Format

A data frame with 72 observations on 2 variables.

integer 211

[,1] count numeric Insect count
[,2] spray factor The type of spray

Source

Beall, G., (1942) The Transformation of data from entomological field experiments, Bio-
metrika, 29, 243–262.

References

McNeil, D. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(InsectSprays)

boxplot(count ~ spray, data = InsectSprays,

xlab = "Type of spray", ylab = "Insect count",

main = "InsectSprays data", varwidth = TRUE, col = "lightgray")

fm1 <- aov(count ~ spray, data = InsectSprays)

summary(fm1)

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(fm1)

fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)

summary(fm2)

plot(fm2)

par(opar)

integer Integer Vectors integer

Description

Creates or tests for objects of type "integer".

Usage

integer(length = 0)
as.integer(x)
is.integer(x)

Value

integer creates a integer vector of the specified length. Each element of the vector is equal
to 0. Integer vectors exist so that data can be passed to C or Fortran code which expects
them.

as.integer attempts to coerce its argument to be of integer type.

is.integer returns TRUE or FALSE depending on whether its argument is of integer type
or not.

212 interactive

interaction Compute Factor Interactions interaction

Description

interaction computes a factor which represents the interaction of the given factors. The
result of interaction is always unordered.

Usage

interaction(..., drop=FALSE)

Arguments

... The factors for which interaction is to be computed.

drop If drop is TRUE, empty factor levels are dropped from the result. The
default is to retain all factor levels.

Value

A factor which represents the interaction of the given factors.

See Also

factor.

Examples

a <- gl(2, 2, 8)

b <- gl(2, 4, 8)

interaction(a, b)

interactive Is R Running Interactively? interactive

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive()

See Also

source, .First

Examples

.First <- function() if(interactive()) x11()

Internal 213

Internal Call an Internal Function Internal

Description

.Internal performs a call to an internal code which is built in to the R interpreter. Only
true R wizards should even consider using this function.

Usage

.Internal(call)

See Also

.Primitive, .C, .Fortran.

invisible Change the Print Mode to Invisible invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

x an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be
assigned, but which do not print when they are not assigned.

See Also

return, function.

Examples

These functions both return their argument

f1 <- function(x) x

f2 <- function(x) invisible(x)

f1(1)# prints

f2(1)# does not

214 iris

IQR The Interquartile Range IQR

Description

computes interquartile range of the x values.

Usage

IQR(x, na.rm = FALSE)

Details

Note that this function computes the quartiles using the quantile function rather than fol-
lowing Tukey’s recommendations, i.e., IQR(x) = quantile(x,3/4) - quantile(x,1/4).

For normally N(m, 1) distributed X, the expected value of IQR(X) is 2*qnorm(3/4) =
1.3490, i.e., for a normal-consistent estimate of the standard deviation, use IQR(x) /
1.349.

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading: Addison-Wesley.

See Also

fivenum, mad which is more robust, range, quantile.

Examples

data(rivers)

IQR(rivers)

iris Edgar Anderson’s Iris Data iris

Description

This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of
the variables sepal length and width and petal length and width, respectively, for 50 flowers
from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Usage

data(iris)
data(iris3)

is.empty.model 215

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width, and Species.

iris3 gives the same data arranged as a 3-dimensional array of size 50 by 4 by 3, as repres-
ented by S-PLUS. The first dimension gives the case number within the species subsample,
the second the measurements with names Sepal L., Sepal W., Petal L., and Petal W.,
and the third the species.

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7, Part II, 179–188.

The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula,
Bulletin of the American Iris Society, 59, 2–5.

See Also

matplot some examples of which use iris.

is.empty.model Check if a Model is Empty is.empty.model

Description

R model notation allows models with no intercept and no predictors. These require spe-
cial handling internally. is.empty.model() checks whether an object describes an empty
model.

Usage

is.empty.model(x)

Arguments

x A terms object or an object with a terms method.

Value

TRUE if the model is empty

See Also

lm,glm

Examples

y <- rnorm(20)

is.empty.model(y ~ 0)

is.empty.model(y ~ -1)

is.empty.model(lm(y ~ 0))

216 is.finite

is.finite Finite, Infinite and NaN Numbers is.finite

Description

is.finite and is.infinite return a vector of the same length as x, indicating which
elements are finite or not.

Inf and -Inf are positive and negative ‘infinity’ whereas NaN means “Not a Number”.

Usage

is.finite(x)
is.infinite(x)
Inf
NaN
is.nan(x)

Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x[j]
is finite (i.e. it is not one of the values NA, NaN, Inf or -Inf).

is.infinite returns a vector of the same length as x the jth element of which is TRUE if
x[j] is infinite (i.e. equal to one of Inf or -Inf).

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to
work properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a
proper mathematical limit, see the many examples below.

References

ANSI/IEEE 754 Floating-Point Standard.

Currently (6/1999), Bill M.’s 〈billm@melbpc.org.au〉 tutorial and examples at
http://www.linuxsupportline.com/~billm/

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values.

Examples

pi / 0 ## = Inf a non-zero number divided by zero creates infinity

0 / 0 ## = NaN

1/0 + 1/0# Inf

1/0 - 1/0# NaN

1/0 == Inf

1/Inf == 0

exp(-Inf) == 0

http://www.linuxsupportline.com/~billm/

is.finite 217

(actually, the last one seems to give NA on not-very-new

versions of Linux, which is a Linux bug and seems to be

corrected in newer ’libc6’ based Linuxen).

is.na(0/0) # T

!is.na(Inf)# T

is.nan(0/0)# T

(!is.nan(NA)) && (!is.infinite(NA)) && (!is.finite(NA)) # TRUE!!

(is.nan(NaN)) && (!is.infinite(NaN)) && (!is.finite(NaN))# TRUE!!

!is.nan(NA)

all(!is.nan(c(1,NA)))

all(c(F,T,F) == is.nan(c (1,NaN,NA)))

all(c(F,T,F) == is.nan(list(1,NaN,NA)))#-> FALSE ’BUGlet’ [coerce.c]

However, S is different anyway.

lgamma(Inf) == Inf

Inf + Inf == Inf

Inf - Inf == NaN # NA --- should test with ’is.nan()

(1/0) * (1/0)# Inf

(1/0) / (1/0)# NaN

pm <- c(-1,1) # ’pm’ = plus/minus

log(0) == - 1/0

exp(-Inf) == 0

sin(Inf)

cos(Inf)

tan(Inf)

all(atan(Inf*pm) == pm*pi/2) # TRUE

x <- c(100,-1e-13,Inf,-Inf, NaN, pi, NA)

x # 1.000000 -3.000000 Inf -Inf NA 3.141593 NA

names(x) <- formatC(x, dig=3)

is.finite(x)

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- T T . . . T .

is.na(x)

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- T . T

which(is.na(x) & !is.nan(x))# only ’NA’: 7

is.na(x) | is.finite(x)

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- T T . . T T T

is.infinite(x)

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- . . T T . . .

##-- either finite or infinite or NA:

all(is.na(x) != is.finite(x) | is.infinite(x)) # TRUE

all(is.nan(x) != is.finite(x) | is.infinite(x)) # FALSE: have ’real’ NA

##--- Integer

218 is.function

(ix <- structure(as.integer(x),names= names(x)))

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- 100 . 2147483647 -2147483648 NA 3 NA

all(is.na(ix) != is.finite(ix) | is.infinite(ix)) # TRUE (still)

ix[3] == (iI <- as.integer(Inf))#> warning: inaccurate integer conversion!

ix[4] == (imI<- as.integer(-Inf))

iI == .Machine$integer.max # TRUE

imI == -.Machine$integer.max # TRUE

##--- Overflow in simple integer arithmetic:

as.integer(2)*iI # -2

as.integer(3)*iI # 2147483645

as.integer(3)*iI == iI-2 # TRUE

storage.mode(ii <- -3:5)

storage.mode(zm <- outer(ii,ii, FUN="*"))# integer

storage.mode(zd <- outer(ii,ii, FUN="/"))# double

range(zd, na.rm=T)# -Inf Inf

zd[,ii==0]

(storage.mode(print(1:1 / 0:0)))# Inf "double"

(storage.mode(print(1:1 / 1:1)))# 1 "double"

(storage.mode(print(1:1 + 1:1)))# 2 "integer"

(storage.mode(print(2:2 * 2:2)))# 4 "integer"

is.function Is an Object of Type Function? is.function

Description

Checks whether its argument is a function.

Usage

is.function(x)

Arguments

x an R object.

Value

TRUE if x is a function, and FALSE otherwise.

is.language 219

is.language Is an Object a Language Object? is.language

Description

is.language returns TRUE if x is either a variable name, a call, or an expression.

Usage

is.language(x)

Examples

ll <- list(a = expression(x^2 - 2*x + 1), b = as.name("Jim"),

c = as.expression(exp(1)), d = call("sin", pi))

sapply(ll, typeof)

sapply(ll, mode)

sapply(ll, is.language)# all TRUE

is.object Is an Object “internally classed”? is.object

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT
attribute set, and FALSE otherwise.

Usage

is.object(x)

See Also

class, and methods.

Examples

is.object(1) # FALSE

is.object(as.factor(1:3)) # TRUE

220 is.recursive

is.R Are we using R, rather than S? is.R

Description

Test if running under R.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS.
In order for code to be runnable in both R and S dialects, either your the code must define
is.R or use it as

if (exists(is.R) && is.function(is.R) && is.R()) {
R-specific code
} else {
S-version of code
}

Value

is.R returns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <- runif(20); small <- x < 0.4

which only exists in R:

if(is.R()) which(small) else seq(along=small)[small]

is.recursive Is an Object Atomic or Recursive? is.recursive

Description

is.atomic returns TRUE if x does not have a list structure and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic(x)
is.recursive(x)

See Also

is.list, is.language, etc, and the demo("is.things").

is.single 221

Examples

is.a.r <- function(x) c(is.atomic(x), is.recursive(x))

is.a.r(c(a=1,b=3))# TRUE FALSE

is.a.r(list()) # FALSE TRUE ??

is.a.r(list(2)) # FALSE TRUE

is.a.r(lm) # "

is.a.r(y ~ x) # "

is.a.r(expression(x+1))# should be F-T (not in 0.62.3!)

is.single Is an Object of Single Precision Type? is.single

Description

is.single reports an error. There are no single precision values in R.

Usage

is.single(x)

is.symbol Is an Object of Type Symbol? is.symbol

Description

Checks whether its argument is a symbol.

Usage

is.symbol(x)

Arguments

x an R object.

Value

TRUE if x is of type “symbol”, and FALSE otherwise.

222 Japanese

islands Areas of the World’s Major Landmasses islands

Description

The areas in thousands of square miles of the landmasses which exceed 10,000 square miles.

Usage

data(islands)

Format

A named vector of length 48.

Source

The World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(islands)

dotplot(log(islands, 10),

main = "islands data: log10(area) (log10(sq. miles))")

dotplot(log(islands[order(islands)], 10),

main = "islands data: log10(area) (log10(sq. miles))")

Japanese Japanese characters in R Japanese

Description

The implementation of Hershey vector fonts provides a large number of Japanese characters
(Hiragana, Katakana, and Kanji).

Details

Without keyboard support for typing Japanese characters, the only way to produce these
characters is to use special escape sequences.

For example, the Hiragana character for the sound ”ka” is produced by \\#J242b and the
Katakana character for this sound is produced by \\#J252b. The Kanji ideograph for ”one”
is produced by \\#J306c or \\#N0001.

The output from example(Japanese) shows tables of the escape sequences for the available
Japanese characters.

References

http://www.gnu.org/software/plotutils/plotutils.html

http://www.gnu.org/software/plotutils/plotutils.html

Japanese 223

See Also

Hershey, text, contour

Examples

plot(1:9, type="n", axes=F, xlab="", ylab="")

box()

par(cex=3)

text(4, 2, "\\#J2438\\#J2421\\#J2451\\#J2473", vfont=c("serif", "plain"))

text(4, 4, "\\#J2538\\#J2521\\#J2551\\#J2573", vfont=c("serif", "plain"))

text(4, 6, "\\#J467c\\#J4b5c", vfont=c("serif", "plain"))

text(4, 8, "Japan", vfont=c("serif", "plain"))

par(cex=1)

text(8, 2, "Hiragana")

text(8, 4, "Katakana")

text(8, 6, "Kanji")

text(8, 8, "English")

######

create tables of Japanese characters

######

make.table <- function(nr, nc) {

savepar <- par(mar=rep(0, 4), pty="s")

plot(c(0, nc*2 + 1), c(0, -(nr + 1)),

type="n", xlab="", ylab="", axes=F)

savepar

}

get.r <- function(i, nr) {

i %% nr + 1

}

get.c <- function(i, nr) {

i %/% nr + 1

}

draw.title <- function(title, nc) {

text((nc*2 + 1)/2, 0, title, font=2)

}

draw.vf.cell <- function(typeface, fontindex, string, i, nr, raw.string=NULL) {

r <- get.r(i, nr)

c <- get.c(i, nr)

if (is.null(raw.string))

raw.string <- paste("\\", string, sep="")

text((2*(c - 1) + 1), -r, raw.string, col="grey")

text((2*c), -r, string, vfont=c(typeface, fontindex))

rect((2*(c - 1) + .5), -(r - .5), (2*c + .5), -(r + .5), border="grey")

}

make.table2 <- function(nr, nc) {

savepar <- par(mar=rep(0, 4), pty="s")

plot(c(0, nc*3 + 1), c(0, -(nr + 1)),

type="n", xlab="", ylab="", axes=F)

savepar

}

224 Japanese

draw.title2 <- function(title, nc) {

text((nc*3 + 1)/2, 0, title, font=2)

}

draw.vf.cell2 <- function(string, alt, i, nr) {

r <- get.r(i, nr)

c <- get.c(i, nr)

text((3*(c - 1) + 1), -r, paste("\\", string, sep=""), col="grey")

text((3*(c - 1) + 2), -r, paste("\\", alt, sep=""), col="grey", cex=.6)

text((3*c), -r, string, vfont=c("serif", "plain"))

rect((3*(c - 1) + .5), -(r - .5), (3*c + .5), -(r + .5), border="grey")

}

tf <- "serif"

fi <- "plain"

nr <- 25

nc <- 4

oldpar <- make.table(nr, nc)

index <- 0

digits <- c(0:9,"a","b","c","d","e","f")

draw.title("Hiragana", nc)

for (i in 2:7) {

for (j in 1:16) {

if (!((i == 2 && j == 1) || (i == 7 && j > 4))) {

draw.vf.cell(tf, fi, paste("\\#J24", i, digits[j], sep=""),

index, nr)

index <- index + 1

}

}

}

nr <- 25

nc <- 4

make.table(nr, nc)

index <- 0

digits <- c(0:9,"a","b","c","d","e","f")

draw.title("Katakana", nc)

for (i in 2:7) {

for (j in 1:16) {

if (!((i == 2 && j == 1) || (i == 7 && j > 7))) {

draw.vf.cell(tf, fi, paste("\\#J25", i, digits[j], sep=""),

index, nr)

index <- index + 1

}

}

}

nr <- 26

nc <- 3

make.table2(nr, nc)

i <- 0

draw.title2("Kanji", nc)

draw.vf.cell2("\\#J3021", "\\#N0043", i, nr); i <- i + 1

draw.vf.cell2("\\#J3026", "\\#N2829", i, nr); i <- i + 1

draw.vf.cell2("\\#J302d", "\\#N0062", i, nr); i <- i + 1

draw.vf.cell2("\\#J3035", "\\#N0818", i, nr); i <- i + 1

draw.vf.cell2("\\#J303f", "\\#N1802", i, nr); i <- i + 1

Japanese 225

draw.vf.cell2("\\#J3045", "\\#N2154", i, nr); i <- i + 1

draw.vf.cell2("\\#J304c", "\\#N0401", i, nr); i <- i + 1

draw.vf.cell2("\\#J3057", "\\#N2107", i, nr); i <- i + 1

draw.vf.cell2("\\#J3059", "\\#N0138", i, nr); i <- i + 1

draw.vf.cell2("\\#J305b", "\\#N3008", i, nr); i <- i + 1

draw.vf.cell2("\\#J305e", "\\#N3579", i, nr); i <- i + 1

draw.vf.cell2("\\#J3061", "\\#N4214", i, nr); i <- i + 1

draw.vf.cell2("\\#J306c", "\\#N0001", i, nr); i <- i + 1

draw.vf.cell2("\\#J3070", "\\#N3294", i, nr); i <- i + 1

draw.vf.cell2("\\#J3078", "\\#N1026", i, nr); i <- i + 1

draw.vf.cell2("\\#J307a", "\\#N1562", i, nr); i <- i + 1

draw.vf.cell2("\\#J3122", "\\#N5006", i, nr); i <- i + 1

draw.vf.cell2("\\#J3126", "\\#N0878", i, nr); i <- i + 1

draw.vf.cell2("\\#J3127", "\\#N1280", i, nr); i <- i + 1

draw.vf.cell2("\\#J3129", "\\#N3673", i, nr); i <- i + 1

draw.vf.cell2("\\#J312b", "\\#N5042", i, nr); i <- i + 1

draw.vf.cell2("\\#J3132", "\\#N2629", i, nr); i <- i + 1

draw.vf.cell2("\\#J313b", "\\#N2973", i, nr); i <- i + 1

draw.vf.cell2("\\#J313f", "\\#N4725", i, nr); i <- i + 1

draw.vf.cell2("\\#J3140", "\\#N5046", i, nr); i <- i + 1

draw.vf.cell2("\\#J314a", "\\#N0130", i, nr); i <- i + 1

draw.vf.cell2("\\#J3155", "\\#N2599", i, nr); i <- i + 1

draw.vf.cell2("\\#J315f", "\\#N0617", i, nr); i <- i + 1

draw.vf.cell2("\\#J3173", "\\#N4733", i, nr); i <- i + 1

draw.vf.cell2("\\#J3176", "\\#N1125", i, nr); i <- i + 1

draw.vf.cell2("\\#J3177", "\\#N2083", i, nr); i <- i + 1

draw.vf.cell2("\\#J317e", "\\#N1504", i, nr); i <- i + 1

draw.vf.cell2("\\#J3221", "\\#N1885", i, nr); i <- i + 1

draw.vf.cell2("\\#J3223", "\\#N2361", i, nr); i <- i + 1

draw.vf.cell2("\\#J3226", "\\#N2922", i, nr); i <- i + 1

draw.vf.cell2("\\#J322b", "\\#N5399", i, nr); i <- i + 1

draw.vf.cell2("\\#J322f", "\\#N0551", i, nr); i <- i + 1

draw.vf.cell2("\\#J3235", "\\#N0260", i, nr); i <- i + 1

draw.vf.cell2("\\#J3239", "\\#N2634", i, nr); i <- i + 1

draw.vf.cell2("\\#J323b", "\\#N5110", i, nr); i <- i + 1

draw.vf.cell2("\\#J323c", "\\#N0009", i, nr); i <- i + 1

draw.vf.cell2("\\#J323d", "\\#N0350", i, nr); i <- i + 1

draw.vf.cell2("\\#J323f", "\\#N0409", i, nr); i <- i + 1

draw.vf.cell2("\\#J3241", "\\#N0422", i, nr); i <- i + 1

draw.vf.cell2("\\#J3243", "\\#N0716", i, nr); i <- i + 1

draw.vf.cell2("\\#J3244", "\\#N0024", i, nr); i <- i + 1

draw.vf.cell2("\\#J3246", "\\#N0058", i, nr); i <- i + 1

draw.vf.cell2("\\#J3248", "\\#N1311", i, nr); i <- i + 1

draw.vf.cell2("\\#J324a", "\\#N3272", i, nr); i <- i + 1

draw.vf.cell2("\\#J324c", "\\#N0107", i, nr); i <- i + 1

draw.vf.cell2("\\#J324f", "\\#N2530", i, nr); i <- i + 1

draw.vf.cell2("\\#J3250", "\\#N2743", i, nr); i <- i + 1

draw.vf.cell2("\\#J3256", "\\#N3909", i, nr); i <- i + 1

draw.vf.cell2("\\#J3259", "\\#N3956", i, nr); i <- i + 1

draw.vf.cell2("\\#J3261", "\\#N4723", i, nr); i <- i + 1

draw.vf.cell2("\\#J3267", "\\#N2848", i, nr); i <- i + 1

draw.vf.cell2("\\#J3268", "\\#N0050", i, nr); i <- i + 1

draw.vf.cell2("\\#J3272", "\\#N4306", i, nr); i <- i + 1

draw.vf.cell2("\\#J3273", "\\#N1028", i, nr); i <- i + 1

draw.vf.cell2("\\#J3323", "\\#N2264", i, nr); i <- i + 1

draw.vf.cell2("\\#J3324", "\\#N2553", i, nr); i <- i + 1

draw.vf.cell2("\\#J3326", "\\#N2998", i, nr); i <- i + 1

226 Japanese

draw.vf.cell2("\\#J3328", "\\#N3537", i, nr); i <- i + 1

draw.vf.cell2("\\#J332b", "\\#N4950", i, nr); i <- i + 1

draw.vf.cell2("\\#J332d", "\\#N4486", i, nr); i <- i + 1

draw.vf.cell2("\\#J3330", "\\#N1168", i, nr); i <- i + 1

draw.vf.cell2("\\#J3346", "\\#N1163", i, nr); i <- i + 1

draw.vf.cell2("\\#J334b", "\\#N2254", i, nr); i <- i + 1

draw.vf.cell2("\\#J3351", "\\#N4301", i, nr); i <- i + 1

draw.vf.cell2("\\#J3353", "\\#N4623", i, nr); i <- i + 1

draw.vf.cell2("\\#J3357", "\\#N5088", i, nr); i <- i + 1

draw.vf.cell2("\\#J3358", "\\#N1271", i, nr); i <- i + 1

draw.vf.cell2("\\#J335a", "\\#N2324", i, nr); i <- i + 1

draw.vf.cell2("\\#J3364", "\\#N0703", i, nr); i <- i + 1

draw.vf.cell2("\\#J3424", "\\#N2977", i, nr); i <- i + 1

draw.vf.cell2("\\#J3428", "\\#N1322", i, nr); i <- i + 1

make.table2(nr, nc)

i <- 0

draw.title2("Kanji", nc)

draw.vf.cell2("\\#J342c", "\\#N1466", i, nr); i <- i + 1

draw.vf.cell2("\\#J3433", "\\#N1492", i, nr); i <- i + 1

draw.vf.cell2("\\#J3434", "\\#N0790", i, nr); i <- i + 1

draw.vf.cell2("\\#J3436", "\\#N1731", i, nr); i <- i + 1

draw.vf.cell2("\\#J3437", "\\#N1756", i, nr); i <- i + 1

draw.vf.cell2("\\#J3445", "\\#N2988", i, nr); i <- i + 1

draw.vf.cell2("\\#J3449", "\\#N3416", i, nr); i <- i + 1

draw.vf.cell2("\\#J3454", "\\#N4750", i, nr); i <- i + 1

draw.vf.cell2("\\#J3456", "\\#N4949", i, nr); i <- i + 1

draw.vf.cell2("\\#J3458", "\\#N4958", i, nr); i <- i + 1

draw.vf.cell2("\\#J346f", "\\#N0994", i, nr); i <- i + 1

draw.vf.cell2("\\#J3470", "\\#N1098", i, nr); i <- i + 1

draw.vf.cell2("\\#J3476", "\\#N1496", i, nr); i <- i + 1

draw.vf.cell2("\\#J347c", "\\#N3785", i, nr); i <- i + 1

draw.vf.cell2("\\#J3521", "\\#N2379", i, nr); i <- i + 1

draw.vf.cell2("\\#J3522", "\\#N1582", i, nr); i <- i + 1

draw.vf.cell2("\\#J3524", "\\#N2480", i, nr); i <- i + 1

draw.vf.cell2("\\#J3525", "\\#N2507", i, nr); i <- i + 1

draw.vf.cell2("\\#J352d", "\\#N4318", i, nr); i <- i + 1

draw.vf.cell2("\\#J3530", "\\#N4610", i, nr); i <- i + 1

draw.vf.cell2("\\#J3534", "\\#N5276", i, nr); i <- i + 1

draw.vf.cell2("\\#J3535", "\\#N5445", i, nr); i <- i + 1

draw.vf.cell2("\\#J3546", "\\#N3981", i, nr); i <- i + 1

draw.vf.cell2("\\#J3555", "\\#N4685", i, nr); i <- i + 1

draw.vf.cell2("\\#J355a", "\\#N0154", i, nr); i <- i + 1

draw.vf.cell2("\\#J355b", "\\#N0885", i, nr); i <- i + 1

draw.vf.cell2("\\#J355d", "\\#N1560", i, nr); i <- i + 1

draw.vf.cell2("\\#J3565", "\\#N2941", i, nr); i <- i + 1

draw.vf.cell2("\\#J3566", "\\#N3314", i, nr); i <- i + 1

draw.vf.cell2("\\#J3569", "\\#N3496", i, nr); i <- i + 1

draw.vf.cell2("\\#J356d", "\\#N2852", i, nr); i <- i + 1

draw.vf.cell2("\\#J356e", "\\#N1051", i, nr); i <- i + 1

draw.vf.cell2("\\#J356f", "\\#N1387", i, nr); i <- i + 1

draw.vf.cell2("\\#J3575", "\\#N4109", i, nr); i <- i + 1

draw.vf.cell2("\\#J3577", "\\#N4548", i, nr); i <- i + 1

draw.vf.cell2("\\#J357b", "\\#N5281", i, nr); i <- i + 1

draw.vf.cell2("\\#J357e", "\\#N0295", i, nr); i <- i + 1

draw.vf.cell2("\\#J3621", "\\#N0431", i, nr); i <- i + 1

draw.vf.cell2("\\#J3626", "\\#N0581", i, nr); i <- i + 1

Japanese 227

draw.vf.cell2("\\#J362d", "\\#N1135", i, nr); i <- i + 1

draw.vf.cell2("\\#J362f", "\\#N1571", i, nr); i <- i + 1

draw.vf.cell2("\\#J3635", "\\#N2052", i, nr); i <- i + 1

draw.vf.cell2("\\#J3636", "\\#N2378", i, nr); i <- i + 1

draw.vf.cell2("\\#J364a", "\\#N0103", i, nr); i <- i + 1

draw.vf.cell2("\\#J364b", "\\#N2305", i, nr); i <- i + 1

draw.vf.cell2("\\#J364c", "\\#N2923", i, nr); i <- i + 1

draw.vf.cell2("\\#J3651", "\\#N1065", i, nr); i <- i + 1

draw.vf.cell2("\\#J3661", "\\#N4671", i, nr); i <- i + 1

draw.vf.cell2("\\#J3662", "\\#N4815", i, nr); i <- i + 1

draw.vf.cell2("\\#J3664", "\\#N4855", i, nr); i <- i + 1

draw.vf.cell2("\\#J3665", "\\#N0146", i, nr); i <- i + 1

draw.vf.cell2("\\#J3671", "\\#N3128", i, nr); i <- i + 1

draw.vf.cell2("\\#J3675", "\\#N3317", i, nr); i <- i + 1

draw.vf.cell2("\\#J367e", "\\#N1386", i, nr); i <- i + 1

draw.vf.cell2("\\#J3738", "\\#N0449", i, nr); i <- i + 1

draw.vf.cell2("\\#J3739", "\\#N0534", i, nr); i <- i + 1

draw.vf.cell2("\\#J373e", "\\#N2937", i, nr); i <- i + 1

draw.vf.cell2("\\#J373f", "\\#N1077", i, nr); i <- i + 1

draw.vf.cell2("\\#J3741", "\\#N1589", i, nr); i <- i + 1

draw.vf.cell2("\\#J3742", "\\#N1602", i, nr); i <- i + 1

draw.vf.cell2("\\#J374f", "\\#N0195", i, nr); i <- i + 1

draw.vf.cell2("\\#J3750", "\\#N3523", i, nr); i <- i + 1

draw.vf.cell2("\\#J3757", "\\#N4312", i, nr); i <- i + 1

draw.vf.cell2("\\#J375a", "\\#N4620", i, nr); i <- i + 1

draw.vf.cell2("\\#J3767", "\\#N2412", i, nr); i <- i + 1

draw.vf.cell2("\\#J3768", "\\#N2509", i, nr); i <- i + 1

draw.vf.cell2("\\#J376a", "\\#N3313", i, nr); i <- i + 1

draw.vf.cell2("\\#J376b", "\\#N3540", i, nr); i <- i + 1

draw.vf.cell2("\\#J376c", "\\#N4205", i, nr); i <- i + 1

draw.vf.cell2("\\#J376e", "\\#N2169", i, nr); i <- i + 1

draw.vf.cell2("\\#J3777", "\\#N1045", i, nr); i <- i + 1

draw.vf.cell2("\\#J3824", "\\#N2868", i, nr); i <- i + 1

draw.vf.cell2("\\#J3826", "\\#N3180", i, nr); i <- i + 1

draw.vf.cell2("\\#J3828", "\\#N3543", i, nr); i <- i + 1

draw.vf.cell2("\\#J382b", "\\#N4284", i, nr); i <- i + 1

draw.vf.cell2("\\#J3833", "\\#N5220", i, nr); i <- i + 1

make.table2(nr, nc)

i <- 0

draw.title2("Kanji", nc)

draw.vf.cell2("\\#J3835", "\\#N0275", i, nr); i <- i + 1

draw.vf.cell2("\\#J3836", "\\#N0825", i, nr); i <- i + 1

draw.vf.cell2("\\#J3839", "\\#N1568", i, nr); i <- i + 1

draw.vf.cell2("\\#J383a", "\\#N2637", i, nr); i <- i + 1

draw.vf.cell2("\\#J383b", "\\#N2656", i, nr); i <- i + 1

draw.vf.cell2("\\#J383d", "\\#N2943", i, nr); i <- i + 1

draw.vf.cell2("\\#J3840", "\\#N4309", i, nr); i <- i + 1

draw.vf.cell2("\\#J3842", "\\#N4987", i, nr); i <- i + 1

draw.vf.cell2("\\#J3845", "\\#N0770", i, nr); i <- i + 1

draw.vf.cell2("\\#J3847", "\\#N1036", i, nr); i <- i + 1

draw.vf.cell2("\\#J384c", "\\#N1567", i, nr); i <- i + 1

draw.vf.cell2("\\#J384d", "\\#N1817", i, nr); i <- i + 1

draw.vf.cell2("\\#J384e", "\\#N2044", i, nr); i <- i + 1

draw.vf.cell2("\\#J385d", "\\#N5415", i, nr); i <- i + 1

draw.vf.cell2("\\#J385e", "\\#N0015", i, nr); i <- i + 1

draw.vf.cell2("\\#J3861", "\\#N0162", i, nr); i <- i + 1

228 Japanese

draw.vf.cell2("\\#J3865", "\\#N1610", i, nr); i <- i + 1

draw.vf.cell2("\\#J3866", "\\#N1628", i, nr); i <- i + 1

draw.vf.cell2("\\#J386c", "\\#N4374", i, nr); i <- i + 1

draw.vf.cell2("\\#J3872", "\\#N0290", i, nr); i <- i + 1

draw.vf.cell2("\\#J3877", "\\#N1358", i, nr); i <- i + 1

draw.vf.cell2("\\#J3878", "\\#N0579", i, nr); i <- i + 1

draw.vf.cell2("\\#J387d", "\\#N0868", i, nr); i <- i + 1

draw.vf.cell2("\\#J387e", "\\#N0101", i, nr); i <- i + 1

draw.vf.cell2("\\#J3929", "\\#N1451", i, nr); i <- i + 1

draw.vf.cell2("\\#J3931", "\\#N1683", i, nr); i <- i + 1

draw.vf.cell2("\\#J393d", "\\#N2343", i, nr); i <- i + 1

draw.vf.cell2("\\#J3943", "\\#N0092", i, nr); i <- i + 1

draw.vf.cell2("\\#J394d", "\\#N3684", i, nr); i <- i + 1

draw.vf.cell2("\\#J3954", "\\#N4213", i, nr); i <- i + 1

draw.vf.cell2("\\#J3955", "\\#N1641", i, nr); i <- i + 1

draw.vf.cell2("\\#J395b", "\\#N4843", i, nr); i <- i + 1

draw.vf.cell2("\\#J395d", "\\#N4883", i, nr); i <- i + 1

draw.vf.cell2("\\#J395f", "\\#N4994", i, nr); i <- i + 1

draw.vf.cell2("\\#J3960", "\\#N1459", i, nr); i <- i + 1

draw.vf.cell2("\\#J3961", "\\#N5188", i, nr); i <- i + 1

draw.vf.cell2("\\#J3962", "\\#N5248", i, nr); i <- i + 1

draw.vf.cell2("\\#J3966", "\\#N0882", i, nr); i <- i + 1

draw.vf.cell2("\\#J3967", "\\#N0383", i, nr); i <- i + 1

draw.vf.cell2("\\#J3971", "\\#N1037", i, nr); i <- i + 1

draw.vf.cell2("\\#J3975", "\\#N5403", i, nr); i <- i + 1

draw.vf.cell2("\\#J397c", "\\#N5236", i, nr); i <- i + 1

draw.vf.cell2("\\#J397e", "\\#N4660", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a21", "\\#N2430", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a23", "\\#N0352", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a2c", "\\#N2261", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a38", "\\#N1455", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a39", "\\#N3662", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a42", "\\#N1515", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a46", "\\#N0035", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a47", "\\#N2146", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a59", "\\#N3522", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a5f", "\\#N1055", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a6e", "\\#N0407", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a72", "\\#N2119", i, nr); i <- i + 1

draw.vf.cell2("\\#J3a79", "\\#N2256", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b2e", "\\#N3113", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b30", "\\#N0008", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b33", "\\#N1407", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b36", "\\#N2056", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b3b", "\\#N3415", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b40", "\\#N4789", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b45", "\\#N0362", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b4d", "\\#N1025", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b4e", "\\#N1160", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b4f", "\\#N1208", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b52", "\\#N1264", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b54", "\\#N0284", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b57", "\\#N3001", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b58", "\\#N1904", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b59", "\\#N2039", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b5e", "\\#N2211", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b5f", "\\#N2429", i, nr); i <- i + 1

Japanese 229

draw.vf.cell2("\\#J3b60", "\\#N2439", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b61", "\\#N2478", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b64", "\\#N3265", i, nr); i <- i + 1

make.table2(nr, nc)

i <- 0

draw.title2("Kanji", nc)

draw.vf.cell2("\\#J3b65", "\\#N3492", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b66", "\\#N3510", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b6a", "\\#N3845", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b73", "\\#N2435", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b75", "\\#N5428", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b76", "\\#N0272", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b7a", "\\#N1281", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b7d", "\\#N1903", i, nr); i <- i + 1

draw.vf.cell2("\\#J3b7e", "\\#N2126", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c21", "\\#N0638", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c27", "\\#N3209", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c28", "\\#N3228", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c2a", "\\#N3697", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c2b", "\\#N3841", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c2d", "\\#N3860", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c2f", "\\#N5375", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c30", "\\#N1556", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c34", "\\#N4619", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c37", "\\#N0261", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c3c", "\\#N1300", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c3e", "\\#N2631", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c41", "\\#N4518", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c42", "\\#N1297", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c4d", "\\#N4603", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c50", "\\#N2074", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c54", "\\#N3685", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c56", "\\#N4608", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c5c", "\\#N1377", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c61", "\\#N4809", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c63", "\\#N3926", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c67", "\\#N0285", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c68", "\\#N3699", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c6a", "\\#N1827", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c6f", "\\#N3295", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c72", "\\#N2573", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c73", "\\#N5186", i, nr); i <- i + 1

draw.vf.cell2("\\#J3c7e", "\\#N0622", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d29", "\\#N3273", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d2a", "\\#N3521", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d2e", "\\#N3863", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d39", "\\#N4798", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d3d", "\\#N0768", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d3e", "\\#N1613", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d44", "\\#N3597", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d45", "\\#N0224", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d50", "\\#N0097", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d51", "\\#N1621", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d55", "\\#N2122", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d60", "\\#N0791", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d63", "\\#N3509", i, nr); i <- i + 1

230 Japanese

draw.vf.cell2("\\#J3d68", "\\#N1162", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d6b", "\\#N2138", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d71", "\\#N3719", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d77", "\\#N1185", i, nr); i <- i + 1

draw.vf.cell2("\\#J3d7c", "\\#N4993", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e26", "\\#N0321", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e2e", "\\#N1355", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e2f", "\\#N0166", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e3d", "\\#N2137", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e3e", "\\#N2212", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e46", "\\#N2772", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e4b", "\\#N3192", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e4e", "\\#N3280", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e57", "\\#N1638", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e5a", "\\#N4341", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e5d", "\\#N4472", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e65", "\\#N0798", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e68", "\\#N0223", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e6c", "\\#N1113", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e6f", "\\#N1364", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e75", "\\#N2839", i, nr); i <- i + 1

draw.vf.cell2("\\#J3e78", "\\#N4002", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f22", "\\#N2303", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f27", "\\#N3889", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f29", "\\#N5154", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f2d", "\\#N0403", i, nr); i <- i + 1

make.table2(nr, nc)

i <- 0

draw.title2("Kanji", nc)

draw.vf.cell2("\\#J3f34", "\\#N1645", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f36", "\\#N1920", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f37", "\\#N2080", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f39", "\\#N2301", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f3f", "\\#N0783", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f43", "\\#N3837", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f48", "\\#N4601", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f49", "\\#N4646", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f4a", "\\#N4709", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f4c", "\\#N5055", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f4d", "\\#N0339", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f5e", "\\#N1034", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f62", "\\#N0211", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f65", "\\#N2482", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f69", "\\#N3676", i, nr); i <- i + 1

draw.vf.cell2("\\#J3f74", "\\#N2057", i, nr); i <- i + 1

draw.vf.cell2("\\#J402d", "\\#N1666", i, nr); i <- i + 1

draw.vf.cell2("\\#J402e", "\\#N1799", i, nr); i <- i + 1

draw.vf.cell2("\\#J4030", "\\#N2436", i, nr); i <- i + 1

draw.vf.cell2("\\#J4031", "\\#N2121", i, nr); i <- i + 1

draw.vf.cell2("\\#J4032", "\\#N2143", i, nr); i <- i + 1

draw.vf.cell2("\\#J4035", "\\#N0027", i, nr); i <- i + 1

draw.vf.cell2("\\#J4038", "\\#N2991", i, nr); i <- i + 1

draw.vf.cell2("\\#J403e", "\\#N4273", i, nr); i <- i + 1

draw.vf.cell2("\\#J4044", "\\#N5076", i, nr); i <- i + 1

draw.vf.cell2("\\#J4045", "\\#N5077", i, nr); i <- i + 1

draw.vf.cell2("\\#J404e", "\\#N2108", i, nr); i <- i + 1

Japanese 231

draw.vf.cell2("\\#J404f", "\\#N2194", i, nr); i <- i + 1

draw.vf.cell2("\\#J4050", "\\#N3176", i, nr); i <- i + 1

draw.vf.cell2("\\#J4051", "\\#N3306", i, nr); i <- i + 1

draw.vf.cell2("\\#J4056", "\\#N4534", i, nr); i <- i + 1

draw.vf.cell2("\\#J405a", "\\#N0667", i, nr); i <- i + 1

draw.vf.cell2("\\#J405c", "\\#N1951", i, nr); i <- i + 1

draw.vf.cell2("\\#J405e", "\\#N1855", i, nr); i <- i + 1

draw.vf.cell2("\\#J4063", "\\#N5044", i, nr); i <- i + 1

draw.vf.cell2("\\#J4064", "\\#N3539", i, nr); i <- i + 1

draw.vf.cell2("\\#J4065", "\\#N3855", i, nr); i <- i + 1

draw.vf.cell2("\\#J4068", "\\#N0571", i, nr); i <- i + 1

draw.vf.cell2("\\#J4069", "\\#N0156", i, nr); i <- i + 1

draw.vf.cell2("\\#J406e", "\\#N1447", i, nr); i <- i + 1

draw.vf.cell2("\\#J4070", "\\#N1823", i, nr); i <- i + 1

draw.vf.cell2("\\#J407e", "\\#N3580", i, nr); i <- i + 1

draw.vf.cell2("\\#J4125", "\\#N3873", i, nr); i <- i + 1

draw.vf.cell2("\\#J4130", "\\#N0595", i, nr); i <- i + 1

draw.vf.cell2("\\#J4133", "\\#N2770", i, nr); i <- i + 1

draw.vf.cell2("\\#J4134", "\\#N0384", i, nr); i <- i + 1

draw.vf.cell2("\\#J4147", "\\#N3511", i, nr); i <- i + 1

draw.vf.cell2("\\#J4148", "\\#N3520", i, nr); i <- i + 1

draw.vf.cell2("\\#J4150", "\\#N0859", i, nr); i <- i + 1

draw.vf.cell2("\\#J4158", "\\#N1402", i, nr); i <- i + 1

draw.vf.cell2("\\#J415b", "\\#N1728", i, nr); i <- i + 1

draw.vf.cell2("\\#J4161", "\\#N2100", i, nr); i <- i + 1

draw.vf.cell2("\\#J416a", "\\#N2241", i, nr); i <- i + 1

draw.vf.cell2("\\#J416d", "\\#N3567", i, nr); i <- i + 1

draw.vf.cell2("\\#J4170", "\\#N3939", i, nr); i <- i + 1

draw.vf.cell2("\\#J4175", "\\#N4234", i, nr); i <- i + 1

draw.vf.cell2("\\#J4176", "\\#N4539", i, nr); i <- i + 1

draw.vf.cell2("\\#J417c", "\\#N0540", i, nr); i <- i + 1

draw.vf.cell2("\\#J417d", "\\#N1137", i, nr); i <- i + 1

draw.vf.cell2("\\#J4224", "\\#N4701", i, nr); i <- i + 1

draw.vf.cell2("\\#J4226", "\\#N0509", i, nr); i <- i + 1

draw.vf.cell2("\\#J422b", "\\#N0196", i, nr); i <- i + 1

draw.vf.cell2("\\#J422c", "\\#N2632", i, nr); i <- i + 1

draw.vf.cell2("\\#J422d", "\\#N4546", i, nr); i <- i + 1

draw.vf.cell2("\\#J422e", "\\#N4700", i, nr); i <- i + 1

draw.vf.cell2("\\#J4233", "\\#N3544", i, nr); i <- i + 1

draw.vf.cell2("\\#J4236", "\\#N0590", i, nr); i <- i + 1

draw.vf.cell2("\\#J4238", "\\#N1267", i, nr); i <- i + 1

draw.vf.cell2("\\#J423e", "\\#N0361", i, nr); i <- i + 1

draw.vf.cell2("\\#J423f", "\\#N1169", i, nr); i <- i + 1

draw.vf.cell2("\\#J4240", "\\#N1172", i, nr); i <- i + 1

draw.vf.cell2("\\#J424a", "\\#N2313", i, nr); i <- i + 1

draw.vf.cell2("\\#J424e", "\\#N0405", i, nr); i <- i + 1

draw.vf.cell2("\\#J4250", "\\#N2067", i, nr); i <- i + 1

draw.vf.cell2("\\#J4256", "\\#N1743", i, nr); i <- i + 1

draw.vf.cell2("\\#J4265", "\\#N0364", i, nr); i <- i + 1

make.table2(nr, nc)

i <- 0

draw.title2("Kanji", nc)

draw.vf.cell2("\\#J4267", "\\#N1171", i, nr); i <- i + 1

draw.vf.cell2("\\#J4268", "\\#N3385", i, nr); i <- i + 1

draw.vf.cell2("\\#J426a", "\\#N2164", i, nr); i <- i + 1

draw.vf.cell2("\\#J426c", "\\#N2655", i, nr); i <- i + 1

232 Japanese

draw.vf.cell2("\\#J4274", "\\#N2503", i, nr); i <- i + 1

draw.vf.cell2("\\#J4323", "\\#N4721", i, nr); i <- i + 1

draw.vf.cell2("\\#J432b", "\\#N4458", i, nr); i <- i + 1

draw.vf.cell2("\\#J432f", "\\#N4384", i, nr); i <- i + 1

draw.vf.cell2("\\#J4331", "\\#N0139", i, nr); i <- i + 1

draw.vf.cell2("\\#J433a", "\\#N1418", i, nr); i <- i + 1

draw.vf.cell2("\\#J433b", "\\#N3172", i, nr); i <- i + 1

draw.vf.cell2("\\#J4346", "\\#N1575", i, nr); i <- i + 1

draw.vf.cell2("\\#J434b", "\\#N2996", i, nr); i <- i + 1

draw.vf.cell2("\\#J434d", "\\#N0488", i, nr); i <- i + 1

draw.vf.cell2("\\#J434e", "\\#N3169", i, nr); i <- i + 1

draw.vf.cell2("\\#J434f", "\\#N1056", i, nr); i <- i + 1

draw.vf.cell2("\\#J4356", "\\#N3644", i, nr); i <- i + 1

draw.vf.cell2("\\#J4359", "\\#N4722", i, nr); i <- i + 1

draw.vf.cell2("\\#J435d", "\\#N3366", i, nr); i <- i + 1

draw.vf.cell2("\\#J4362", "\\#N3325", i, nr); i <- i + 1

draw.vf.cell2("\\#J4363", "\\#N3940", i, nr); i <- i + 1

draw.vf.cell2("\\#J4365", "\\#N3665", i, nr); i <- i + 1

draw.vf.cell2("\\#J4366", "\\#N0081", i, nr); i <- i + 1

draw.vf.cell2("\\#J4368", "\\#N1291", i, nr); i <- i + 1

draw.vf.cell2("\\#J436b", "\\#N0053", i, nr); i <- i + 1

draw.vf.cell2("\\#J436c", "\\#N2236", i, nr); i <- i + 1

draw.vf.cell2("\\#J436e", "\\#N4115", i, nr); i <- i + 1

draw.vf.cell2("\\#J442b", "\\#N3788", i, nr); i <- i + 1

draw.vf.cell2("\\#J442c", "\\#N2702", i, nr); i <- i + 1

draw.vf.cell2("\\#J4436", "\\#N4543", i, nr); i <- i + 1

draw.vf.cell2("\\#J4439", "\\#N4938", i, nr); i <- i + 1

draw.vf.cell2("\\#J443b", "\\#N5340", i, nr); i <- i + 1

draw.vf.cell2("\\#J443e", "\\#N0775", i, nr); i <- i + 1

draw.vf.cell2("\\#J444c", "\\#N4703", i, nr); i <- i + 1

draw.vf.cell2("\\#J4463", "\\#N0406", i, nr); i <- i + 1

draw.vf.cell2("\\#J446a", "\\#N1296", i, nr); i <- i + 1

draw.vf.cell2("\\#J446c", "\\#N1508", i, nr); i <- i + 1

draw.vf.cell2("\\#J446d", "\\#N1514", i, nr); i <- i + 1

draw.vf.cell2("\\#J4472", "\\#N1914", i, nr); i <- i + 1

draw.vf.cell2("\\#J4478", "\\#N3285", i, nr); i <- i + 1

draw.vf.cell2("\\#J4479", "\\#N3581", i, nr); i <- i + 1

draw.vf.cell2("\\#J4526", "\\#N1987", i, nr); i <- i + 1

draw.vf.cell2("\\#J452a", "\\#N3097", i, nr); i <- i + 1

draw.vf.cell2("\\#J452f", "\\#N0931", i, nr); i <- i + 1

draw.vf.cell2("\\#J4534", "\\#N4844", i, nr); i <- i + 1

draw.vf.cell2("\\#J4535", "\\#N0588", i, nr); i <- i + 1

draw.vf.cell2("\\#J4537", "\\#N0016", i, nr); i <- i + 1

draw.vf.cell2("\\#J453e", "\\#N4615", i, nr); i <- i + 1

draw.vf.cell2("\\#J4540", "\\#N0804", i, nr); i <- i + 1

draw.vf.cell2("\\#J4544", "\\#N2994", i, nr); i <- i + 1

draw.vf.cell2("\\#J4545", "\\#N5050", i, nr); i <- i + 1

draw.vf.cell2("\\#J454c", "\\#N1614", i, nr); i <- i + 1

draw.vf.cell2("\\#J4559", "\\#N1511", i, nr); i <- i + 1

draw.vf.cell2("\\#J455a", "\\#N1050", i, nr); i <- i + 1

draw.vf.cell2("\\#J455f", "\\#N1161", i, nr); i <- i + 1

draw.vf.cell2("\\#J4561", "\\#N0665", i, nr); i <- i + 1

draw.vf.cell2("\\#J4563", "\\#N1109", i, nr); i <- i + 1

draw.vf.cell2("\\#J4567", "\\#N0230", i, nr); i <- i + 1

draw.vf.cell2("\\#J456c", "\\#N0213", i, nr); i <- i + 1

draw.vf.cell2("\\#J4574", "\\#N2745", i, nr); i <- i + 1

draw.vf.cell2("\\#J4576", "\\#N1359", i, nr); i <- i + 1

Japanese 233

draw.vf.cell2("\\#J4579", "\\#N3396", i, nr); i <- i + 1

draw.vf.cell2("\\#J4626", "\\#N4465", i, nr); i <- i + 1

draw.vf.cell2("\\#J4630", "\\#N0730", i, nr); i <- i + 1

draw.vf.cell2("\\#J4631", "\\#N0619", i, nr); i <- i + 1

draw.vf.cell2("\\#J4633", "\\#N1354", i, nr); i <- i + 1

draw.vf.cell2("\\#J463b", "\\#N4724", i, nr); i <- i + 1

draw.vf.cell2("\\#J463c", "\\#N4853", i, nr); i <- i + 1

draw.vf.cell2("\\#J4643", "\\#N2860", i, nr); i <- i + 1

draw.vf.cell2("\\#J4649", "\\#N4375", i, nr); i <- i + 1

draw.vf.cell2("\\#J465e", "\\#N2160", i, nr); i <- i + 1

draw.vf.cell2("\\#J4662", "\\#N0082", i, nr); i <- i + 1

draw.vf.cell2("\\#J466e", "\\#N0778", i, nr); i <- i + 1

draw.vf.cell2("\\#J4671", "\\#N5038", i, nr); i <- i + 1

draw.vf.cell2("\\#J4673", "\\#N0273", i, nr); i <- i + 1

draw.vf.cell2("\\#J4679", "\\#N3724", i, nr); i <- i + 1

make.table2(nr, nc)

i <- 0

draw.title2("Kanji", nc)

draw.vf.cell2("\\#J467c", "\\#N2097", i, nr); i <- i + 1

draw.vf.cell2("\\#J467e", "\\#N0574", i, nr); i <- i + 1

draw.vf.cell2("\\#J4721", "\\#N1189", i, nr); i <- i + 1

draw.vf.cell2("\\#J472e", "\\#N2797", i, nr); i <- i + 1

draw.vf.cell2("\\#J472f", "\\#N0188", i, nr); i <- i + 1

draw.vf.cell2("\\#J4733", "\\#N2808", i, nr); i <- i + 1

draw.vf.cell2("\\#J4734", "\\#N3472", i, nr); i <- i + 1

draw.vf.cell2("\\#J4748", "\\#N2529", i, nr); i <- i + 1

draw.vf.cell2("\\#J474f", "\\#N5191", i, nr); i <- i + 1

draw.vf.cell2("\\#J4769", "\\#N3275", i, nr); i <- i + 1

draw.vf.cell2("\\#J4772", "\\#N3095", i, nr); i <- i + 1

draw.vf.cell2("\\#J477e", "\\#N5385", i, nr); i <- i + 1

draw.vf.cell2("\\#J4821", "\\#N0049", i, nr); i <- i + 1

draw.vf.cell2("\\#J482c", "\\#N0577", i, nr); i <- i + 1

draw.vf.cell2("\\#J482f", "\\#N3092", i, nr); i <- i + 1

draw.vf.cell2("\\#J483e", "\\#N0132", i, nr); i <- i + 1

draw.vf.cell2("\\#J483f", "\\#N0817", i, nr); i <- i + 1

draw.vf.cell2("\\#J4841", "\\#N1469", i, nr); i <- i + 1

draw.vf.cell2("\\#J484c", "\\#N3865", i, nr); i <- i + 1

draw.vf.cell2("\\#J4856", "\\#N4811", i, nr); i <- i + 1

draw.vf.cell2("\\#J4860", "\\#N1604", i, nr); i <- i + 1

draw.vf.cell2("\\#J4866", "\\#N2470", i, nr); i <- i + 1

draw.vf.cell2("\\#J4869", "\\#N3109", i, nr); i <- i + 1

draw.vf.cell2("\\#J4873", "\\#N5080", i, nr); i <- i + 1

draw.vf.cell2("\\#J4874", "\\#N5152", i, nr); i <- i + 1

draw.vf.cell2("\\#J4878", "\\#N1383", i, nr); i <- i + 1

draw.vf.cell2("\\#J4879", "\\#N1631", i, nr); i <- i + 1

draw.vf.cell2("\\#J487e", "\\#N3658", i, nr); i <- i + 1

draw.vf.cell2("\\#J4921", "\\#N5421", i, nr); i <- i + 1

draw.vf.cell2("\\#J492e", "\\#N3397", i, nr); i <- i + 1

draw.vf.cell2("\\#J4934", "\\#N0033", i, nr); i <- i + 1

draw.vf.cell2("\\#J4938", "\\#N2359", i, nr); i <- i + 1

draw.vf.cell2("\\#J4939", "\\#N0131", i, nr); i <- i + 1

draw.vf.cell2("\\#J493d", "\\#N0108", i, nr); i <- i + 1

draw.vf.cell2("\\#J4942", "\\#N3042", i, nr); i <- i + 1

draw.vf.cell2("\\#J4943", "\\#N3271", i, nr); i <- i + 1

draw.vf.cell2("\\#J494a", "\\#N0923", i, nr); i <- i + 1

draw.vf.cell2("\\#J4954", "\\#N0017", i, nr); i <- i + 1

234 Japanese

draw.vf.cell2("\\#J495b", "\\#N1468", i, nr); i <- i + 1

draw.vf.cell2("\\#J4963", "\\#N2832", i, nr); i <- i + 1

draw.vf.cell2("\\#J4969", "\\#N4488", i, nr); i <- i + 1

draw.vf.cell2("\\#J4977", "\\#N5148", i, nr); i <- i + 1

draw.vf.cell2("\\#J497d", "\\#N1484", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a23", "\\#N4255", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a26", "\\#N0173", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a2a", "\\#N2857", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a2c", "\\#N0578", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a38", "\\#N2064", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a39", "\\#N4959", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a3f", "\\#N0026", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a42", "\\#N0589", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a44", "\\#N4945", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a46", "\\#N3461", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a50", "\\#N0511", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a51", "\\#N0306", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a52", "\\#N2842", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a55", "\\#N4661", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a6c", "\\#N2466", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a7c", "\\#N2084", i, nr); i <- i + 1

draw.vf.cell2("\\#J4a7d", "\\#N2082", i, nr); i <- i + 1

draw.vf.cell2("\\#J4b21", "\\#N2535", i, nr); i <- i + 1

draw.vf.cell2("\\#J4b26", "\\#N3749", i, nr); i <- i + 1

draw.vf.cell2("\\#J4b4c", "\\#N0751", i, nr); i <- i + 1

draw.vf.cell2("\\#J4b4f", "\\#N5404", i, nr); i <- i + 1

draw.vf.cell2("\\#J4b5c", "\\#N0096", i, nr); i <- i + 1

draw.vf.cell2("\\#J4b63", "\\#N5390", i, nr); i <- i + 1

draw.vf.cell2("\\#J4b68", "\\#N2467", i, nr); i <- i + 1

draw.vf.cell2("\\#J4b74", "\\#N0855", i, nr); i <- i + 1

draw.vf.cell2("\\#J4b7c", "\\#N0007", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c23", "\\#N0913", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c24", "\\#N0179", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c29", "\\#N1316", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c35", "\\#N2773", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c37", "\\#N3164", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c3e", "\\#N1170", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c40", "\\#N2110", i, nr); i <- i + 1

make.table2(nr, nc)

i <- 0

draw.title2("Kanji", nc)

draw.vf.cell2("\\#J4c4c", "\\#N5087", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c53", "\\#N2473", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c5a", "\\#N2170", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c5c", "\\#N3127", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c64", "\\#N4944", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c67", "\\#N4940", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c6b", "\\#N0298", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c70", "\\#N3168", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c72", "\\#N1598", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c74", "\\#N4074", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c78", "\\#N2233", i, nr); i <- i + 1

draw.vf.cell2("\\#J4c7d", "\\#N2534", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d2d", "\\#N3727", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d30", "\\#N2565", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d3a", "\\#N5030", i, nr); i <- i + 1

Japanese 235

draw.vf.cell2("\\#J4d3c", "\\#N1167", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d3e", "\\#N0408", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d4f", "\\#N2659", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d51", "\\#N2993", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d53", "\\#N3656", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d55", "\\#N4001", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d57", "\\#N4274", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d5b", "\\#N5012", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d63", "\\#N3680", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d68", "\\#N0202", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d6b", "\\#N5049", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d70", "\\#N3856", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d71", "\\#N0199", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d72", "\\#N1431", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d78", "\\#N3264", i, nr); i <- i + 1

draw.vf.cell2("\\#J4d7d", "\\#N2942", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e24", "\\#N4813", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e25", "\\#N5040", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e26", "\\#N5005", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e28", "\\#N0319", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e29", "\\#N3343", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e2e", "\\#N2576", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e32", "\\#N3191", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e33", "\\#N3471", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e35", "\\#N5440", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e3e", "\\#N0034", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e41", "\\#N3468", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e49", "\\#N3885", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e4c", "\\#N2141", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e4f", "\\#N0715", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e53", "\\#N2210", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e55", "\\#N2807", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e58", "\\#N4630", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e60", "\\#N5138", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e63", "\\#N0428", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e64", "\\#N0642", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e6d", "\\#N5048", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e6e", "\\#N5056", i, nr); i <- i + 1

draw.vf.cell2("\\#J4e73", "\\#N2438", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f22", "\\#N4702", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f27", "\\#N2750", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f29", "\\#N4561", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f37", "\\#N3683", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f3b", "\\#N0283", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f40", "\\#N4391", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f42", "\\#N3268", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f43", "\\#N4358", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f44", "\\#N0054", i, nr); i <- i + 1

draw.vf.cell2("\\#J4f47", "\\#N1710", i, nr); i <- i + 1

draw.vf.cell2("\\#J534c", "\\#N0973", i, nr); i <- i + 1

draw.vf.cell2("\\#J5879", "\\#N1794", i, nr); i <- i + 1

draw.vf.cell2("\\#J5960", "\\#N1942", i, nr); i <- i + 1

draw.vf.cell2("\\#J626f", "\\#N3200", i, nr); i <- i + 1

draw.vf.cell2("\\#J6446", "\\#N3458", i, nr); i <- i + 1

draw.vf.cell2("\\#J6647", "\\#N5083", i, nr); i <- i + 1

draw.vf.cell2("\\#J6d55", "\\#N4633", i, nr); i <- i + 1

236 jitter

par(oldpar)

jitter Add ‘Jitter’ (Noise) to Numbers jitter

Description

Add a small amount of noise to a numeric vector.

Usage

jitter(x, factor=1, amount = NULL)

Details

The result, say r, is r <- x + runif(n, -a, a) where n <- length(x) and a is the
amount argument (if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amount a to be added is either
provided as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <- factor * z/50 (same as S).

If amount is NULL (default), we set a <- factor * d/5 where d is the smallest difference
between adjacent unique (apart from fuzz) x values.

Value

jitter(x,...) returns a numeric of the same length as x, but with an amount of noise
added in order to break ties.

Author(s)

Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods
for Data Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

See Also

rug which you may want to combine with jitter.

Examples

round(jitter(c(rep(1,3), rep(1.2, 4), rep(3,3))), 3)

These two ‘fail’ with S-plus 3.x:

jitter(rep(0, 7))

jitter(rep(10000,5))

kappa 237

kappa Estimate the Condition Number kappa

Description

An estimate of the condition number of a matrix or of the R matrix of a QR decomposition,
perhaps of a linear fit. The condition number is defined as the ratio of the largest to the
smallest non-zero singular value of the matrix.

Usage

kappa(z, ...)
kappa.lm (z, ...)
kappa.default(z, exact = FALSE)
kappa.qr (z, ...)
kappa.tri (z, exact = FALSE, ...)

Arguments

z A matrix or a the result of qr or a fit from a class inheriting from "lm".

exact Should the result be exact?

Details

If exact = FALSE (the default) the condition number is estimated by a cheap approxima-
tion. Following S, this uses the LINPACK routine ‘dtrco.f’. However, in R (or S) the exact
calculation is also likely to be quick enough.

Value

The condition number, kappa, or an approximation if exact=FALSE.

Author(s)

B.D. Ripley

See Also

svd for the singular value decomposition and qr for the QR one.

Examples

kappa(x1 <- cbind(1,1:10))# 15.71

kappa(x1, exact=T) # 13.68

kappa(x2 <- cbind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

sv9 <- svd(h9 <- hilbert(9))$ d

kappa(h9)# pretty high!

kappa(h9, exact=TRUE) == max(sv9) / min(sv9)

kappa(h9, exact=TRUE) / kappa(h9) # .677 (i.e. rel.error = 32%)

238 kronecker

kronecker Kronecker Product of Arrays kronecker

Description

Computes the generalised kronecker product of two arrays, X and Y. kronecker(X, Y)
returns an array A with dimensions dim(X) * dim(Y).

Usage

kronecker(X, Y, FUN = "*", ...)
X %x% Y

Arguments

X vector or array.

Y vector or array.

FUN a function, possibly specified as character (string).

... optional arguments to be passed to FUN.

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with
dimensions of size one. A consists of submatrices constructed by taking X one term at a
time and expanding that term as FUN(x, Y, ...).

%x% is an .Alias for kronecker (where FUN is hardwired to "*").

Author(s)

Jonathan Rougier

References

Searle, Shayle R. (1982) Matrix Algebra Useful for Statistics; John Wiley and Sons.

See Also

outer on which kronecker is built and matmult for usual matrix multiplication.

Examples

simple scalar multiplication

(M <- matrix(1:6, ncol=2))

all(kronecker(4, M) == 4 * M)

(A <- matrix(0:3, ncol=2))

A %x% cbind(2:3)

Block diagonal array:

kronecker(diag(3), M)

all(kronecker(diag(3), M) == diag(3) %x% M)

labels 239

labels Find Labels from Object labels

Description

Find a suitable set of labels from an object for use in printing or plotting, for example.

Usage

labels(object, ...)
labels.default(object, ...)
labels.terms(object, ...)
labels.lm(object, ...)

Arguments

object Any R object: the function is generic.

Value

A character vector or list of such vectors. For a vector the results is the names or
seq(along=x), for a data frame or array it is the dimnames (with NULL expanded to
seq(len=d[i])), for a terms object it is the term labels and for an lm object it is the
term labels for estimable terms.

Author(s)

B.D. Ripley

lapply Apply a Function over a List or Vector lapply

Description

lapply returns a list of the same length as X. Each element of which is the result of applying
FUN to the corresponding element of X.

sapply is a “user-friendly” version of lapply also accepting vectors as X, and returning a
vector or array with dimnames if appropriate.

Usage

lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

240 Last.value

Arguments

X list or vector to be used.

FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted.

... optional arguments to FUN.

simplify logical; should the result be simplified to a vector if possible?

USE.NAMES logical; if TRUE and if X is character, use X as names for the result unless
it had names already.

See Also

apply, tapply.

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(T,F,F,T))

compute the list mean for each list element

lapply(x,mean)

median and quartiles for each list element

lapply(x, quantile, probs = 1:3/4)

sapply(x, quantile)

str(i39 <- sapply(3:9, seq))# list of vectors

sapply(i39, fivenum)

Last.value Value of Last Evaluated Expression Last.value

Description

Internal evaluation of an R expression is always assigned to .Last.value (in package:base)
before further processing (e.g. printing).

Usage

.Last.value

Note

Do not assign to .Last.value, because this will always shadow the one in package:base.

See Also

eval

Examples

gamma(1:15) # think of some intensive calculation...

fac14 <- .Last.value # keep them

library("eda") # returns invisibly

.Last.value # shows what library(.) above returned

layout 241

layout Specifying Complex Plot Arrangements layout

Description

layout divides the device up into as many rows and columns as there are in matrix mat,
with the column-widths and the row-heights specified in the respective arguments.

Usage

layout(mat,
widths = rep(1, dim(mat)[2]),
heights= rep(1, dim(mat)[1]),
respect= FALSE)

layout.show(n = 1)
lcm(w)

Arguments

mat a matrix object specifying the location of the next N figures on the output
device. Each value in the matrix must be 0 or a positive integer. If N is
the largest positive integer in the matrix, then the integers {1, . . . , N −1}
must also appear at least once in the matrix.

widths a vector of values for the widths of columns on the device. Relative widths
are specified with numeric values. Absolute widths (in centimetres) are
specified with the lcm() function (see examples).

heights a vector of values for the heights of rows on the device. Relative and
absolute heights can be specified, see widths above.

respect either a logical value or a matrix object. If the latter, then it must have
the same dimensions as mat and each value in the matrix must be either
0 or 1.

Details

Figure i is allocated a region composed from a subset of these rows and columns, based on
the rows and columns in which i occurs in mat.

The respect argument controls whether a unit column-width is the same physical meas-
urement on the device as a unit row-height.

layout.show(n) plots (part of) the current layout, namely the outlines of the next n figures.

lcm is a trivial function, to be used as the interface for specifying absolute dimensions for
the widths and heights arguments of layout().

Value

layout returns the number of figures, N , see above.

Author(s)

Paul R. Murrell

242 legend

References

Chapter 5 of Paul Murrell’s Ph.D. thesis.

See Also

par(mfrow=..), par(mfcol=..) and par(mfg=..)

Examples

def.par <- par()# save default, for resetting...

divide the device into two rows and two columns

allocate figure 1 all of row 1

allocate figure 2 the intersection of column 2 and row 2

layout(matrix(c(1,1,0,2), 2, 2, byrow=T))

show the regions that have been allocated to each plot

layout.show(2)

divide device into two rows and two columns

allocate figure 1 and figure 2 as above

respect relations between widths and heights

nf <- layout(matrix(c(1,1,0,2), 2, 2, byrow=T), respect=T)

layout.show(nf)

create single figure which is 5cm square

nf <- layout(matrix(1), widths=lcm(5), heights=lcm(5))

layout.show(nf)

##-- Create a scatterplot with marginal histograms -----

x <- rnorm(50)

y <- rnorm(50)

xhist <- hist(x, breaks=seq(-3,3,0.5), plot=F)

yhist <- hist(y, breaks=seq(-3,3,0.5), plot=F)

top <- max(c(xhist$counts, yhist$counts))

xrange <- c(-3,3)

yrange <- c(-3,3)

nf <- layout(matrix(c(2,0,1,3),2,2,T), c(3,1), c(1,3), T)

layout.show(nf)

par(mar=c(3,3,1,1))

plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")

par(mar=c(0,3,1,1))

barplot(xhist$counts, axes=F, ylim=c(0, top), space=0)

par(mar=c(3,0,1,1))

barplot(yhist$counts, axes=F, xlim=c(0, top), space=0, horiz=T)

par(def.par)#- reset to default

legend Add Legends to Plots legend

Description

This function can be used to add legends to plots. Note that a call to the function locator
can be used in place of the x and y arguments.

legend 243

Usage

legend(x, y, legend, fill, col = "black", lty, lwd = 1, pch,
bty = "o", bg = par("bg"), cex = 1, xjust = 0, yjust = 1,
x.intersp = 1, y.intersp = 1, adj = 0,
text.width = NULL, merge = do.lines && has.pch)

Arguments

x,y the x and y location of the legend. x can be a list with x and y components.

legend a vector of text values or an expression of length ≥ 1 to appear in the
legend.

fill if specified, this argument will cause boxes filled with the specified colors
to appear beside the legend text.

col the color of points or lines appearing in the legend.

lty,lwd the line types and widths for lines appearing in the legend. One of these
two must be specified for line drawing.

pch the plotting symbols appearing in the legend, either as vector of 1-
character strings, or one (multi character) string. Must be specified for
symbol drawing.

bty the type of box to be drawn around the legend.

bg the background color for the legend box.

cex character expansion factor relative to current par("cex").

xjust how the legend is to be justified relative to the legend x location. A value
of 0 means left justified, 0.5 means centered and 1 means right justified.

yjust the same as xjust for the legend y location.

x.intersp character interspacing factor for horizontal (x) spacing.

y.intersp the same for vertical (y) line distances.

adj numeric of length 1 or 2; the string adjustment for legend text. Useful for
y-adjustment when labels are plotmath expressions.

text.width the width of the legend text in x ("user") coordinates. Defaults to the
proper value computed by strwidth(legend).

merge logical; if TRUE, “merge” points and lines but not filled boxes. Defaults to
TRUE if there are points and lines.

Details

“Attribute” arguments such as col, pch, lty, etc, are recycled if necessary. merge is not.

See Also

plot, barplot which uses legend(), and text for more examples of math expressions.

Examples

Run the example in ‘?matplot’ or the following:

leg.txt <- c("Setosa Petals", "Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals")

y.leg <- c(4.5, 3, 2.1, 1.4, .7)

cexv <- c(1.2, 1, 4/5, 2/3, 1/2)

244 length

matplot(c(1,8), c(0,4.5), type = "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")

for (i in seq(cexv)) {

text(.9, y.leg[i], paste("cex=",formatC(cexv[i])),srt=90,adj=1, cex=.7)

legend(1, y.leg[i], leg.txt, pch = "sSvV", col = c(1, 3), cex = cexv[i])

}

‘merge = TRUE’ for merging lines & points:

x <- seq(-pi, pi, len = 65)

plot(x, sin(x), type = "l", ylim = c(-1.2, 1.8), col = 3, lty = 2)

points(x, cos(x), pch = 3, col = 4)

lines(x, tan(x), type = "b", lty = 1, pch = 4, col = 6)

title("legend(..... lty = c(2, -1, 1), pch = c(-1,3,4), merge = TRUE)",

cex.main = 1.1)

legend(-1, 1.9, c("sin", "cos", "tan"), col = c(3,4,6),

lty = c(2, -1, 1), pch = c(-1, 3, 4), merge = TRUE, bg=’gray90’)

##--- log scaled Examples ------------------------------

leg.txt <- c("a one", "a two")

par(mfrow = c(2,2))

for(ll in c("","x","y","xy")) {

plot(2:10, log=ll, main=paste("log = ’",ll,"’", sep=""))

abline(1,1)

lines(2:3,3:4, col=2) #

points(2,2, col=3) #

rect(2,3,3,2, col=4)

text(c(3,3),2:3, c("rect(2,3,3,2, col=4)",

"text(c(3,3),2:3,\"c(rect(...)\")"), adj = c(0,.3))

legend(list(x=2,y=8), legend = leg.txt, col=2:3, pch=1:2,

lty=1, merge=T)#, trace=T)

}

par(mfrow=c(1,1))

##-- Math expressions: ------------------------------

plot(x, sin(x), type="l", col = 2,xlab=expression(phi),ylab=expression(f(phi)))

abline(h=-1:1, v=pi/2*(-6:6), col="gray90")

lines(x, cos(x), col = 3, lty = 2)

ex.cs1 <- expression(plain(sin) * phi, paste("cos", phi))# 2 ways

legend(-3, .9, ex.cs1, lty=1:2, col=2:3, adj = c(0, .6))# adj y !

x <- rexp(100, rate = .5)

hist(x, main = "Mean and Median of a Skewed Distribution")

abline(v = mean(x), col=2, lty=2, lwd=2)

abline(v = median(x), col=3, lty=3, lwd=2)

ex12 <- expression(bar(x) == sum(over(x[i], n), i==1, n),

hat(x) == median(x[i], i==1,n))

legend(4.1, 30, ex12, col = 2:3, lty=2:3, lwd=2)

length Length of a Vector or List length

Description

Get or set the length of vectors (including lists).

levels 245

Usage

length(x)
length(x) <- n

Arguments

x a vector or list.

n an integer.

Details

The replacement form can be used to reset the length of a vector. If a vector is shortened,
extra values are discarded and when a vector is lengthened, it is padded out to its new
length with NAs.

Value

If x is (or can be coerced to) a vector or list, length returns the length of x. Otherwise,
length returns NA.

Examples

length(diag(4))# = 16 (4 x 4)

length(options())# 12 or more..

length(y ~ x1 + x2 + x3)# 3

length(expression(x, {y <- x^2; y+2}, x^y)) # 3

levels Levels Attributes levels

Description

levels provides access to the levels attribute of a variable. The first form returns the value
of the levels of its argument and the second sets the attribute.

The assignment form ("levels<-") of levels is a generic function and new methods can
be written for it. The most important method is that for factors:

Usage

levels(x)
levels(x) <- value

See Also

levels<-.factor, nlevels.

246 library

levels.factor Factor Levels Assignment levels.factor

Description

levels<- provides a way to alter the levels attribute of factor. value can be a vector of
character strings with length equal to the number of levels of x, or a named list specifying
how to rename the levels.

Usage

levels(x) <- value

See Also

factor, levels, levels<-, nlevels.

Examples

assign individual levels

x <- gl(2, 4, 8)

levels(x)[1] <- "low"

levels(x)[2] <- "high"

or as a group

y <- gl(2, 4, 8)

levels(y) <- c("low", "high")

combine some levels

z <- gl(3, 2, 12)

levels(z) <- c("A", "B", "A")

same, using a named list

z <- gl(3, 2, 12)

levels(z) <- list(A=c(1,3), B=2)

library Loading and Listing of Packages library

Description

library and require load add-on packages; provide allows code to register services that
packages provide. .First.lib is called when a package is loaded; .packages returns in-
formation about package availability. .path.package returns information about where a
package was loaded from.

library 247

Usage

library(package, help = NULL, lib.loc = .lib.loc,
character.only = FALSE, logical.return = FALSE,
warn.conflicts = TRUE)

require(package, quietly = FALSE, warn.conflicts = TRUE)
provide(package)

.First.lib(libname, pkgname)

.packages(all.available = FALSE, lib.loc = .lib.loc)

.path.package(package = .packages())

.lib.loc

.Library

.Provided

.Autoloaded

Arguments

package, help name or character string giving the name of a package.

lib.loc a character vector describing the location of R library trees to search
through.

character.only

a logical indicating whether package or help can be assumed to be char-
acter strings.

logical.return

logical. If it is TRUE, FALSE or TRUE is returned to indicate success.
warn.conflicts

logical. If TRUE, warnings are printed about conflicts from attaching
the new package, unless that package contains an object .conflicts.OK.

quietly a logical. If TRUE, a warning will not be printed if the package cannot be
found.

libname a character string giving the library directory where the package was
found.

pkgname a character string giving the name of the package.

all.available logical; if TRUE return character vector of all available packages in
lib.loc.

Details

library(package) and require(package) both load the package with name package.
require is designed for use inside other functions; it returns FALSE and optionally gives a
warning, rather than giving an error, if the package does not exist. Both functions check
and update the list of currently loaded packages and do not reload code that is already
loaded. require also checks the list .Provided.

provide allows code to register services that it provides. The argument is stored in the
list .Provided. provide returns FALSE if the package was already present in .Provided
or among the packages in search(). The main use for provide is when multiple packages
share code. This is most likely when the code implements features present in S(-PLUS) but
not in R.

248 library

If library is called with no package or help argument, it gives a list of all available
packages in lib.loc and invisibly returns their names (same as .packages(all = TRUE)).

library(help = somename) prints information on the package somename, typically by list-
ing the most important user level objects it contains.

.First.lib() is called when a package is loaded by library(). It is called with two
arguments, the name of the library tree where the package was found (i.e., the corresponding
element of lib.loc), and the name of the package (in that order). It is a good place to
put calls to library.dynam() which are needed when loading a package into this function
(don’t call library.dynam() directly, as this will not work if the package is not installed
in a “standard” location). .First.lib() is invoked after search() has been updated, so
pos.to.env(match("package:name"), search()) will return the environment in which
the package is stored.

.packages() returns the “base names” of the currently attached packages invisibly whereas

.packages(all.available = TRUE) gives (visibly) all packages available in the library
location path lib.loc.

.path.package returns the paths from which the named packages were loaded, or if none
were named, for all currently loaded packages. It will warn if the packages named are not
loaded.

.Autoloaded contains the “base names” of the packages for which autoloading has been
promised.

.Library is a character string giving the location of the default library, the“library”subdir-
ectory of R_HOME. .lib.loc is a character vector with the locations of all library trees that
R should use. It is initialized at startup from the environment variable R_LIBS (RLIBS as
used by older versions of R is no longer accepted) (which should be a semicolon-separated
list of directories at which R library trees are rooted) followed by .Library.

Value

library returns the list of loaded (or available) packages (or TRUE if logical.return is
TRUE). require returns a logical indicating whether the required package is available.

Author(s)

R core; Guido Masarotto for the all.available=TRUE part of .packages.

See Also

attach, detach, search, objects, autoload, library.dynam, data, install.packages.

Examples

.packages() # maybe just "base"

.packages(all = TRUE) # return all available as char.vector

library() # list all available packages

library(lib = .Library) # list all packages in the default library

library(help = eda) # documentation on package "eda"

library(eda) # load package "eda"

require(eda) # the same

.packages() # "eda", too

require(nonexistent) # FALSE

Suppose a package needs to call a shared library named "foo.EXT",

where "EXT" is the system-specific extension. Then you should use

.First.lib <- function(lib, pkg) {

library.dynam 249

library.dynam("foo", pkg, lib)

}

library.dynam Loading Shared Libraries library.dynam

Description

Load the specified file of compiled code if it has not been loaded already.

Usage

library.dynam(chname, package = .packages(), lib.loc = .lib.loc)

Arguments

chname a character string naming a shared library to load.

package a character vector with the names of packages to search through.

lib.loc a character vector describing the location of R library trees to search
through.

Details

This is designed to be used inside a package rather than at the command line, and should
really only be used inside .First.lib(). The system-specific extension for shared libraries
(‘.dd’ on Windows) should not be added.

Value

The .Dyn.libs vector with the names of packages which have used library.dynam(..) in
the current R session.

It is returned as invisible, unless the chname argument is missing.

Users should never set .Dyn.libs directly.

See Also

.First.lib, library, dyn.load, .packages, .lib.loc

Examples

library.dynam()# which packages have been ‘‘dynamically loaded’’

250 license

license The R License Terms license

Description

The license terms under which R. is distributed.

Details

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software – to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respons-
ibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

license 251

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DIS-
TRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The ”Program”, below, refers to any such program or work, and a ”work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term ”modification”.) Each licensee is addressed as ”you”.
Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.
1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.
b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.
c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement.)
These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

252 license

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distrib-
ute the Program is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive

license 253

copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and ”any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribu-
tion conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLIC-
ABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS”WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCID-
ENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABIL-
ITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA

254 license

OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C)
<year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with AB-
SOLUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you
are welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items–whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a ”copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which
makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do, use
the GNU Library General Public License instead of this License.

References

A copy of license is in ‘$R HOME/COPYING’ and you may also want to look at the R FAQ
in http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html.

http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html

LifeCycleSavings 255

LifeCycleSavings Intercountry Life-Cycle Savings Data LifeCycleSavings

Description

Data on the savings ratio 1960–1970.

Usage

data(LifeCycleSavings)

Format

A data frame with 50 observations on 5 variables.

[,1] sr numeric aggregate personal savings
[,2] pop15 numeric % of population under 15
[,3] pop75 numeric % of population over 75
[,4] dpi numeric real per-capita disposable income
[,5] ddpi numeric % growth rate of dpi

Details

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings
ratio (aggregate personal saving divided by disposable income) is explained by per-capita
disposable income, the percentage rate of change in per-capita disposable income, and
two demographic variables: the percentage of population less than 15 years old and the
percentage of the population over 75 years old. The data are averaged over the decade
1960–1970 to remove the business cycle or other short-term fluctuations.

Source

The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained the
data from Sterling (1977).

References

Sterling, Arnie (1977) Unpublished BS Thesis. Massachusetts Institute of Technology.

Belsley, D. A., E. Kuh. E. and Welsch, R. E. (1980) Regression Diagnostics. New York:
Wiley.

Examples

data(LifeCycleSavings)

pairs(LifeCycleSavings, panel = panel.smooth,

main = "LifeCycleSavings data")

fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

summary(fm1)

256 list

lines Add Connected Line Segments to a Plot lines

Description

A generic function taking coordinates given in various ways and joining the corresponding
points with line segments.

Usage

lines(x, ...)
lines.default(x, y=NULL, type="l", col=par("col"), ...)

Arguments

x, y coordinate vectors of points to join.

type character indicating the type of plotting; actually any of the types as in
plot(..).

col color to use.

... Further graphical parameters (see par) may also be supplied as argu-
ments, particularly, line type, lty and line width, lwd.

Details

The coordinates can be passed to lines in a plotting structure (a list with x and y com-
ponents), a time series, etc.

See Also

points, plot, and the underlying “primitive” plot.xy.

Examples

data(cars)

draw a smooth line through a scatter plot

plot(cars, main="Stopping Distance versus Speed")

lines(lowess(cars))

list Lists – Generic and Dotted Pairs list

Description

Functions to construct, coerce and check for all kinds of R lists.

list 257

Usage

list(...)
pairlist(...)

as.list(x)
as.list.default(x)
as.pairlist(x)

is.list(x)
is.pairlist(x)

alist(...)

Details

Since version 0.63, most lists in R internally are Generic Vectors, whereas traditional dotted
pair lists (as in LISP) are still available.

The arguments to list or pairlist are of the form value or tag=value. The functions
return a list composed of its arguments with each value either tagged or untagged, depending
on how the argument was specified.

alist is like list, except in the handling of tagged arguments with no value. These are
handled as if they described function arguments with no default (cf. formals), whereas
list simply ignores them.

as.list attempts to coerce its argument to list type. For functions, this returns the
concatenation of the list of formals arguments and the function body. For expressions, the
list of constituent calls is returned.

is.list returns TRUE iff its argument is a list or a pairlist of length> 0, whereas
is.pairlist only returns TRUE in the latter case.

An empty pairlist, pairlist() is the same as NULL. This is different from list().

See Also

vector(., mode="list"), c, for concatenation; formals.

Examples

data(cars)

create a plotting structure

pts <- list(x=cars[,1], y=cars[,2])

plot(pts)

Argument lists

f <- function()x

Note the specification of a "..." argument:

formals(f) <- al <- alist(x=, y=2, ...=)

f

str(al)

str(pl <- as.pairlist(ps.options()))

These are all TRUE:

is.list(pl) && is.pairlist(pl)

!is.null(list())

258 list.files

is.null(pairlist())

!is.list(NULL)

is.pairlist(pairlist())

is.null(as.pairlist(list()))

is.null(as.pairlist(NULL))

list.files List the Files in a Directory/Folder list.files

Description

This function produces a list containing the names of files in the named directory. dir is
an alias.

Usage

list.files(path, pattern=NULL, all.files=FALSE,
full.names=FALSE)

dir(path, pattern=NULL, all.files=FALSE,
full.names=FALSE)

Arguments

path a character vector of full path names.

pattern an optional regular expression. Only file names which match the regular
expression will be returned.

all.files a logical value. If FALSE, only the names of visible files are returned. If
TRUE, all file names will be returned.

full.names a logical value. If TRUE, the directory path is prepended to the file names.
If FALSE, only the file names are returned.

Value

A character vector containing the names of the files in the specified directories, or "" if there
were no files. If a path does not exist or is not a directory or is unreadable it is skipped,
with a warning.

The files are sorted in alphabetical order, on the full path if full.names = TRUE.

Note

File naming conventions are very platform dependent.

Author(s)

Ross Ihaka

Examples

list.files(R.home())

lm 259

lm Fitting Linear Models lm

Description

lm is used to fit linear models. It can be used to carry out regression, single stratum analysis
of variance and analysis of covariance (although aov may provide a more convenient interface
for these).

Usage

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE contrasts = NULL, offset = NULL, ...)

lm.fit (x, y, offset = NULL, method = "qr", tol = 1e-7, ...)
lm.wfit(x, y, w, offset = NULL, method = "qr", tol = 1e-7, ...)
lm.fit.null (x, y, method = "qr", tol = 1e-7, ...)
lm.wfit.null(x, y, w, method = "qr", tol = 1e-7, ...)

Arguments

formula a symbolic description of the model to be fit. The details of model spe-
cification are given below.

data an optional data frame containing the variables in the model. By default
the variables are taken from the environment which lm is called from.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

weights an optional vector of weights to be used in the fitting process. If specified,
weighted least squares is used with weights weights (that is, minimizing
sum(w*e 2̂)); otherwise ordinary least squares is used.

na.action a function which indicates what should happen when the data contain NAs.
The default is set by the na.action setting of options, and is na.fail
if that is unset. The “factory-fresh” default is na.omit.

model, x, y, qr

logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are re-
turned.

singular.ok logical, defaulting to TRUE. FALSE is not yet implemented.

method currently, only method="qr" is supported.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

offset this can be used to specify an a priori known component to be included
in the linear predictor during fitting. An offset term can be included in
the formula instead or as well, and if both are specified their sum is used.

tol tolerance for the qr decomposition. Default is 1e-7.

... currently disregarded.

260 lm.influence

Details

Models for lm are specified symbolically. A typical model has the form response ˜ terms
where response is the (numeric) response vector and terms is a series of terms which
specifies a linear predictor for response. A terms specification of the form first+second
indicates all the terms in first together with all the terms in second with duplicates
removed. A specification of the form first:second indicates the the set of terms ob-
tained by taking the interactions of all terms in first with all terms in second. The
specification first*second indicates the cross of first and second. This is the same as
first+second+first:second.

Value

lm returns an object of class "lm".

The functions summary and anova are used to obtain and print a summary and analysis
of variance table of the results. The generic accessor functions coefficients, effects,
fitted.values and residuals extract various useful features of the value returned by lm.

Note

Offsets specified by offset will not be included in predictions by predict.lm, whereas
those specified by an offset term in the formula will be.

See Also

summary.lm for summaries and anova.lm for the ANOVA table. aov for a different interface.

The generic functions coefficients, effects, residuals, fitted.values; lm.influence
for regression diagnostics, and glm for generalized linear models.

Examples

Annette Dobson (1990) "An Introduction to Generalized Linear Models".

Page 9: Plant Weight Data.

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2,10,20, labels=c("Ctl","Trt"))

weight <- c(ctl, trt)

anova(lm.D9 <- lm(weight ~ group))

summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept

summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(lm.D9, las = 1) # Residuals, Fitted, ...

par(opar)

lm.influence Regression Diagnostics lm.influence

Usage

lm.influence(lm.obj)

lm.influence 261

Arguments

lm.obj an object as returned by lm.

Details

The functions listed in See Also give a more direct way of computing a variety of regression
diagnostics.

Value

A list containing the following components:

hat a vector containing the diagonal of the “hat” matrix.

coefficients the change in the estimated coefficients which results when the i-th case
is dropped from the regression is contained in the i-th row of this matrix.

sigma a vector whose i-th element contains the estimate of the residual standard
deviation obtained when the i-th case is dropped from the regression.

Note

The coefficients returned by the R version of lm.influence differ from those computed
by S. Rather than returning the coefficients which result from dropping each case, we return
the changes in the coefficients. This is more directly useful in many diagnostic measures.

Note that cases with weights == 0 are dropped (contrary to the situation in S).

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

See Also

summary.lm for summary and related methods;
influence.measures,
hat for the hat matrix diagonals,
dfbetas, dffits, covratio, cooks.distance, lm.

Examples

Analysis of the life-cycle savings data given in Belsley, Kuh

and Welsch.

data(LifeCycleSavings)

summary(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi,

data = LifeCycleSavings),

corr = TRUE)

rstudent(lm.SR)

dfbetas(lm.SR)

dffits(lm.SR)

covratio(lm.SR)

262 lm.summaries

lm.summaries Accessing Linear Model Fits lm.summaries

Description

All these functions are methods for class lm or summary.lm and anova.lm objects.

Usage

anova(object, ...)
anovalist.lm(object, ..., test = NULL)
summary(object, correlation = FALSE)
coefficients(x) ; coef(x)
df.residual(x)
family(x)
formula(x)
fitted.values(x)
residuals(x, type = c("working", "pearson", "deviance"), ...)
weights(x)
plot(x)

print(summary.lm.obj, digits = max(3, getOption("digits") - 3),
symbolic.cor = p > 4,
signif.stars= getOption("show.signif.stars"), ...)

Arguments

object, x an object of class lm, usually, a result of a call to lm.

Details

print.summary.lm tries to be smart about formatting the coefficients, standard errors, etc.
and additionally gives “significance stars” if signif.stars is TRUE.

anova.lm produces an analysis of variance (anova) table.

The generic accessor functions coefficients, effects, fitted.values and residuals
can be used to extract various useful features of the value returned by lm.

Value

The function summary.lm computes and returns a list of summary statistics of the fitted
linear model given in lm.obj, using the components (list elements) "call" and "terms"
from its argument, plus

residuals the weighted residuals, the usual residuals rescaled by the square root of
the weights specified in the call to lm.

coefficients a p × 4 matrix with columns for the estimated coefficient, its standard
error, t-statistic and corresponding (two-sided) p-value.

sigma the square root of the estimated variance of the random error

σ̂2 =
1

n− p
∑
i

R2
i ,

where Ri is the i-th residual, residuals[i].

load 263

df degrees of freedom, a 3-vector (p, n− p, p∗).
fstatistic a 3-vector with the value of the F-statistic with its numerator and de-

nominator degrees of freedom.

r.squared R2, the “fraction of variance explained by the model”,

R2 = 1−
∑
iR

2
i∑

i(yi − y∗)2
,

where y∗ is the mean of yi if there is an intercept and zero otherwise.

adj.r.squared the above R2 statistic “adjusted”, penalizing for higher p.

cov.unscaled a p× p matrix of (unscaled) covariances of the β̂j , j = 1, . . . , p.

correlation the correlation matrix corresponding to the above cov.unscaled, if cor-
relation = TRUE is specified.

Warning

The comparison between two or more models by anova or anovalist.lm will only be valid
if they are fitted to the same dataset. This may be a problem if there are missing values
and R’s default of na.action = na.omit is used.

See Also

The model fitting function lm.

anova for the ANOVA table, coefficients, deviance, effects, fitted.values, glm for
generalized linear models, lm.influence for regression diagnostics, weighted.residuals,
residuals, residuals.glm, summary.

Examples

##-- Continuing the lm(.) example:

coef(lm.D90)# the bare coefficients

sld90 <- summary(lm.D90 <- lm(weight ~ group -1))# omitting intercept

sld90

coef(sld90)# much more

The 2 basic regression diagnostic plots [plot.lm(.) is preferred]

plot(resid(lm.D90), fitted(lm.D90))# Tukey-Anscombe’s

abline(h=0, lty=2, col = ’gray’)

qqnorm(residuals(lm.D90))

load Reload Saved Datasets load

Description

This function will reload the datasets written to a file with the function save.

Usage

load(filename, envir = sys.frame(sys.parent())))

264 locator

Arguments

filename a character string giving the name of the file to load.

envir the environment where the data should be loaded

See Also

save.

Examples

save all data

save(list = ls(), file= "all.Rdata")

restore the saved values to the current environment

load("all.Rdata")

restore the saved values to the global environment

load("all.Rdata",globalenv())

locator Graphical Input locator

Description

Reads the position of the graphics cursor when the (first) mouse button is pressed.

Usage

locator(n = 512, type = "n")

Arguments

n the maximum number of points to locate.

type One of "n", "p", "l" or "o". If "p" or "o" the points are plotted; if "l"
or "o" they are joined by lines.

Details

Unless the process is terminated prematurely by the user (see below) at most n positions
are determined.

The input process can be terminated prematurely by pressing any mouse button other than
the first.

The current graphics parameters apply just as if plot.default has been called with the
same value of type. The plotting of the points and lines is subject to clipping, but locations
outside the current clipping rectangle will be returned.

If the window is resized or hidden and then exposed before the input process has terminated,
any lines or points drawn by locator will disappear. These will reappear once the input
process has terminated and the window is resized or hidden and exposed again. This is
because the points and lines drawn by locator are not recorded in the device’s display list
until the input process has terminated.

log 265

Value

A list containing x and y components which are the coordinates of the identified points.

log Logarithms and Exponentials log

Description

log computes natural logarithms, log10 computes common (i.e., base 10) logarithms, and
log2 computes binary (i.e., base 2) logarithms. The general form log(x, base) computes
logarithms with base base (log10 and log2 are only special cases).

log1p(x) computes log1 +x accurately also for |x| � 1 (and less accurately when x = -1).

exp computes the exponential function.

Usage

log(x)
log(x, base)
log10(x)
log2(x)
exp(x)
log1p(x)

Arguments

x a numeric or complex vector.

base positive number. The base with respect to which logarithms are com-
puted. Defaults to e=exp(1).

Value

A vector of the same length as x containing the transformed values. log(0) gives -Inf
(when available).

See Also

Trig, Math, Arithmetic.

Examples

log(exp(3))

all.equal(log(1:10), log(1:10, exp(1)))

log10(30) == log(30, 10)

log10(1e7)# = 7

log2(2^pi) == 2^log2(pi)

Mod(pi - log(exp(pi*1i)) / 1i) < .Machine$double.eps

Mod(1+exp(pi*1i)) < .Machine$double.eps

x <- 10^-(1+2*1:9)

cbind(x, log(1+x), log1p(x))

266 logical

Logic Logical Operators Logic

Description

These operators act on logical vectors.

Usage

! x
x & y
x && y
x | y
x || y
xor(x, y)

Details

! indicates logical negation (NOT).

& and && indicate logical AND and | and || indicate logical OR. The shorter form performs
elementwise comparisons in much the same way as arithmetic operators. The longer form
evaluates left to right examining only the first element of each vector. Evaluation proceeds
only until the result is determined. The longer form is appropriate for programming control-
flow.

xor indicates elementwise exclusive OR.

See Also

TRUE or logical.

Examples

y <- 1 + (x <- rpois(50, lambda=1.5) / 4 - 1)

x[(x > 0) & (x < 1)] # all x values between 0 and 1

if (any(x == 0) || any(y == 0)) "zero encountered"

logical Logical Vectors logical

Description

Create or test for objects of type "logical", and the basic logical “constants”.

Usage

TRUE
FALSE
T; F

logical(length = 0)
as.logical(x)
is.logical(x)

Logistic 267

Details

TRUE and FALSE are part of the R language, where T and F are global variables set to these.
All four are logical(1) vectors.

Value

logical creates a logical vector of the specified length. Each element of the vector is equal
to FALSE.

as.logical attempts to coerce its argument to be of logical type. For factors, this uses
the levels (labels) and not the codes.

is.logical returns TRUE or FALSE depending on whether its argument is of logical type or
not.

Logistic The Logistic Distribution Logistic

Description

Density, distribution function, quantile function and random generation for the logistic
distribution with parameters location and scale.

Usage

dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations to generate.
location, scale

location and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.

The Logistic distribution with location = µ and scale = σ has distribution function

F (x) =
1

1 + e(x−µ)/σ

and density

f(x) =
1
σ

e(x−µ)/σ

(1 + e(x−µ)/σ)2

It is a long-tailed distribution with mean µ and variance π2/3σ2.

268 loglin

Value

dlogis gives the density, plogis gives the distribution function, qlogis gives the quantile
function, and rlogis generates random deviates.

Examples

eps <- 100 * .Machine$double.eps

x <- c(0:4, rlogis(100))

all.equal(plogis(x), 1 / (1 + exp(-x)), tol = eps)

all.equal(plogis(x, lower=F), exp(-x)/ (1 + exp(-x)), tol = eps)

all.equal(plogis(x, lower=F, log=T), -log(1 + exp(x)), tol = eps)

all.equal(dlogis(x), exp(x) * (1 + exp(x))^-2, tol = eps)

var(rlogis(4000, 0, s = 5))# approximately (+/- 3)

pi^2/3 * 5^2

loglin Fitting Log-Linear Models loglin

Description

loglin is used to fit log-linear models to multidimensional contingency tables by Iterative
Proportional Fitting.

Usage

loglin(table, margin, start = rep(1, length(table)), fit = FALSE,
eps = 0.1, iter = 20, param = FALSE, print = TRUE)

Arguments

table a contingency table to be fit, typically the output from table.
margin a list of vectors with the marginal totals to be fit.

(Hierarchical) log-linear models can be specified in term of these marginal
totals which give the “maximal” factor subsets contained in the model.
For example, in a three-factor model, list(c(1, 2), c(1, 3)) specifies
a model which contains parameters for the grand mean, each factor, and
the 1-2 and 1-3 interactions, respectively (but no 2-3 or 1-2-3 interaction),
i.e., a model where factors 2 and 3 are independent conditional on factor
1 (sometimes represented as ‘[12][13]’).
The names of factors (i.e., names(dimnames(table))) may be used rather
than numeric indices.

start a starting estimate for the fitted table. This optional argument is im-
portant for incomplete tables with structural zeros in table which should
be preserved in the fit. In this case, the corresponding entries in start
should be zero and the others can be taken as one.

fit a logical indicating whether the fitted values should be returned.
eps maximum deviation allowed between observed and fitted margins.
iter maximum number of iterations.
param a logical indicating whether the parameter values should be returned.
print a logical. If TRUE, the number of iterations and the final deviation are

printed.

loglin 269

Details

The Iterative Proportional Fitting algorithm as presented in Haberman (1972) is used for
fitting the model. At most iter iterations are performed, convergence is taken to occur
when the maximum deviation between observed and fitted margins is less than eps. All
internal computations are done in double precision; there is no limit on the number of
factors (the dimension of the table) in the model.

Assuming that there are no structural zeros, both the Likelihood Ratio Test and Pearson
test statistics have an asymptotic chisquare distribution with df degrees of freedom.

Package ‘MASS’ contains loglm, a front-end to loglin which allows the log-linear model to
be specified and fitted in a formula-based manner similar to that of other fitting functions
such as lm or glm.

Value

A list with the following components.

lrt the Likelihood Ratio Test statistic.

pearson the Pearson test statistic (X-squared).

df the degrees of freedom for the fitted model. There is no adjustment for
structural zeros.

margin list of the margins that were fit. Basically the same as the input margin,
but with numbers replaced by names where possible.

fit An array like table containing the fitted values. Only returned if fit is
TRUE.

param A list containing the estimated parameters of the model. The “standard”
constraints of zero marginal sums (e.g., zero row and column sums for a
two factor parameter) are employed. Only returned if param is TRUE.

Author(s)

Kurt Hornik

References

Haberman, S. J. (1972) Log-linear fit for contingency tables—Algorithm AS51. Applied
Statistics, 21, 218–225.

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

table

Examples

Currently no appropriate data sets are available.

270 Lognormal

Lognormal The Log Normal Distribution Lognormal

Description

Density, distribution function, quantile function and random generation for the log normal
distribution whose logarithm has mean equal to meanlog and standard deviation equal to
sdlog.

Usage

dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm(n, meanlog = 0, sdlog = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations to generate.
meanlog, sdlog

mean and standard deviation of the distribution on the log scale.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If meanlog or sdlog are not specified they assume the default values of 0 and 1 respectively.

The log normal distribution has density

f(x) =
1√

2πσx
e−(log(x)−µ)2/2σ2

where µ and σ are the mean and standard deviation of the logarithm.

Value

dlnorm gives the density, plnorm gives the distribution function, qlnorm gives the quantile
function, and rlnorm generates random deviates.

See Also

dnorm for the normal distribution.

Examples

dlnorm(1) == dnorm(0)

x <- rlnorm(1000) # not yet always :

all(abs(x - qlnorm(plnorm(x))) < 1e4 * .Machine$double.eps * x)

lower.tri 271

longley Longley’s Regression Data longley

Description

A macroeconomic data set which provides a well-known example for a highly collinear
regression.

Usage

data(longley)

Format

A data frame with 7 economical variables, observed yearly from 1947 to 1962 (n = 16).

GNP.deflator: GNP implicit price deflator (1954 = 100)
GNP: Gross National Producr.
Unemployed: number of unemployed
Armed.Forces: number of .. in the armed forces
Population: ‘noninstitutionalized’ population ≥ 14 years of age.
Year: the year (time).
Employed: number of people employed.

The regression lm(Employed ˜ .) is known to be highly collinear.

Source

J. W. Longley (1967) An appraisal of least-squares programs from the point of view of the
user. Journal of the American Statistical Association, 62, 819–841.

Examples

give the data set in the form it is used in S-plus:

data(longley)

longley.x <- data.matrix(longley[, 1:6])

longley.y <- longley[, "Employed"]

pairs(longley, main = "longley data")

summary(fm1 <- lm(Employed ~ ., data = longley))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par(opar)

lower.tri Lower and Upper Triangular Part of a Matrix lower.tri

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower
or upper triangle.

272 lowess

Usage

lower.tri(x, diag = FALSE)
upper.tri(x, diag = FALSE)

Arguments

x a matrix.

diag logical. Should the diagonal be included?

See Also

diag, matrix.

Examples

m2 <- ma <- matrix(1:20, 4, 5)

m2[lower.tri(m2)] <- NA

m2

all(lower.tri(ma) == !upper.tri(ma, diag=TRUE))

lowess Scatter Plot Smoothing lowess

Description

This function performs the computations for the LOWESS smoother (see the reference
below). lowess returns a list containing components x and y which give the coordinates of
the smooth. The smooth should be added to a plot of the original points with the function
lines.

Usage

lowess(x, y, f=2/3, iter=3, delta=.01*diff(range(x)))

Arguments

x, y vectors giving the coordinates of the points in the scatter plot. Alternat-
ively a single plotting structure can be specified.

f the smoother span. This gives the proportion of points in the plot which
influence the smooth at each value. Larger values give more smoothness.

iter the number of robustifying iterations which should be performed. Using
smaller values of iter will make lowess run faster.

delta values of x which lie within delta of each other replaced by a single value
in the output from lowess.

References

Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J.
Amer. Statist. Assoc. 74, 829–836.

Cleveland, W. S. (1981) LOWESS: A program for smoothing scatterplots by robust locally
weighted regression. The American Statistician, 35, 54.

ls 273

Examples

data(cars)

plot(cars, main = "lowess(cars)")

lines(lowess(cars), col = 2)

lines(lowess(cars, f=.2), col = 3)

legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

ls List Objects ls

Description

ls and objects return a vector of character strings giving the names of the objects in the
specified environment. When invoked with no argument at the top level prompt, ls shows
what data sets and functions a user has defined. When invoked with no argument inside a
function, ls returns the names of the functions local variables. This is useful in conjunction
with browser.

Usage

ls(name, pos= -1, envir=pos.to.env(pos),
all.names=FALSE, pattern)

objects(name, pos= -1, envir=pos.to.env(pos),
all.names=FALSE, pattern)

Arguments

name the name of an attached object appearing in the vector of names returned
by search.

pos the index of an attached object in the list returned by search. Defaults
to the current environment.

envir an evaluation environment. Defaults to the one corresponding to pos.

all.names a logical value. If TRUE, all object names are returned. If FALSE, names
which begin with a “.” are omitted.

pattern an optional regular expression, see grep. Only names matching pattern
are returned.

See Also

apropos (or find) for finding objects in the whole search path; grep for more details on
“regular expressions”; class, methods, etc. for object-oriented programming.

Examples

.Ob <- 1

ls(pat="O")

ls(pat="O", all = T) # also shows ".[foo]"

shows an empty list because inside myfunc no variables are defined

myfunc <- function() {ls()}

myfunc()

274 ls.diag

define a local variable inside myfunc

myfunc <- function() {y <- 1; ls()}

myfunc() # shows "y"

ls.diag Compute Diagnostics for ‘lsfit’ Regression Results ls.diag

Description

Computes basic statistics, including standard errors, t- and p-values for the regression
coefficients.

Usage

ls.diag(ls.out)

Arguments

ls.out Typically the result of lsfit()

Value

A list with the following numeric components.

std.dev The standard deviation of the errors, an estimate of σ.
hat diagonal entries hii of the hat matrix H
std.res standardized residuals
stud.res studentized residuals
cooks Cook’s distances
dfits DFITS statistics
correlation correlation matrix
std.err standard errors of the regression coefficients
cov.scaled Scaled covariance matrix of the coefficients
cov.unscaled Unscaled covariance matrix of the coefficients

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

See Also

hat for the hat matrix diagonals, ls.print, lm.influence, summary.lm, anova.

Examples

##-- Using the same data as the lm(.) example:

lsD9 <- lsfit(x = as.numeric(gl(2, 10, 20)), y = weight)

dlsD9 <- ls.diag(lsD9)

str(dlsD9, give.attr=FALSE)

abs(1 - sum(dlsD9$hat) / 2) < 10*.Machine$double.eps # sum(h.ii) = p

plot(dlsD9$hat, dlsD9$stud.res, xlim=c(0,0.11))

abline(h = 0, lty = 2, col = "lightgray")

ls.print 275

ls.print Print ‘lsfit’ Regression Results ls.print

Description

Computes basic statistics, including standard errors, t- and p-values for the regression
coefficients and prints them if print.it is TRUE.

Usage

ls.print(ls.out, digits = 4, print.it = TRUE)

Arguments

ls.out Typically the result of lsfit()

digits The number of significant digits used for printing

print.it a logical indicating whether the result should also be printed

Value

A list with the components

summary The ANOVA table of the regression

coef.table matrix with regression coefficients, standard errors, t- and p-values

Note

Usually, you’d rather use summary(lm(...)) and anova(lm(...)) for obtaining similar
output.

See Also

ls.diag, lsfit, also for examples; lm, lm.influence which usually are preferable.

lsfit Find the Least Squares Fit lsfit

Description

The least squares estimate of β in the model

Y = Xβ + ε

is found.

Usage

lsfit(x, y, wt, intercept=TRUE, tolerance=1e-07, yname=NULL)

276 Machine

Arguments

x a matrix whose rows correspond to cases and whose columns correspond
to variables.

y the responses, possibly matrix valued if you want to fit multiple left hand
sides.

wt an optional vector of weights for performing weighted least squares.

intercept whether or not an intercept term should be used.

tolerance the tolerance to be used in the matrix decomposition.

yname an unused parameter for compatibility.

Details

If weights are specified then a weighted least squares is performed with the weight given to
the j th case specified by the j th entry in wt.

If any observation has a missing value in any field, that observation is removed before the
analysis is carried out. This can be quite inefficient if there is a lot of missing data.

The implementation is via a modification of the LINPACK subroutines which allow for
multiple left-hand sides.

Value

A list with the following named components:

coef the least squares estimates of the coefficients in the model (stated below).

residuals residuals from the fit.

intercept indicates whether an intercept was fitted.

qr the QR decomposition of the design matrix.

See Also

lm which usually is preferable; ls.print, ls.diag.

Examples

##-- Using the same data as the lm(.) example:

lsD9 <- lsfit(x = codes(gl(2,10)), y = weight)

ls.print(lsD9)

Machine Machine Characteristics Machine

Description

Machine() returns information on numeric characteristics of the machine R is running on,
such as the largest double or integer and the machine’s precision.

.Machine is a variable holding this information.

Machine 277

Usage

Machine()
.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR.

Value

Machine() returns a list with components (for simplicity, the prefix “double” is omitted in
the explanations)

double.eps the smallest positive floating-point number x such that 1 + x != 1. It
equals base ûlp.digits if either base is 2 or rounding is 0; otherwise,
it is (base ûlp.digits) / 2.

double.neg.eps

a small positive floating-point number x such that 1 - x != 1. It
equals base n̂eg.ulp.digits if base is 2 or round is 0; otherwise, it
is (base n̂eg.ulp.digits) / 2. As neg.ulp.digits is bounded below
by -(digits + 3), neg.eps may not be the smallest number that can
alter 1 by subtraction.

double.xmin the smallest non-vanishing normalized floating-point power of the radix,
i.e., base m̂in.exp.

double.xmax the largest finite floating-point number. Typically, it is equal to (1 -
neg.eps) * base m̂ax.exp, but on some machines it is only the second,
or perhaps third, largest number, being too small by 1 or 2 units in the
last digit of the significand.

double.base the radix for the floating-point representation

double.digits the number of base digits in the floating-point significand
double.rounding

the rounding action.
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;
2 if floating-point addition rounds in the IEEE style;
3 if floating-point addition chops, and there is partial underflow;
4 if floating-point addition rounds, but not in the IEEE style, and there
is partial underflow;
5 if floating-point addition rounds in the IEEE style, and there is partial
underflow

double.guard the number of guard digits for multiplication with truncating arithmetic.
It is 1 if floating-point arithmetic truncates and more than digits base
base digits participate in the post-normalization shift of the floating-point
significand in multiplication, and 0 otherwise.

double.ulp.digits

the largest negative integer i such that 1 + base î != 1, except that it
is bounded below by -(digits + 3).

double.neg.ulp.digits

the largest negative integer i such that 1 - base î != 1, except that it
is bounded below by -(digits + 3).

278 machine

double.exponent

the number of bits (decimal places if base is 10) reserved for the repres-
entation of the exponent (including the bias or sign) of a floating-point
number

double.min.exp

the largest in magnitude negative integer i such that base ˆ i is positive
and normalized.

double.max.exp

the smallest positive power of base that overflows.

integer.max the largest integer which can be represented.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters.
Transactions on Mathematical Software, 14, 4, 303–311.

See Also

machine to determine the computer type which R is running on.

Examples

str(Machine())

1 + .Machine$double.eps != 1

1 + .5* .Machine$double.eps == 1

machine Determine the Machine R is Running On machine

Description

This function returns a string which specifies what kind of environment R is being run in.

Usage

machine()

See Also

Machine for the computer’s characteristics in arithmetics.

Examples

machine()# to see yours

if (machine() == "Macintosh")

cat("You are using a Macintosh computer\n")

mad 279

mad Median Absolute Deviation mad

Description

Compute a scale estimate based on the median absolute deviation.

Usage

mad(x, center, constant = 1.4826, na.rm = FALSE)

Arguments

x a numeric vector.

center Optionally, the centre: defauls to the median.

constant scale factor.

na.rm if TRUE then NA values are stripped from x before computation takes place.

Details

The actual value calculated is constant * (median(abs(x - center))) with the default
value of center being median(x).

The default constant = 1.4826 (approximately 1/Φ−1(3
4) = 1/qnorm(3/4)) ensures con-

sistency, i.e.,

E[mad(X1, . . . , Xn)] = σ

for Xi distributed as N(µ, σ2) and large n.

If na.rm is TRUE then NA values are stripped from x before computation takes place. If this
is not done then an NA value in x will cause mad to return NA.

See Also

IQR which is simpler but less robust, median, var.

Examples

mad(c(1:9))

print(mad(c(1:9), constant=1)) ==

mad(c(1:8,100), constant=1) # = 2 ; TRUE

280 mahalanobis

mahalanobis Mahalanobis Distance mahalanobis

Description

Returns the Mahalanobis distance of all rows in x and the vector µ =center with respect
to Σ =cov. This is (for vector x) defined as

D2 = (x− µ)′Σ−1(x− µ)

Usage

mahalanobis(x, center, cov, inverted=FALSE)

Arguments

x vector or matrix of data with, say, p columns.

center mean vector of the distribution or second data vector of length p.

cov covariance matrix (p× p) of the distribution.

inverted logical. If TRUE, cov is supposed to contain the inverse of the covariance
matrix.

Author(s)

Friedrich Leisch

See Also

cov, var

Examples

ma <- cbind(1:6, 1:3)

(S <- var(ma))

mahalanobis(c(0,0), 1:2, S)

x <- matrix(rnorm(100*3), ncol = 3)

all(mahalanobis(x, 0, diag(ncol(x)))

== apply(x*x, 1, sum)) ##- Here, D^2 = usual Euclidean distances

Sx <- cov(x)

D2 <- mahalanobis(x, apply(x, 2, mean), Sx)

plot(density(D2, bw=.5), main="Mahalanobis distances, n=100, p=3"); rug(D2)

qqplot(qchisq(ppoints(100), df=3), D2,

main = expression("Q-Q plot of Mahalanobis" * ~D^2 *

" vs. quantiles of" * ~ chi[3]^2))

abline(0, 1, col = ’gray’)

make.function.html 281

make.function.html Update HTML documentation files make.function.html

Description

Functions to re-create the HTML documentation files to reflect all installed packages.
make.function.html creates the alphabetical list of functions, make.packages.html cre-
ates the list of packages, and make.search.html creates the database used by the Java
search engine. link.html.help runs all three.

Usage

link.html.help(verbose=FALSE)
make.function.html()
make.packages.html()
make.search.html()

Arguments

verbose logical. If true, print out a message. For use to explain a delay when
called from other functions.

Value

No value is returned. The file R_HOME\doc\html\function.html,
R_HOME\doc\html\packages.html or R_HOME\doc\html\search\index.txt is (re-
)created.

Note

You will need write permission in the R_HOME\doc\html directory.

Author(s)

Guido Masarotto and Brian Ripley

make.link Create a Link for GLM families make.link

Description

This function is used with the family functions in glm(). Given a link, it returns a link
function, an inverse link function, the derivative dµ/dη and a function for domain checking.

Usage

make.link(link)

Arguments

link character or numeric; one of "logit", "probit", "cloglog", "iden-
tity", "log", "sqrt", "1/mu 2̂", "inverse", or number, say λ resulting
in power link = µλ.

282 make.names

Value

A list with components

linkfun Link function function(mu)

linkinv Inverse link function function(eta)

mu.eta Derivative function(eta) dµ/dη

valideta function(eta){ TRUE if all of eta is in the domain of linkinv }.

See Also

glm, family.

Examples

str(make.link("logit"))

l2 <- make.link(2)

l2$linkfun(0:3)# 0 1 4 9

l2$mu.eta(eta= 1:2)#= 1/(2*sqrt(eta))

make.names Make Legal R Names Out of Strings make.names

Description

Make legal R names out of every names[i] string. Invalid characters are translated to ".".

Usage

make.names(names, unique=FALSE)

Arguments

names character (vector) to be coerced to proper names.
unique logical; if TRUE, the resulting strings are unique. This may be desired for,

e.g., column names.

Value

character vector of same length as names with each changed to a legal name.

See Also

names,character,data.frame

Examples

make.names(c("a and b", "a_and_b"), unique=TRUE)#-> "a.and.b" "a.and.b1"

all(make.names(letters) == letters)# TRUE

data(state)

state.name[make.names(state.name) != state.name]# those 10 with a space

make.socket 283

make.socket Create a Socket Connection make.socket

Description

With server = FALSE attempts to open a client socket to the specified port and host.
With server = TRUE listens on the specified port for a connection and then returns a
server socket. It is a good idea to use on.exit to ensure that a socket is closed, as you only
get 64 of them.

Usage

make.socket(host = "localhost", port, fail = TRUE, server = FALSE)
print.socket(socket)

Arguments

host name of remote host

port port to connect to/listen on

fail failure to connect is an error?

server a server socket?

Value

An object of class "socket".

socket socket number. This is for internal use

port port number of the connection

host name of remote computer

Warning

I don’t know if the connecting host name returned when server = TRUE can be trusted. I
suspect not.

Author(s)

Thomas Lumley

References

Adapted from Luke Tierney’s code for XLISP-Stat, in turn based on code from Robbins
and Robbins ”Practical UNIX Programming”

See Also

close.socket, read.socket

284 margin.table

Examples

daytime <- function(host = "localhost"){

a <- make.socket(host, 13)

on.exit(close.socket(a))

read.socket(a)

}

daytime() ## only works if your computer runs this service

daytime("ntp.demon.co.uk")

make.tables Create model.tables make.tables

Description

These are support functions for (the methods of) model.tables and probably not much of
use otherwise.

Usage

make.tables.aovproj (proj.cols, mf.cols, prjs, mf,
fun = "mean", prt = FALSE, ...)

make.tables.aovprojlist(proj.cols, strata.cols, model.cols, projections,
model, eff, fun = "mean", prt = FALSE, ...)

See Also

model.tables

margin.table Compute table margin margin.table

Description

Compute the sum of table entries over a given index.

Usage

margin.table(x, margin)

Arguments

x an array

margin index number (1 for rows, etc.)

Details

This is really just apply(x,margin,sum) packaged up for newbies.

Value

The relevant marginal table.

mat.or.vec 285

Author(s)

Peter Dalgaard

Examples

m<-matrix(1:4,2)

margin.table(m,1)

margin.table(m,2)

mat.or.vec Create a Matrix or a Vector mat.or.vec

Description

mat.or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of
length nr if nc equals 1.

Usage

mat.or.vec(nr, nc)

Examples

mat.or.vec(3, 1)

mat.or.vec(3, 2)

match Value Matching match

Description

match: If x[i] is found to equal table[j] then the value returned in the i-th position of
the return value is j. If no match is found, the value is nomatch.

%in%: A utility function, currently defined as
"%in%" <- function(x, table) match(x, table, nomatch = 0) > 0 allowing an intu-
itive usage and returning a logical vector of length length(x).

Usage

match(x, table, nomatch=NA)
x %in% table

Arguments

x the values to be matched.

table the values to be matched against.

nomatch the value to be returned in the case when no match is found.

286 match.arg

See Also

pmatch and charmatch for (partial) string matching, match.arg, etc for function argument
matching.

Examples

The intersection of two sets :

intersect <- function(x, y) y[match(x, y, nomatch = 0)]

intersect(1:10,7:20)

1:10 %in% c(1,3,5,9)

sstr <- c("c","ab","B","bba","c","@","bla","a","Ba","%")

sstr[sstr %in% c(letters,LETTERS)]

"%w/o%" <- function(x,y) x[!x %in% y] #-- x without y

(1:10) %w/o% c(3,7,12)

match.arg Argument Verification Using Partial Matching match.arg

Description

match.arg matches arg against a table of candidate values as specified by choices.

Usage

match.arg(arg)
match.arg(arg, choices)

Arguments

arg a character string

choices a character vector of candidate values

Details

In the one-argument form match.arg(arg), the choices are obtained from a default setting
for the formal argument arg of the function from which match.arg was called.

Matching is done using pmatch, so arg may be abbreviated.

Value

The unabbreviated version of the unique partial match if there is one; otherwise, an error
is signalled.

See Also

pmatch, match.fun, match.call.

match.call 287

Examples

Extends the example for ‘switch’

center <- function(x, type = c("mean", "median", "trimmed")) {

type <- match.arg(type)

switch(type,

mean = mean(x),

median = median(x),

trimmed = mean(x, trim = .1))

}

x <- rcauchy(10)

center(x, "t") # Works

center(x, "med") # Works

center(x, "m") # Error

match.call Argument Matching match.call

Description

match.call returns a call in which all of the arguments are specified by their names. The
most common use is to get the call of the current function, with all arguments named.

Usage

match.call(definition = NULL, call = sys.call(sys.parent()),
expand.dots = TRUE)

Arguments

definition a function, by default the function from which match.call is called.

call an unevaluated call to the function specified by definition, as generated
by call.

expand.dots logical. Should arguments matching ... in the call be included or left as
a ... argument?

Value

An object of class call.

See Also

call, pmatch, match.arg, match.fun.

Examples

match.call(get, call("get", "abc", i = FALSE, p = 3))

-> get(x = "abc", pos = 3, inherits = FALSE)

fun <- function(x, lower = 0, upper = 1) {

structure((x - lower) / (upper - lower), CALL = match.call())

}

fun(4 * atan(1), u = pi)

288 match.fun

match.fun Function Verification for “Function Variables” match.fun

Description

When called inside functions that take a function as argument, extract the desired function
object while avoiding undesired matching to objects of other types.

Usage

match.fun(FUN, descend = TRUE)

Arguments

FUN item to match as function.

descend logical; control whether to search past non-function objects.

Details

match.fun is not intended to be used at the top level since it will perform matching in the
parent of the caller.

If FUN is a function, it is returned. If it is a symbol or a character vector of length one,
it will be looked up using get in the environment of the parent of the caller. If it is of
any other mode, it is attempted first to get the argument to the caller as a symbol (using
substitute twice), and if that fails, an error is declared.

If descend = TRUE, match.fun will look past non-function objects with the given name;
otherwise if FUN points to a non-function object then an error is generated.

This is now used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

Bugs

The descend argument is a bit of misnomer and probably not actually needed by anything.
It may go away in the future.

It is impossible to fully foolproof this. If one attaches a list or data frame containing a
character object with the same name of a system function, it will be used.

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg, get

matmult 289

Examples

Same as get("*"):

match.fun("*")

Overwrite outer with a vector

outer <- 1:5

match.fun(outer, descend = FALSE) #-> Error: not a function

match.fun(outer) # finds it anyway

is.function(match.fun("outer")) # as well

matmult Matrix Multiplication matmult

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be
coerced to a either a row or column matrix to make the two arguments conformable. If
both are vectors it will return the inner product.

Usage

a%*%b

Value

The matrix product. Use drop to get rid of

See Also

matrix, Arithmetic, diag.

Examples

x <- 1:4

x%*%x # scalar ("inner") product (1 x 1 matrix)

drop(.Last.value)# as scalar

y <- diag(x)

z <- matrix(1:12,ncol=3,nrow=4)

y%*%z

y%*%x

x%*%z

290 matplot

matplot Plot Columns of Matrices matplot

Description

Plot the columns of one matrix against the columns of another.

Usage

matplot(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL, col = 1:6,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
..., add = FALSE)

matpoints(x, y, lty = 1:5, lwd = 1, pch = NULL, col = 1:6)
matlines(x, y, lty = 1:5, lwd = 1, pch = NULL, col = 1:6)

Arguments

x,y vectors or matrices of data for plotting. The number of rows should match.
If one of them are missing, the other is taken as y and an x vector of 1:n
is used. Missing values (NAs) are allowed.

type character string, telling which type of plot ("p", points; "l", lines; "b",
both; "o", overplotted both; "n", none; or "h", high-density) should be
done for each column of y. The first character of type defines the first
plot, the second character the second, etc. Characters in type are cycled
through; e.g., "pl" alternately plots points and lines.

lty,lwd vector of line types and widths. The first element is for the first column,
the second element for the second column, etc., even if lines are not plotted
for all columns. Line types will be used cyclically until all plots are drawn.

pch character string (length 1 vector) or vector of 1-character strings for
plotting-characters. The first character is the plotting-character for the
first plot, the second for the second, etc. The default is the digits (1
through 9, 0) then the letters.

col vector of colors. Colors are used cyclically.
xlim, ylim ranges of x and y axes, as in plot.
xlab, ylab titles for x and y axes, as in plot.
... Graphical parameters (see par) may also be supplied as arguments to this

function. In addition, the high-level graphics control arguments described
under par and the arguments to title may be supplied to this function.

add logical. If TRUE, plots are added to current one, using points and lines.
verbose logical. If TRUE, write one line of what is done.

Details

Points involving missing values are not plotted.

The first column of x is plotted against the first column of y, the second column of x
against the second column of y, etc. If one matrix has fewer columns, plotting will cycle
back through the columns again. (In particular, either x or y may be a vector, against
which all columns of the other argument will be plotted.)

Because plotting symbols are drawn with lines and because these functions may be changing
the line style, you should probably specify lty=1 when using plotting symbols.

matrix 291

Side Effects

Function matplot generates a new plot; matpoints and matlines add to the current one.

See Also

plot, points, lines, matrix, par.

Examples

matplot((-4:5)^2, main = "Quadratic")

sines <- outer(1:20, 1:4, function(x, y) sin(x / 20 * pi * y))

matplot(sines, type = "o", col = rainbow(ncol(sines)))

x <- 0:100/100

matplot(x, outer(x, 1:8, function(x, k) sin(k * pi * x)),

type = "l", col = 1:8, ylim = c(-2,2))

data(iris) # is data.frame with ‘Species’ factor

table(iris$Species)

iS <- iris$Species == "setosa"

iV <- iris$Species == "versicolor"

op <- par(bg = "bisque")

matplot(c(1, 8), c(0, 4.5), type= "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")

matpoints(iris[iS,c(1,3)], iris[iS,c(2,4)], pch = "sS", col = c(2,4))

matpoints(iris[iV,c(1,3)], iris[iV,c(2,4)], pch = "vV", col = c(2,4))

legend(1, 4, c(" Setosa Petals", " Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals"),

pch = "sSvV", col = rep(c(2,4), 2))

nam.var <- colnames(iris)[-5]

nam.spec <- as.character(iris[1+50*0:2, "Species"])

iris.S <- array(NA, dim = c(50,4,3), dimnames = list(NULL, nam.var, nam.spec))

for(i in 1:3) iris.S[,,i] <- data.matrix(iris[1:50+50*(i-1), -5])

matplot(iris.S[,"Petal.Length",], iris.S[,"Petal.Width",], pch="SCV",

col = rainbow(3, start = .8, end = .1),

sub = paste(c("S", "C", "V"), dimnames(iris.S)[[3]],

sep = "=", collapse= ", "),

main = "Fisher’s Iris Data")

matrix Matrices matrix

Description

matrix creates a matrix from the given set of values.
as.matrix attempts to turn its argument into a matrix.
is.matrix tests if its argument is a (strict) matrix.

Usage

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
as.matrix(x)
is.matrix(x)

292 mean

Arguments

data an optional data vector.

nrow the desired number of rows

ncol the desired number of columns

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise
the matrix is filled by rows.

dimnames A dimnames attribute for the matrix: a list of length 2.

x an R object.

Details

If either of nrow or ncol is not given, an attempt is made to infer it from the length of
data and the other parameter.

is.matrix returns TRUE if x is a matrix (i.e., it not a data.frame and has a dim attribute
of length 2) and FALSE otherwise.

See Also

data.matrix.

Examples

is.matrix(as.matrix(1:10))

data(warpbreaks)

!is.matrix(warpbreaks)# data.frame, NOT matrix!

str(warpbreaks)

str(as.matrix(warpbreaks))#using as.matrix.data.frame(.) method

mean Arithmetic Mean mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean(x, trim=0, na.rm=FALSE)

Arguments

x a numeric vector containing the values whose mean is to be computed.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x
before the mean is computed.

na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.

median 293

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim
observations deleted from each end before the mean is computed.

See Also

weighted.mean

Examples

x <- c(0:10, 50)

xm <- mean(x)

c(xm, mean(x, trim = .10))

median Median Value median

Description

Compute the sample median of the vector of values given as its argument.

Usage

median(x, na.rm=FALSE)

Arguments

x a numeric vector containing the values whose median is to be computed.

na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.

See Also

quantile for general quantiles.

Examples

median(1:4)# = 2.5 [even number]

median(c(1:3,100,1000))# = 3 [odd, robust]

294 Memory

Memory Memory Available for Data Storage Memory

Description

Use command line options to set the memory available for R.

Usage

Rgui --vsize=v --nsize=n
Rterm --vsize=v --nsize=n

Arguments

v Use v bytes of heap memory

n Use n cons cells.

Details

R (currently) uses a static memory model. This means that when it starts up, it asks the
operating system to reserve a fixed amount of memory for it. The size of this chunk cannot
be changed subsequently. Hence, it can happen that not enough memory was allocated,
e.g., when trying to read large data sets into R.

In these cases, you should restart R (after saving your current workspace) with more memory
available, using the command line options --nsize and --vsize. To understand these op-
tions, one needs to know that R maintains separate areas for fixed and variable sized objects.
The first of these is allocated as an array of “cons cells” (Lisp programmers will know what
they are, others may think of them as the building blocks of the language itself, parse trees,
etc.), and the second are thrown on a “heap” of “Vcells” (see gc()["Vcells","total"]) of
8 bytes each. Effectively, the input v is therefore truncated to the nearest multiple of 8.

The --nsize option can be used to specify the number of cons cells (each occupying 20
bytes on a 32-bit machine) which R is to use (the default is 250000), and the --vsize option
to specify the size of the vector heap in bytes (the default is 6 MB). Both options must be
integers or integers ending with M, K, or k meaning Mega (220 = 1048576), (computer) Kilo
(210 = 1024), or regular kilo (1000). (The minimum allowed values are 200000 and 2M.)

E.g., to read in a table of 10000 observations on 40 numeric variables, R --vsize=10M
should do; for sourcing a large file, you would use R --nsize=500k.

Note that the information on where to find vectors and strings on the heap is stored using
cons cells. Thus, it may also be necessary to allocate more space for cons cells in order to
perform computations with very “large” variable-size objects.

You can find out the current memory consumption (the proportion of heap and cons cells
used) by typing gc() at the R prompt. This may help you in finding out whether to increase
--vsize or --nsize. Note that following gcinfo(TRUE), automatic garbage collection
always prints memory use statistics.

R will tell you whether you ran out of cons or heap memory.

The defaults for --nsize and --vsize can be changed by setting the environment variables
R_NSIZE and R_VSIZE respectively, perhaps most conveniently in the file ‘.Renviron’ or
‘ /.Renviron’.

memory.profile 295

When using read.table, the memory requirements are in fact higher than anticipated,
because the file is first read in as one long string which is then split again. Use scan if
possible in case you run out of memory when reading in a large table.

Note

When using the Rgui console it is simplest to make a shortcut and put these command-line
flags at the end of the Target field.

See Also

gc for information on the garbage collector.

Examples

Start R with 15MB of heap memory and 1 million cons cells

Unix

R --vsize=15M --nsize=1000k

memory.profile Profile the Usage of Cons Cells memory.profile

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile()

Details

The current types and their uses are listed in the include file ‘Rinternals.h’. There will be
blanks in the list corresponding to types that are no longer in use (types 11 and 12 at the
time of writing). Also FUNSXP is not included.

Value

A vector of counts, named by the types.

See Also

gc for the overall usage of cons cells.

Examples

memory.profile()

296 merge

menu Menu Interaction Function menu

Description

menu presents the user with a menu of choices labelled from 1 to the number of choices. To
exit without choosing an item one can select ‘0’.

Usage

menu(choices, graphics = FALSE, title = "")

Arguments

choices a character vector of choices

graphics a logical indicating whether a graphics menu should be used. Currently
unused.

title a character string to be used as the title of the menu

Value

The number corresponding to the selected item, or 0 if no choice was made.

Examples

switch(menu(c("List letters", "List LETTERS")) + 1,

cat("Nothing done\n"), letters, LETTERS)

merge Merge Two Data Frames merge

Description

Merge two data frames by common columns or row names.

Usage

merge(x, y, by, by.x, by.y, sort = TRUE)

Arguments

x, y data frames, or objects to be coerced to one
by, by.x, by.y

specifcations of the common columns. See Details.

sort logical. Should the results be sorted on the by columns?

Methods 297

Details

By default the data frames are merged on the columns with names they both have, but
separate specifcations of the columns can be given by by.x and by.y. Columns can be
specified by name, number or by a logical vector: the name "row.names" or the number
0 specifies the row names. The rows in the two data frames that match on the specified
columns are extracted, and joined together. If there is more than one match, all possible
matches contribute one row each.

If the remaining columns in the data frames have any common names, these have ".x" and
".y" appended to make the names of the result unique.

Value

A data frame. The rows are by default lexicographically sorted on the common columns,
but are otherwise in the order in which they occurred in x. The columns are the common
columns followed by the remaining columns in x and then those in y. If the matching
involved row names, an extra column Row.names is added at the left, and in all cases the
result has no special row names.

See Also

data.frame, by, cbind

Examples

authors <- data.frame(

surname = c("Tukey", "Venables", "Tierney", "Ripley", "McNeil"),

nationality = c("US", "Australia", "US", "UK", "Australia"),

retired = c("yes", rep("no", 4)))

books <- data.frame(

name = c("Tukey", "Venables", "Tierney", "Ripley", "Ripley", "McNeil"),

title = c("Exploratory Data Analysis",

"Modern Applied Statistics ...",

"LISP-STAT",

"Spatial Statistics", "Stochastic Simulation",

"Interactive Data Analysis"),

other.author = c(NA, "Ripley", NA, NA, NA, NA))

merge(authors, books, by.x="surname", by.y="name")

merge(books, authors, by.x="name", by.y="surname")

Methods Internal and Group Methods and Generic Functions Methods

Description

Many R-internal functions are generic and allow methods to be written for. Group methods
in particular are available for the "Math", "Ops", and "Summary" group.

298 Methods

Usage

Math.data.frame(x, ...)
Math.factor(x, ...)

Ops.data.frame(e1, e2 = NULL)
Ops.factor(e1, e2)
Ops.ordered(e1, e2)

Summary.data.frame(x, ...)
Summary.factor(x, ...)

.Method

.Generic

.Group

.Class

Group Dispatching

There are three groups for which methods can be written, namely the "Math", "Ops" and
"Summary" groups.

A function f belonging to one of these groups must be .Internal or .Primitive and will
automatically be using <grp>.<class> (ob) when f(<ob>) is called, f belongs to group
<grp> and <ob> is of class <class>.

1. Group "Math":

• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif
• exp, log,
cos, sin, tan,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh
• lgamma, gamma, gammaCody,
digamma, trigamma, tetragamma, pentagamma

• cumsum, cumprod, cummax, cummin

2. Group "Ops":

• "+", "-", "*", "/", " "̂, "%%", "%/%"
• "&", "|", "!"
• "==", "!=", "<", "<=", ">=", ">"

3. Group "Summary":

• all, any
• sum, prod
• min, max

Simple Dispatching

The following builtin functions are generic as well, i.e., you can write methods for them:

[, [[

methods 299

dimnames<-, dimnames, dim<-, dim

c, unlist, as.vector, is.na, is.nan

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

methods for methods of non-Internal generic functions.

Examples

methods("Math")

methods("Ops")

methods("Summary")

d.fr <- data.frame(x=1:9, y=rnorm(9))

data.class(1 + d.fr) == "data.frame" ##-- add to d.f. ...

methods Class Methods methods

Description

R possesses a simple generic function mechanism which can be used for an object-oriented
style of programming. Method despatch takes place based on the class of the first argu-
ment to the generic function or on the object supplied as an argument to UseMethod or
NextMethod.

Usage

UseMethod(generic, object)
NextMethod(generic, object, ...)
methods(generic.function, class)

Details

An R “object” is a data object which has a class attribute. A class attribute is a vector of
character strings giving the names of the classes which the object “inherits” from. When a
generic function fun is applied to an object with class attribute c("first", "second"),
the system searches for a function called fun.first and, if it finds it, applied it to the
object. If no such function is found a function called fun.second is tried. If no class name
produces a suitable function, the function fun.default is used.

methods can be used to find out about the methods for a particular generic function or
class. See the examples below for details.

Now for some obscure details that need to appear somewhere. These comments will be
slightly different than those in Appendix A of the White S Book. UseMethod creates a
“new” function call with arguments matched as they came in to the generic. Any local

300 missing

variables defined before the call to UseMethod are retained (!?). Any statements after the
call to UseMethod will not be evaluated as UseMethod does not return.
NextMethod invokes the next method (determined by the class). It does this by creating
a special call frame for that method. The arguments will be the same in number, order
and name as those to the current method but their values will be promises to evaluate
their name in the current method and environment. Any arguments matched to ... are
handled specially. They are passed on as the promise that was supplied as an argument
to the current environment. (S does this differently!) If they have been evaluated in the
current (or a previous environment) they remain evaluated.

Note

The methods function was written by Martin Maechler.

See Also

class

Examples

methods(summary)

methods(print)

methods(class = data.frame)

methods("[")#- does not list the C-internal ones...

missing Does a Formal Argument have a Value? missing

Description

missing can be used to test whether a value was specified as an argument to a function.
The following example shows how a plotting function can be written to work with either a
pair of vectors giving x and y coordinates of points to be plotted or a single vector giving
y values to be plotted against their indexes.

Usage

missing(x)

See Also

substitute for argument expression; NA for “missing values” in data.

Examples

myplot <- function(x,y) {

if(missing(y)) {

y <- x

x <- 1:length(y)

}

plot(x,y)

}

mode 301

mode The (Storage) Mode of an Object mode

Usage

mode(x)
mode(x) <- "<mode>"
storage.mode(x)
storage.mode(x) <- "<mode>"

Details

Both mode and storage.mode return a character string giving the (storage) mode of the
object — often the same — both relying on the output of typeof(x), see the example
below.

The two assignment versions are currently identical. Both mode(x) <- newmode and stor-
age.mode(x) <- newmode change the mode or storage.mode of object x to newmode.

As storage mode ”single” is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr(object, "Csingle") to examine this. However, the assignment
versions can be used to set the mode to "single", which sets the real mode to "double"
and the "Csingle" attribute to TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode "(" which is S compatible.

See Also

typeof for the R-internal “mode”, attributes.

Examples

sapply(options(),mode)

cex3 <- c("NULL","1","1:1","1i","list(1)","data.frame(x=1)", "pairlist(pi)",

"c", "lm", "formals(lm)[[1]]", "formals(lm)[[2]]",

"y~x","expression((1))[[1]]", "(y~x)[[1]]", "expression(x <- pi)[[1]][[1]]")

lex3 <- sapply(cex3, function(x) eval(parse(text=x)))

mex3 <- t(sapply(lex3, function(x) c(typeof(x), storage.mode(x), mode(x))))

dimnames(mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))

mex3

This also makes a local copy of ‘pi’:

storage.mode(pi) <- "complex"

storage.mode(pi)

rm(pi)

302 model.extract

model.extract Extract Components from a Model Frame model.extract

Description

Returns the response, offset, subset, weights or other special components of a model frame
passed as optional arguments to model.frame.

Usage

model.extract(frame, component)
model.offset(frame)
model.response(frame)
model.weights(x)

Arguments

frame, x A model frame

component The name of a components to extract, such as "weights", "subset"

Details

model.offset and model.response are equivalent to model.frame(, "offset") and
model.frame(, "response") respectively.

model.weights is slightly different from model.frame(, "weights") in not naming the
vector it returns.

Value

The specified component of the model frame, usually a vector.

See Also

model.frame, offset

Examples

data(esoph)

a <- model.frame(cbind(ncases,ncontrols) ~ agegp+tobgp+alcgp, data=esoph)

model.extract(a, "response")

all(model.extract(a, "response") == model.response(a))

a <- model.frame(ncases/(ncases+ncontrols) ~ agegp+tobgp+alcgp,

data = esoph, weights = ncases+ncontrols)

model.response(a)

model.extract(a, "weights")

a <- model.frame(cbind(ncases,ncontrols) ~ agegp,

something = tobgp, data = esoph)

names(a)

all(model.extract(a, "something") == esoph$tobgp) # TRUE

model.frame 303

model.frame Extracting the “Environment” of a Model Formula model.frame

Description

model.frame (generic function) and its methods return a data.frame with the variables
from formula.

Usage

model.frame(formula, data, na.action, ...)
model.frame.default(formula, data = sys.frame(sys.parent()), na.action,

drop.unused.levels = FALSE, xlev = NULL, ...)

Methods for
lm glm aovlist

Arguments

formula a model formula

data data.frame, list, environment or object coercible to data.frame con-
taining the variables in formula.

na.action how NAs are treated. The default is first, any na.action attribute of
data, second a na.action setting of options, and third na.fail if that
is unset. The “factory-fresh” default is na.omit.

drop.unused.levels

should factors have unused levels dropped? Defaults to FALSE.

xlev a named list of character vectors giving the full set of levels to be assumed
for each factor.

... further arguments such as subset, offset and weights. NULL arguments
are treated as missing.

Value

A data.frame containing the variables used in formula.

See Also

model.matrix for the “design matrix”.

Examples

data(cars)

data.class(model.frame(dist ~ speed, data = cars))

304 model.matrix

model.matrix Construct Design Matrices model.matrix

Description

model.matrix creates a design matrix.

Usage

model.matrix (object, ...)
model.matrix.lm(object, ...)
model.matrix.default(formula, data, contrasts.arg = NULL, xlev = NULL)

Arguments

formula a model formula or terms object.

data a data frame created with model.frame.

contrasts.arg A list, whose entries are contrasts suitable for input to the contrasts
function and whose names are the names of columns of data containing
factors.

xlev to be used as argument of model.frame if data has no "terms" attribute.

x a model frame.

Details

model.matrix creates a design matrix from the description given in terms(formula), using
the data in data which must contain columns with the same names as would be created by
a call to model.frame(formula) or, more precisely, by evaluating attr(terms(formula),
"variables"). There may be other columns and the order is not important. If contrasts
is specified it overrides the default factor coding for that variable.

Value

The design matrix for a regression model with the specified formula and data.

References

Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Chapman & Hall,
London.

See Also

model.frame, model.extract, terms

Examples

data(trees)

ff <- log(Volume) ~ log(Height) + log(Girth)

str(m <- model.frame(ff, trees))

mat <- model.matrix(ff, m)

dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way

model.tables 305

options("contrasts")

model.matrix(~ a + b, dd)

model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))

model.matrix(~ a + b, dd, contrasts = list(a="contr.sum", b="contr.poly"))

m.orth <- model.matrix(~a+b, dd, contrasts = list(a="contr.helmert"))

crossprod(m.orth)# m.orth is ALMOST orthogonal

model.tables Compute Tables of Results from an Aov Model Fit. model.tables

Description

Computes summary tables for model fits, especially complex aov fits.

Usage

model.tables(x, ...)
model.tables.aov(x, type = "effects", se = FALSE, cterms)
model.tables.aovlist(x, type = "effects", se = FALSE, ...)

Arguments

x a model object, usually produced by aov

type type of table: currently only "effects" and "means" are implemented.

se should standard errors be computed?

cterms A character vector giving the names of the terms for which tables should
be computed. The default is all tables.

Details

For type = "effects" give tables of the coefficients for each term, optionally with standard
errors.

For type = "means" give tables of the mean response for each combinations of levels of the
factors in a term.

Value

An object of class "tables.aov", as list which may contain components

tables A list of tables for each requested term.

n The replication information for each term.

se Standard error information.

Warning

The implementation is incomplete, and only the simpler cases have been tested thoroughly.

Author(s)

B.D. Ripley

306 mosaicplot

See Also

aov

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

model.tables(npk.aov, "means", se=T)

as a test, not particularly sensible statistically

options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

model.tables(npk.aovE, se=T)

model.tables(npk.aovE, "means")

mosaicplot Mosaic Plots mosaicplot

Description

Plots a mosaic on the current graphics device.

Usage

mosaicplot(x, ...)
mosaicplot.default(X, main = NULL, xlab = NULL, ylab = NULL,

sort = NULL, off = NULL, dir = NULL,
color = FALSE)

mosaicplot.formula(formula, data = NULL, subset, na.action, ...)

Arguments

x an R object.

X a contingency table, with optional category labels specified in the dim-
names(x) attribute. The table is best created by the table() command,
which produces an object of type array.

main character string for the mosaic title.

xlab,ylab x- and y-axis labels; by default, names(dimnames(X)).

sort vector ordering of the variables, containing a permutation of the integers
1:length(dim(x)) (the default).

off vector of offsets to determine percentage spacing at each level of the mo-
saic (appropriate values are between 0 and 20, and the default is 10 at each
level). There should be one offset for each dimension of the contingency
table.

mosaicplot 307

dir vector of split directions ("v" for vertical and "h" for horizontal) for each
level of the mosaic, one direction for each dimension of the contingency
table. The default consists of alternating directions, beginning with a
vertical split.

color (TRUE or vector of integer colors) for color shading or (FALSE, the default)
for empty boxes with no shading.

formula a formula, such as y ˜ x.

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

na.action a function which indicates what should happen when the data contain
NAs.

... further arguments to the default mosaicplot method.

Details

This is a generic function. It currently has a default method (mosaicplot.default) and a
formula interface (mosaicplot.formula).

See Emerson (1998) for more information and a case study with television viewer data from
Nielsen Media Research.

Author(s)

S-PLUS original by John Emerson 〈emerson@stat.yale.edu〉. Slightly modified for R by KH.

References

Hartigan, J.A., and Kleiner, B. (1984) A mosaic of television ratings. The American Stat-
istician, 38, 32–35.

Emerson, J. W. (1998) Mosaic displays in S-PLUS: a general implementation and a case
study. Statistical Computing and Graphics Newsletter (ASA), 9, 1, 17–23.

Friendly, M. (1994) Mosaic displays for multi-way contingency tables. Journal of the Amer-
ican Statistical Association, 89, 190–200.

The home page of Michael Friendly (http://hotspur.psych.yorku.ca/SCS/friendly.
html) provides information on various aspects of graphical methods for analyzing categorical
data, including mosaic plots.

Examples

data(Titanic)

mosaicplot(Titanic, main = "Survival on the Titanic", color = TRUE)

Formula interface: visualize crosstabulation of numbers of gears and

carburettors in Motor Trend car data.

data(mtcars)

mosaicplot(~ gear + carb, data = mtcars, color = TRUE)

http://hotspur.psych.yorku.ca/SCS/friendly.html
http://hotspur.psych.yorku.ca/SCS/friendly.html

308 mtext

mtcars Motor Trend Road Tests mtcars

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel
consumption and 10 aspects of automobile design and performance for 32 automobiles
(1973–74 models).

Usage

data(mtcars)

Format

A data frame with 32 observations on 11 variables.

[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (lb/1000)
[, 7] qsec 1/4 mile time
[, 8] vs V/S
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburettors

Source

Henderson and Velleman (1981), Building multiple regression models interactively. Biomet-
rics, 37, 391–411.

Examples

data(mtcars)

pairs(mtcars, main = "mtcars data")

coplot(mpg ~ disp | as.factor(cyl), data = mtcars,

panel = panel.smooth, rows = 1)

mtext Write Text into the Margins of a Plot mtext

Description

Text is written in one of the four margins of the current figure region or one of the outer
margins of the device region.

mtext 309

Usage

mtext(text, side = 3, line = 0, outer = FALSE, at = NULL,
adj = NA, ...)

Arguments

text one or more character strings or expressions.

side on which side of the plot (1=bottom, 2=left, 3=top, 4=right).

line on which MARgin line, starting at 0 counting outwards.

outer use outer margins if available.

at give location in user-coordinates. If length(at)==0 (the default), the
location will be determined by adj.

adj adjustment for each string. For strings parallel to the axes, adj=0 means
left or bottom alignment, and adj=1 means right or top aligment. If adj
is not a finite value (the default), the value par("las") determines the
adjustment. For strings plotted parallel to the axis the default is to centre
the string.

... Further graphical parameters; currently supported are:

cex character expansion factor (default = 1).

col color to use.

font font for text.

Details

The “user coordinates” in the outer margins always range from zero to one, and are not
affected by the user coordinates in the figure region(s).

The arguments side, line, at, at, adj, the further graphical parameters and even outer
can be vectors, and recycling will take place to plot as many strings as the longest of the
vector arguments. Note that a vector adj has a different meaning from text.

adj = 0.5 will centre the string, but for outer=TRUE on the device region rather than the
plot region.

Parameter las will determine the orientation of the string(s). For strings plotted perpen-
dicular to the axis the default justifcation is to place the end of the string nearest the axis
on the specified line.

Note that if the text is to be plotted perpendicular to the axis, adj determines the justific-
ation of the string and the position along the axis unless at is specified.

Side Effects

The given text is written onto the current plot.

See Also

title, text, plot, par; plotmath for details on mathematical annotation.

310 NA

Examples

plot(1:10, (-4:5)^2, main="Parabola Points", xlab="xlab")

mtext("10 of them")

for(s in 1:4)

mtext(paste("mtext(.., line= -1, {side, col, font} = ",s,

", cex = ", (1+s)/2, ")"), line = -1,

side=s, col=s, font=s, cex= (1+s)/2)

mtext("mtext(.., line= -2)", line = -2)

mtext("mtext(.., line= -2, adj = 0)", line = -2, adj =0)

##--- log axis :

plot(1:10, exp(1:10), log=’y’, main="log=’y’", xlab="xlab")

for(s in 1:4) mtext(paste("mtext(..,side=",s,")"), side=s)

NA Not Available / “Missing” Values NA

Description

NA is a logical constant of length 1 which contains a missing value indicator. NA can be
freely coerced to any other vector type.

The generic function is.na returns a logical vector of the same “form” as its argument
x, containing TRUE for those elements marked NA or NaN (!) and FALSE otherwise. dim,
dimnames and names attributes are preserved.

Usage

NA
is.na(x)
is.na.data.frame(x)

Details

is.na(x) works elementwise when x is a list.

The method dispatching is C-internal, rather than via UseMethod.

See Also

NaN, is.nan, etc. and the utility function complete.cases.

na.action, na.omit, na.fail on how methods can be tuned to deal with missing values.

Examples

is.na(c(1,NA)) #> F TRUE

is.na(paste(c(1,NA)))#> F FALSE

na.action 311

na.action NA Action na.action

Description

na.action is a generic function, and na.action.default its default method.

Usage

na.action(x, ...)
na.action.default(x)

Arguments

x any object whose NA action is given.

... further arguments special methods could assume.

Value

The “NA action” which should be applied to x whenever NAs are not desired.

See Also

options("na.action"), na.omit, na.fail

Examples

na.action(c(1, NA))

na.fail Handle Missing Values in Objects na.fail

Description

These generic functions are useful for dealing with NAs in e.g., data frames. na.fail returns
the data frame if it does not contain any missing values, and signals an error otherwise.
na.omit returns the data frame with incomplete cases removed.

Usage

na.fail(object)
na.omit(object)

Arguments

object an R object, typically a data frame

See Also

na.action, options(na.action=..) for setting“NA actions”, and lm and glm for functions
using these.

312 names

Examples

DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA))

na.omit(DF)

na.fail(DF)#> Error: missing values in ..

options("na.action")

name Variable Names name

Description

as.name coerces its argument to be a name. The argument must be of mode "character".

is.name returns TRUE or FALSE depending on whether its argument is a name or not.

Usage

as.name(x)
is.name(x)

See Also

call, is.language. For the internal object mode, typeof.

Examples

an <- as.name("arrg")

is.name(an) # TRUE

str(an)# symbol

names The Names Attribute of an Object names

Description

names is a generic accessor function to the names attribute of an R object, typically a
vector. The first form prints the names of the observations and the second sets the names.
In this case, value must be a vector of character strings of the same length as x.

Usage

names(x, ...)
names.default(x)
names(x) <- value

Examples

print the names attribute of the islands data set

names(islands)

remove the names attribute

names(islands) <- NULL

nargs 313

nargs The Number of Arguments to a Function nargs

Description

When used inside a function body, nargs returns the number of arguments supplied to that
function.

Usage

nargs()

See Also

args, formals and sys.call.

Examples

tst <- function(a, b = 3, ...) {nargs()}

tst() # 0

tst(clicketyclack) # 1 (even non-existing)

tst(c1, a2, rr3) # 3

nargs()# not really meaningful

nchar Count the Number of Characters nchar

Description

nchar takes a character vector as an argument and returns a vector whose elements contain
the number of characters in the corresponding element of x. It only accepts character vectors
as arguments if you want to operate on other objects passing them through deparse first
will be required.

Usage

nchar(x)

See Also

strwidth giving width of strings for plotting; paste, substr, strsplit

Examples

x<-c("asfef","qwerty","yuiop[","b","stuff.blah.yech")

nchar(x)

5 6 6 1 15

nchar(deparse(mean))

23 1 16 45 11 64 2 17 50 43 2 17 1

314 NegBinomial

NegBinomial The Negative Binomial Distribution NegBinomial

Description

Density, distribution function, quantile function and random generation for the negative
binomial distribution with parameters size and prob.

Usage

dnbinom(x, size, prob, log = FALSE)
pnbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qnbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rnbinom(n, size, prob)

Arguments

x, q vector of quantiles representing the number of failures which occur in a
sequence of Bernoulli trials before a target number of successes is reached,
or alternately the probability distribution of a compound Poisson process
whose intensity is distributed as a gamma (pgamma) distribution with scale
parameter (1-prob)/prob and shape parameter size (this definition al-
lows non-integer values of size).

x vector of (non-negative integer) quantiles.
q vector of quantiles.
p vector of probabilities.
n number of observations to generate.
size target for number of successful trials, or shape parameter of gamma dis-

tribution.
prob probability of success in each trial, or scale of gamma distribution (prob

= scale/(1+scale)).
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

The negative binomial distribution with size = n and prob = p has density

p(x) =
Γ(x+ n)
Γ(n)x!

pn(1− p)x

for x = 0, 1, 2, . . .

If an element of x is not integer, the result of dnbinom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distri-
bution function.

Value

dnbinom gives the density, pnbinom gives the distribution function, qnbinom gives the
quantile function, and rnbinom generates random deviates.

nextn 315

See Also

dbinom for the binomial, dpois for the Poisson and dgeom for the geometric distribution,
which is a special case of the negative binomial.

Examples

x <- 0:11

dnbinom(x, size = 1, prob = 1/2) * 2^(1 + x) # == 1

126 / dnbinom(0:8, size = 2, prob = 1/2) #- theoretically integer

Cumulative (’p’) = Sum of discrete prob.s (’d’); Relative error :

summary(1 - cumsum(dnbinom(x, size = 2, prob = 1/2)) /

pnbinom(x, size = 2, prob = 1/2))

x <- 0:15

size <- (1:20)/4

persp(x,size, dnb <- outer(x,size,function(x,s)dnbinom(x,s, pr= 0.4)),

xlab = "x", ylab = "s", zlab="density", theta = 150)

title(tit <- "negative binomial density(x,s, pr = 0.4) vs. x & s")

image (x,size, log10(dnb), main= paste("log [",tit,"]"))

contour(x,size, log10(dnb),add=TRUE)

nextn Highly Composite Numbers nextn

Description

nextn returns the smallest integer, greater than or equal to n, which can be obtained as a
product of powers of the values contained in factors. nextn is intended to be used to find
a suitable length to zero-pad the argument of fft to so that the transform is computed
quickly. The default value for factors ensures this.

Usage

nextn(n, factors=c(2,3,5))

Arguments

n an integer.

factors a vector of positive integer factors.

See Also

convolve, fft.

Examples

nextn(1001) # 1024

table(sapply(599:630, nextn))

316 nlevels

nhtemp Average Yearly Temperatures in New Haven nhtemp

Description

The mean annual temperature in degrees Fahrenheit in New Haven, Connecticut, from 1912
to 1971.

Usage

data(nhtemp)

Format

A time series of 60 observations.

Source

Vaux, J. E. and Brinker, N. B. (1972) Cycles, 1972, 117–121.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(nhtemp)

plot(nhtemp, main = "nhtemp data",

ylab = "Mean annual temperature in New Haven, CT (deg. F)")

nlevels The Number of Levels of a Factor nlevels

Usage

nlevels(x)

Details

If the argument is not a factor, NA is returned.

The actual factor levels (if they exist) can be obtained with the levels function.

Examples

nlevels(gl(3,7)) # = 3

nlm 317

nlm Non-Linear Minimization nlm

Description

This function carries out a minimization of the function f using a Newton-type algorithm.
See the references for details.
This is a preliminary version of this function and it will probably change.

Usage

nlm(f, p, hessian = FALSE, typsize=rep(1, length(p)), fscale=1,
print.level = 0, ndigit=12, gradtol = 1e-6,
stepmax = max(1000 * sqrt(sum((p/typsize)^2)), 1000),
steptol = 1e-6, iterlim = 100, check.analyticals = TRUE)

Arguments

f the function to be minimized. If the function value has an attribute called
gradient or both gradient and hessian attributes, these will be used
in the calculation of updated parameter values. Otherwise, numerical
derivatives are used. deriv returns a function with suitable gradient
attribute.

p starting parameter values for the minimization.
hessian if TRUE, the hessian of f at the minimum is returned.
typsize an estimate of the size of each parameter at the minimum.
fscale an estimate of the size of f at the minimum.
print.level this argument determines the level of printing which is done during the

minimization process. The default value of 0 means that no printing
occurs, a value of 1 means that initial and final details are printed and a
value of 2 means that full tracing information is printed.

ndigit the number of significant digits in the function f.
gradtol a positive scalar giving the tolerance at which the scaled gradient is con-

sidered close enough to zero to terminate the algorithm. The scaled gradi-
ent is a measure of the relative change in f in each direction p[i] divided
by the relative change in p[i].

stepmax a positive scalar which gives the maximum allowable scaled step length.
stepmax is used to prevent steps which would cause the optimization
function to overflow, to prevent the algorithm from leaving the area of
interest in parameter space, or to detect divergence in the algorithm.
stepmax would be chosen small enough to prevent the first two of these
occurrences, but should be larger than any anticipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.
iterlim a positive integer specifying the maximum number of iterations to be

performed before the program is terminated.
check.analyticals

a logical scalar specifying whether the analytic gradients and Hessians,
if they are supplied, should be checked against numerical derivatives at
the initial parameter values. This can help detect incorrectly formulated
gradients or Hessians.

318 noquote

Value

A list containing the following components:

minimum the value of the estimated minimum of f.

estimate the point at which the mininum value of f is obtained.

gradient the gradient at the estimated minimum of f.

hessian the hessian at the estimated minimum of f (if requested).

code an integer indicating why the optimization process terminated.
1: relative gradient is close to zero, current iterate is probably solution.
2: successive iterates within tolerance, current iterate is probably solution.
3: last global step failed to locate a point lower than estimate. Either
estimate is an approximate local minimum of the function or steptol is
too small.
4: iteration limit exceeded.
5: maximum step size stepmax exceeded five consecutive times. Either
the function is unbounded below, becomes asymptotic to a finite value
from above in some direction or stepmax is too small.

References

Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.

Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985) A modular system of algorithms for
unconstrained minimization. ACM Trans. Math. Software, 11, 419–440.

See Also

optimize for one-dimensional minimization and uniroot for root finding. deriv to calcu-
late analytical derivatives.

Examples

f <- function(x) sum((x-1:length(x))^2)

nlm(f, c(10,10))

nlm(f, c(10,10), print.level = 2)

str(nlm(f, c(5), hessian = TRUE))

more examples, including the use of derivatives.

demo(nlm)

noquote Class for “no quote” Printing of Strings noquote

Description

These functions exist both as utilities and as an example of using class and object orient-
ation.

Normal 319

Usage

noquote(obj)
print.noquote(obj, ...)
obj[j]

Arguments

obj any R object; typically a vector of character strings.

... further options for print.

Value

noquote returns its argument as an object of class "noquote". The function "[.noquote"
ensures that the class is not lost by subsetting.

For (default) printing, print.noquote will be used which prints characters without quotes
("...").

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉

See Also

methods,class,print.

Examples

letters

nql <- noquote(letters)

nql

nql[1:4] <- "oh"

nql[1:12]

cmp.logical <- function(log.v)

{

Purpose: compact printing of logicals

log.v <- as.logical(log.v)

noquote(if(length(log.v)==0)"()" else c(".","|")[1+log.v])

}

cmp.logical(runif(20) > 0.8)

Normal The Normal Distribution Normal

Description

Density, distribution function, quantile function and random generation for the normal
distribution with mean equal to mean and standard deviation equal to sd.

320 Normal

Usage

dnorm(x, mean=0, sd=1, log = FALSE)
pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean=0, sd=1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations.

mean vector of means.

sd vector of standard deviations.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If mean or sd are not specified they assume the default values of 0 and 1, respectively.

The normal distribution has density

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

where µ is the mean of the distribution and σ the standard deviation.

Value

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile
function, and rnorm generates random deviates.

See Also

runif and .Random.seed about random number generation, and dlnorm for the Lognormal
distribution.

Examples

dnorm(0) == 1/ sqrt(2*pi)

dnorm(1) == exp(-1/2)/ sqrt(2*pi)

dnorm(1) == 1/ sqrt(2*pi*exp(1))

Using "log = TRUE" for an extended range :

par(mfrow=c(2,1))

plot(function(x)dnorm(x, log=TRUE), -60, 50, main = "log { Normal density }")

curve(log(dnorm(x)), add=TRUE, col="red",lwd=2)

mtext("dnorm(x, log=TRUE)", adj=0); mtext("log(dnorm(x))", col="red", adj=1)

plot(function(x)pnorm(x, log=TRUE), -50, 10, main = "log { Normal Cumulative }")

curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)

mtext("pnorm(x, log=TRUE)", adj=0); mtext("log(pnorm(x))", col="red", adj=1)

NotYet 321

NotYet Not Yet Implemented Functions and Unused Arguments NotYet

Description

In order to pinpoint missing functionality, the R core team uses these functions for missing
R functions and not yet used arguments of existing R functions (which are typically there
for compatibility purposes).

You are very welcome to contribute your code . . .

Usage

.NotYetImplemented()

.NotYetUsed(arg)

symbols(...)

Arguments

arg an argument of a function that is not yet used.

See Also

the contrary, Deprecated and Defunct for outdated code.

Examples

symbols # to see how the ‘‘NotYetImplemented’’

.NotYetImplemented # reference is made automagically

barplot(1:5, inside = TRUE) # ‘inside’ is not yet used

nrow The Number of Rows/Columns of an Array nrow

Description

nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the
same, but treat a vector as 1-column matrix.

Usage

nrow(x)
ncol(x)
NCOL(x)
NROW(x)

Arguments

x a vector, array or data frame

322 numeric

See Also

dim which returns all dimensions; array, matrix.

Examples

ma <- matrix(1:12, 3, 4)

nrow(ma) # 3

ncol(ma) # 4

ncol(array(1:24, dim = 2:4)) # 3, the second dimension

NCOL(1:12) # 1

NROW(1:12) # 12

NULL The Null Object NULL

Description

NULL represents the null object in R. NULL is used mainly to represent the lists with zero
length, and is often returned by expressions and functions whose value is undefined.

as.null ignores its argument and returns the value NULL.

is.null returns TRUE if its argument is NULL and FALSE otherwise.

Usage

NULL
as.null(x)
is.null(x)

Examples

is.null(list()) # TRUE (not so in S)

is.null(integer(0))# F

is.null(logical(0))# F

as.null(list(a=1,b=’c’))

numeric Numeric Vectors numeric

Description

numeric creates a real vector of the specified length. The elements of the vector are all
equal to 0.

as.numeric attempts to coerce its argument to numeric type (either integer or real).

is.numeric returns TRUE if its argument is of type real or type integer and FALSE otherwise.

Usage

numeric(length = 0)
as.numeric(x)
is.numeric(x)

offset 323

Note

R has no single precision data type. All real numbers are stored in double precision format.

as.numeric for factors yields the codes underlying the factor levels.

Examples

as.numeric(c("-.1"," 2.7 ","B")) # (-0.1, 2.7, NA) + warning

as.numeric(factor(5:10))

offset Include an Offset in a Model Formula offset

Description

An offset is a term to be added to a linear predictor, such as in a generalised linear model,
with known coefficient 1 rather than an estimated coefficient.

Usage

offset(x)

Arguments

x An offset to be included in a model frame

Value

The input value.

See Also

model.offset, model.frame, glm

on.exit Function Exit Code on.exit

Description

on.exit records the expression given as its argument as needing to be executed when then
current function exits (either naturally or as the result of an error). This is useful for
resetting graphical parameters or performing other cleanup actions.

Usage

on.exit(expr,add=FALSE)

Arguments

expr an expression to be executed.

add if TRUE, add expr to be executed after any previously set expressions.

324 optim

Examples

opar <- par(mai=c(1,1,1,1))

on.exit(par(opar))

optim General-purpose Optimization optim

Description

General-purpose optimization based on Nelder–Mead, quasi-Newton and conjugate-gradient
algorithms. It includes an option for box-constrained optimization.

Usage

optim(par, fn, gr = NULL,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"),
lower = -Inf, upper = +Inf,
control = list(), hessian = FALSE), ...)

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized, with first argument the vector of parameters
over which minimization is to take place. It should return a scalar result.

gr A function to return the gradient. Not needed for the "Nelder-Mead" and
"SANN" method. If it is NULL and it is needed, a finite-difference approx-
imation will be used. It is guaranteed that gr will be called immediately
after a call to fn at the same parameter values.

method The method to be used. See Details.

lower, upper Bounds on the variables for the "L-BFGS-B" method.

control A list of control parameters. See Details.

hessian Logical. Should a numerically differentiated Hessian matrix be returned?

... Further arguments to be passed to fn and gr.

Details

By default this function performs minimization, but it will maximize if control$fnscale
is negative.

The default method is an implementation of that of Nelder and Mead (1965), that uses
only function values and is robust but relatively slow. It will work reasonably well for
non-differentiable functions.

Method "BFGS" is a quasi-Newton method (also known as a variable metric algorithm), spe-
cifically that published simultaneously in 1970 by Broyden, Fletcher, Goldfarb and Shanno.
This uses function values and gradients to build up a picture of the surface to be optimized.

Method "CG" is a conjugate gradients method based on that by Fletcher and Reeves (1964)
(but with the option of Polak–Ribiere or Beale–Sorenson updates). Conjugate gradient
methods will generally be more fragile that the BFGS method, but as they do not store a
matrix they may be successful in much larger optimization problems.

optim 325

Method "L-BFGS-B" is that of Byrd et. al. (1994) which allows box constraints, that is
each variable can be given a lower and/or upper bound. The initial value must satisfy the
constraints. This uses a limited-memory modification of the BFGS quasi-Newton method.
If non-trivial bounds are supplied, this method will be selected, with a warning.

Method "SANN" is a variant of simulated annealing given in Belisle (1992). Simulated-
annealing belongs to the class of stochastic global optimization methods. It uses only
function values but is relatively slow. It will also work for non-differentiable functions.
This implementation uses the Metropolis function for the acceptance probability. The next
candidate point is generated from a Gaussian Markov kernel with scale proportional to
the actual temperature. Temperatures are decreased according to the logarithmic cooling
schedule as given in Belisle (1992, p. 890). Note that the "SANN" method depends critically
on the settings of the control parameters. It is not a general-purpose method but can be
very useful in getting to a good value on a very rough surface.

Function fn can return NA or Inf if the function cannot be evaluated at the supplied value,
but the initial value must have a computable finite value of fn. (Except for method "L-
BFGS-B" where the values should always be finite.)

optim can be used recursively, and for a single parameter as well as many.

The control argument is a list that can supply any of the following components:

trace Logical. If true, tracing information on the progress of the optimization is produced.

fnscale An overall scaling to be applied to the value of fn and gr during optimization. If
negative, turns the problem into a maximization problem. Optimization is performed
on fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on
par/parscale and these should be comparable in the sense that a unit change in any
element produces about a unit change in the scaled value.

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on
par/parscale scale. Defaults to 1e-3.

maxit The maximum number of iterations. Defaults to 100 for the derivative-based meth-
ods, and 500 for "Nelder-Mead". For "SANN" maxit gives the total number of function
evaluations. There is no other stopping criteria. Defaults to 10000.

abstol The absolute convergence tolerance. Only useful for non-negative functions, as a
tolerance for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce the
value by a factor of reltol * (abs(val) + reltol) at a step.

alpha, beta, gamma Scaling parameters for the "Nelder-Mead" method. alpha is the re-
flection factor (default 1.0), beta the contraction factor (0.5) and gamma the expansion
factor (2.0).

REPORT The frequency of reports for the "BFGS" method in control$trace is positive.
Defaults to every 10 iterations.

type for the conjugate-gradients method. Takes value 1 for the Fletcher–Reeves update, 2
for Polak–Ribiere and 3 for Beale–Sorenson.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method,
It defaults to 5.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the
reduction in the objective is within this factor of the machine tolerance. Default is
1e7, that is a tolerance of about 1e-8.

326 optim

pgtol helps controls the convergence of the "L-BFGS-B" method. It is a tolerance on the
projected gradient in the current search direction. This defaults to zero, when the
check is suppressed.

temp controls the "SANN" method. It is the starting temperature for the cooling schedule.
Defaults to 10.

tmax is the number of function evaluations at each temperature for the "SANN" method.
Defaults to 10.

Value

A list with components:

par The best set of parameters found.

value The value of fn corresponding to par.

counts A two-element integer vector giving the number of calls to fn and gr
respectively. This excludes those calls needed to compute the Hessian, if
requested, and any calls to fn to compute a finite-difference approximation
to the gradient.

convergence An integer code. 0 indicates successful convergence. Error codes are

1 indicates that the iteration limit maxit had been reached.
10 indicates degeneracy of the Nelder–Mead simplex.
51 indicates a warning from the "L-BFGS-B" method; see component mes-

sage for further details.
52 indicates an error from the "L-BFGS-B" method; see component mes-

sage for further details.

message A character string giving any additional information returned by the op-
timizer, or NULL.

hessian Only if argument hessian is true. A symmetric matrix giving an estimate
of the Hessian at the solution found. Note that this is the Hessian of the
unconstrained problem even if the box constraints are active.

Note

The code for methods "Nelder-Mead", "BFGS" and "CG" was based originally on Pascal
code in Nash (1990) that was translated by p2c and then hand-optimized. Dr Nash has
agreed that the code can be make freely available.

The code for method "L-BFGS-B" is based on Fortran code by Zhu, Byrd, Lu-Chen and
Nocedal obtained from Netlib.

The code for method "SANN" was contributed by A. Trapletti.

References

Belisle, C. J. P. (1992) Convergence theorems for a class of simulated annealing algorithms
on Rd. J Applied Probability, 29, 885–895.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited memory algorithm for bound
constrained optimization. SIAM J. Scientific Computing, 16, 1190–1208.

Fletcher, R. and Reeves, C. M. (1964) Function minimization by conjugate gradients. Com-
puter Journal 7, 148–154.

Nash, J. C. (1990) Compact Numerical Methods for Computers. Linear Algebra and Func-
tion Minimisation. Adam Hilger.

optimize 327

Nelder, J. A. and Mead, R. (1965) A simplex algorithm for function minimization. Computer
Journal 7, 308–313.

See Also

nlm, optimize

Examples

Rosenbrock Banana function

fr <- function(x) {

x1 <- x[1]

x2 <- x[2]

100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}

grr <- function(x) {

x1 <- x[1]

x2 <- x[2]

c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1), 200 * (x2 - x1 * x1))

}

optim(c(-1.2,1), fr)

optim(c(-1.2,1), fr, grr, method = "BFGS")

optim(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)

optim(c(-1.2,1), fr, grr, method = "CG")

optim(c(-1.2,1), fr, grr, method = "CG", control=list(type=2))

optim(c(-1.2,1), fr, grr, method = "L-BFGS-B")

flb <- function(x)

sum(c(1, rep(4, length(x)-1))*(x - c(1, x[-length(x)])^2)^2)

optim(rep(3, 25), flb, NULL, "L-BFGS-B",

lower=rep(2, 25), upper=rep(4, 25))

"wild" function

fw <- function (x)

10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80

plot(fw, -50, 50, n=1000) # global minimum at about -15.81515

res <- optim(50, fw, method="SANN",

control=list(maxit=20000, temp=20, parscale=20))

res

optim(res$par, fw, method="BFGS")

optimize One Dimensional Optimization optimize

Description

The function optimize searches the interval from lower to upper for a minimum or max-
imum of the function f with respect to its first argument.

It uses Fortran code (from Netlib) based on algorithms given in the reference.

optimise is an alias for optimize.

328 options

Usage

optimize(f = , interval = , lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25, ...)

optimise(f = , interval = , lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25, ...)

Arguments

f the function to be optimized. The function is either minimized or max-
imized over its first argument depending on the value of maximum.

interval a vector containing the end-points of the interval to be searched for the
minimum.

lower the lower end point of the interval to be searched.
upper the upper end point of the interval to be searched.
tol the desired accuracy.
... additional arguments to f.

Value

A list with components minimum (or maximum) and objective which give the location of
the minimum (or maximum) and the value of the function at that point.

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs N.J.:
Prentice-Hall.

See Also

nlm, uniroot.

Examples

f <- function (x,a) (x-a)^2

xmin <- optimize(f, c(0, 1), tol = 0.0001, a = 1/3)

xmin

options Options Settings options

Description

options allows the user to set and examine a variety of global “options” which affect the
way in which R computes and displays its results.

Usage

options(...)
getOption(x)
.Options

options 329

Arguments

... any options can be defined, using name = value. However, only the ones
below are used in “base R”.
Further, options(’name’) == options()[’name’], see the example.

prompt a string, used for R’s prompt; should usually end in a blank (" ").

continue a string setting the prompt used for lines which continue over one line.

width controls the number of characters on a line. You may want to change this
if you re-size the window that R is running in.

digits controls the number of digits to print when printing numeric values. It is
a suggestion only.

editor sets the default text editor, e.g., for edit. Set from the environment
variable VISUAL on UNIX.

pager the (stand-alone) program used for displaying ASCII files on R’s console.
Defaults to ‘$R HOME/bin/pager’ on UNIX.

browser default HTML browser used by help.start() on UNIX.

mailer default mailer used by bug.report(). can be "none".

contrasts the default contrasts used in model fitting such as with aov or lm. A
character vector of length two, the first giving the function to be used with
unordered factors and the second the function to be used with ordered
factors.

expressions sets a limit on the number of nested expressions that will be evaluated.
This is especially important on the Macintosh since stack overflow is likely
if this is set too high.

keep.source When TRUE, the default, the source code for functions loaded by is stored
in their "source" attribute, allowing comments to be kept in the right
places. This does not apply to functions loaded by library.

na.action the name of a function for treating missing values (NA’s) for certain situ-
ations.

papersize the paper format used for graphics printing; currently read-only, set by
environment variable R_PAPERSIZE, or in ‘config.site’.

printcmd the command used for graphics printing; currently read-only, set by
environment variable R_PRINTCMD, or in ‘config.site’.

show.signif.stars, show.coef.Pvalues

logical, affecting P value printing, see print.coefmat.

ts.eps the relative tolerance for certain time series (ts) computations.

error an expression governing the handling of non-catastrophic errors such as
those generated by stop as well as by signals and internally detected
errors. The default expression is NULL: see stop for the behaviour in that
case. The function dump.frames provides one alternative that allows
post-mortem debugging.

show.error.messages

a logical. Should error messages be printed? Intended for use with try
or a user-installed error handler.

warn sets the handling of warning messages. If warn is negative all warnings are
ignored. If warn is zero (the default) warnings are stored until the top–
level function returns. If fewer than 10 warnings were signalled they will

330 options

be printed otherwise a message saying how many (max 50) were signalled.
A top–level variable called last.warning is created and can be viewed
through the function warnings. If warn is one, warnings are printed as
they occur. If warn is two or larger all warnings are turned into errors.

echo logical. Only used in non-interactive mode, when it controls whether
input is echoed. Command-line options --quiet and --slave set this
initially to FALSE.

verbose logical. Should R report extra information on progress? Set to TRUE by
the command-line option --verbose.

device a character string giving the default device for that session.

CRAN The URL of the preferred CRAN node for use by update.packages. De-
faults to http://cran.r-project.org.

unzip the command used unzipping help files. Defaults to ”internal” when the
internal unzip DLL is used.

x a character string holding one of the above option names.

Details

Invoking options() with no arguments returns a list with the current values of the options.
To access the value of a single option, one should use getOption("width"), e.g., rather
than options("width") which is a list of length one.

The default settings of some of these options are

prompt "> " continue "+ "
width 80 digits 7
expressions 500 keep.source TRUE
show.signif.stars TRUE show.coef.Pvalues TRUE
na.action na.omit ts.eps 1e-5
error NULL warn 0
echo TRUE verbose FALSE

Others are set from environment variables or are platform-dependent.

Value

A list (in any case) with the previous values of the options changed, or all options when no
arguments were given.

Examples

options() # printing all current options

op <- options(); str(op) # nicer printing

.Options is the same:

all(sapply(1:length(op), function(i) all(.Options[[i]] == op[[i]])))

options(’width’)[[1]] == options()$width # the latter needs more memory

options(digits=20)

pi

set the editor, and save previous value

old.o <- options(editor="nedit")

http://cran.r-project.org

OrchardSprays 331

old.o

options(op) # reset (all) initial options

options(’digits’)

set contrast handling to be like S

options(contrasts=c("contr.helmert", "contr.poly"))

on error, terminate the R session with error status 66

options(error=quote(q("no", status=66, runLast=FALSE)))

stop("test it")

OrchardSprays Potency of Orchard Sprays OrchardSprays

Description

An experiment was conducted to assess the potency of various constituents of orchard sprays
in repelling honeybees, using a Latin square design.

Usage

data(OrchardSprays)

Format

A data frame with 64 observations on 4 variables.

[,1] rowpos numeric Row of the design
[,2] colpos numeric Column of the design
[,3] treatment factor Treatment level
[,4] decrease numeric Response

Details

Individual cells of dry comb were filled with measured amounts of lime sulphur emulsion in
sucrose solution. Seven different concentrations of lime sulphur ranging from a concentration
of 1/100 to 1/1,562,500 in successive factors of 1/5 were used as well as a solution containing
no lime sulphur.

The responses for the different solutions were obtained by releasing 100 bees into the cham-
ber for two hours, and then measuring the decrease in volume of the solutions in the various
cells.

An ∗ × 8 Latin square design was used and the treatments were coded as follows:

A highest level of lime sulphur
B next highest level of lime sulphur
.
.
.

G lowest level of lime sulphur
H no lime sulphur

332 order

Source

Finney, D. J. (1947) Probit Analysis. Cambridge.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(OrchardSprays)

pairs(OrchardSprays, main = "OrchardSprays data")

order Ordering Permutation order

Description

order returns a permutation which rearranges its first argument into ascending order,
breaking ties by further arguments.

sort.list is the same, using only one argument put allowing partial sorting.

Usage

order(...)
sort.list(x, partial)

Arguments

... a sequence of vectors, all of the same length.

x a vector.

partial vector of indices for partial sorting.

Details

In the case of ties in the first vector, values in the second are used to break the ties. If the
values are still tied, values in the later arguments are used to break the tie (see the first
example).

NA values are treated as greater than any other values so that permutations returned by
order move NA values to the top end of the array.

partial is supplied for compatibility with S, but the sorting is always complete.

See Also

sort and rank.

outer 333

Examples

(ii <- order(x <- c(1,1,3:1,1:4,3), y <- c(9,9:1), z <-c(2,1:9)))

6 5 2 1 7 4 10 8 3 9

rbind(x,y,z)[,ii] # shows the reordering (ties via 2nd & 3rd arg)

rearrange matched vectors so that the first is in ascending order

x <- c(5:1, 6:8, 12:9)

y <- (x - 5)^2

o <- order(x)

rbind(x[o], y[o])

outer Outer Product of Arrays outer

Description

The outer product of the arrays X and Y is the array A with dimension c(dim(X), dim(Y))
where element A[i, j, .., k, l, ..] = FUN(X[i, j, ..], Y[k, l,..], ..).

Usage

outer(X, Y, FUN="*", ...)
x %o% y

Arguments

X A vector or array.

Y A vector or array.

FUN a function to use on the outer products, it may be a quoted string.

... optional arguments to be passed to FUN.

Details

FUN must be a function (or the name of it) which expects at least two arguments and which
operates elementwise on arrays.

Where they exist, the [dim]names of X and Y will be preserved.

%o% is an .Alias for outer (where FUN cannot be changed from "*").

Author(s)

Jonathan Rougier

See Also

matmult for usual (inner) matrix vector multiplication; kronecker which is based on outer.

334 p.adjust

Examples

x <- 1:9; names(x) <- x

Multiplication & Power Tables

x %o% x

y <- 2:8; names(y) <- paste(y,":",sep="")

outer(y, x, "^")

outer(month.abb, 1999:2003, FUN = "paste")

three way multiplication table:

x %o% x %o% y[1:3]

p.adjust Adjust p values for multiple comparisons p.adjust

Description

Given a set of p values, returns p values adjusted using one of several methods.

Usage

p.adjust(p, method=p.adjust.methods, n=length(p))
p.adjust.methods # c("holm", "hochberg", "bonferroni","none")

Arguments

p vector of p values

method correction method

n number of comparisons

Details

The adjustment methods include the Bonferroni correction in which the p values are multi-
plied by the number of comparisons. Two less conservative corrections by Holm, respectively
Hochberg, are also included. A pass-through option "none" is also included. The set of
methods are contained in the p.adjust.methods vector for the benefit of methods that
need to have the method as an option and pass it on to p.adjust.

Value

A vector of corrected p values.

Note

The Hochberg method is only proved to work if the p values are independent, although
simulations have indicated that it works in correlated cases as well. Hence the Holm method
is the default.

References

S Paul Wright: Adjusted P-values for simultaneous inference, Biometrics 48, 1005–1013

package.contents 335

See Also

pairwise.* functions in the ctest package, such as pairwise.t.test.

Examples

p <- runif(50)

p.adjust(p)

package.contents Package Contents and Description package.contents

Description

Parses and returns the ‘CONTENTS’ and ‘DESCRIPTION’ file of a package.

Usage

package.contents(pkg, lib = .lib.loc)
package.description(pkg, lib = .lib.loc, fields = NULL)

Arguments

pkg A character string with the package name.
lib A character vector with path names of R package libraries.
fields A character vector of fields to return (if other fields occur in the file they

are ignored.

See Also

parse.dcf

Examples

package.contents("mva")

package.dependencies Check Packahe Dependencies package.dependencies

Description

Parses and checks the dependencies of a package against the currently installed version of
R [and other packages].

Usage

package.dependencies(x, check=FALSE)

Arguments

x A matrix of package descriptions as returned by CRAN.packages.
check If TRUE, return logical vector of check results. If FALSE, return parsed list

of dependencies.

336 pairs

Details

Currently we only check if the package conforms with the currently running version of R.
IN the future we might add checks for inter-package dependencies.

See Also

update.packages

page Invoke a Pager on an R Object page

Description

Displays the object named by x in a pager

Usage

page(x)

Arguments

x the name of an R object.

Author(s)

B. D. Ripley

See Also

file.show, edit, fix.

pairs Scatterplot Matrices pairs

Description

A matrix of scatterplots is produced.

Usage

pairs(x, ...)
pairs.default(x, labels = colnames(x), panel = points, ...,

lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel,
label.pos = 0.5 + has.diag/3,
cex.labels = NULL, font.labels = 1,
row1attop = TRUE)

pairs 337

Arguments

x the coordinates of points given as columns of a matrix.

labels the names of the variables.

panel function(x,y,...) which is used to plot the contents of each panel of
the display.

... graphical parameters can be given as arguments to plot.
lower.panel, upper.panel

separate panel functions to be used below and above the diagonal respect-
ively.

diag.panel optional function(x, ...) to be applied on the diagonals.

text.panel optional function(x, y, labels, cex, font, ...) to be applied on
the diagonals.

label.pos y position of labels in the text panel.
cex.labels, font.labels

graphics parameters for the text panel.

row1attop logical. Should the layout be matrix-like with row 1 at the top, or graphi-
like with row 1 at the bottom?

Details

The ijth scatterplot contains x[,i] plotted against x[,j]. The“scatterplot’ can be custom-
ised by setting panel functions to appear as something completely different. The off-diagonal
panel functions are passed the appropriate columns of x as x and y: the diagonal panel
function (if any) is passed a single column, and the text.panel function is passed a single
(x, y) location and the column name.

The graphical parameters pch and col can be used to specify a vector of plotting symbols
and colors to be used in the plots.

The graphical parameter oma will be set by pairs.default unless supplied as an argument.

Author(s)

Enhancements for R 1.0.0 contributed by Dr. Jens Oehlschlaegel-Akiyoshi and R-core mem-
bers.

Examples

data(USJudgeRatings)

pairs(USJudgeRatings)

put histograms on the diagonal

panel.hist <- function(x, ...)

{

usr <- par("usr"); on.exit(par(usr))

par(usr = c(usr[1:2], 0, 1.5))

h <- hist(x, plot = FALSE)

breaks <- h$breaks; nB <- length(breaks)

y <- h$counts; y <- y/max(y)

rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

}

pairs(USJudgeRatings[1:5], panel=panel.smooth,

diag.panel=panel.hist, cex.labels=1.5, font.labels=2)

338 pairs.formula

put (absolute) correlations on the upper panels,

with size proportional to the correlations.

panel.cor <- function(x, y, digits=2, prefix="", cex.cor)

{

usr <- par("usr"); on.exit(par(usr))

par(usr = c(0, 1, 0, 1))

r <- abs(cor(x, y))

txt <- format(c(r, 0.123456789), digits=digits)[1]

txt <- paste(prefix, txt, sep="")

if(missing(cex.cor)) cex <- 0.8/strwidth(txt)

text(0.5, 0.5, txt, cex = cex * r)

}

pairs(USJudgeRatings, lower.panel=panel.smooth, upper.panel=panel.cor)

pairs.formula Formula Notation for Scatterplot Matrices pairs.formula

Description

Produce a matrix of scatterplots using formula notation.

Usage

pairs.formula(formula, data = NULL, subset, na.action, ...)

Arguments

formula a formula, such as y ˜ x.

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

na.action a function which indicates what should happen when the data contain
NAs.

... graphical parameters may also be passed as arguments, see par.

Details

This is a method of the generic function pairs. It operates by setting up the data from the
formula specification, and then calling pairs.default.

See Also

pairs.default

Examples

data(swiss)

pairs(~ Fertility + Education + Catholic,

data = swiss, subset = Education < 20)

palette 339

palette Set or View the Graphics Palette palette

Description

View or manipulate the color palette which is used when a col= has a numeric index.

Usage

palette(value)

Arguments

value an optional character vector.

Details

If value has length 1, it is taken to be the name of a built in color palette. If value has
length greater than 1 it is assumed to contain a description of the colors which are to make
up the new palette (either by name or by RGB levels).

If value is omitted or has length 0, no change is made the current palette.

Currently, the only built-in palette is "default".

Value

The palette which was in effect. This is invisible unless the argument is omitted.

See Also

colors for the vector of built-in“named”colors; hsv, gray, rainbow, terrain.colors,. . . to
construct colors.

Examples

palette() # obtain the current palette

palette(rainbow(6)) # six color rainbow

(palette(gray(seq(0,.9,len=25)))) # gray scales; print old palette

matplot(outer(1:100,1:30), type=’l’, lty=1,lwd=2, col=1:30,

main = "Gray Scales Palette",

sub = "palette(gray(seq(0,.9,len=25)))")

palette("default") # reset back to the default

340 Palettes

Palettes Color Palettes Palettes

Description

These functions create a vector of n “contiguous” colors.

Usage

rainbow(n, s = 1, v = 1, start = 0, end = max(1,n - 1)/n, gamma = 1)
heat.colors(n)
terrain.colors(n)
topo.colors(n)
cm.colors(n)

Arguments

n the number of colors (≥ 1) to be in the palette.

s,v the “saturation” and “value” to be used to complete the HSV color de-
scriptions.

start the (corrected) hue in [0,1] at which the rainbow begins.

end the (corrected) hue in [0,1] at which the rainbow ends.

gamma the gamma correction, see hsv(.., gamma).

Details

Conceptually, all of these functions actually use (parts of) a line cut out of the 3-dimensional
color space, parametrized by hsv(h,s,v, gamma), where gamma= 1 for the foo.colors
function, and hence, equispaced hues in RGB space tend to cluster at the red, green and
blue primaries.

Some applications such as contouring require a palette of colors which do not“wrap around”
to give a final color close to the starting one.

With rainbow, the parameters start and end can be used to specify particular subranges of
hues. The following values can be used when generating such a subrange: red=0, yellow=1

6 ,
green=2

6 , cyan=3
6 , blue=4

6 and magenta=5
6 .

Value

A character vector, cv, of color names. This can be used either to create a user–defined color
palette for subsequent graphics by palette(cv), a col= specification in graphics functions
or in par.

See Also

colors, palette, hsv, rgb, gray.

panel.smooth 341

Examples

A Color Wheel

piechart(rep(1,12), col=rainbow(12))

##------ Some palettes ------------

ch.col <- c("rainbow(n, start=.7, end=.1)", "heat.colors(n)",

"terrain.colors(n)", "topo.colors(n)", "cm.colors(n)")

n <- if(.Device == "postscript") 64 else 16

Since for screen, larger n may give color allocation problem

nt <- length(ch.col)

i <- 1:n; j <- n / nt; d <- j/6; dy <- 2*d

plot(i,i+d, type="n", yaxt="n", ylab="", main=paste("color palettes; n=",n))

for (k in 1:nt) {

rect(i-.5,(k-1)*j+ dy, i+.4, k*j, col=eval(parse(text=ch.col[k])))

text(2*j, k * j +dy/4, ch.col[k])

}

panel.smooth Simple Panel Plot panel.smooth

Description

An example of a simple useful panel function to be used as argument in e.g., coplot or
pairs.

Usage

panel.smooth(x, y, col, pch, span=2/3, iter=3, ...)

Arguments

x,y numeric vectors of the same length

col,pch numeric or character codes for the color and point type; see par

span smoothing parameter f for lowess, see there.

iter number of robustness iterations for lowess.

... further arguments to lines.

See Also

coplot(.) and pairs(.) where panel.smooth is typically used; lowess.

Examples

data(swiss)

pairs(swiss, panel = panel.smooth, pch = ".")# emphasize the smooths

342 par

par Set or Query Graphical Parameters par

Description

par can be used to set or query graphical parameters. Parameters can be set by specifying
them as arguments to par in tag = value form, or by passing them as a list of tagged
values.

Usage

par(..., no.readonly = FALSE)

<highlevel plot> (..., <tag> = <value>)

Arguments

no.readonly logical; if TRUE and there are no other arguments, only parameters are
returned which can be set by a subsequent par(.) call.

adj The value of adj determines the way in which text strings are justified.
A value of 0 produces left-justified text, 0.5 centered text and 1 right-
justified text. Note that the adj argument of text and mtext also allows
adj= c(x,y) for different adjustment in x- and y- direction.

ann If set to FALSE, high-level plotting functions do not annotate the plots
they produce with axis and overall titles. The default is to do annotation.

ask logical. If TRUE, the user is asked for input, before a new figure is drawn.

bg The color to be used for the background of plots. A description of how
colors are specified is given below.

bty A character string which determined the type of box which is drawn about
plots. If bty is one of "o", "l", "7", "c", or "]" the resulting box
resembles the corresponding upper case letter. A value of "n" suppresses
the box.

cex A numerical value giving the amount by which plotting text and symbols
should be scaled relative to the default.

cex.axis The magnification to be used for axis annotation relative to the current.

cex.lab The magnification to be used for x and y labels relative to the current.

cex.main The magnification to be used for main titles relative to the current.

cex.sub The magnification to be used for sub-titles relative to the current.

cin R.O.; character size (width,height) in inches.

col A specification for the default plotting color. A description of how colors
are specified is given below.

col.axis The color to be used for axis annotation.

col.lab The color to be used for x and y labels.

col.main The color to be used for plot main titles.

col.sub The color to be used for plot sub-titles.

cra R.O.; size of default character (width,height) in “rasters” (pixels).

par 343

crt A numerical value specifying (in degrees) how single characters should be
rotated. It is unwise to expect values other than multiples of 90 to work.
Compare with srt which does string rotation.

csi R.O.. The height of (default sized) characters in inches.

cxy R.O.; size of default character (width,height) in user coordinate units.
par("cxy") is par("cin")/par("pin") scaled to user coordinates. Note
that c(strwidth(ch),strwidth(ch)) for a given string ch is usually
much more precise.

din R.O.. The device dimensions in inches.

err (Unimplemented ; R is silent when points outside the plot region are not
plotted.) The degree of error reporting desired.

fg The color to be used for the foreground of plots. This is the default color
is used for things like axes and boxes around plots. A description of how
colors are specified is given below.

fig A numerical vector of the form c(x1, x2, y1, y2) which gives the
(NDC) coordinates of the figure region in the display region of the device.

fin A numerical vector of the form c(x, y) which gives the size of the figure
region in inches.

font An integer which specifies which font to use for text. If possible, device
drivers arrange so that 1 corresponds to plain text, 2 to bold face, 3 to
italic and 4 to bold italic.

font.axis The font to be used for axis annotation.

font.lab The font to be used for x and y labels.

font.main The font to be used for plot main titles.

font.sub The font to be used for plot sub-titles.

gamma the gamma correction, see hsv(.., gamma).

lab A numerical vector of the form c(x, y, len) which modifies the way
that axes are annotated. The values of x and y give the (approximate)
number of tickmarks on the x and y axes and len specifies the label size.
Currently, len is unimplemented.

las numeric in {0,1,2,3}; the style of axis labels.

0: always parallel to the axis [default],
1: always horizontal,
2: always perpendicular to the axis,
3: always vertical.

Note that other string/character rotation (via par(srt = ..)) does not
affect the axis labels.

lty The line type. Line types can either be specified as an integer (0=blank,
1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or
as one of the character strings "blank", "solid", "dashed", "dotted"
"dotdash", "longdash", or "twodash", where "blank" uses ‘invisible
lines’ (i.e. doesn’t draw them).
Alternatively, a string of up to 8 characters (from c(0:9, "A":"F")) may
be given, giving the length (typically in points/pixels) of line segments
which are alternatively drawn and skipped. For example, "44" is dashed
and "13" is dotted.

344 par

lwd The line width, a positive numerical, defaulting to 1.

mai A numerical vector of the form c(bottom, left, top, right) which
gives the margin size specified in inches.

mar A numerical vector of the form c(bottom, left, top, right) which
gives the lines of margin to be specified on the four sides of the plot. The
default is c(5, 4, 4, 2) + 0.1.

mex mex is a character size expansion factor which is used to describe coordin-
ates in the margins of plots.

mfcol, mfrow A vector of the form c(nr, nc). Subsequent figures will be drawn in
an nr-by-nc array on the device by columns (mfcol), or rows (mfrow),
respectively.
Consider the alternatives, layout(..) and split.screen(..).

mfg A numerical vector of the form c(i, j) where i and j indicate which
figure in an array of figures is to be drawn next (if setting) or is being
drawn (if enquiring). The array must already have been set by mfcol or
mfrow.
For compatibility with S, the form c(i, j, nr, nc) is also accepted,
when nc and nc should be the current number of rows and number of
columns. Mismatches will be ignored, with a warning.

mgp The margin line (in mex units) for the axis title, axis labels and axis line.
The default is c(3, 1, 0).

mkh The height in inches of symbols to be drawn when the value of pch is an
integer. Completely ignored currently.

new logical, defaulting to FALSE. If set to TRUE, the next high-level plotting
command (actually plot.new(.) should not clean the frame before draw-
ing “as if it was on a new device”.

oma A vector of the form c(bottom, left, top, right) giving the size of
the outer margins in lines of text.

omd A vector of the form c(x1, x2, y1, y2) giving the outer margin region
in NDC (= normalized device coordinates), i.e., as fraction (in [0, 1]) of
the device region.

omi A vector of the form c(bottom, left, top, right) giving the size of
the outer margins in inches.

pch Either an integer specifying a symbol or a single character to be used as
the default in plotting points.

pin The width and height of the current plot in inches.

plt A vector of the form c(x1, x2, y1, y2) giving the coordinates of the
plot region as fractions of the current figure region.

ps integer; the pointsize of text and symbols.

pty A character specifying the type of plot region to be used; "s" generates
a square plotting region and "m" generates the maximal plotting region.

smo (Unimplemented) a value which indicates how smooth circles and circular
arc should be.

srt The string rotation in degrees.

tck The length of tick marks as a fraction of the smaller of the width or height
of the plotting region. If tck=1, grid lines are drawn. The default setting
is to use tcl=-0.5 (see below).

par 345

tcl The length of tick marks as a fraction of the height of a line of text. The
default value is -0.5.

tmag A number specifying the enlargement of text of the main title relative to
the other annotating text of the plot.

type character; the default plot type desired, see plot.default(type=...),
defaulting to "p".

usr A vector of the form c(x1, x2, y1, y2) giving the extremes of the user
coordinates of the plotting region.

xaxp A vector of the form c(x1, x2, n) giving the coordinates of the extreme
tick marks and the number of intervals between tick-marks.

xaxs The style of axis interval calculation to be used for the x-axis. Possible
values are "r", "i", "e", "s", "d". The styles are generally controlled by
the range of data or xlim, if given. Style "r" (regular) first extends the
data range by 4 percent and then finds an axis with pretty labels that
fits within the range. Style "i" (internal) just finds an axis with pretty
labels that fits within the original data range. Style "s" (standard) finds
an axis with pretty labels within which the original data range fits. Style
"e" (extended) is like style "s", except that it is also ensured that there
is room for plotting symbols within the bounding box. Style "d" (direct)
specifies that the current axis should be used on subsequent plots. (Only
"r" and "i" styles are currently implemented)

xaxt A character which specifies the axis type. Specifying "n" causes an axis
to be set up, but not plotted.

xlog R.O.. A logical value (see log in plot.default). If TRUE a logarithmic
scale is in use. For a new device, it defaults to FALSE, i.e., linear scale.

xpd A logical value or NA. If FALSE, all plotting is clipped to the plot region,
if TRUE, all plotting is clipped to the figure region, and if NA, all plotting
is clipped to the device region.

yaxp A vector of the form c(y1, y2, n) giving the coordinates of the extreme
tick marks and the number of intervals between tick-marks.

yaxs The style of axis interval calculation to be used for the y-axis. See xaxs
above.

yaxt A character which specifies the axis type. Specifying "n" causes an axis
to be set up, but not plotted.

ylog R.O.. A logical value (see log in plot.default). See xlog above.

Details

Parameters are queried by giving one or more character vectors to par.

par() (no arguments) or par(no.readonly=TRUE) is used to get all the graphical para-
meters (as named list). Their names are currently taken from the variable .Pars.
.Pars.readonly contains the names of the par arguments which are readonly.

R.O. Arguments := Read-only arguments: These may only be used in queries, i.e., they
do not set anything.

All but these R.O. and the following low-level arguments can be set as well in high-level
and mid-level plot functions, such as plot, points, lines, axis, title, text, mtext:

• "ask"

346 par

• "fig", "fin"

• "mai", "mar", "mex"

• "mfrow", "mfcol", "mfg"

• "new"

• "oma", "omd", "omi"

• "pin", "plt", "ps", "pty"

• "usr"

• "xlog", "ylog"

Value

When parameters are set, their former values are returned in an invisible named list.
Such a list can be passed as an argument to par to restore the parameter values. Use
par(no.readonly = TRUE) for the full list of parameters that can be restored.

When one parameter is queried, the value is a character string. When two or more para-
meters are queried, the result is a list of character strings, with the list names giving the
parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter
returns a vector.

Color Specification

Colors can be specified in several different ways. The simplest way is with a character
string giving the color name (e.g., "red"). A list of the possible colors can be obtained with
the function colors. Alternatively, colors can be specified directly in terms of there RGB
components with a string of the form "#RRGGBB" where each of the pairs RR, GG, BB consist
of two hexadecimal digits giving a value in the range 00 to FF. Colors can also be specified
by giving an index into a small table of colors. This provides compatibility with S.

The functions rgb, hsv, gray and rainbow provide additional ways of generating colors.

Line Type Specification

Line types can either be specified by giving an index into a small built in table of line types
(1=solid, 2=dashed, 3=dotted) or directly as the lengths of on/off stretches of line. This is
done with a string of up to eight characters which give the lengths in consecutive positions
in the string. For example, the string "33" specifies three pixels on followed by three off
and "3313" specifies three pixels on followed by three off followed by one on and finally
three off.

See Also

plot.default for some high-level plotting parameters; colors, gray, rainbow, rgb; op-
tions for other setup parameters; graphic devices x11, postscript and setting up device
regions by layout and split.screen.

Examples

op <- par(mfrow = c(2, 2), # 2 x 2 pictures on one plot

pty = "s") # square plotting region, independent of device size

At end of plotting, reset to previous settings:

Paren 347

par(op)

Alternatively,

op <- par(no.readonly = TRUE)# the whole list of settable par’s.

do lots of plotting and par(.) calls, then reset :

par(op)

par("ylog")# FALSE

plot(1:12,log="y")

par("ylog")# TRUE

(nr.prof <-

c(prof.pilots=16,lawyers=11,farmers=10,salesmen=9,physicians=9,

mechanics=6,policemen=6,managers=6,engineers=5,teachers=4,

housewives=3,students=3,armed.forces=1))

par(las=3)

barplot(rbind(nr.prof)) # R 0.63.2: shows alignment problem

par(las=0)# reset to default

ex <- function() {

old.par <- par(no.readonly = TRUE)# all par settings which could be changed.

on.exit(par(old.par))

...

... do lots of par(..) settings and plots

...

invisible() #-- now, par(old.par) will be executed

}

ex()

Paren Parentheses and Braces Paren

Description

Open parenthesis, (, and open brace, {, are .Primitive functions in R.
Effectively, (is semantically equivalent to the identity function(x) x, whereas { is slightly
more interesting, see examples.

Usage

(...)

{ ... }

See Also

if, return, etc for other objects used in the R language itself.

Examples

f <- get("(")

e <- expression(3 + 2 * 4)

f(e) == e # TRUE

do <- get("{")

do(x_ 3, y_ 2*x-3, 6-x-y); x; y

348 parse.dcf

parse Parse Expressions parse

Description

parse returns the parsed but unevaluated expressions in a list. Each element of the list is
of mode expression.

Usage

parse(file = "", n = NULL, text = NULL, prompt = NULL, white = FALSE)

Arguments

file the name of a file to read the expressions from. Note that the ASCII file
must end with a newline ("
n"). If file is "" and text is missing or NULL then input is taken from
the keyboard.

n the number of statements to parse. If n is negative the file is parsed in
its entirety.

text character. The text to parse, quoted.

prompt the prompt to print when parsing from the keyboard. The default, NULL,
is to use R’s prompt, options("prompt")[[1]].

white if TRUE then any white space separates expressions otherwise only newlines
or semicolons do.

See Also

scan, source, eval, deparse.

Examples

cat("x <- c(1,4)\n x ^ 3 -10 ; outer(1:7,5:9)\n", file="xyz.Rdmped")

parse 3 statements from the file "xyz.Rdmped"

parse(file = "xyz.Rdmped", n = 3)

unlink("xyz.Rdmped")

parse.dcf Parse Debian Control File Format parse.dcf

Description

Parses text read from a file in Debian control file format, e.g., the ‘DESCRIPTION’ or
‘CONTENTS’ of a package.

Usage

parse.dcf(desc = NULL, file = "", fields = NULL, versionfix = FALSE)

paste 349

Arguments

text A character vector containing one line of the file in each element.

file Name of the file to be parsed.

fields A character vector of fields to return (if other fields occur in the file they
are ignored.

versionfix Logical, if TRUE than the version field is truncated at the first whitespace
character.

Value

If fields = NULL, a list with one element per entry is returned. Each entry is a list of
character vectors, one per field. If fields are specified, then a character matrix with one
row per entry and one column per field is returned.

See Also

package.contents, library

paste Concatenate Strings paste

Description

Concatenate character vectors.

Usage

paste(..., sep = " ", collapse = NULL)

Arguments

... one or more R objects, to be coerced to character vectors.

sep a character string to separate the terms.

collapse an optional character string to separate the results.

Details

paste converts its arguments to character strings, and concatenates them (separating them
by the string given by sep). If the arguments are vectors, they are concatenated term-by-
term to give a character vector result.

If a value is specified for collapse, the values in the result are then concatenated into a
single string, with the elements being separated by the value of collapse.

Value

A character vector of the concatenated values.

See Also

as.character, substr, nchar, strsplit.

350 persp

Examples

paste(1:12) # same as as.character(..)

paste("A", 1:6, sep = "")

paste("Today is", date())

persp Perspective Plots persp

Description

This function draws perspective plots of surfaces over the x–y plane.

Usage

persp(x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)), z,
xlim = range(x), ylim = range(y), zlim = range(z, na.rm = TRUE),
xlab = NULL, ylab = NULL, zlab = NULL,
theta = 0, phi = 15, r = sqrt(3), d = 1,
scale = TRUE, expand = 1,
col = NULL, border = NULL, ltheta = -135, lphi = 0,
shade = NA, box = TRUE, axes = TRUE, nticks = 5, ticktype = "simple",
...)

Arguments

x, y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

xlim, ylim, zlim

x-, y- and z-limits. The plot is produced so that the rectangular volume
defined by these limits is visible.

xlab, ylab, zlab

titles for the axes.

theta, phi angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude.

r the distance of the eyepoint from the centre of the plotting box.

d a value which can be used to vary the strength of the perspective trans-
formation. Values of d greater than 1 will lessen the perspective effect
and values less and 1 will exaggerate it.

scale before viewing the x, y and z coordinates of the points defining the surface
are transformed to the interval [0,1]. If scale is TRUE the x, y and z
coordinates are transformed separately. If scale is FALSE the coordinates
are scaled so that aspect ratios are retained. This is useful for rendering
things like DEM information.

expand a expansion factor applied to the z coordinates. Often used with 0 <
expand < 1 to shrink the plotting box in the z direction.

persp 351

col the color of the surface facets.

border the color of the line drawn around the surface facets. A value of NA will
disable the drawing of borders. This is sometimes useful when the surface
is shaded.

ltheta, lphi if finite values are specified for ltheta and lphi, the surface is shaded as
though it was being illuminated from the direction specified by azimuth
ltheta and colatitude lphi.

shade the shade at a surface facet is computed as ((1+d)/2) ŝhade, where d is
the dot product of a unit vector normal to the facet and a unit vector in
the direction of a light source. Values of shade close to one yield shading
similar to a point light source model and values close to zero produce
no shading. Values in the range 0.5 to 0.75 provide an approximation to
daylight illumination.

box should the bounding box for the surface be displayed. The default is TRUE.

axes should ticks and labels be added to the box. The default is TRUE. If box
is FALSE then no ticks or labels are drawn.

ticktype character: ”simple” draws just an arrow parallel to the axis to indicate
direction of increase; ”detailed” draws normal ticks as per 2D plots.

nticks the (approximate) number of tick marks to draw on the axes. Has no
effect if ticktype is ”simple”.

... additional graphical parameters (see par) and the arguments to title
may also be supplied.

Details

The plots are produced by first transforming the coordinates to the interval [0,1]. The
surface is then viewed by looking at the origin from a direction defined by theta and phi.
If theta and phi are both zero the viewing direction is directly down the negative y axis.
Changing theta will vary the azimuth and changing phi the colatitude.

See Also

contour and image.

Examples

(1) The Obligatory Mathematical surface.

Rotated sinc function.

x <- seq(-10, 10, length=50)

y <- x

f <- function(x,y)

{

r <- sqrt(x^2+y^2)

10 * sin(r)/r

}

z <- outer(x, y, f)

z[is.na(z)] <- 1

par(bg = "white")

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

xlab = "X", ylab = "Y", zlab = "Z")

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

352 phones

ltheta = 120, shade = 0.75, ticktype = "detailed",

xlab = "X", ylab = "Y", zlab = "Z")

(2) Visualizing a simple DEM model

data(volcano)

z <- 2 * volcano # Exaggerate the relief

x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)

y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)

persp(x, y, z, theta = 120, phi = 15, scale = FALSE, axes = FALSE)

(3) Now something more complex

We border the surface, to make it more "slice like"

and color the top and sides of the surface differently.

zmin <- min(z) - 20

z <- rbind(zmin, cbind(zmin, z, zmin), zmin)

x <- c(min(x) - 1e-10, x, max(x) + 1e-10)

y <- c(min(y) - 1e-10, y, max(y) + 1e-10)

fill <- matrix("green3", nr = nrow(z)-1, nc = ncol(z)-1)

fill[,1] <- "gray"

fill[,ncol(fill)] <- "gray"

fill[1,] <- "gray"

fill[nrow(fill),] <- "gray"

par(bg = "lightblue")

persp(x, y, z, theta = 120, phi = 15, col = fill, scale = FALSE, axes = FALSE)

title(main = "Maunga Whau\nOne of 50 Volcanoes in the Auckland Region.",

font.main = 4)

par(bg = "slategray")

persp(x, y, z, theta = 135, phi = 30, col = fill, scale = FALSE,

ltheta = -120, lphi = 15, shade = 0.65, axes = FALSE)

persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,

ltheta = -120, shade = 0.75, border = NA, box = FALSE)

phones The World’s Telephones phones

Description

The number of telephones in various regions of the world (in thousands).

Usage

data(phones)

Format

A matrix with 7 rows and 8 columns.

pictex 353

Details

The columns of the matrix give the figures for a given region, and the rows the figures for
a year.

The regions are: North America, Europe, Asia, South America, Oceania, Africa, Central
America.

The years are: 1951, 1956, 1957, 1958, 1959, 1960, 1961.

Source

AT&T (1961) The World’s Telephones.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(phones)

matplot(rownames(phones), phones, type = "b", log = "y",

xlab = "Year", ylab = "Number of telephones (1000’s)")

legend(1951.5, 80000, colnames(phones), col = 1:7, lty = 1:7, pch = rep(21, 7))

title(main = "phones data: log scale for response")

pictex A PicTeX Graphics Driver pictex

Description

This function produces graphics suitable for inclusion in TeX and LaTeX documents.

Usage

pictex(file = "Rplots.tex", width = 5, height = 4, debug = FALSE,
bg = "white", fg = "black")

Arguments

file the file where output will appear.

width The width of the plot in inches.

height the height of the plot in inches.

debug should debugging information be printed.

bg the background color for the plot.

fg the foreground color for the plot.

Author(s)

This driver was provided by Valerio Aimale 〈valerio@svpop.com.dist.unige.it〉 of the De-
partment of Internal Medicine, University of Genoa, Italy.

354 piechart

References

Knuth, D. E. (1984) The TeXbook. Reading, MA: Addison-Wesley.

Lamport, L. (1994) LATEX: A Document Preparation System. Reading, MA: Addison-
Wesley.

Goossens, M., Mittelbach, F. and Samarin, A. (1994) The LATEX Companion. Reading,
MA: Addison-Wesley.

See Also

postscript, Devices.

Examples

pictex()

plot(1:11,(-5:5)^2, type=’b’, main="Simple Example Plot")

dev.off()

##--------------------

%% LaTeX Example

\documentclass{article}

\usepackage{pictex}

\begin{document}

%...

\begin{figure}[h]

\centerline{\input{Rplots.tex}}

\caption{}

\end{figure}

%...

\end{document}

%%-- TeX Example --

\input pictex

$$ \input Rplots.tex $$

piechart Pie Charts piechart

Description

Draw a pie chart.

Usage

piechart(x, labels=names(x), shadow=FALSE,
edges=200, radius=0.8, fill=NULL, main=NULL, ...)

Arguments

x a vector of positive quantities. The values in x are displayed as the areas
of pie slices.

labels a vector of character strings giving names for the slices.

PlantGrowth 355

shadow a logical vector indicating whether a shadow effect should be attempted
for the chart. This only makes sense if the slices are filled with colors.

edges the circular outline of the pie is approximated by a polygon with this
many edges.

radius the pie is drawn centered in a square box whose sides range from −1 to
1. If the character strings labeling the slices are long it may be necessary
to use a smaller radius.

col a vector of colors to be used in filling the slices.

main an overall title for the plot.

... graphical parameters can be given as arguments to piechart.

Note

Pie charts are a very bad way of displaying information. The eye is good at judging linear
measures and bad at judging relative areas.

A bar chart or dot chart is a preferable way of displaying this type of data.

See Also

dotplot.

Examples

piechart(rep(1,24), col=rainbow(24), radius=0.9)

pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

names(pie.sales) <- c("Blueberry", "Cherry",

"Apple", "Boston Cream", "Other", "Vanilla Cream")

piechart(pie.sales,

col=c("purple", "violetred1", "green3",

"cornsilk", "cyan", "white"))

piechart(pie.sales,

col=gray(seq(0.4,1.0,length=6)))

PlantGrowth Results from an Experiment on Plant Growth PlantGrowth

Description

Results from an experiment to compare yields (as measured by dried weight of plants)
obtained under a control and two different treatment conditions.

Usage

data(PlantGrowth)

Format

A data frame of 30 cases on 2 variables.

[, 1] weight numeric
[, 2] group factor

356 Platform

The levels of group are ‘ctrl’, ‘trt1’, and ‘trt2’.

Source

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Examples

One factor ANOVA example from Dobson’s book, cf. Table 7.4:

data(PlantGrowth)

boxplot(weight ~ group, data = PlantGrowth, main = "PlantGrowth data",

ylab = "Dried weight of plants", col = "lightgray",

notch = TRUE, varwidth = TRUE)

anova(lm(weight ~ group, data = PlantGrowth))

Platform Platform Specific Variables Platform

Description

.Platform is a list with functions and variables as components. This provides a possibility
to write OS portable R code. However, this interface is still somewhat experimental.

Currently, .Platform <- Platform() when R starts up. This is even more experimental.

Usage

.Platform
Platform()

Value

.Platform is list with at least the following components:

OS.type character, giving the Operating System (family) of the computer. One
of the following values is returned: "unix", "mac", or "windows" (in
historical order).

file.sep character, giving the file separator, used on your platform, e.g., "/" on
Unix alikes.

dynlib.ext character, giving the file name extension of dynamically loadable
libraries, e.g., ".dll" on Windows.

See Also

system for invoking platform specific system commands.

Examples

if(.Platform$ OS.type == "unix") {

system.test <- function(...) { system(paste("test", ...)) == 0 }

dir.exists <- function(dir) sapply(dir, function(d)system.test("-d", d))

dir.exists(c(R.home(), "/tmp", "~", "/NO"))# > T T T F

}

plot 357

plot Generic X-Y Plotting plot

Description

Generic function for plotting of R objects. For more details about the graphical parameter
arguments, see par.

Usage

plot(x, ...)
plot(x, y, xlim=range(x), ylim=range(y), type="p",

main, xlab, ylab, ...)
plot(y ~ x, ...)

Arguments

x the coordinates of points in the plot. Alternatively, a single plotting
structure or any R object with a plot method can be provided.

y the y coordinates of points in the plot, optional if x is an appropriate
structure.

xlim, ylim the ranges to be encompassed by the x and y axes.

type what type of plot should be drawn. Possible types are

• "p" for points,
• "l" for lines,
• "b" for both,
• "o" for both “overplotted”,
• "h" for “histogram” like vertical lines,
• "s" for steps,
• "S" for other steps,
• "n" for no plotting.

main an overall title for the plot.

xlab a title for the x axis.

ylab a title for the y axis.

... graphical parameters can be given as arguments to plot.

Details

For simple scatter plots, plot.default will be used. However, there are plot methods
for many R objects, including functions, data.frames, density objects, etc. Use meth-
ods(plot) and the documentation for these.

See Also

plot.default, plot.formula and other methods; points, lines, par.

358 plot.default

Examples

data(cars)

plot(cars)

lines(lowess(cars))

plot(sin, -pi, 2*pi)

Discrete Distribution Plot:

plot(table(rpois(100,5)), type = "h", col = "red", lwd=10,

main="rpois(100,lambda=5)")

plot.default The Default Scatterplot Function plot.default

Description

Draw a scatter plot with“decorations” such as axes and titles in the active graphics window.

Usage

plot.default(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,
log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL,
col = par("fg"), bg = NA, pch = par("pch"),
cex = par("cex"), lty = par("lty"), lwd = par("lwd"),
asp = NA, ...)

Arguments

x,y the x and y arguments provide the x and y coordinates for the plot. Any
reasonable way of defining the coordinates is acceptable. See the function
xy.coords for details.

type the type of plot desired. The following possibilities are possible; "p" for
points, "l" for lines, "o" for overplotted points and lines, "b" or c for
points joined by lines, "s" and "S" for step functions and "h" for high
density vertical lines.

xlim the x limits (min,max) of the plot.

ylim the y limits of the plot.

log a character string which contains "x" if the x axis is to be logarithmic,
"y" if the y axis is to be logarithmic and "xy" or "yx" if both axes are to
be logarithmic.

main a main title for the plot.

sub a sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

ann a logical value indicating whether the default annotation (title and x and
y axis labels) should appear on the plot.

axes a logical value indicating whether axes should be drawn on the plot.

plot.default 359

frame.plot a logical indicating whether a box should be drawn around the plot.

panel.first an expression to be evaluated after the plot axes are set up but before any
plotting takes place. This can be useful for drawing background grids or
scatterplot smooths.

panel.last an expression to be evaluated after plotting has taken place.

col The colors for lines and points. Multiple colors can be specified so that
each point can be given its own color. If there are fewer colors than points
they are recycled in the standard fashion.

bg background color of ???

pch a vector of plotting characters or symbols.

cex a numerical value giving the amount by which plotting text and symbols
should be scaled relative to the default

lty the line type, see par.

lwd the line width not yet supported for postscript.

asp the y/x aspect ratio, see plot.window.

... graphical parameters as in par(...) may also be passed as arguments.

References

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

See Also

plot, plot.window, xy.coords.

Examples

data(cars)

Speed <- cars$speed

Distance <- cars$dist

plot(Speed, Distance, panel.first = grid(8,8),

pch = 0, cex = 1.2, col = "blue")

plot(Speed, Distance,

panel.first = lines(lowess(Speed, Distance), lty = "dashed"),

pch = 0, cex = 1.2, col = "blue")

##--- Log-Log Plot with custom axes

lx <- seq(1,5, length=41)

yl <- expression(e^{-frac(1,2) * {log[10](x)}^2})

y <- exp(-.5*lx^2)

op <- par(mfrow=c(2,1), mar=par("mar")+c(0,1,0,0))

plot(10^lx, y, log="xy", type="l", col="purple",

main="Log-Log plot", ylab=yl, xlab="x")

plot(10^lx, y, log="xy", type="o", pch=’.’, col="forestgreen",

main="Log-Log plot with custom axes", ylab=yl, xlab="x",

axes = FALSE, frame.plot = TRUE)

axis(1, at = my.at <- 10^(1:5), labels = formatC(my.at, format="fg"))

at.y <- 10^(-5:-1)

axis(2, at = at.y, labels = formatC(at.y, format="fg"), col.axis="red")

par(op)

360 plot.formula

plot.factor Plotting Factor Variables plot.factor

Description

This functions implements a“scatterplot”method for factor arguments of the generic plot
function. Actually, boxplot or barplot are used when appropriate.

Usage

plot.factor(x, y, legend.text = levels(y), ...)

Arguments

x,y numeric or factor. y may be missing.

legend.text a vector of text used to construct a legend for the plot. Only used if y is
present and a factor.

... Further arguments to plot, see also par.

See Also

plot.default, plot.formula, barplot, boxplot.

Examples

data(PlantGrowth)

plot(PlantGrowth) # -> plot.data.frame

plot(weight ~ group, data = PlantGrowth) # numeric vector ~ factor

plot(cut(weight, 2) ~ group, data = PlantGrowth) # factor ~ factor

plot(PlantGrowth$group, axes=FALSE, main="no axes")# extremly silly

plot.formula Formula Notation for Scatterplots plot.formula

Description

Specify a scatterplot or add points or lines via a formula.

Usage

plot.formula(formula, ..., data = parent.frame(), subset,
ylab = varnames[response], ask = TRUE)

points.formula(formula, ..., data = parent.frame(), subset)
lines.formula(formula, ..., data = parent.frame(), subset)
plot(y ~ x, ...)
points(y ~ x, ...)
lines(y ~ x, ...)

plot.lm 361

Arguments

formula a formula, such as y ˜ x.

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

ylab the y label of the plot(s)

... Further graphical parameters may also be passed as arguments, see par

ask logical, see par.

Details

Both the terms in the formula and the ... arguments are evaluated in data enclosed in
parent.frame() if data is a list or a data frame. The terms of the formula and those
arguments in ... that are of the same length as data are subjected to the subsetting
specified in subset. If the formula in plot.formula contains more than one non-response
term, a series of plots of y against each term is given. A plot against the running index can
be specified as plot(y 1̃).

Value

These functions are invoked for their side effect of drawing in the active graphics device.

See Also

plot.default, plot.factor.

Examples

data(airquality)

op <- par(mfrow=c(2,1))

plot(Ozone ~ Wind, data = airquality, pch=as.character(Month))

plot(Ozone ~ Wind, data = airquality, pch=as.character(Month),

subset = Month != 7)

par(op)

plot.lm Plot Diagnostics for an lm Object plot.lm

Description

Four plots (choosable by which) are currently provided: a plot of residuals against fitted
values, a Scale-Location plot of

√
|residuals| against fitted values, a Normal Q-Q plot, and

a plot of Cook’s distances versus row labels.

362 plot.lm

Usage

plot.lm(x, which = 1:4,
caption = c("Residuals vs Fitted", "Normal Q-Q plot",

"Scale-Location plot", "Cook’s distance plot"),
panel = points,
sub.caption = deparse(x$call), main = "",
ask = interactive() && one.fig && .Device != "postscript",
...,
id.n = 3, labels.id = names(residuals(x)), cex.id = 0.25)

Arguments

x lm object, typically result of lm or glm.

which If a subset of the plots is required, specify a subset of the numbers 1:4.

caption Captions to appear above the plots

panel Panel function. A useful alternative to points is panel.smooth.

sub.caption common title—above figures if there are multiple; used as sub (s.title)
otherwise.

main title to each plot—in addition to the above caption.

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).

... other parameters to be passed through to plotting functions.

id.n number of points to be labelled in each plot, starting with the most ex-
treme.

labels.id vector of labels, from which the labels for extreme points will be chosen.
NULL uses observation numbers.

cex.id magnification of point labels.

Details

sub.caption—by default the function call—is shown as a subtitle (under the x-axis title)
on each plot when plots are on separate pages, or as a subtitle in the outer margin (if any)
when there are multiple plots per page.

The “Scale-Location” plot, also called“Spread-Location”or “S-L” plot, takes the square root
of the absolute residuals in order to diminish skewness (

√
|E| is much less skewed than |E|

for Gaussian zero-mean E).

This ‘S-L’ and the Q-Q plot use standardized residuals which have identical variance (under
the hypothesis). They are given as Ri/(s×

√
1− hii) where hii are the diagonal entries of

the hat matrix, lm.influence()$hat, see also hat.

Author(s)

John Maindonald and Martin Maechler.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London:
Chapman and Hall.

Hinkley, D. V. (1975) On power transformations to symmetry. Biometrika 62, 101–111.

plot.window 363

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

See Also

lm.influence, cooks.distance

Examples

Analysis of the life-cycle savings data

given in Belsley, Kuh and Welsch.

data(LifeCycleSavings)

plot(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings))

4 plots on 1 page; allow room for printing model formula in outer margin:

par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))

plot(lm.SR)

plot(lm.SR, id.n = NULL) # no id’s

plot(lm.SR, id.n = 5, labels.id = NULL)# 5 id numbers

Fit a smmooth curve, where applicable:

plot(lm.SR, panel = panel.smooth)

Gives a smoother curve

plot(lm.SR, panel = function(x,y) panel.smooth(x, y, span = 1))

Warnings: panel = panel.smoth, span = 1

par(mfrow=c(2,1))# same oma as above

plot(lm.SR, which = 1:2, sub.caption = "Saving Rates, n=50, p=5")

plot.window Set up World Coordinates for Graphics Window plot.window

Description

This function sets up the world coordinate system for a graphics window. It is called by
higher level functions such as plot.default (after plot.new).

Usage

plot.window(xlim, ylim, log = "", asp = NA, ...)

Arguments

xlim, ylim numeric of length 2, giving the x and y coordinates ranges.

log character; indicating which axes should be in log scale.

asp numeric, giving the aspect ratio y/x.

... further graphical parameters as in par(..).

364 plot.xy

Details

Note that if asp is a finite positive value then the window is set up so that one data unit
in the x direction is equal in length to asp × one data unit in the y direction.

The special case asp == 1 produces plots where distances between points are represented
accurately on screen. Values with asp > 1 can be used to produce more accurate maps
when using latitude and longitude.

Usually, one should rather use the higher level functions such as plot, hist, image, . . . ,
instead and refer to their help pages for explanation of the arguments.

See Also

xy.coords, plot.xy, plot.default.

Examples

##--- An example for the use of ‘asp’ :

library(mva)

data(eurodist)

loc <- cmdscale(eurodist)

rx <- range(x <- loc[,1])

ry <- range(y <- -loc[,2])

plot(x, y, type="n", asp=1, xlab="", ylab="")

abline(h=pretty(rx, 10),

v=pretty(ry, 10), col= "lightgray")

text(x, y, names(eurodist), cex=0.5)

plot.xy Basic Internal Plot Function plot.xy

Description

This is the internal function that does the basic plotting of points and lines. Usually,
one should rather use the higher level functions instead and refer to their help pages for
explanation of the arguments.

Usage

plot.xy(xy, type, pch=1, lty="solid", col=par("fg"), bg=NA, cex=1, ...)

Arguments

xy A four-element list as results from xy.coords(..).

type 1 character code.

pch character or integer code for kind of points/lines, see points.default.

lty line type code, see lines.

col color code or name, see colors, palette.

bg background (“fill”) color for open plot symbols.

cex character expansion

... further graphical parameters

plotmath 365

See Also

plot, plot.default, points, lines.

Examples

points.default # to see how it calls "plot.xy(xy.coords(x, y),)"

plotmath Mathematical Annotation in R plotmath

Description

If the text argument to one of the text-drawing functions (text, mtext, axis) in R is an
expression, the argument is interpreted as a mathematical expression and the output will
be formatted according to TeX-like rules.

Details

A mathematical expression must obey the normal rules of syntax for any R expression, but
it is interpreted according to very different rules than for normal R expressions.

It is possible to produce many different mathematical symbols, generate sub- or superscripts,
produce fractions, etc.

The output from example(plotmath) includes several tables which show the available fea-
tures. In these tables, the columns of grey text show sample R expressions, and the columns
of black text show the resulting output.

The available features are also described in the tables below:

Syntax Meaning
x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %+-% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x[i] x subscript i
x 2̂ x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x equals y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %˜̃ % y x is approximately equal to y
x %= %̃ y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
plain(x) draw x in normal font

366 plotmath

bold(x) draw x in bold font
italic(x) draw x in italic font
bolditalic(x) draw x in bolditalic font
list(x, y, z) comma-separated list
... ellipsis (height varies)
cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex
tilde(x) x with a tilde
ring(x) x with a ring
bar(xy) xy with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha – omega Greek symbols
Alpha – Omega uppercase Greek symbols
infinity infinity symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
x ˜̃ y put extra space between x and y
x + phantom(0) + y leave gap for ”0”, but don’t draw it
x + over(1, phantom(0)) leave vertical gap for ”0” (don’t draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain(P)(X==x), x) product of P(X=x) for all values of x
integral(f(x)*dx, a, b) definite integral of f(x) wrt x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]
lim(f(x), x %->% 0) limit of f(x) as x tends to 0

plotmath 367

min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S
x ŷ + z normal operator precedence
x (̂y + z) visible grouping of operands
x {̂y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters

References

Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in
plots. Journal of Computational and Graphical Statistics (In press).

See Also

axis, mtext, text, title

Examples

x <- seq(-4, 4, len = 101)

y <- cbind(sin(x), cos(x))

matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",

plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken

xlab = expression(paste("Phase Angle ", phi)),

col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),

lab = expression(-pi, -pi/2, 0, pi/2, pi))

plot(1:10, 1:10)

text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))

text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .8)

text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==1, n))",

cex = .8)

text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})),

cex= 1.2)

######

create tables of mathematical annotation functionality

######

make.table <- function(nr, nc) {

savepar <- par(mar=rep(0, 4), pty="s")

plot(c(0, nc*2 + 1), c(0, -(nr + 1)),

type="n", xlab="", ylab="", axes=F)

savepar

}

get.r <- function(i, nr) {

i %% nr + 1

}

368 plotmath

get.c <- function(i, nr) {

i %/% nr + 1

}

draw.title.cell <- function(title, i, nr) {

r <- get.r(i, nr)

c <- get.c(i, nr)

text(2*c - .5, -r, title)

rect((2*(c - 1) + .5), -(r - .5), (2*c + .5), -(r + .5))

}

draw.plotmath.cell <- function(expr, i, nr, string = NULL) {

r <- get.r(i, nr)

c <- get.c(i, nr)

if (is.null(string)) {

string <- deparse(expr)

string <- substr(string, 12, nchar(string) - 1)

}

text((2*(c - 1) + 1), -r, string, col="grey")

text((2*c), -r, expr, adj=c(.5,.5))

rect((2*(c - 1) + .5), -(r - .5), (2*c + .5), -(r + .5), border="grey")

}

nr <- 20

nc <- 2

oldpar <- make.table(nr, nc)

i <- 0

draw.title.cell("Arithmetic Operators", i, nr); i <- i + 1

draw.plotmath.cell(expression(x + y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x - y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x * y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x / y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %+-% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %/% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %*% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(-x), i, nr); i <- i + 1

draw.plotmath.cell(expression(+x), i, nr); i <- i + 1

draw.title.cell("Sub/Superscripts", i, nr); i <- i + 1

draw.plotmath.cell(expression(x[i]), i, nr); i <- i + 1

draw.plotmath.cell(expression(x^2), i, nr); i <- i + 1

draw.title.cell("Juxtaposition", i, nr); i <- i + 1

draw.plotmath.cell(expression(x * y), i, nr); i <- i + 1

draw.plotmath.cell(expression(paste(x, y, z)), i, nr); i <- i + 1

draw.title.cell("Lists", i, nr); i <- i + 1

draw.plotmath.cell(expression(list(x, y, z)), i, nr); i <- i + 1

even columns up

i <- 20

draw.title.cell("Radicals", i, nr); i <- i + 1

draw.plotmath.cell(expression(sqrt(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(sqrt(x, y)), i, nr); i <- i + 1

draw.title.cell("Relations", i, nr); i <- i + 1

draw.plotmath.cell(expression(x == y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x != y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x < y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x <= y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x > y), i, nr); i <- i + 1

plotmath 369

draw.plotmath.cell(expression(x >= y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %~~% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %=~% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %==% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %prop% y), i, nr); i <- i + 1

draw.title.cell("Typeface", i, nr); i <- i + 1

draw.plotmath.cell(expression(plain(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(italic(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(bold(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(bolditalic(x)), i, nr); i <- i + 1

Need fewer, wider columns for ellipsis ...

nr <- 20

nc <- 2

make.table(nr, nc)

i <- 0

draw.title.cell("Ellipsis", i, nr); i <- i + 1

draw.plotmath.cell(expression(list(x[1], ..., x[n])), i, nr); i <- i + 1

draw.plotmath.cell(expression(x[1] + ... + x[n]), i, nr); i <- i + 1

draw.plotmath.cell(expression(list(x[1], cdots, x[n])), i, nr); i <- i + 1

draw.plotmath.cell(expression(x[1] + ldots + x[n]), i, nr); i <- i + 1

draw.title.cell("Set Relations", i, nr); i <- i + 1

draw.plotmath.cell(expression(x %subset% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %subseteq% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %supset% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %supseteq% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %notsubset% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %in% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %notin% y), i, nr); i <- i + 1

draw.title.cell("Accents", i, nr); i <- i + 1

draw.plotmath.cell(expression(hat(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(tilde(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(ring(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(bar(xy)), i, nr); i <- i + 1

draw.plotmath.cell(expression(widehat(xy)), i, nr); i <- i + 1

draw.plotmath.cell(expression(widetilde(xy)), i, nr); i <- i + 1

draw.title.cell("Arrows", i, nr); i <- i + 1

draw.plotmath.cell(expression(x %<->% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %->% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %<-% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %up% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %down% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %<=>% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %=>% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %<=% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %dblup% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %dbldown% y), i, nr); i <- i + 1

draw.title.cell("Symbolic Names", i, nr); i <- i + 1

draw.plotmath.cell(expression(Alpha - Omega), i, nr); i <- i + 1

draw.plotmath.cell(expression(alpha - omega), i, nr); i <- i + 1

draw.plotmath.cell(expression(infinity), i, nr); i <- i + 1

draw.plotmath.cell(expression(32 * degree), i, nr); i <- i + 1

draw.plotmath.cell(expression(60 * minute), i, nr); i <- i + 1

draw.plotmath.cell(expression(30 * second), i, nr); i <- i + 1

Need even fewer, wider columns for typeface and style ...

nr <- 20

370 plotmath

nc <- 1

make.table(nr, nc)

i <- 0

draw.title.cell("Style", i, nr); i <- i + 1

draw.plotmath.cell(expression(displaystyle(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(textstyle(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(scriptstyle(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(scriptscriptstyle(x)), i, nr); i <- i + 1

draw.title.cell("Spacing", i, nr); i <- i + 1

draw.plotmath.cell(expression(x ~~ y), i, nr); i <- i + 1

Need fewer, taller rows for fractions ...

cheat a bit to save pages

par(new =T)

nr <- 10

nc <- 1

make.table(nr, nc)

i <- 4

draw.plotmath.cell(expression(x + phantom(0) + y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x + over(1, phantom(0))), i, nr); i <- i + 1

draw.title.cell("Fractions", i, nr); i <- i + 1

draw.plotmath.cell(expression(frac(x, y)), i, nr); i <- i + 1

draw.plotmath.cell(expression(over(x, y)), i, nr); i <- i + 1

draw.plotmath.cell(expression(atop(x, y)), i, nr); i <- i + 1

Need fewer, taller rows and fewer, wider columns for big operators ...

nr <- 10

nc <- 1

make.table(nr, nc)

i <- 0

draw.title.cell("Big Operators", i, nr); i <- i + 1

draw.plotmath.cell(expression(sum(x[i], i=1, n)), i, nr); i <- i + 1

draw.plotmath.cell(expression(prod(plain(P)(X == x), x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(integral(f(x) * dx, a, b)), i, nr); i <- i + 1

draw.plotmath.cell(expression(union(A[i], i==1, n)), i, nr); i <- i + 1

draw.plotmath.cell(expression(intersect(A[i], i==1, n)), i, nr); i <- i + 1

draw.plotmath.cell(expression(lim(f(x), x %->% 0)), i, nr); i <- i + 1

draw.plotmath.cell(expression(min(g(x), x >= 0)), i, nr); i <- i + 1

draw.plotmath.cell(expression(inf(S)), i, nr); i <- i + 1

draw.plotmath.cell(expression(sup(S)), i, nr); i <- i + 1

make.table(nr, nc)

i <- 0

draw.title.cell("Grouping", i, nr); i <- i + 1

draw.plotmath.cell(expression((x + y)*z), i, nr); i <- i + 1

draw.plotmath.cell(expression(x^y + z), i, nr); i <- i + 1

draw.plotmath.cell(expression(x^(y + z)), i, nr); i <- i + 1

have to do this one by hand

draw.plotmath.cell(expression(x^{y + z}), i, nr, string="x^{y + z}"); i <- i + 1

draw.plotmath.cell(expression(group("(", list(a, b), "]")), i, nr); i <- i + 1

draw.plotmath.cell(expression(bgroup("(", atop(x, y), ")")), i, nr); i <- i + 1

draw.plotmath.cell(expression(group(lceil, x, rceil)), i, nr); i <- i + 1

draw.plotmath.cell(expression(group(lfloor, x, rfloor)), i, nr); i <- i + 1

draw.plotmath.cell(expression(group("|", x, "|")), i, nr); i <- i + 1

par(oldpar)

pmatch 371

pmatch Partial String Matching pmatch

Description

pmatch seeks matches for the elements of its first argument among those of its second.

Usage

pmatch(x, table, nomatch = NA, duplicates.ok = FALSE)

Arguments

x the values to be matched.

table the values to be matched against.

nomatch the value returned at non-matching or mutliply partially matching posi-
tions.

duplicates.ok should elements be in table be used more than once?

Details

The behaviour differs by the value of duplicates.ok. Consider first the case if this is true.
First exact matches are considered, and the positions of the first exact matches are recorded.
Then unique partial matches are considered, and if found recorded. Finally, all remaining
elements of x are regarded as unmatched. In addition, an empty string can match nothing,
not even an exact match to an empty string. This is the appropriate behaviour for partial
matching of character indices, for example

If duplicates.ok is FALSE, values of table once matched are excluded from the search
for subsequent matches. This behaviour is equivalent to the R algorithm for argument
matching, except for the consideration of empty strings (which in argument matching are
matched after exact and partial matching to any remaining arguments).

charmatch is similar to pmatch with duplicates.ok true, the differences being that it
differentiates between no match and an ambiguous partial match, it does match empty
strings, and it does not allow multiple exact matches.

Value

A numeric vector of integers (including NA if nomatch = NA) of the same length as x, giving
the indices of the elements in table which matched, or nomatch.

Note

Versions of R prior to 1.0.0 had a different behaviour that was seriously incompatible with
S (and the current version) when duplicates.ok = TRUE.

Author(s)

Of this version, B. D. Ripley.

372 png

See Also

match, charmatch and match.arg, match.fun, match.call, for function argument match-
ing etc.

Examples

pmatch("", "") # returns NA

pmatch("m", c("mean", "median", "mode")) # returns NA

pmatch("med", c("mean", "median", "mode")) # returns 2

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=F)

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=T)

compare

charmatch(c("", "ab", "ab"), c("abc", "ab"))

png BMP, JPEG and PNG graphics devices png

Description

A graphics device for BMP, JPEG or PNG format bitmap files.

Usage

bmp(filename="Rplot.bmp", width=480, height=480, pointsize=12)
jpeg(filename="Rplot.jpg", width=480, height=480, pointsize=12, quality=75)
png(filename="Rplot.png", width=480, height=480, pointsize=12)

Arguments

filename the name of the output file.

width the width of the device in pixels.

height the height of the device in pixels.

pointsize the default pointsize of plotted text, intepreted at 72 dpi, so one point is
approximately one pixel.

quality the ‘quality’ of the JPEG image, as a percentage. Smaller values will give
more compression but also more degradation of the image.

Details

Plots in PNG and JPEG format can easily be converted to many other bitmap formats,
and both can be displayed in most modern web browsers. The PNG format is lossless and
is best for line diagrams and blocks of solid colour. The JPEG format is lossy, but may
be useful for image plots, for example. The BMP format is standard on Windows, and
supported elsewhere.

Value

A plot device is opened: nothing is returned to the R interpreter.

points 373

Author(s)

Guido Masarotto

See Also

Devices, dev.print

Examples

copy current plot to a (large) PNG file

dev.print(png, file="myplot.png", width=1024, height=768

points Add Points to a Plot points

Description

points is a generic function to draw a sequence of points at the specified coordinates. The
specified character(s) are plotted, centered at the coordinates.

Usage

points(x, ...)
points.default(x, y=NULL, type="p", pch=1, col="black", bg=NA, cex=1, ...)

Arguments

x, y coordinate vectors of points to plot.

type character indicating the type of plotting; actually any of the types as in
plot(..).

pch plotting ‘character’, i.e. symbol to use. pch can either be a character or
an integer code for a set of graphics symbols. The full set of S symbols is
available with pch=0:18.
In addition, there is a special set of R plotting symbols which can be
obtained with pch=19:25 and can be colored and filled with different
colors:

• pch=19: solid circle,
• pch=20: bullet,
• pch=21: circle,
• pch=22: square,
• pch=23: diamond,
• pch=24: triangle point-up,
• pch=25: triangle point down.

col color code or name, see colors, palette.

bg background (“fill”) color for open plot symbols

cex character expansion

... Further graphical parameters (see plot.xy and par) may also be supplied
as arguments.

374 Poisson

Details

Graphical parameters are permitted as arguments to this function.

See Also

plot, lines, and the underlying “primitive” plot.xy.

Examples

plot(-4:4, -4:4, type = "n")# setting up coord. system

points(rnorm(200), rnorm(200), col = "red")

points(rnorm(100)/2, rnorm(100)/2, col = "blue", cex = 1.5)

##-------- Showing all the extra & some char graphics symbols ------------

Pex <- 3 ## now (0.90) good for both .Device=="postscript" and "x11"

ipch <- 1:(np <- 25+11); k <- floor(sqrt(np)); dd <- c(-1,1)/2

rx <- dd + range(ix <- (ipch-1) %/% k)

ry <- dd + range(iy <- 3 + (k-1)-(ipch-1) %% k)

pch <- as.list(ipch)

pch[25+ 1:11] <- as.list(c("*",".", "o","O","0","+","-",":","|","%","#"))

plot(rx, ry, type="n", axes = F, xlab = "", ylab = "",

main = paste("plot symbols : points (.. pch = *, cex =",Pex,")"))

abline(v = ix, h = iy, col = "lightgray", lty = "dotted")

for(i in 1:np) {

pc <- pch[[i]]

points(ix[i], iy[i], pch = pc, col = "red", bg = "yellow", cex = Pex)

red symbols with a yellow interior (where available)

text(ix[i] - .3, iy[i], pc, col = "brown", cex = 1.2)

}

Poisson The Poisson Distribution Poisson

Description

Density, distribution function, quantile function and random generation for the Poisson
distribution with parameter lambda.

Usage

dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of random values to return.

lambda vector of positive means.

poly 375

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The Poisson distribution has density

p(x) =
λxe−λ

x!

for x = 0, 1, 2,

If an element of x is not integer, the result of dpois is zero, with a warning.

The quantile is left continuous: qgeom(q, prob) is the largest integer x such that P (X ≤
x) < q.

Setting lower.tail = FALSE allows to get much more precise results when the default,
lower.tail = TRUE would return 1, see the example below.

Value

dpois gives the (log) density, ppois gives the (log) distribution function, qpois gives the
quantile function, and rpois generates random deviates.

See Also

dbinom for the binomial and dnbinom for the negative binomial distribution.

Examples

-log(dpois(0:7, lambda=1) * gamma(1+ 0:7)) # == 1

Ni <- rpois(50, lam= 4); table(factor(Ni, 0:max(Ni)))

1 - ppois(10*(15:25), lambda=100) # becomes 0 (cancellation)

ppois(10*(15:25), lambda=100, lower=FALSE) # no cancellation

par(mfrow = c(2, 1))

x <- seq(-0.01, 5, 0.01)

plot(x, ppois(x, 1), type="s", ylab="F(x)", main="Poisson(1) CDF")

plot(x, pbinom(x, 100, 0.01),type="s", ylab="F(x)",

main="Binomial(100, 0.01) CDF")

poly Compute Orthogonal Polynomials poly

Description

Returns orthogonal polynomials of degree 1 to degree over the specified set of points x.
These are all orthogonal to the constant polynomial of degree 0.

Usage

poly(x, degree=1)

376 polygon

Arguments

x a numeric vector at which to evaluate the polynomial

degree the degree of the polynomial

Value

A matrix with rows corresponding to points in x and columns corresponding to the degree,
with attributes "degree" specifying the degrees of the columns and "coefs" which contains
the centring and normalization constants used in constructing the orthogonal polynomials.

Note

This routine is intended for statistical purposes such as contr.poly: it does not attempt
to orthogonalize to machine accuracy.

Author(s)

B.D. Ripley

See Also

contr.poly

Examples

poly(1:10, 3)

polygon Polygon Drawing polygon

Description

polygon draws the polygons whose vertices are given in x and y.

Arguments

x,y vectors containing the coordinates of the vertices of the polygon.

density density of fill pattern. NOT YET implemented.

angle angle of fill pattern. NOT YET implemented.

border the color to draw the border. Defaults to par("fg"). Use border=0 to
omit borders.

... graphical parameters can be given as arguments to polygon, must im-
portantly,

col an integer specifying the color to be used in filling the polygon. The
default is to leave polygons unfilled.

See Also

segments for even more flexibility, lines, rect, box, abline.

polyroot 377

Examples

n <- 100

xx <- c(0:n, n:0)

yy <- c(c(0,cumsum(rnorm(n))), rev(c(0,cumsum(rnorm(n)))))

plot (xx, yy, type="n", xlab="Time", ylab="Distance")

polygon(xx, yy, col="gray", border = "red")

title("Distance Between Brownian Motions")

polyroot Find Zeros of a Real or Complex Polynomial polyroot

Description

Find zeros of a real or complex polynomial.

Usage

polyroot(z)

Arguments

z the vector of polynomial coefficients in decreasing order.

Details

A polynomial of degree n− 1,

p(x) = z1 + z2x+ · · ·+ znx
n−1

is given by its coefficient vector z[1:n]. polyroot returns the n− 1 complex zeros of p(x)
using the Jenkins-Traub algorithm.

Value

A complex vector of length n− 1, where n is length(z).

References

Jenkins and Traub (1972) TOMS Algorithm 419. Comm. ACM, 15, 97–99.

See Also

uniroot for numerical root finding of arbitrary functions; complex and the zero example
in the demos directory.

Examples

polyroot(c(1, 2, 1))

round(polyroot(choose(8, 0:8)), 11) # guess what!

for (n1 in 1:4) print(polyroot(1:n1), digits = 4)

378 postscript

pos.to.env Convert Positions in the Search Path to Environments pos.to.env

Description

Returns the environment at a specified position in the search path.

Usage

pos.to.env(x)

Arguments

x an integer between 1 and length(search()), the length of the search
path.

Details

Several R functions for manipulating objects in environments (such as get and ls) allow
specifying environments via corresponding positions in the search path. pos.to.env is
a convenience function for programmers which converts these positions to corresponding
environments; users will typically have no need for it.

Examples

pos.to.env(1)

pos.to.env(length(search()))

postscript PostScript Graphics postscript

Description

postscript starts the graphics device driver for producing PostScript graphics.

The auxiliary function ps.options can be used to set and view (if called without arguments)
default values for the arguments to postscript.

Usage

postscript(file = "Rplots.ps", ...)
ps.options(..., reset = FALSE, override.check = FALSE)
.PostScript.Options

postscript 379

Arguments

file a character string giving the name of the file to print to.

... further options for postscript().

paper the size of paper in the printer. The choices are "a4", "letter", "legal"
and "executive". Also, "special" can be used, when the width and
height specify the paper size.

horizontal the orientation of the printed image, a logical. Defaults to true, that is
landscape orientation.

width, height the width and height of the graphics region in inches. The default is to
use the entire page less a 0.25 inch border.

family the font family to be used. This must be one of "AvantGarde", "Book-
man", "Courier", "Helvetica", "Helvetica-Narrow", "NewCentury-
Schoolbook", "Palatino" or "Times".

pointsize the default point size to be used.

bg the default background color to be used.

fg the default foreground color to be used.

onefile logical: if true (the default) allow multiple figures in one file. If false,
assume only one figure and give EPSF header and no DocumentMedia
comment.

pagecentre logical: should the device region be centred on the page: defaults to true.
print.it, append

logical; are currently disregarded; just there for compatibility reasons.

Details

postscript(..) opens the file file and the PostScript commands needed to plot any
graphics requested are stored in that file. This file can then be printed on a suitable device
to obtain hard copy.

The postscript produced by R is EPS (Encapsulated PostScript) compatible, and can be
included into other documents, e.g. into LaTeX, using
includegraphics{<filename>}. For use in this way you will probably want to set hori-
zontal=FALSE, onefile=FALSE, paper="special".

See Also

Devices, check.options which is called from both ps.options and postscript.

Examples

open the file "foo.ps" for graphics output

postscript("foo.ps")

dev.off() # turn off the postscript device

all(unlist(ps.options()) == unlist(.PostScript.Options))

ps.options(bg = "pink")

str(ps.options(reset = TRUE))

380 power

##- error checking of arguments:

ps.options(width=0:12, onefile=0, bg=pi)

override the check for ’onefile’, but not the others:

str(ps.options(width=0:12, onefile=1, bg=pi, override.check = c(F,T,F)))

power Create a Power Link Object power

Description

Creates a link object based on the link function η = µλ.

Usage

power(lambda = 1)

Arguments

lambda a real number.

Details

If lambda is non-negative, it is taken as zero, and the log link is obtained. The default
lambda = 1 gives the identity link.

Value

A list with components linkfun, linkinv, mu.eta, and valideta. See make.link for
information on their meaning.

See Also

make.link, family

Examples

power()

quasi(link=power(1/3))[c("linkfun", "linkinv")]

ppoints 381

ppoints Ordinates for Probability Plotting ppoints

Description

Generates the sequence of “probability” points (1:m - a)/(m + (1-a)-a) where m is either
n, if length(n)==1, or length(n).

Usage

ppoints(n, a = ifelse(n <= 10, 3/8, 1/2))

Details

If 0 < a < 1, the resulting values are within (0, 1) (excluding boundaries). In any case, the
resulting sequence is symmetric in [0, 1], i.e., p + rev(p) == 1.

ppoints() is used in qqplot and qqnorm to generate the set of probabilities at which to
evaluate the inverse distribution.

See Also

qqplot, qqnorm.

Examples

ppoints(4) # the same as ppoints(1:4)

ppoints(10)

ppoints(10, a=1/2)

precip Annual Precipitation in US Cities precip

Description

The average amount of precipitation (rainfall) in inches for each of 70 United States (and
Puerto Rico) cities.

Usage

data(precip)

Format

A named vector of length 70.

Source

Statistical Abstracts of the United States, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

382 predict

Examples

data(precip)

dotplot(precip[order(precip)], main = "precip data")

title(sub = "Average annual precipitation (in.)")

predict Model Predictions predict

Description

predict is a generic function for predictions from the results of various model fitting func-
tions. The function invokes particular methods which depend on the class of the first
argument.

The function predict.lm makes predictions based on the results produced by lm.

Usage

predict (object, ...)

Arguments

object a model object for which prediction is desired.

... additional arguments affecting the predictions produced.

Value

The form of the value returned by predict depends on the class of its argument. See the
documentation of the particular methods for details of what is produced by that method.

See Also

predict.lm.

Examples

All the "predict" methods available in your current search() path:

for(fn in methods("predict"))

cat(fn,":\n\t",deparse(args(get(fn))),"\n")

predict.glm 383

predict.glm Predict Method for GLM Fits predict.glm

Description

Obtains predictions and optionally estimates standard errors of those predictions from a
fitted generalized linear model object.

Usage

predict.glm(object, newdata = NULL, type = c("link", "response", "terms"),
se.fit = FALSE, dispersion = NULL, terms = NULL, ...)

Arguments

object A fitted object of class inheriting from "glm".

newdata Optionally, a new data frame from which to make the predictions. If
omitted, the fitted linear predictors are used.

type The type of prediction required. The default is on the scale of the linear
predictors; the alternative "response" is on the scale of the response
variable. Thus for a default binomial model the default predictions are of
log-odds (probabilities on logit scale) and type = "response" gives the
predicted probabilities. The "terms" option returns a matrix giving the
fitted values of each term in the model formula on the linear predictor
scale
The value of this argument can be abbreviated.

se.fit A switch indicating if standard errors are required.

dispersion The dispersion of the GLM fit to be assumed in computing the standard
errors. If omitted, that returned by summary applied to the object is used.

terms With type="terms" by default all terms are returned. A vector of strings
specifies which terms are to be returned

Value

If se = FALSE, a vector or matrix of predictions. If se = TRUE, a list with components

fit Predictions

se.fit Estimated standard errors
residual.scale

A scalar giving the square root of the dispersion used in computing the
standard errors.

Author(s)

B.D. Ripley

See Also

glm

384 predict.lm

Examples

example from Venables and Ripley (1997, pp. 231-3.)

ldose <- rep(0:5, 2)

numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

sex <- factor(rep(c("M", "F"), c(6, 6)))

SF <- cbind(numdead, numalive=20-numdead)

budworm.lg <- glm(SF ~ sex*ldose, family=binomial)

summary(budworm.lg)

plot(c(1,32), c(0,1), type="n", xlab="dose",

ylab="prob", log="x")

text(2^ldose, numdead/20,as.character(sex))

ld <- seq(0, 5, 0.1)

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

sex=factor(rep("M", length(ld)), levels=levels(sex))),

type="response"))

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

sex=factor(rep("F", length(ld)), levels=levels(sex))),

type="response"))

predict.lm Predict method for Linear Model Fits predict.lm

Description

Predicted values based on linear model object

Usage

predict[.lm](object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
interval = c("none", "confidence", "prediction"),
level = 0.95, type = c("response", "terms"),
terms = NULL, ...)

Arguments

object Object of class inheriting from "lm"

newdata Data frame in which to predict

se.fit A switch indicating if standard errors are required.

scale Scale parameter for std.err. calculation

df Degrees of freedom for scale

interval Type of interval calculation

level Tolerance/confidence level

type Type of prediction (response or model term)

terms If model term prediction, which term

preplot 385

Details

predict.lm produces predicted values, obtained by evaluating the regression function in
the frame newdata (which defaults to model.frame(object). If the logical se.fit is TRUE,
standard errors of the predictions are calculated. If the numeric argument scale is set
(with optional df), it is used as the residual standard deviation in the computation of the
standard errors, otherwise this is extracted from the model fit. Setting intervals specifies
computation of confidence or prediction (tolerance) intervals at the specified level.

Value

predict.lm produces a vector of predictions or a matrix of predictions and bounds with
column names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the
following components is returned:

fit vector or matrix as above

se.fit standard error of predictions
residual.scale

residual standard deviations

df degrees of freedom for residual

Note

Offsets specified by offset in the fit by lm will not be included in predictions, whereas
those specified by an offset term in the formula will be.

See Also

The model fitting function lm, predict.

Examples

Predictions

x <- rnorm(15)

y <- x + rnorm(15)

predict(lm(y ~ x))

new <- data.frame(x = seq(-3, 3, 0.5))

predict(lm(y ~ x), new, se.fit = TRUE)

pred.w.plim <- predict(lm(y ~ x), new, interval="prediction")

pred.w.clim <- predict(lm(y ~ x), new, interval="confidence")

matplot(new$x,cbind(pred.w.clim, pred.w.plim[,-1]),

lty=c(1,2,2,3,3), type="l", ylab="predicted y")

preplot Pre-computations for a Plotting Objeect preplot

Description

Compute an object to be used for plots relating to the given model object.

Usage

preplot(object, ...)

386 presidents

Arguments

object a fitted model object.

... additional arguments for specific methods.

Details

Only the generic function is currently provided in base R, but some add-on packages have
methods. Principally here for S compatibility.

Value

An object set up to make a plot that describes object.

presidents Approval Rating of US Presidents presidents

Description

The (approximately) quarterly approval rating for the President of the United states from
the first quarter of 1945 to the last quarter of 1974.

Usage

data(presidents)

Format

A time series of 120 values.

Source

The Gallup Organisation.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(presidents)

plot(presidents, las = 1, ylab = "Approval rating (%)",

main = "presidents data")

pretty 387

pressure
Vapor Pressure of Mercury as a Function of

Temperature pressure

Description

Data on the relation between temperature in degrees Celsius and vapor pressure of mercury
in millimeters (of mercury).

Usage

data(pressure)

Format

A data frame with 19 observations on 2 variables.

[, 1] temperature numeric temperature (deg C)
[, 2] pressure numeric pressure (mm)

Source

Weast, R. C., ed. (1973) Handbook of Chemistry and Physics. CRC Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(pressure)

plot(pressure, xlab = "Temperature (deg C)",

ylab = "Pressure (mm of Hg)",

main = "pressure data: Vapor Pressure of Mercury")

plot(pressure, xlab = "Temperature (deg C)", log = "y",

ylab = "Pressure (mm of Hg)",

main = "pressure data: Vapor Pressure of Mercury")

pretty Pretty Breakpoints pretty

Description

Compute a sequence of about n+1 equally spaced nice values which cover the range of the
values in x. The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty(x, n = 5, min.n = n %/% 3, shrink.sml = 0.75,
high.u.bias = 1.5, u5.bias = .5 + 1.5*high.u.bias,
eps.correct = 0)

388 pretty

Arguments

x numeric vector
n integer giving the desired number of intervals.
min.n nonnegative integer giving the minimal number of intervals. If min.n ==

0, pretty(.) may return a single value.
shrink.sml positive numeric by a which a default scale is shrunk in the case when

range(x) is “very small” (usually 0).
high.u.bias non-negative numeric, typically > 1. The interval unit is determined as

{1,2,5,10} times b, a power of 10. Larger high.u.bias values favor larger
units.

u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and
“optimal”: u5.bias = .5 + 1.5*high.u.bias.

eps.correct integer code, one of {0,1,2}. If non-0, an “epsilon correction” is made at
the boundaries such that the result boundaries will be outside range(x);
in the small case, the correction is only done if eps.correct >=2.

Details

Let d <- max(x) - min(x) ≥ 0. If d is not (very close) to 0, we let c <- d/n, otherwise
more or less c <- max(abs(range(x)))*shrink.sml / min.n. Then, the 10 base b is
10blog10(c)c such that b ≤ c < 10b.

Now determine the basic unit u as one of {1, 2, 5, 10}b, depending on c/b ∈ [1, 10) and the
two “bias” coefficients, h =high.u.bias and f =u5.bias.

.

Examples

pretty(1:15) # 0 2 4 6 8 10 12 14 16

pretty(1:15, h=2)# 0 5 10 15

pretty(1:15, n=4)# 0 5 10 15

pretty(1:15 * 2) # 0 5 10 15 20 25 30

pretty(1:20) # 0 5 10 15 20

pretty(1:20, n=2) # 0 10 20

pretty(1:20, n=10)# 0 2 4 ... 20

for(k in 5:11) {

cat("k=",k,": "); print(diff(range(pretty(100 + c(0, pi*10^-k)))))}

##-- more bizarre, when min(x) == max(x):

pretty(pi)

add.names <- function(v) { names(v) <- paste(v); v}

str(lapply(add.names(-10:20), pretty))

str(lapply(add.names(0:20), pretty, min = 0))

sapply(add.names(0:20), pretty, min = 4)

pretty(1.234e100)

pretty(1001.1001)

pretty(1001.1001, shrink = .2)

for(k in -7:3)

cat("shrink=",formatC(2^k,wid=9),":",

formatC(pretty(1001.1001, shrink = 2^k), wid=6),"\n")

Primitive 389

Primitive Call a “Primitive” Internal Function Primitive

Description

.Primitive returns an entry point to a “primitive” (internally implemented) function.

The advantage of .Primitive over .Internal functions is the potential efficiency of argu-
ment passing.

Usage

.Primitive(name)

Arguments

name name of the R function.

See Also

.Internal.

Examples

mysqrt <- .Primitive("sqrt")

c

.Internal # this one *must* be primitive!

get("if") # just ‘if’ or ‘print(if)’ are not syntactically ok.

print Print Values print

Description

print prints its argument and returns it invisibly (via invisible(x)). It is a generic
function which means that new printing methods can be easily added for new classes.

Usage

print(x, ...)

print.factor(x, quote = FALSE)
print.ordered(x, quote = FALSE)

Details

The default method, print.default has its own help page. Use methods("print") to get
all the methods for the print generic.

See noquote as an example of a class whose main purpose is a specific print method.

390 print.coefmat

See Also

The default method print.default, and help for the methods above; further options,
noquote.

Examples

ts(1:20)#-- print is the ‘‘Default function’’ --> print.ts(.) is called

rr <- for(i in 1:3) print(1:i)

rr

print.coefmat Print Coefficient Matrices print.coefmat

Description

Utility function to be used in “higher level” print methods, such as print.summary.lm,
print.summary.glm and print.anova. The goal is to provide a flexible interface with
smart defaults such that often, only x needs to be specified.

Usage

print.coefmat(x, digits=max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
dig.tst = max(1, min(5, digits - 1)),
cs.ind = 1:k, tst.ind = k + 1, zap.ind = integer(0),
P.values = NULL,
has.Pvalue = nc >= 4 && substr(colnames(x)[nc],1,3) == "Pr(",
na.print = "", ...)

Arguments

x a numeric matrix like object, to be printed.
digits number of digits to be used for most numbers.
signif.stars logical; if TRUE, P-values are additionally encoded visually as “significance

stars” in order to help scanning of long coefficient tables. It defaults to
the show.signif.stars slot of options(.).

dig.tst number of significant digits for the test statistics, see tst.ind.
cs.ind indices (integer) of column numbers which are (like) coefficients and

standard errors to be formatted together.
tst.ind indices (integer) of column numbers for test statistics.
zap.ind indices (integer) of column numbers which should be formatted by

zapsmall(.), i.e., by “zapping” values close to 0.
P.values logical or NULL; if TRUE, the last column of x is formatted by format.pval

as P values. If P.values = NULL, the default, it is set to TRUE only
if link{options}("show.coef.Pvalue") is TRUE and x has at least 4
columns and the last column name of x starts with "Pr(".

has.Pvalue logical; if TRUE, the last column of x contains P values; in that case, it is
printed iff P.values (above).

na.print a character string to code NA values in printed output.
... Further arguments for print(..).

print.default 391

Details

Despite its name, this is not (yet) a method for the generic print function, because there
is no class "coefmat".

Value

Invisibly returns its argument, x.

Author(s)

Martin Maechler

See Also

print.summary.lm, format.pval, format

Examples

cmat <- cbind(rnorm(3, 10), sqrt(rchisq(3, 12)))

cmat <- cbind(cmat, cmat[,1]/cmat[,2])

cmat <- cbind(cmat, 2*pnorm(-cmat[,3]))

colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")

print.coefmat(cmat[,1:3])

print.coefmat(cmat)

options(show.coef.Pvalues = FALSE)

print.coefmat(cmat, digits=2)

print.coefmat(cmat, digits=2, P.values = TRUE)

options(show.coef.Pvalues = TRUE)# revert

print.default Default Printing print.default

Description

print.default is the default method of the generic print function which prints its argu-
ment.

print.atomic is almost the same and exists purely for compatibility reasons.

Usage

print.default(x, digits = NULL, quote = TRUE, na.print = "NA",
print.gap = 1, ...)

print.atomic(x, quote = TRUE, ...)

Arguments

digits a non-null value for digits specifies the number of significant digits to be
printed in values. If digits is NULL, the value of digits set by options
is used.

quote logical, indicating whether or not strings (characters) should be printed
with surrounding quotes.

na.print a character string which is used to indicate NA values in printed output.

392 print.matrix

print.gap an integer, giving the spacing between adjacent columns in printed
matrices and arrays.

... (further arguments, currently disregarded)

See Also

The generic print, options. The "noquote" class and print method.

Examples

pi

print(pi, digits = 16)

LETTERS[1:16]

print(LETTERS, quote = FALSE)

print.matrix Print Matrices print.matrix

Description

Pseudo-method for the print generic. Especially useful with the right argument which
does not (yet) exist for print.default.

Usage

print.matrix(x, rowlab=character(0), collab=character(0),
quote=TRUE, right=FALSE)

Arguments

x numeric or character matrix.

rowlab,collab (optional) character vectors giving row or column names respectively. By
default, these are taken from dimnames(x).

quote logical; if TRUE and x is of mode character, quotes ("..") are used.

right if TRUE and x is of mode character, the output columns are right-justified.

Details

print.matrix and print.default both print matrices, and each has at least an optional
argument that the other lacks. Also, both directly dispatch into .Internal code directly
instead of relying on each other. This mainly stems from historic compatibility and similar
reasons should be changed in the future.

prmatrix is currently just an .Alias for print.matrix.

Value

Invisibly returns its argument, x.

See Also

print.default, and other print methods.

proc.time 393

Examples

print.matrix(m6 <- diag(6), row = rep("",6), coll=rep("",6))

chm <- matrix(scan(file.path(system.file("help", pkg="eda"),"AnIndex"),

what=""),,2, byrow=T)

chm #-> print.default(.) = ‘same’ as print.matrix(chm)

print.matrix(chm, collab = paste("Column",1:3), right=TRUE, quote=FALSE)

proc.time Running Time of R proc.time

Description

proc.time determines how much time (in seconds) the currently running R process already
consumed.

Usage

proc.time()

Value

A numeric vector of length 5, containing the user, system, and total elapsed times for the
currently running R process, and the cumulative sum of user and system times of any child
processes spawned by it.

The resolution of the times will be system-specific; it is common for the elapsed time to be
recorded to the nearest second, and CPU times to of the order of 1/100 second.

It is most useful for“timing”the evaluation of R expressions, which can be done conveniently
with system.time.

Note

CPU times will be returned as NA on Windows 9x systems, but are genuine times on NT4
and 2000 systems. Times of child processes are not available and will always be given as
NA.

See Also

system.time for timing a valid R expression.

Examples

ptm <- proc.time()

for (i in 1:50) mad(runif(500))

proc.time() - ptm

394 profile

prod Product of Vector Elements prod

Description

prod returns the product of all the values present in its arguments.

Usage

prod(..., na.rm=TRUE)

Details

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

See Also

sum, cumprod, cumsum.

Examples

print(prod(1:7)) == print(gamma(8))

profile Generic Function for Profiling Models profile

Description

Investigates behavior of objective function near the solution represented by fitted.

See documentation on method functions for further details.

Usage

profile(fitted, ...)

Arguments

fitted the original fitted model object.

... additional parameters. See documentation on individual methods.

Value

A list with an element for each parameter being profiled. See the individual methods for
further details.

proj 395

proj Projections of Models proj

Description

proj returns a matrix or list of matrices giving the projections of the data onto the terms
of a linear model. It is most frequently used for aov models.

Usage

proj (object, ...)
proj.aov (object, onedf = FALSE, unweighted.scale = FALSE)
proj.aovlist(object, onedf = FALSE, unweighted.scale = FALSE)
proj.default(object, onedf = TRUE, ...)
proj.lm (object, onedf = FALSE, unweighted.scale = FALSE)

Arguments

object An object of class "lm" or a class inheriting from it, or an object with a
similar structure including in particular components qr and effects.

onedf A logical flag. If TRUE, a projection is returned for all the columns of the
model matrix. If FALSE, the single-column projections are collapsed by
terms of the model (as represented in the analysis of variance table).

unweighted.scale

If the fit producing object used weights, this determines if the projections
correspond to weighted or unweighted observations.

... Swallow and ignore any other arguments.

Details

A projection is given for each stratum of the object, so for aov models with an Error term
the result is a list of projections.

Value

A projection matrix or (for multi-stratum objects) a list of projection matrices.

Each projection is a matrix with a row for each observations and either a column for each
term (onedf = FALSE) or for each coefficient (onedf = TRUE). Projection matrices from the
default method have orthogonal columns representing the projection of the response onto
the column space of the Q matrix from the QR decomposition. The fitted values are the
sum of the projections, and the sum of squares for each column is the reduction in sum of
squares from fitting that column (after those to the left of it).

The methods for lm and aov models add a column to the projection matrix giving the
residuals (the projection of the data onto the orthogonal complement of the model space).

Strictly, when onedf = FALSE the result is not a projection, but the columns represent
sums of projections onto the columns of the model matrix corresponding to that term. In
this case the matrix does not depend on the coding used.

Author(s)

B.D. Ripley

396 prompt

See Also

aov, lm, model.tables

Examples

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

proj(npk.aov)

as a test, not particularly sensible

options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

proj(npk.aovE)

prompt Produce Prototype of an R Documentation File prompt

Description

Facilitate the constructing of files documenting R functions.

Usage

prompt(object, ...)

prompt.default(object,
filename = paste(name, ".Rd", sep = ""),
force.function = FALSE)

prompt.data.frame(object,
filename = paste(name, ".Rd", sep = ""))

Arguments

object an R object, typically a function

filename name of the output file
force.function

treat object as function in any case

Details

An ASCII file filename is produced containing the proper function and argument names
of object. You have to edit it before adding the documentation to the source tree, i.e.,
(currently) to ‘$R HOME/src/library/base/man/’.

prop.table 397

Note

The documentation file produced by prompt.data.frame does not have the same format
as many of the data frame documentation files in the base library. We are trying to settle
on a preferred format for the documentation.

Author(s)

Douglas Bates for prompt.data.frame

See Also

help and the chapter on “Writing R documentation” in “Writing R Extensions” (see the
‘doc/manual’ subdirectory of the R source tree).

Examples

prompt(plot.default)

prompt(interactive, force.function = TRUE)

unlink("plot.default.Rd")

unlink("interactive.Rd")

data(women)

prompt(women)

unlink("women.Rd")

prop.table Express table entries as fraction of marginal table prop.table

Description

This is really sweep(x, margin, margin.table(x, margin), "/") for newbies.

Usage

prop.table(x, margin)

Value

Table like x expressed relative to margin

Author(s)

Peter Dalgaard

See Also

margin.table

Examples

m<-matrix(1:4,2)

m

prop.table(m,1)

398 qqnorm

qqnorm Quantile-Quantile Plots qqnorm

Description

qqnorm produces a normal QQ plot of the values in y. qqline adds a line to a normal
quantile-quantile plot which passes through the first and third quartiles.

qqplot produces a QQ plot of two datasets.

Graphical parameters may be given as arguments to qqnorm, qqplot and qqline.

Usage

qqnorm(y, ylim, main = "Normal Q-Q Plot", xlab = "Theoretical Quantiles",
ylab = "Sample Quantiles", plot.it = TRUE, ...)

qqline(y, ...)
qqplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),

ylab = deparse(substitute(y)), ...)

Arguments

x The first sample for qqplot.

y The second or only data sample.

Value

For qqnorm and qqplot, a list with components

x The x coordinates of the points that were/would be plotted

y The corresponding y coordinates

See Also

ppoints.

Examples

y <- rt(200, df = 5)

qqnorm(y); qqline(y, col = 2)

qqplot(y, rt(300, df = 5))

data(precip)

qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")

qr 399

qr The QR Decomposition of a Matrix qr

Description

qr computes the QR decomposition of a matrix. It provides an interface to the techniques
used in the LINPACK routine DQRDC.

Usage

qr(x, tol=1e-07)
qr.coef(qr, y)
qr.qy(qr, y)
qr.qty(qr, y)
qr.resid(qr, y)
qr.fitted(qr, y, k = qr$rank)
qr.solve(a, b, tol = 1e-7)

is.qr(x)
as.qr(x)

Arguments

x a matrix whose QR decomposition is to be computed.

tol the tolerance for detecting linear dependencies in the columns of x.

qr a QR decomposition of the type computed by qr.

y, b a vector or matrix of right-hand sides of equations.

a A matrix or QR decomposition.

Details

The QR decomposition plays an important role in many statistical techniques. In particular
it can be used to solve the equation Ax = b for given matrix A, and vector b. It is useful
for computing regression coefficients and in applying the Newton-Raphson algorithm.

The functions qr.coef, qr.resid, and qr.fitted return the coefficients, residuals and
fitted values obtained when fitting y to the matrix with QR decomposition qr. qr.qy and
qr.qty return Q %*% y and t(Q) %*% y, where Q is the Q matrix.

qr.solve solves systems of equations via the QR decomposition.

is.qr returns TRUE if x is a list with a component named qr and FALSE otherwise.

It is not possible to coerce objects to mode "qr". Objects either are QR decompositions or
they are not.

Value

The QR decomposition of the matrix as computed by LINPACK. The components in the
returned value correspond directly to the values returned by DQRDC.

qr a matrix with the same dimensions as x. The upper triangle contains the
R of the decomposition and the lower triangle contains information on
the Q of the decomposition (stored in compact form).

400 QR.Auxiliaries

qraux a vector of length ncol(x) which contains additional information on Q.

rank the rank of x as computed by the decomposition.

pivot information on the pivoting strategy used during the decomposition.

Note

To compute the determinant of a matrix (do you really need it?), the QR decomposition is
much more efficient than using Eigen values (eigen). See det2 in the examples below.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

See Also

qr.Q, qr.R, qr.X for reconstruction of the matrices. solve.qr, lsfit, eigen, svd.

Examples

The determinant of a matrix -- if you really must have it

det2 <- function(x) prod(diag(qr(x)$qr))*(-1)^(ncol(x)-1)

det2(print(cbind(1,1:3,c(2,0,1))))

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

h9 <- hilbert(9); h9

qr(h9)$rank #--> only 7

qrh9 <- qr(h9, tol = 1e-10)

qrh9$rank #--> 9

##-- Solve linear equation system H %*% x = y :

y <- 1:9/10

x <- qr.solve(h9, y, tol = 1e-10) # or equivalently :

x <- qr.coef(qrh9, y) #-- is == but much better than

#-- solve(h9) %*% y

h9 %*% x # = y

QR.Auxiliaries Reconstruct the Q, R, or X Matrices from a QR Object QR.Auxiliaries

Description

Returns the original matrix from which the object was constructed or the components of
the decomposition.

Usage

qr.X(qrstr, complete = FALSE, ncol =)
qr.Q(qrstr, complete = FALSE, Dvec = 1)
qr.R(qrstr, complete = FALSE)

QR.Auxiliaries 401

Arguments

qrstr object representing a QR decomposition. This will typically have come
from a previous call to qr or lsfit.

complete logical expression of length 1. Indicates whether an arbitrary orthogonal
completion of the Q or X matrices is to be made, or whether the R
matrix is to be completed by binding zero-value rows beneath the square
upper triangle.

ncol integer in the range 1:nrow(qrstr$qr). The number of columns to be in
the reconstructed X. The default when complete is FALSE is the original
X from which the qr object was constructed. The default when com-
plete is TRUE is a square matrix with the original X in the first ncol(X)
columns and an arbitrary orthogonal completion (unitary completion in
the complex case) in the remaining columns.

Dvec vector (not matrix) of diagonal values. Each column of the returned Q
will be multiplied by the corresponding diagonal value.

Value

qr.X returns X, the original matrix from which the qr object was constructed. If complete
is TRUE or the argument ncol is greater than ncol(X), additional columns from an arbitrary
orthogonal (unitary) completion of X are returned.

qr.Q returns Q, the order-nrow(X) orthogonal (unitary) transformation represented by
qrstr. If complete is TRUE, Q has nrow(X) columns. If complete is FALSE, Q has ncol(X)
columns. When Dvec is specified, each column of Q is multiplied by the corresponding
value in Dvec.

qr.R returns R, the upper triangular matrix such that X == Q %*% R. The number of rows
of R is nrow(X) or ncol(X), depending on whether complete is TRUE or FALSE.

Examples

data(LifeCycleSavings)

p <- ncol(x <- LifeCycleSavings[,-1]) # not the ‘sr’

qrstr <- qr(x) # dim(x) == c(n,p)

qrstr $ rank # = 4 = p

Q <- qr.Q(qrstr) # dim(Q) == dim(x)

R <- qr.R(qrstr) # dim(R) == ncol(x)

X <- qr.X(qrstr) # X == x

range(X - as.matrix(x))# ~ < 6e-12

X == Q %*% R :

all((1 - X /(Q %*% R))< 100*.Machine$double.eps)#TRUE

dim(Qc <- qr.Q(qrstr, complete=TRUE)) # Square: dim(Qc) == rep(nrow(x),2)

all((crossprod(Qc) - diag(nrow(x))) < 10*.Machine $double.eps)

QD <- qr.Q(qrstr, D=1:p) # QD == Q %*% diag(1:p)

all(QD - Q %*% diag(1:p) < 8* .Machine$double.eps)

dim(Rc <- qr.R(qrstr, complete=TRUE)) # == dim(x)

dim(Xc <- qr.X(qrstr, complete=TRUE)) # square: nrow(x) ^ 2

all(Xc[,1:p] == X)

402 quantile

quakes Locations of Earthquakes off Fiji quakes

Description

The data set give the locations of 1000 seismic events of MB > 4.0. The events occurred in
a cube near Fiji since 1964.

Usage

data(quakes)

Format

A data frame with 1000 observations on 5 variables.

[,1] lat numeric Latitude of event
[,2] long numeric Longitude
[,3] depth numeric Depth (km)
[,4] mag numeric Richter Magnitude
[,5] stations numeric Number of stations reporting

Details

There are two clear planes of seismic activity. One is a major plate junction; the other
is a trench off New Zealand. These data constitute a subsample from a larger dataset of
containing 5000 observations.

Source

This is one of the Harvard PRIM-H project data sets. They in turn obtained it from Dr.
John Woodhouse, Dept. of Geophysics, Harvard University.

Examples

data(quakes)

pairs(quakes, main = "Fiji Earthquakes, N = 1000", cex.main=1.2, pch=".")

quantile Sample Quantiles quantile

Description

The generic function quantile produces sample quantiles corresponding to the given prob-
abilities. The smallest observation corresponds to a probability of 0 and the largest to a
probability of 1.

Usage

quantile(x, probs=seq(0, 1, 0.25), na.rm=FALSE, names = TRUE)

quit 403

Details

A vector of length length(probs) is returned; if names = TRUE, it has a names attribute.

quantile(x,p) as a function of p linearly interpolates the points ((i-1)/(n-1), ox[i]), where
ox <- order(x) (the “order statistics”) and n <- length(x).

This gives quantile(x, p) == (1-f)*ox[i] + f*ox[i+1], where r <- 1 + (n-1)*p, i
<- floor(r), f <- r - i and ox[n+1] := ox[n].

Examples

quantile(x <- rnorm(1001))# Extremes & Quartiles by default

quantile(x, probs=c(.1,.5,1,2,5,10,50)/100)

n <- length(x) ## the following is exact, because 1/(1001-1) is exact:

all(abs(sort(x) == quantile(x, probs = ((1:n)-1)/(n-1), names=F)))# TRUE

n <- 777

ox <- sort(x <- round(rnorm(n),1))# round() produces ties

ox <- c(ox, ox[n]) #- such that ox[n+1] := ox[n]

p <- c(0,1,runif(100))

i <- floor(r <- 1 + (n-1)*p)

f <- r - i

all(abs(quantile(x,p) - ((1-f)*ox[i] + f*ox[i+1])) < 20*.Machine$double.eps)

quit Terminate an R Session quit

Description

The function quit or its alias q terminate the current R session.

Usage

quit(save = "default", status = 0, runLast = TRUE)
q(save = "default", status = 0, runLast = TRUE)

.Last <- function(x) { }

Arguments

save a character string indicating whether the environment (workspace) should
be saved, one of "no", "yes", "ask" or "default".

status the (numerical) error status to be returned to the operating system, where
relevant. Conventionally 0 indicates successful completion.

runLast should .Last() be executed?

Details

save must be one of "no", "yes", "ask" or "default". In the first case the workspace is
not saved, in the second it is saved and in the third the user is prompted and can also decide
not to quit. The default is to ask in interactive use but may be overridden by command-line
arguments (which must be supplied in non-interactive use).

404 R.Version

Immediately before terminating, the function .Last() is executed if it exists and runLast
is true. If in interactive use there are errors in the .Last function, control will be returned
to the command prompt, so do test the function thoroughly.

Some error statuses are used by R itself. The default error handler for non-interactive
effectively calls q("no", 1, FALSE) and returns error code 1. Error status 2 is used for R
‘suicide’, that is a catastrophic failure, and other small numbers are used by specific ports
for initialization failures. It is recommended that users choose statuses of 10 or more.

Valid values of status are system-dependent, but 0:255 are normally valid.

See Also

.First for setting things on startup.

Examples

Unix-flavour example

.Last <- function() {

cat("Now sending PostScript graphics to the printer:\n")

system("lpr Rplots.ps")

cat("bye bye...\n")

}

quit("yes")

R.home Return the R Home Directory R.home

Description

Return the R home directory.

Usage

R.home()

Value

A character string giving the current home directory.

R.Version Version Information R.Version

Description

R.Version() provides detailed information about the version of R running.
R.version is a variable (a list) holding this information (and version is an .Alias to
it for S compatibility), whereas R.version.string is simple character string, useful for
plotting, etc.

Random 405

Usage

R.Version()
R.version
R.version.string

Value

R.Version returns a list with components

platform the platform for which R was built. Under Unix, a triplet of the form
CPU-VENDOR-OS, as determined by the configure script. E.g, "i586-
unknown-linux".

arch the architecture (CPU) R was built on/for.

os the underlying operating system

system CPU and OS.

status the status of the version (e.g., "Alpha")

status.rev the status revision level

major the major version number

minor the minor version number

year the year the version was released

month the month the version was released

day the day the version was released

language always "R".

See Also

machine.

Examples

R.version$os # to check how lucky you are ...

plot(0) # any plot

mtext(R.version.string, side=1,line=4,adj=1)# a useful bottom-right note

Random Random Number Generation Random

Description

.Random.seed is an integer vector, containing the random number generator (RNG) state
for random number generation in R. It can be saved and restored, but should not be altered
by the user.

RNGkind is a more friendly interface to query or set the kind of RNG in use.

set.seed is the recommended way to specify seeds.

406 Random

Usage

.Random.seed <- c(rng.kind, n1, n2, ...)
save.seed <- .Random.seed

RNGkind(kind = NULL, normal.kind = NULL)
set.seed(seed, kind = NULL)

Arguments

kind character or NULL. If kind is a character string, set R’s RNG to the kind
desired. If it is NULL, return the currently used RNG. Use "default" to
return to the R default.

normal.kind character string or NULL. If it is a character string, set the method of
Normal generation. Use "default" to return to the R default.

seed a single value, interpreted as an integer.
rng.kind integer code in 0:k for the above kind.
n1, n2, ... integers. See the details for how many are required (which depends on

rng.kind).

Details

The currently available RNG kinds are given below. kind is partially matched to this list.
The default is "Marsaglia-Multicarry".

"Wichmann-Hill" The seed, .Random.seed[-1] == r[1:3] is an integer vector of length
3, where each r[i] is in 1:(p[i] - 1), where p is the length 3 vector of primes,
p = (30269, 30307, 30323). The Wichmann–Hill generator has a cycle length of
6.9536 × 1012 (= prod(p-1)/4, see Applied Statistics (1984) 33, 123 which corrects
the original article).

"Marsaglia-Multicarry": A multiply-with-carry RNG is used, as recommended by George
Marsaglia in his post to the mailing list ‘sci.stat.math’. It has a period of more than
260 and has passed all tests (according to Marsaglia). The seed is two integers (all
values allowed).

"Super-Duper": Marsaglia’s famous Super-Duper from the 70’s. This is the original version
which does not pass the MTUPLE test of the Diehard battery. It has a period of
≈ 4.6× 1018 for most initial seeds. The seed is two integers (all values allowed for the
first seed: the second must be odd).
We use the implementation by Reeds et al. (1982–84).
The two seeds are the Tausworthe and congruence long integers, respectively. A one-
to-one mapping to S’s .Random.seed[1:12] is possible but we will not publish one,
not least as this generator is not exactly the same as that in recent versions of S-PLUS.

"Mersenne-Twister": From Matsumoto and Nishimura (1998). A twisted GFSR with
period 219937 − 1 and equidistribution in 623 consecutive dimensions (over the whole
period). The “seed” is a 624-dimensional set of 32-bit integers plus a current position
in that set.

"Knuth-TAOCP": From Knuth (1997). A GFSR using lagged Fibonacci sequences with
subtraction. That is, the recurrence used is

Xj = (Xj−100 −Xj−37) mod 230

and the “seed” is the set of the 100 last numbers (actually recorded as 101 numbers,
the last being a cyclic shift of the buffer). The period is around 2129.

Random 407

"user-supplied": Use a user-supplied generator. See Random.user for details.

normal.kind can be "Kinderman-Ramage" (the default) or "Ahrens-Dieter" or "Box-
Muller".

set.seed uses its single integer argument to set as many seeds as are required. It is intended
as a simple way to get quite different seeds by specifying small integer arguments, and also as
a way to get valid seed sets for the more complicated methods (especially "Knuth-TAOCP").

Value

.Random.seed is an integer vector whose first element codes the kind of RNG and normal
generator. The lowest two decimal digits are in in 0:(k-1) where k is the number of
available RNGs. The thousands represent the type of normal generator (starting at 0).

In the underlying C, .Random.seed[-1] is unsigned; therefore in R .Random.seed[-1]
can be negative.

RNGkind returns a two-element character vector of the RNG and normal kinds in use before
the call, invisibly if either argument is not NULL.

set.seed returns NULL, invisibly.

Note

.Random.seed saves the seed set for the uniform random-number generator, at least for
the system generators. It does not necessarily save the state of other generators, and in
particular does not save the state of the Box–Muller normal generator. If you want to
reproduce work later, call set.seed rather than set .Random.seed.

Author(s)

of RNGkind: Martin Maechler. Current implementation, B. D. Ripley

References

Wichmann, B. A. and Hill, I. D. (1982) Algorithm AS 183: An Efficient and Portable
Pseudo-random Number Generator, Applied Statistics, 31, 188–190; Remarks: 34, 198 and
35, 89.

De Matteis, A. and Pagnutti, S. (1993) Long-range Correlation Analysis of the Wichmann-
Hill Random Number Generator, Statist. Comput., 3, 67–70.

Marsaglia, G. (1997) A random number generator for C. Discussion paper, posting on
Usenet newsgroup sci.stat.math on September 29, 1997.

Reeds, J., Hubert, S. and Abrahams, M. (1982–4) C implementation of SuperDuper, Uni-
versity of California at Berkeley. (Personal communication from Jim Reeds to Ross Ihaka.)

Marsaglia, G. and Zaman, A. (1994) Some portable very-long-period random number gen-
erators. Computers in Physics, 8, 117–121.

Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator, ACM Transactions on Mod-
eling and Computer Simulation, 8, 3–30.
Source code at http://www.math.keio.ac.jp/~matumoto/emt.html.

Knuth, D. E. (1997) The Art of Computer Programming. Volume 2, third edition.
Source code at http://www-cs-faculty.stanford.edu/~knuth/taocp.html.

http://www.math.keio.ac.jp/~matumoto/emt.html
http://www-cs-faculty.stanford.edu/~knuth/taocp.html

408 Random.user

See Also

runif, rnorm,

Examples

runif(1); .Random.seed; runif(1); .Random.seed

If there is no seed, a ‘‘random’’ new one is created:

rm(.Random.seed); runif(1); .Random.seed

RNGkind("Wich")# (partial string matching on ’kind’)

p.WH <- c(30269, 30307, 30323)

a.WH <- c(171, 172, 170)

next.WHseed <- function(i.seed = .Random.seed[-1]) (a.WH * i.seed) %% p.WH

my.runif1 <- function(i.seed = .Random.seed)

{ ns <- next.WHseed(i.seed[-1]); sum(ns / p.WH) %% 1 }

This shows how ‘runif(.)’ works for Wichmann-Hill, using only R functions:

rs <- .Random.seed

(WHs <- next.WHseed(rs[-1]))

u <- runif(1)

all(next.WHseed(rs[-1]) == .Random.seed[-1])

all.equal(u, my.runif1(rs))

.Random.seed

ok <- RNGkind()

RNGkind("Super")#matches "Super-Duper"

RNGkind()

.Random.seed # new, corresponding to Super-Duper

Reset:

RNGkind(ok[1])

Random.user User-supplied Random Number Generation Random.user

Description

Function RNGkind allows a user-coded random number generator to be supplied. The details
are give here.

Details

A user-specified RNG is called from entry points in dynamically-loaded compiled code. The
user must supply the entry point user_unif_rand, which takes no arguments and returns
a pointer to a double. The example below will show the general pattern.

Optionally, the user can supply the entry point user_unif_init, which is called with an
unsigned int argument when RNGkind (or set.seed) is called, and is intended to be used
to initialize the user’s RNG code. The argument is intended to be used to set the “seeds”;
it is the seed argument to set.seed or an essentially random seed if RNGkind is called.

If only these functions are supplied, no information about the generator’s state is recorded
in .Random.seed. Optionally, functions user_unif_nseed and user_unif_seedloc can be
supplied which are called with no arguments and should return pointers to the number of

randu 409

“seeds” and to an integer array of “seeds”. Calls to GetRNGstate and PutRNGstate will then
copy this array to and from .Random.seed.

Warning

As with all compiled code, mis-specifying these functions can crash R. Do include the
‘R ext/Random.h’ header file for type checking.

Examples

Marsaglia’s conguential PRNG

#include <R_ext/Random.h>

static Int32 seed;

static double res;

static int nseed = 1;

double * user_unif_rand()

{

seed = 69069 * seed + 1;

res = seed * 2.32830643653869e-10;

return &res;

}

void user_unif_init(Int32 seed_in) { seed = seed_in; }

int * user_unif_nseed() { return &nseed; }

int * user_unif_seedloc() { return (int *) &seed; }

randu Random Numbers from Congruential Generator randu

Description

400 triples of successive random numbers were taken from the VAX FORTRAN function
RANDU running under VMS 1.5.

Usage

data(randu)

Format

A data frame with 400 observations on 3 variables named x, y and z which give the first,
second and third random number in the triple.

Details

In three dimensional displays it is evident that the triples fall on 15 parallel planes in 3-space.
This can be shown theoretically to be true for all triples from the RANDU generator.

These particular 400 triples start 5 apart in the sequence, that is they are ((U[5i+1], U[5i+2],
U[5i+3]), i= 0, . . . , 399), and they are rounded to 6 decimal places.

Under VMS versions 2.0 and higher, this problem has been fixed.

410 range

Source

David Donoho

Examples

We could re-generate the dataset by the following R code

seed <- as.double(1)

RANDU <- function() {

seed <<- ((2^16 + 3) * seed)

seed/(2^31)

}

for(i in 1:400) {

U <- c(RANDU(), RANDU(), RANDU(), RANDU(), RANDU())

print(round(U[1:3], 6))

}

range Range of Values range

Description

range returns a vector containing the minimum and maximum of all the given arguments.

Usage

range(..., na.rm = FALSE)
range.default(..., na.rm = FALSE, finite = FALSE)

Arguments

... any numeric objects.

na.rm logical, indicating if NA’s should be omitted.

finite logical, indicating if all non-finite elements should be omitted.

Details

This is a generic function; currently, it has only a default method (range.default).

It is also a member of the Summary group of functions, see Methods.

If na.rm is FALSE, NA and NaN values in any of the arguments will cause NA values to be
returned, otherwise NA values are ignored.

If finite is TRUE, the minimum and maximum of all finite values is computed, i.e., fi-
nite=TRUE includes na.rm=TRUE.

See Also

min, max, Methods.

rank 411

Examples

print(r.x <- range(rnorm(100)))

diff(r.x) # the SAMPLE range

x <- c(NA, 1:3, -1:1/0); x

range(x)

range(x, na.rm = TRUE)

range(x, finite = TRUE)

rank Sample Ranks rank

Description

rank returns the sample ranks of the values in x. Ties result in ranks being averaged. NA
values are not allowed in this function.

Usage

rank(x)

See Also

order and sort.

Examples

(r1 <- rank(x1 <- c(3,1,4,59,26)))

all(rank(r1) == r1) ## rank() is "idempotent": rank(rank(x)) == rank(x)

(r2 <- rank(x2 <- c(3,1,4,5,9,2,6,5,3,5)))

all(rank(r2) == r2)

read.fwf Read Fixed Width Format Files read.fwf

Description

Read a “table” of f ixed width formatted data into a data.frame.

Usage

read.fwf(file, widths, sep=" ", as.is = FALSE,
skip = 0, row.names, col.names)

412 read.socket

Arguments

file the name of the file which the data are to be read from. Each row of the
table appears as one line of the file.

widths integer vector, giving the widths of the fixed-width fields (of one line).

sep character; the separator used internally; should be irrelevant.

as.is see read.table.

skip number of initial lines to skip; see read.table.

row.names see read.table.

col.names see read.table.

Value

A data.frame as by read.table which is called internally.

Note

This function currently relies on the Perl script ‘$R HOME/bin/fwf2table’. Therefore, it
will only work in an environment with Perl 5 installed, see ‘INSTALL’ in the top-level
directory of the sources.

Author(s)

Kurt Hornik 〈hornik@ci.tuwien.ac.at〉

See Also

scan and read.table.

Examples

ff <- tempfile()

cat(file=ff, "123456", "987654", sep="\n")

read.fwf(ff, width=c(1,2,3)) #> 1 23 456 \ 9 87 654

unlink(ff)

read.socket Read from or Write to a Socket read.socket

Description

read.socket reads a string from the specified socket, write.socket writes to the specified
socket. There is very little error checking done by either.

Usage

read.socket(socket, maxlen=256, loop=FALSE)
write.socket(socket, string)

read.table 413

Arguments

socket a socket object

maxlen maximum length of string to read

loop wait for ever if there is nothing to read?

string string to write to socket

Value

read.socket returns the string read.

Author(s)

Thomas Lumley

See Also

close.socket, make.socket

Examples

finger <- function(user, host = "localhost", port = 79, print = TRUE)

{

if (!is.character(user))

stop("user name must be a string")

user <- paste(user,"\r\n")

socket <- make.socket(host, port)

on.exit(close.socket(socket))

write.socket(socket, user)

output <- character(0)

repeat{

ss <- read.socket(socket)

if (ss == "") break

output <- paste(output, ss)

}

close.socket(socket)

if (print) cat(output)

invisible(output)

}

finger("root") ## only works if your site provides a finger daemon

read.table Data Input read.table

Description

Reads a file in table format and creates a data frame from it, with cases corresponding to
lines and variables to fields in the file.

414 read.table

Usage

read.table(file, header = FALSE, sep = "", dec = ".", quote = "\"’",
row.names, col.names, as.is = FALSE, na.strings = "NA",
skip = 0)

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
row.names, col.names, as.is=FALSE, na.strings="", skip=0)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",
row.names, col.names, as.is=FALSE, na.strings="", skip=0)

Arguments

file the name of the file which the data are to be read from. Each row of the
table appears as one line of the file. If it does not contain an absolute
path, the file name is relative to the current working directory, getwd().

header a logical value indicating whether the file contains the names of the vari-
ables as its first line.

sep the field separator character. Values on each line of the file are separated
by this character.

quote the set of quoting characters. To disable quoting altogether, use quote=""

dec the decimal point

row.names a vector of row names. This can be a vector giving the actual row names,
or a single number giving the column of the table which contains the row
names, or character string giving the name of the table column containing
the row names.

col.names a vector of optional names for the variables. The default is to use "V"
followed by the column number.

as.is the default behavior of read.table is to convert non-numeric variables to
factors. The variable as.is controls this conversion. Its value is either a
vector of logicals (values are recycled if necessary), or a vector of numeric
indices which specify which columns should be left as character strings.

na.strings a vector strings which are to be interpreted as NA values.

skip the number of lines of the data file to skip before beginning to read data.

Details

read.csv and read.csv2 are identical to read.table except for the defaults. They are
intended for reading ”comma separated variable” files (.csv) or the variant used in countries
that use comma as decimal point and consequently semicolon as field separator. Notice
that header=TRUE in these variants.

Value

A data frame (data.frame) containing a representation of the data in the file.

This function is the principal means of reading tabular data into R.

read.table.url 415

Note

The implementation of read.table currently reads everything as character using scan and
subsequently defines "numeric" or factor variables.

This is quite memory consuming for files of thousands of records and may need larger
memory, see Memory.

See Also

scan, read.fwf for reading f ixed w idth f ormatted input; write.table; data.frame.

read.table.url Read Data and Code from a URL read.table.url

Description

Extensions of read.table, scan, source and file.show to read text files on a remote
server.

Usage

read.table.url(url, method="auto",...)
scan.url(url, method="auto", ...)
source.url(url, method="auto", ...)
url.show(url, title = url, file = tempfile(),

delete.file = TRUE, ...)

Details

These functions call download.file to create a temporary local file. The file can be down-
loaded by lynx or wget if these are available on the system. Another option is a direct
HTTP socket connection, if the local machine allows this.

Value

The same value as the respective file-based functions.

See Also

read.table, scan, source, make.socket, read.socket, file.show,download.file

Examples

read.table.url("http://lib.stat.cmu.edu/jcgs/tu",skip=4,header=T)

url.show("http://lib.stat.cmu.edu/datasets/csb/ch11b.txt")

beaver<-read.table.url("http://lib.stat.cmu.edu/datasets/csb/ch11b.dat",

col.names=c("obsnum","day","time","temperature","activity"),row.names=1)

the next two examples will only work if socket connections to

statlib are allowed from your site.

url.show("http://lib.stat.cmu.edu/datasets/csb/ch3a.txt",

method="socket")

ozone<-read.table.url("http://lib.stat.cmu.edu/datasets/csb/ch3a.dat",

col.names=c("date","day.cts","day.passive","night.cts","night.passive"),

na.strings=".", method="socket")

416 real

readline Read a Line from the Terminal readline

Description

readline reads a line from the terminal, returning it as a character string.

Usage

readline(prompt="")

Arguments

prompt the string printed when prompting the user for input. Should usually end
with a space " ".

Examples

fun <- function() {

ANSWER <- readline("Are you a satisfied R user? ")

if (substr(ANSWER, 1, 1) == "n")

cat("This is impossible. YOU LIED!\n")

else

cat("I knew it.\n")

}

fun()

real Real Vectors real

Description

real creates a double precision vector of the specified length. Each element of the vector
is equal to 0.

as.real attempts to coerce its argument to be of real type.

is.real returns TRUE or FALSE depending on whether its argument is of real type or not.

Usage

real(length = 0)
as.real(x)
is.real(x)

Note

R has no single precision data type. All real numbers are stored in double precision format.

Recall 417

Recall Recursive Calling Recall

Description

Recall is used as a placeholder for the name of the function in which it is called. It allows
the definition of recursive functions which still work after being renamed, see example below.

Usage

Recall(...)

Arguments

... all the arguments to be passed.

See Also

do.call and call.

Examples

A trivial (but inefficient!) example:

fib <- function(n) if(n<=2) {if(n>=0) 1 else 0} else Recall(n-1) + Recall(n-2)

fibonacci <- .Alias(fib) ## renaming wouldn’t work without Recall

fibonacci(10) # 55

rect Draw a Rectangle rect

Usage

rect(xleft, ybottom, xright, ytop,
col=NULL, border=par("fg"), lty=NULL, lwd=par("lwd"), xpd=FALSE)

Arguments

xleft a vector (or scalar) of left x positions.

ybottom a vector (or scalar) of bottom y positions.

xright a vector (or scalar) of right x positions.

ytop a vector (or scalar) of top y positions.

col color(s) to fill the rectangle(s) with.

border color for rectangle border(s).

lty line type for borders; defaults to "solid".

lwd width for borders.

xpd logical (“expand”); if FLASE, everything is clipped to the plot region.

418 relevel

Details

The positions supplied, i.e., xleft, ..., are relative to the current plotting region. If the
x-axis goes from 100 to 200 then xleft must be larger than 100 and xright must be less
than 200.

See Also

box for the“standard”box around the plot; polygon and segments for flexible line drawing.

Examples

set up the plot region:

plot(c(100, 250), c(300, 450), type = "n",

main = "2 x 11 rectangles; ‘rect(100+i,300+i, 150+i,380+i)’")

i <- 4*(0:10)

draw rectangles with bottom left (100, 300)+i and top right (150, 380)+i

rect(100+i, 300+i, 150+i, 380+i, col=rainbow(11, start=.7,end=.1))

rect(240-i, 320+i, 250-i, 410+i, col=heat.colors(11), lwd=i/5)

relevel Reorder Levels of Factor relevel

Description

The levels of a factor are re-ordered so that the level specified by ref is first and the others
are moved down. This is useful for contr.treatment contrasts which take the first level as
the reference.

Usage

relevel(x, ref, ...)

Arguments

x An unordered factor.
ref The reference level.
... Additional arguments for future methods.

Value

A factor of the same length as x.

Author(s)

B. D. Ripley

See Also

factor, contr.treatment

Examples

data(warpbreaks)

warpbreaks$tension <- relevel(warpbreaks$tension, ref="M")

summary(lm(breaks ~ wool + tension, data=warpbreaks))

remove 419

remove Remove Objects from a Specified Environment remove

Description

remove and rm can be used to remove objects. These can be specified successively as
character strings, or in the character vector list, or through a combination of both. All
objects thus specified will be removed.

If envir is NULL then the the currently active environment is searched first.

If inherits is TRUE then parents of the supplied directory are searched until a variable with
the given name is encountered. A warning is printed for each variable that is not found.

Usage

remove(..., list = character(0), pos = -1, envir = pos.to.env(pos),
inherits = FALSE)

rm (..., list = character(0), pos = -1, envir = pos.to.env(pos),
inherits = FALSE)

See Also

ls, objects

rep Replicate Elements rep

Description

rep replicates the values in x according to the values given in times and length.out.

If times consists of a single integer, the result consists of the values in x repeated this many
times. If times is a vector of the same length as x, the result consists of x[1] repeated
times[1] times, x[2] repeated times[2] times and so on.

length.out may be given in place of times, in which case x is repeated as many times as
is necessary to create a vector of this length.

Usage

rep(x, times, length.out)

See Also

seq, sequence.

Examples

rep(1:4,2)

rep(1:4,c(2,2,2,2))

420 replications

replace Replace Values in a Vector replace

Description

replace replaces the values in x with indexes given in list by those given in values. If
necessary, the values in values are recycled.

Usage

replace(x, list, values)

replications Number of Replications of Terms replications

Description

Returns a vector or a list of the number of replicates for each term in the formula.

Usage

replications(formula, data=NULL, na.action)

Arguments

formula a formula or a terms object or a data frame.

data a data frame used to find the objects in formula.

na.action function for handling missing values. Defaults to a na.action attribute
of data, then a setting of the option na.action, or na.fail if that is not
set.

Details

If formula is a data frame and data is missing, formula is used for data with the formula
˜ ..

Value

A vector or list with one entry for each term in the formula giving the number(s) of replic-
ations for each level. If all levels are balanced (have the same number of replications) the
result is a vector, otherwise it is a list with a component for each terms, as a vector, matrix
or array as required.

A test for balance is !is.list(replications(formula,data)).

Author(s)

B. D. Ripley

See Also

model.tables

residuals 421

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

replications(~ . - yield, npk)

residuals Extract Model Residuals residuals

Description

residuals is a generic function which extracts model residuals from objects returned by
modeling functions.

The abbreviated form resid is an alias for residuals. It is intended to encourage users to
access object components through an accessor function rather than by directly referencing
an object slot.

All object classes which are returned by model fitting functions should provide a residuals
method. (Note that the method is ‘residuals’ and not ‘resid’.)

Usage

residuals(x, ...)
resid(x, ...)

Arguments

x an object for which the extraction of model residuals is meaningful.

... other arguments.

Value

Residuals extracted from the object x.

See Also

coefficients, fitted.values, glm, lm.

422 restart

restart Restart an Expression restart

Description

restart performs a type of non-local return.

try is a user-friendly wrapper to run an expression that might fail.

Usage

restart(on = TRUE)
try(expr, first = T)

Arguments

on if true a jump point is set; if false the jump point is removed

expr an R expression to try

first not for user use!

Details

When restart is called with on = TRUE the evaluator marks that function as a return
point. Any errors or signals (such as control-C on Unix) cause control to return to the start
of the function containing the call to restart. The most recently established function is
always entered first.

Value

try returns the value of the expression if it succeeds, and an invisible object of class
"try_error" containing the error message if it if fails. The normal error handling will
print the same message unless options("show.error.messages") is false.

Note

The direct use of restart is likely to result in an infinite loop. Use try unless you are sure
you know what you are doing.

See Also

options for setting error handlers and suppressing the printing of error messages; ge-
terrmessage for retrieving the last error message.

Examples

this example will not work correctly in example(try), but

it does work correctly if pasted in

options(show.error.messages = FALSE)

try(log("a"))

print(.Last.value)

options(show.error.messages = TRUE)

rev 423

rev Reverse a Vector’s Elements rev

Description

rev provides a reversed version of its argument. It can be used in combination with sort
to obtain vectors sorted into descending order.

Usage

rev(x)

See Also

seq, sort.

Examples

x <- c(1:5,5:3)

sort into descending order

rev(sort(x))

all(rev(1:7) == 7:1)#- don’t need ‘rev’ here

rgb RGB Color Specification rgb

Description

This function creates “colors” corresponding to the given intensities (between 0 and 1) of
the red, green and blue primaries. The names argument may be used to provide names for
the colors.

The values returned by rgb can be used with a col= specification in graphics functions or
in par.

Usage

rgb(red, green, blue, names=NULL)

See Also

rainbow, hsv, gray.

Examples

rgb(0,1,0)

u01 <- seq(0,1, length=11); all(rgb(u01,u01,u01) == gray(u01))

reds <- rgb((0:15)/15, g=0,b=0, names=paste("red",0:15,sep="."))

reds

424 rle

rivers Lengths of Major North American Rivers rivers

Description

This data set gives the lengths (in miles) of 141“major”rivers in North America, as compiled
by the US Geological Survey.

Usage

data(rivers)

Format

A vector containing 141 observations.

Source

World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

rle Run Length Encoding rle

Description

Compute the lengths and values of runs of equal values in a vector.

Usage

rle(x)

Arguments

x a (numerical, logical or character) vector.

Value

A list with components

lengths a vector containing the length of each run.

values a vector of the same length as lengths with the corresponding values.

Round 425

Examples

x <- rev(rep(6:10, 1:5))

rle(x)

$lengths

[1] 5 4 3 2 1

$values

[1] 10 9 8 7 6

z <- c(T,T,F,F,T,F,T,T,T)

rle(z)

rle(as.character(z))

Round Rounding of Numbers Round

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the
smallest integers not less than the corresponding elements of x.

floor takes a single numeric argument x and returns a numeric vector containing the largest
integers not greater than the corresponding elements of x.

round rounds the values in its first argument to the specified number of decimal places
(default 0). Note that for rounding off a 5, the IEEE standard is used, “go to the even
digit”. Therefore round(0.5) is 0 and round(-1.5) is -2.

signif rounds the values in its first argument to the specified number of significant digits.

trunc takes a single numeric argument x and returns a numeric vector containing the
integers by truncating the values in x toward 0.

zapsmall determines a digits argument dr for calling round(x, digits = dr) such that
values “close to zero” values are “zapped”, i.e., treated as 0.

Usage

ceiling(x)
floor(x)
round(x, digits = 0)
signif(x, digits = 6)
trunc(x)
zapsmall(x, digits= getOption("digits"))

See Also

as.integer.

Examples

round(.5 + -2:4) # IEEE rounding: -2 0 0 2 2 4 4

(x1 <- seq(-2, 4, by = .5))

round(x1)#-- IEEE rounding !

x1[trunc(x1) != floor(x1)]

x1[round(x1) != floor(x1 + .5)]

all(trunc(x1) == as.integer(x1))# TRUE

non.int <- ceiling(x1) != floor(x1)

426 row

all(non.int == (ceiling(x1) != trunc(x1) | trunc(x1) != floor(x1)))

TRUE

all((signif(x1, 1) != round(x1,1)) == (non.int & abs(x1)>1)) # TRUE

x2 <- pi * 100^(-1:3)

round(x2, 3)

signif(x2, 3)

print (x2 / 1000, digits=4)

zapsmall(x2 / 1000, digits=4)

zapsmall(exp(1i*0:4*pi/2))

row Row Indexes row

Description

Returns a matrix of integers indicating their row number in the matrix.

Usage

row(x, as.factor = FALSE)

Arguments

x a matrix.

as.factor a logical value indicating whether the value should be returned as a factor
rather than as numeric.

Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to i.

See Also

col to get columns.

Examples

x <- matrix(1:12, 3, 4)

extract the diagonal of a matrix

dx <- x[row(x) == col(x)]

dx

create an identity 5-by-5 matrix

x <- matrix(0, nr = 5, nc = 5)

x[row(x) == col(x)] <- 1

x

row/colnames 427

row/colnames Row and Columnn Names row/colnames

Description

Retrieve or set the row or column names of an object (the first or second component of its
dimnames).

Usage

rownames(x, do.NULL = TRUE, prefix = "row")
rownames(x) <- namevector

colnames(x, do.NULL = TRUE, prefix = "col")
colnames(x) <- namevector

Details

If do.NULL is FALSE, a character vector (of length NROW(x) or NCOL(x) is returned in any
case, prepending prefix to simple numbers, if dimnames(x)[[i]] (i = 1 or 2) is NULL.

See Also

dimnames, case.names, variable.names.

Examples

m0 <- matrix(NA, 4, 0)

m2 <- cbind(1,1:4)

rownames(m0)

colnames(m2, do.NULL = FALSE)

colnames(m2) <- c("x","Y")

rownames(m2) <- rownames(m2, do.NULL = FALSE, prefix = "Obs.")

m2

rowsum Give Row Sums of a Matrix, Based on a Grouping
Variable

rowsum

Description

Compute sums across rows of a matrix for each level of a grouping variable.

Usage

rowsum(x, group, reorder = TRUE)

428 rug

Arguments

x a matrix or vector of numeric data. Missing values are allowed.
group a vector giving the grouping, with one element per row of x. Missing

values are not allowed.
reorder if TRUE, then the result will be in order of sort(unique(group)), if

FALSE, it will be in the order that rows were encountered (and may run
faster for large matrices). The default is to reorder the data, so as to
agree with tapply (see example below).

Value

a matrix containing the sums. There will be one row per unique value of group.

Author(s)

Terry Therneau

See Also

tapply

Examples

x <- matrix(runif(100), ncol=5)

group <- sample(1:8, 20, T)

xsum <- rowsum(x, group)

same result another way, slower, and temp may be much larger than x

temp <- model.matrix(~ a - 1, data.frame(a=as.factor(group)))

xsum2<- t(temp) %*% x

same as last one, but really slow

xsum3 <- tapply(x, list(group[row(x)], col(x)), sum)

rug Add a Rug to a Plot rug

Description

Adds a rug representation (1-d plot) of the data to the plot.

Usage

rug(x, ticksize=0.03, side=1, lwd=0.5)

Arguments

x A numeric vector
ticksize The length of the ticks making up the ‘rug’. Positive lengths give inwards

ticks.
side On which side of the plot box the rug will be plotted. Normally 1 (bottom)

or 3 (top).
lwd The line width of the ticks.

Rwin configuration 429

Details

Because of the way rug is implemented, only values of x that fall within the plot region are
included. There will be a warning if any finite values are omitted, bu non-finite values are
omitted silently.

Author(s)

B. D. Ripley

See Also

jitter which you may want for ties in x.

Examples

data(faithful)

attach(faithful)

plot(density(eruptions, bw=0.15))

rug(eruptions)

detach("faithful")

Rwin configuration R for Windows Configuration Rwin configuration

Description

The file Rconsole configures the R GUI console in this Windows port. The file Rdevga
configures the graphics devices windows, win.graph, win.metafile and win.print.

Details

There are system copies of these files in R_HOME\etc. Users can have personal copies of the
files: these are looked for in the location given by the environment variable R_USER. The
system files are read only if a corresponding personal file is not found.

If the environment variable R_USER is not set, the R system sets it to HOME if that is set
(stripping any trailing slash), otherwise to HOMEDIR:HOMEPATH is HOMEDIR is set otherwise
to the working directory.

Value

Each of the files contains details in comments of how to set the values.

At the time of writing Rdevga configured the mapping of font numbers to fonts, and Rcon-
sole configured the appearance (single or multiple document interface, toolbar, statusbar
on MDI), size and colours of the GUI console, and whether resizing the console sets op-
tions("width").

Author(s)

Guido Masarotto

See Also

windows

430 sample

sample Random Samples and Permutations sample

Description

sample takes a sample of the specified size from the elements of x using either with or
without replacement.

Usage

sample(x, size, replace=FALSE, prob)

Arguments

x Either a (numeric, complex, character or logical) vector of more than one
elements from which to choose, or a positive integer.

size A positive integer giving the number of items to choose.

replace Should sampling be with replacement?

prob A vector of probabilities of obtaining the elements of the vector being
sampled.

Details

If x has length 1, sampling takes place from 1:x.

By default size is equal to length(x) so that sample(x) generates a random permutation
of the elements of x (or 1:x).

The optional prob argument can be used to give a vector of probabilities of obtaining the
elements of the vector being sampled. If replace is false, these probabilities are applied
sequentially, that is the probability of choosing the next item is proportional to the prob-
abilities amongst the remaining items.

Examples

x <- 1:12

a random permutation

sample(x)

bootstrap sampling

sample(x,replace=TRUE)

100 Bernoulli trials

sample(c(0,1), 100, replace = TRUE)

save 431

save Save R Objects save

Description

save writes a external representation of R objects to the specified file. The objects can be
read back from the file at a later date by using the function load.

save.image() is just a short-cut for “save my current environment”, i.e., save(list =
ls(all=T), file = ".RData"). It is what also happens with q("yes").

Usage

save(..., list = character(0), file = "", ascii = FALSE, oldstyle = FALSE)
save.image(file = ".Rdata", oldstyle = FALSE)

Arguments

... the names of the objects to be saved.

list A character vector containing the names of objects to be saved.

file the name of the file where the data will be saved.

ascii if TRUE, an ASCII representation of the data is written. This is useful
for transporting data between machines of different types. The default
value of ascii is FALSE which leads to a more compact binary file being
written.

oldstyle logical. Should the old (0.90.1 or earlier) format be used?

See Also

dput, dump, load.

Examples

x <- runif(20)

y <- list(a = 1, b = TRUE, c = "oops")

save(x, y, file = "xy.Rdata")

save.image()

unlink("xy.Rdata")

unlink(".RData")

savePlot Save Windows Plot to a File savePlot

Description

Saves the current plot on a windows device to a file.

Usage

savePlot(filename="Rplot",
type=c("wmf", "png", "jpeg", "jpg", "bmp", "ps"),
device=dev.cur())

432 scale

Arguments

filename The filename under which to save the plot, without the extension.

type The type of plot, Windows metafile, PNG, JPEG, BMP (Windows bitmap
format) or PostScript.

device A device number of a windows device, by default the current device.

Details

This is equivalent to selecting the ‘Save as’ menu item on the ‘File’ menu of a devga device.

Using filename as "clipboard" or "" with type = "wmf" will copy to the clipboard.

Value

None, but a plot file will be created.

Author(s)

Guido Masarotto, B. D. Ripley

See Also

dev.print

scale Scaling and Centering of Matrices scale

Description

Center and/or scale the columns of a numeric matrix.

Usage

scale(x, center = TRUE, scale = TRUE)

Arguments

x a numeric matrix.

center either a logical value or a numeric vector of length equal to the number
of columns of x.

scale either a logical value or a numeric vector of length equal to the number
of columns of x.

scan 433

Details

The value of center determines how column centering is performed. If center is a numeric
vector with length equal to the number of columns of x, then each column of x has the
corresponding value from center subtracted from it. If center is TRUE then centering
is done by subtracting the column means of x from their corresponding columns, and if
center is FALSE, no centering is done.

The value of scale determines how column scaling is performed (after centering). If scale
is a numeric vector with length equal to the number of columns of x, then each column of
x is divided by the corresponding value from scale. If scale is TRUE then scaling is done
by dividing the (centered) columns of x by their root-mean-square, and if scale is FALSE,
no scaling is done.

The root-mean-square for a column is obtained by computing the square-root of the sum-
of-squares of the non-missing values in the column divided by the number of non-missing
values minus one.

Value

The centered, scaled matrix.

See Also

sweep which allows centering (and scaling) with arbitrary statistics.

Examples

x <- matrix(1:10, nc=2)

(centered.x <- scale(x, scale=FALSE))

cov(centered.scaled.x <- scale(x))# all 1

scan Read Data Values scan

Description

Read data into a vector or list from the console or file.

Usage

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",
quote = "", dec = ".", skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, strip.white = FALSE, quiet = FALSE)

Arguments

file the name of a file to read data values from. If the specified file is "", then
input is taken from the keyboard (in this case input can be terminated
by a blank line).
Otherwise, the file name is relative to the current working directory,
getwd(), unless it specifies an absolute path.

what the type of what gives the type of data to be read. If what is a list,
it is assumed that the lines of the data file are records each containing
length(what) items (“fields”).

434 scan

nmax the maximum number of data values to be read, or if what is a list, the
maximum number of records to be read. If omitted, scan will read to the
end of file.

n the maximum number of data values to be read, defaulting to no limit.

sep by default, scan expects to read white-space delimited input fields. Al-
ternatively, sep can be used to specify a character which delimits fields.

quote the set of quoting characters as a single character string.

dec decimal point character.

skip this many lines of the input file should be skipped before starting to read
data values.

nlines the maximum number of lines of data to be read.

na.strings character string, indicating which character fields in the file should trans-
late to missing (NA) values.

flush logical; if TRUE, scan will flush to the end of the line after reading the last
of the fields requested. This allows putting comments after the last field.

strip.white vector of logical value(s) corresponding to items in the what argument.
It is used only when sep has been specified, and allows to strip leading
and trailing white space from character fields (numeric fields are always
stripped).
If strip.white is of length 1, it applies to all fields; otherwise, if
strip.white[i] is TRUE and the i-th field is character (because what[i]
is), then the leading and trailing white space from field i is stripped.

quiet logical; if FALSE (default), scan(.) will print a line, telling what fields have
been read.

Details

The value of what can be a list of types, in which case scan returns a list of vectors with the
types given by the types of the elements in what. This provides a way of reading columnar
data.

If sep is nondefault, the fields may be quoted in the style of .csv format files where separators
inside quotes (or "") are ignored and quotes may be put inside strings by doubling them.

Keyboard entry is terminated by typing a blank line.

See Also

read.table for more user-friendly reading of data matrices; write.

Examples

cat("TITLE extra line", "2 3 5 7", "11 13 17", file="ex.data", sep="\n")

pp <- scan("ex.data", skip = 1, quiet= TRUE)

scan("ex.data", skip = 1)

scan("ex.data", skip = 1, nlines=1)# only 1 line after the skipped one

str(scan("ex.data", what = list("","",""))) # flush is F -> read "7"

str(scan("ex.data", what = list("","",""), flush = TRUE))

unlink("ex.data") # tidy up

screen 435

screen Creating and Controlling Multiple Screens on a Single
Device

screen

Description

split.screen defines a number of regions within the current device which can, to some
extent, be treated as separate graphics devices. It is useful for generating multiple plots on
a single device. Screens can themselves be split, allowing for quite complex arrangements
of plots.

screen is used to select which screen to draw in.

erase.screen is used to clear a single screen.

close.screen removes the specified screen definition(s).

Usage

split.screen(figs, screen = <<see below>>, erase = TRUE)
screen(n = <<see below>>, new = TRUE)
erase.screen(n = <<see below>>)
close.screen(n = <<see below>>, all = TRUE)

Arguments

figs A two-element vector describing the number of rows and the number of
columns in a screen matrix or a matrix with 4 columns. If a matrix, then
each row describes a screen with values for the left, right, bottom, and
top of the screen (in that order) in NDC units.

n A number indicating which screen to prepare for drawing (screen), erase
(erase.screen), or close (close.screen).

new A logical value indicating whether the screen should be erased as part of
the preparation for drawing in the screen.

all A logical value indicating whether all of the screens should be closed.

Details

The first call to split.screen places R into split-screen mode. The other split-screen
functions only work within this mode. While in this mode, certain other commands
should be avoided (see WARNINGS below). Split-screen mode is exited by the command
close.screen(all = TRUE)

Value

split.screen returns a vector of screen numbers for the newly-created screens. With no
arguments, split.screen returns a vector of valid screen numbers.

screen invisibly returns the number of the selected screen. With no arguments, screen
returns the number of the current screen.

close.screen returns a vector of valid screen numbers.

screen, erase.screen, and close.screen all return FALSE if R is not in split-screen mode.

436 sd

Warning

These functions are totally incompatible with the other mechanisms for arranging plots on
a device: par(mfrow), par(mfcol), and layout().

The functions are also incompatible with some plotting functions, such as coplot, which
make use of these other mechanisms.

The functions should not be used with multiple devices.

See Also

par, layout, Devices, dev.*

Examples

if (interactive()) {

split.screen(c(2,1)) # split display into two screens

split.screen(c(1,3), screen = 2) # now split the bottom half into 3

screen(1) # prepare screen 1 for output

plot(10:1)

screen(4) # prepare screen 4 for output

plot(10:1)

close.screen(all = T) # exit split-screen mode

split.screen(c(2,1)) # split display into two screens

split.screen(c(1,2),2) # split bottom half in two

plot(1:10) # screen 3 is active, draw plot

erase.screen() #forgot label, erase and redraw

plot(1:10, ylab= "ylab 3")

screen(1) # prepare screen 1 for output

plot(1:10)

screen(4) # prepare screen 4 for output

plot(1:10, ylab="ylab 4")

screen(1, F) #return to screen 1, but do not clear

plot(10:1, axes=F, lty=2, ylab="") # overlay second plot

axis(4) # add tic marks to right-hand axis

title("Plot 1")

close.screen(all = T) # exit split-screen mode

}

sd Standard Deviation sd

Description

This function computes the standard deviation of the values in x. If na.rm is TRUE then
missing values are removed before computation proceeds. If x is a matrix or a dataframe,
a vector of the standard deviation of the columns is returned.

Usage

sd(x, na.rm = FALSE)

See Also

var for its square, and mad, the most robust alternative.

se.aov 437

Examples

sd(1:2) ^ 2

se.aov Internal Functions Used by model.tables se.aov

Description

Internal function for use by model.tables.

Usage

se.aov(object, n, type = "means")
se.aovlist(object, dn.proj, dn.strata, factors, mf, efficiency,

n, type = "diff.means", ...)

Author(s)

B. D. Ripley

See Also

model.tables

se.contrast Standard Errors for Contrasts in Model Terms se.contrast

Description

Returns the standard errors for one or more contrasts in an aov object.

Usage

se.contrast(object, ...)
se.contrast.aov(x, contrast.obj,
coef = contr.helmert(ncol(contrast))[, 1], data = NULL)

se.contrast.aovlist(...)

Arguments

object A suitable fit, usually from aov.

contrast.obj The contrasts for which standard errors are requested. This can be spe-
cified via a list or via a matrix. A single contrast can be specified by a
list of logical vectors giving the cells to be contrasted. Multiple contrasts
should be specified by a matrix as returned by contrasts.

coef Used when {contrast.obj} is a list; it should be a vector of the same
length as the list with zero sum. The default value is the first Helmert
contrast, which contrasts the first and second cell means specified by the
list.

data The data frame used to evaluate contrast.obj.

438 search

Details

Contrasts are usually used to test if certain means are significantly different; it can be easier
to use se.contrast than compute directly with the coefficients.

In multistratum models, the contrasts can appear in more than one stratum; the contrast
and standard error are computed in the lowest stratum and adjusted for efficiencies and
comparisons between strata.

Value

A vector giving the standard errors for each contrast.

Author(s)

B.D. Ripley

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

options(contrasts=c("contr.treatment", "contr.poly"))

npk.aov1 <- aov(yield ~ block + N + K, npk)

se.contrast(npk.aov1, list(N=="0", N=="1"), data=npk)

search Give Search Path for R Objects search

Description

Gives a list of attached packages (see library), and R objects, usually data.frames.

Usage

search()
searchpaths()

Value

A character vector, starting with ".GlobalEnv", and ending with "package:base" which
is R’s base package required always.

searchpaths gives a similar character vector, with the entries for packages being the path
to the package used to load the code.

See Also

attach and detach to change the search “path”, objects to find R objects in there.

segments 439

Examples

search()

searchpaths()

segments Add Line Segments to a Plot segments

Description

Draw line segments between pairs of points.

Usage

segments(x0, y0, x1, y1,
col = par("fg"), lty = par("lty"), xpd = FALSE)

Arguments

x0,y0 coordinates of points from which to draw.

x1,y1 coordinates of points to which to draw.

length length of the edges of the arrow head (in inches).

angle angle from the shaft of the arrow to the edge of the arrow head.

col, lty, xpd usual graphical parameters as in par.

Details

For each i, a line segment is drawn between the point (x0[i], y0[i]) and the point
(x1[i],y1[i]).

The graphical parameters col and lty can be used to specify a color and line texture for
the line segments (col may be a vector).

See Also

arrows, polygon for slightly easier and less flexible line drawing and lines for the usual
polygons.

Examples

x <- runif(12); y <- rnorm(12)

i <- order(x,y); x <- x[i]; y <- y[i]

plot(x,y, main="arrows(.) and segments(.)")

draw arrows from point to point :

s <- seq(length(x)-1)# one shorter than data

arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)

s <- s[-length(s)]

segments(x[s], y[s], x[s+2], y[s+2], col= ’pink’)

440 seq

seq Sequence Generation seq

Description

Generate regular sequences.

Usage

from:to
seq(from, to)
seq(from, to, by=)
seq(from, to, length=)
seq(along)

Details

The operator : and the first seq(.) form generate the sequence from, from+1, . . . , to.
seq is a generic function.

The second form generates from, from+by, . . . , to.

The third generates a sequence of length equally spaced values from from to to.

The last generates the sequence 1, 2, . . . , length(along).

If from and to are factors of the same length, then from : to returns the “cross” of the
two.

Value

The result is of mode "integer" if from is (numerically equal to an) integer.

See Also

rep, sequence, row, col.

Examples

1:4

pi:6 # float

6:pi # integer

seq(0,1, length=11)

str(seq(rnorm(20)))

seq(1,9, by = 2) # match

seq(1,9, by = pi)# stay below

seq(1,6, by = 3)

seq(1.575, 5.125, by=0.05)

for (x in list(NULL, letters[1:6], list(1,pi)))

cat("x=",deparse(x),"; seq(along = x):",seq(along = x),"\n")

f1 <- gl(2,3); f1

f2 <- gl(3,2); f2

f1:f2 # a factor, the ‘‘cross’’ f1 x f2

sequence 441

sequence Create A Vector of Sequences sequence

Description

For each element of nvec the sequence seq(nvec[i]) is created. These are appended and
the result returned.

Usage

sequence(nvec)

Arguments

nvec an integer vector each element of which specifies the upper bound of a
sequence.

See Also

gl, seq, rep.

Examples

sequence(c(3,2))# the concatenated sequences 1:3 and 1:2.

#> [1] 1 2 3 1 2

sets Set Operations sets

Description

Performs set union, intersection, (asymmetric!) difference, equality and membership on
two vectors.

Usage

union(x, y)
intersect(x, y)
setdiff(x, y)
setequal(x, y)
is.element(el, set)

Arguments

x, y, el, set vectors (of the same mode) containing a sequence of items (conceptually)
with no duplicated values.

Details

Each of union, intersect and setdiff will remove any duplicated values in the arguments.

is.element(x, y) is identical to x %in% y.

442 shell

Value

A vector of the same mode as x or y for setdiff and intersect, respectively, and of a
common mode for union.

A logical scalar for setequal and a logical of the same length as x for is.element.

Author(s)

B. D. Ripley

See Also

%in%

Examples

(x <- c(sort(sample(1:20, 9)),NA))

(y <- c(sort(sample(3:23, 7)),NA))

union(x, y)

intersect(x, y)

setdiff(x, y)

setdiff(y, x)

setequal(x, y)

True for all possible x & y :

setequal(union(x,y),

c(setdiff(x,y), intersect(x,y), setdiff(y,x)))

is.element(x, y)# length 10

is.element(y, x)# length 8

shell Invoke a System Command, using a Shell shell

Description

shell runs the command specified by cmd, usually under a shell.

Usage

shell(cmd, shell, flag="/c", intern=FALSE, wait=TRUE,
translate=FALSE, mustWork=FALSE, ...)

Arguments

cmd the system command to be invoked, as a string.

shell a string giving the name of the shell to be used, or NULL (no shell). If
missing, a suitable shell is chosen: see ‘details’

flag the switch to run a command under the shell. If the shell is bash or tcsh
the default is changed to "-c".

intern a logical, indicates whether to make the output of the command an R
object.

shell.exec 443

wait should the R interpreter wait for the command to finish? The default is
to wait, and the interpreter will always wait if intern = TRUE.

translate If TRUE, "/" in cmd is translated to "\".

mustWork a logical; if TRUE failure to run the command will give an R error.

... additional arguments to system.

Details

If no shell is specified, the environment variables R_SHELL, SHELL and COMSPEC are tried
in turn: COMSPEC should always succeed. Using shell=NULL invokes the command cmd
directly, in which case an extension of .exe is assumed. It is possible to use batch files
directly if their extension is given: Windows (rather than R) then chooses a shell.

See system for fuller details: shell is a more user-friendly wrapper for system.

Value

If intern=TRUE, a character vector giving the output of the command, one line per character
string, or an error message if the command could not be run.

If intern=FALSE, the return value is a error code, given the invisible attribute (so needs to
be printed explicitly). If the command could not be run for any reason, the value is -1 and
an R warning is generated. Otherwise if wait=FALSE the value is the error code returned
by the command, and if wait=TRUE it is the zero (the conventional success value),

If intern=FALSE and wait=TRUE (the defaults) the text output from a command that is a
console application will appear in the R console (Rgui) or the window running R (Rterm).

Author(s)

B. D. Ripley

See Also

system

shell.exec Open a File using Windows File Associations shell.exec

Description

Opens the specified file using the application specified in the Windows file associations.

Usage

shell.exec(file)

Arguments

file file to be opened.

Value

No value.

444 SignRank

Author(s)

B. D. Ripley

See Also

system, shell

sign Sign Function sign

Description

sign returns a vector with the signs of the corresponding elements of x (the sign of a real
number is 1, 0, or −1 if the number is positive, zero, or negative, respectively).

Note that sign does not operate on complex vectors.

Usage

sign(x)

Arguments

x a numeric vector

See Also

abs

Examples

sign(pi) # == 1

sign(-2:3)# -1 -1 0 1 1 1

SignRank Distribution of the Wilcoxon Signed Rank Statistic SignRank

Description

Density, distribution function, quantile function and random generation for the distribution
of the Wilcoxon Signed Rank statistic obtained from a sample with size n.

Usage

dsignrank(x, n, log = FALSE)
psignrank(q, n, lower.tail = TRUE, log.p = FALSE)
qsignrank(p, n, lower.tail = TRUE, log.p = FALSE)
rsignrank(nn, n)

sink 445

Arguments

x,q vector of quantiles.

p vector of probabilities.

nn number of observations to generate.

n numbers of observations in the sample. Must be positive integers less
than 50.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

This distribution is obtained as follows. Let x be a sample of size n from a continuous
distribution symmetric about the origin. Then the Wilcoxon signed rank statistic is the
sum of the ranks of the absolute values x[i] for which x[i] is positive. This statistic
takes values between 0 and n(n + 1)/2, and its mean and variance are n(n + 1)/4 and
n(n+ 1)(2n+ 1)/24, respectively.

Value

dsignrank gives the density, psignrank gives the distribution function, qsignrank gives
the quantile function, and rsignrank generates random deviates.

Author(s)

Kurt Hornik 〈hornik@ci.tuwien.ac.at〉

See Also

dwilcox etc, for the two-sample Wilcoxon rank sum statistic.

Examples

par(mfrow=c(2,2))

for(n in c(4:5,10,40)) {

x <- seq(0, n*(n+1)/2, length=501)

plot(x, dsignrank(x,n=n), type=’l’, main=paste("dsignrank(x,n=",n,")"))

}

sink Send R Output to a File sink

Description

Diverts all R output to file, overwriting the file unless append is TRUE.

Usage

sink(file = NULL, append = FALSE)

446 sleep

Arguments

file a character string naming the file to write to, or NULL to stop “sink”ing.

append if TRUE, output will be appended to file; otherwise, it will overwrite the
contents of file.

Details

Only prompts and error messages continue to appear on the terminal.

sink() or sink(file=NULL) ends the diversion.

Examples

sink("sink-examp.txt")

i <- 1:10

outer(i,i,"*")

sink()

unlink("sink-examp.txt")

sleep Students’ Sleep Data sleep

Description

Data which show the effect of two soporific drugs (increase in hours of sleep) on groups
consisting of 10 patients each.

Usage

data(sleep)

Format

A data frame with 20 observations on 2 variables.

[, 1] extra numeric increase in hours of sleep
[, 2] group factor patient group

Source

Student (1908) The probable error of the mean. Biometrika, 6, 20.

References

Scheffé, Henry (1959) The Analysis of Variance. New York, NY: Wiley.

Examples

data(sleep)

ANOVA

anova(lm(extra ~ group, data = sleep))

solve 447

solve Solve a System of Equations solve

Description

This generic function solves the equation a %*% x = b for x, where b can be either a vector
or a matrix.

Usage

solve(a, b, tol = 1e-7)

Arguments

a a numeric matrix containing the coefficients of the linear system.

b a numeric vector or matrix giving the right-hand side(s) of the linear
system. If omitted, b is taken to be an identity matrix and solve will
return the inverse of a.

tol the tolerance for detecting linear dependencies in the columns of a.

See Also

backsolve, qr.solve.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

h8 <- hilbert(8); h8

solve(h8) # gives error: ‘singular’

sh8 <- solve(h8, tol = 1e-10)

round(sh8 %*% h8, 3)

sort Sort a Vector sort

Usage

sort(x, partial = NULL, na.last = NA)

Details

If partial is non NULL, it is taken to contain indexes of elements of x which are to be
placed in their correct positions by partial sorting. After the sort, the values specified in
partial are in their correct position in the sorted array. Any values smaller than these
values are guaranteed to have a smaller index in the sorted array and any values which are
greater are guaranteed to have a bigger index in the sorted array.

If na.last is NA, sort removes missing values. If na.last is TRUE, missing values are put
last, if FALSE, missing values are put first.

448 source

See Also

order, rank.

Examples

data(swiss)

x <- swiss$Education[1:25]

x; sort(x); sort(x, partial = c(10,15))

median # shows you another example for ‘partial’

source Redirect Input source

Description

source causes R to accept its input from the named file (the name must be quoted). Input is
read from that file until the end of the file is reached. parse is used to scan the expressions
in, they are then evaluated sequentially in the chosen environment.

Usage

source(file, local = FALSE, echo = verbose, print.eval = echo,
verbose = getOption("verbose"), prompt.echo = getOption("prompt"),
max.deparse.length = 150, chdir = FALSE)

Arguments

file character; the name of the file to read from (quoted).

local if local is FALSE, the statements scanned are evaluated in the global
environment, otherwise in the local calling source.

echo logical; if TRUE, each expression is printed after parsing, before evaluation.

print.eval logical; if TRUE, the result of eval(i) is printed for each expression i;
defaults to echo.

verbose if TRUE, more diagnostics (than just echo = TRUE) are printed during
parsing and evaluation of input, including extra info for each expression.

prompt.echo character; gives the prompt to be used if echo = TRUE.
max.deparse.length

integer; is used only if echo is TRUE and gives the maximal length of the
“echo” of a single expression.

chdir logical; if TRUE, the R working directory is changed to the directory con-
taining file for evaluating.

See Also

demo which uses source; eval, parse and scan; options("keep.source").

Special 449

Special Special Functions of Mathematics Special

Description

The functions beta and lbeta return the beta function and the natural logarithm of the
beta function,

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

.

The functions gamma and lgamma return the gamma function Γ(x) and the natural logarithm
of the absolute value of the gamma function.

The functions digamma, trigamma, tetragamma and pentagamma return the first, second,
third and fourth derivatives of the logarithm of the gamma function.

digamma(x) = ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

The functions choose and lchoose return binomial coefficients and their logarithms.

Usage

beta(a, b)
lbeta(a, b)
gamma(x)
lgamma(x)
digamma(x)
trigamma(x)
tetragamma(x)
pentagamma(x)
choose(n,k)
lchoose(n,k)

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York:
Dover. Chapter 6: Gamma and Related Functions.

See Also

Arithmetic for simple, Math for miscellaneous mathematical functions and Bessel for the
real Bessel functions.

Examples

choose(5, 2)

for (n in 0:10) print(choose(n, k = 0:n))

curve(gamma(x),-3,4, n=1001, ylim=c(-10,100),

col="red", lwd=2, main="gamma(x)")

abline(h=0,v=0, lty=3, col="midnightblue")

x <- seq(.1, 4, length = 201); dx <- diff(x)[1]

450 splinefun

par(mfrow = c(2, 3))

for (ch in c("", "l","di","tri","tetra","penta")) {

is.deriv <- nchar(ch) >= 2

if (is.deriv) dy <- diff(y) / dx

nm <- paste(ch, "gamma", sep = "")

y <- get(nm)(x)

plot(x, y, type = "l", main = nm, col = "red")

abline(h = 0, col = "lightgray")

if (is.deriv) lines(x[-1], dy, col = "blue", lty = 2)

}

par(mfrow = c(2, 2))

splinefun Interpolating Splines splinefun

Usage

splinefun(x, y, method = "fmm")
spline(x, y, n = 3*length(x), method = "fmm",

xmin = min(x), xmax = max(x))

Arguments

x,y vectors giving the coordinates of the points to be interpolated. Alternat-
ively a single plotting structure can be specified.

method specifies the type of spline to be used. Possible values are "fmm", "nat-
ural" and "periodic".

n interpolation takes place at n equally spaced points spanning the interval
[xmin, xmax].

xmin left-hand endpoint of the interpolation interval.

xmax right-hand endpoint of the interpolation interval.

Details

If method = "fmm", the spline used is that of Forsythe, Malcolm and Moler (an exact cubic
is fitted through the four points at each end of the data, and this is used to determine the
end conditions). Natural splines are used when method="natural", and periodic splines
when method="periodic".

Value

spline returns a list containing components x and y which give the ordinates where inter-
polation took place and the interpolated values.

splinefun returns a function which will perform cubic spline interpolation of the given
data points. This is often more useful than spline.

References

Forsythe, G. E., Malcolm, M. A. and Moler, C. B. (1977) Computer Methods for Mathem-
atical Computations.

split 451

See Also

approx and approxfun for constant and linear interpolation.

Examples

op <- par(mfrow = c(2,1), mgp = c(2,.8,0), mar = .1+c(3,3,3,1))

n <- 9

x <- 1:n

y <- rnorm(n)

plot(x, y, main = paste("spline[fun](.) through",n,"points"))

lines(spline(x, y))

lines(spline(x, y, n = 201), col = 2)

y <- (x-6)^2

plot(x, y, main = "spline(.) -- 3 methods")

lines(spline(x, y, n = 201), col = 2)

lines(spline(x, y, n = 201, method = "natural"), col = 3)

lines(spline(x, y, n = 201, method = "periodic"), col = 4)

legend(6,25, c("fmm","natural","periodic"), col=2:4, lty=1)

f <- splinefun(x, y)

ls(envir = environment(f))

splinecoef <- eval(expression(z), envir = environment(f))

curve(f(x), 1, 10, col = "green", lwd = 1.5)

points(splinecoef, col = "purple", cex = 2)

par(op)

split Divide into Groups split

Description

split divides the data in the vector x into the groups defined by the factor f.

Usage

split(x, f)
split.default(x, f)
split.data.frame(x, f)

Arguments

x vector containing the values to be divided into groups.
f a “factor” such that as.factor(f) defines the grouping.

Details

f is recycled as necessary and if the length of x is not a multiple of the length of f a warning
is printed.

Value

The value returned is a list of vectors containing the values for the groups. The components
of the list are named by the factor levels of f. If f is longer than x some of these will be of
zero length.

452 stackloss

See Also

cut

Examples

n <- 10; nn <- 100

g <- factor(round(n * runif(n * nn)))

x <- rnorm(n * nn) + sqrt(codes(g))

xg <- split(x, g)

boxplot(xg, col = "lavender", notch = TRUE, varwidth = TRUE)

sapply(xg, length)

sapply(xg, mean)

Split a matrix into a list by columns

ma <- cbind(x = 1:10, y = (-4:5)^2)

split(ma, col(ma))

split(1:10, 1:2)

stackloss Brownlee’s Stack Loss Plant Data stackloss

Description

Operational data of a plant for the oxidation of ammonia to nitric acid.

Usage

data(stackloss)

Format

A data frame with 21 observations on 4 variables.

[,1] x1 Air.Flow Flow of cooling air
[,2] x2 Water.Temp Cooling Water Inlet Temperature
[,3] x3 Acid.Conc. Concentration of acid [per 1000, minus 500]
[,4] y stack.loss Stack loss

Details

“Obtained from 21 days of operation of a plant for the oxidation of ammonia (NH3) to
nitric acid (HNO3). The nitric oxides produced are absorbed in a countercurrent absorption
tower.” (Brownlee, cited by Dodge, slightly reformatted by MM.)

x1 represents the rate of operation of the plant. x2 is the temperature of cooling water
circulated through coils in the absorption tower. x3 is the concentration of the acid circu-
lating, minus 50, times 10: that is, 89 corresponds to 58.9 per cent acid. y (the dependent
variable) is 10 times the percentage of the ingoing ammonia to the plant that escapes from
the absorption column unabsorbed; that is, an (inverse) measure of the over-all efficiency
of the plant.

stars 453

Source

Brownlee, K. A. (1960, 2nd ed. 1965) Statistical Theory and Methodology in Science and
Engineering. New York: Wiley. pp. 491–500.

References

Dodge, Y. (1996) The guinea pig of multiple regression. In: Robust Statistics, Data Ana-
lysis, and Computer Intensive Methods; In Honor of Peter Huber’s 60th Birthday, 1996,
Lecture Notes in Statistics 109, Springer-Verlag, New York.

Examples

data(stackloss)

summary(lm.stack <- lm(stack.loss ~ stack.x))

stars Star Plots and Segment Diagrams of Multivariate Data stars

Description

Star plots or segment diagrams are created on the current graphics device.

Usage

stars(x, full = TRUE, scale = TRUE, radius = TRUE, labels =
dimnames(x)[[1]], locations = NULL, xlimit = NULL, ylimit = NULL,
len = 1, colors = NULL, key.loc = NULL, key.labels = NULL,
draw.segments = FALSE, draw.axes = FALSE, ...)

Arguments

x matrix of data. One segment plot will be produced for each row of the
matrix. Missing values (NA) are allowed, but they are treated as if they
were 0.

full logical flag: if TRUE, the segment plots will occupy a full circle. Otherwise,
they occupy the (upper) semicircle only.

scale logical flag: if TRUE, the columns of the data matrix are scaled independ-
ently so that the maximum value in each column is 1 and the minimum is
0. If FALSE, the presumption is that the data have been scaled by some
other algorithm to the range [0, 1].

radius logical flag: in TRUE, the radii corresponding to each variable in the data
will be drawn.

labels vector of character strings for labeling the plots. Unlike the S function
stars, no attempt is made to construct labels if labels = NULL.

locations two column matrix with the x and y coordinates used to place each of the
segment plots. If locations is NULL the segment plots will be placed in
a rectangular grid.

xlimit vector with the range of x coordinates to plot.

ylimit vector with the range of y coordinates to plot.

454 start

len scale factor for the length of radii or segments.

colors vector of integers, each of which specifies a color for one of the segments.
Ignored if draw.segments = FALSE

key.loc vector with x and y coordinates of the unit key.

key.labels vector of character strings for labeling the segments of the unit key. If
omitted, the second component of dimnames(x) is used, if available.

draw.axes logical flag: if TRUE axes are added to the plot.

... any other arguments, typically arguments to par.

Details

Missing values are treated as 0.

Each star plot or segment diagram represents one row of the input x. Variables (columns)
start on the right and wind counterclockwise around the circle. The size of the (scaled)
column is shown by the distance from the center to the point on the star or the radius of
the segment representing the variable.

Only one page of output is produced.

Note

This code started life as spatial star plots by David A. Andrews. See http://www.stat.
rice.edu/~andrewsd/software/software.html.

Author(s)

Thomas S. Dye

Examples

data(mtcars)

stars(mtcars[, 1:7], len = 0.8, key.loc = c(12, 2),

main = "Motor Trend Cars", full = FALSE)

stars(mtcars[, 1:7], len = 0.8, key.loc = c(12, 2),

main = "Motor Trend Cars", draw.segments = TRUE)

data(USJudgeRatings)

stars(USJudgeRatings, labels = abbreviate(case.names(USJudgeRatings)),

key.loc = c(13, 1.5), main = "Judge not ...", len = 0.8)

start Encode the Terminal Times of Time Series start

Description

Extract and encode the times the first and last observations were taken. Provided only for
compatibility with S version 2.

Usage

start(x, ...)
end(x, ...)

http://www.stat.rice.edu/~andrewsd/software/software.html
http://www.stat.rice.edu/~andrewsd/software/software.html

Startup 455

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

... extra arguments for future methods.

Details

These are generic functions, which will use the tsp attribute of x if it exists. Their default
methods decode the start time from the original time units, so that for a monthly series
1995.5 is represented as c(1995, 7). For a series of frequency f, time n+i/f is presented
as c(n, i+1) (even for i = 0 and f = 1).

Warning

The representation used by start and end has no meaning unless the frequency is supplied.

See Also

ts, time, tsp.

Startup Initialization at Start of an R Session Startup

Description

In R, the startup mechanism is as follows. If a file ‘.Renviron’, or failing that ‘ /.Ren-
viron’, exists, it is sourced, usually to set environmental variables. This is suppressed by
the flag --no-environ. Then R searches for the site-wide startup profile unless the com-
mand line option --no-site-file was given. The name of this file is taken from the
value of the ‘R PROFILE’ environment variable. If that variable is unset, the default is
‘$R HOME/etc/Rprofile’.

Then, unless --no-init-file was given, R searches for a file called ‘.Rprofile’ in the current
directory or in the user’s home directory (in that order) and sources it.

It also loads a saved image from ‘.RData’ if there is one (unless --no-restore was specified).

Finally, if a function .First exists, it is executed as .First().

The functions .First and .Last can be defined in the appropriate startup profiles or reside
in ‘.RData’.

The command-line flag --vanilla implies --no-init-file, --no-restore and --no-
environ.

Usage

.First <- function() { }

.Rprofile <startup file>

See Also

.Last for final actions before termination.

456 state

stat.anova GLM Anova Statistics stat.anova

Description

This is a utility function, used in anova.glm(..., test != NULL) and should not be used
by the average user.

Usage

stat.anova(table, test, scale, df.scale, n)

Arguments

table numeric matrix as results from anova.glm(..., test=NULL).

test a character string, matching one of "Chisq", "F" or "Cp".

scale a weighted residual sum of squares.

df.scale degrees of freedom corresponding to scale.

n number of observations.

Value

A matrix which is the original table, augmented by a column of test statistics, depending
on the test argument.

See Also

anova.glm.

Examples

##-- Continued from ‘‘?glm’’:

print(ag <- anova(glm.D93))

stat.anova(ag$table, test = "Cp",

scale = sum(resid(glm.D93, "pearson")^2)/4, df = 4, n = 9)

state States of the U.S.A. state

Description

Data sets related to the 50 states of the United States of America.

Usage

data(state)

stem 457

Details

R currently contains the following “state” data sets. Note that all data are arranged accord-
ing to alphabetical order of the state names.

state.abb: character vector of 2-letter abbreviations for the state names.

state.area: numeric vector of state areas (in square miles).

state.center: list with components named x and y giving the approximate geographic
center of each state in negative longitude and latitude. Alaska and Hawaii are placed
just off the West Coast.

state.division: factor giving state divisions (New England, Middle Atlantic, South At-
lantic, East South Central, West South Central, East North Central, West North
Central, Mountain, and Pacific).

state.name: character vector giving the full state names.

state.region: factor giving the region (Northeast, South, North Central, West) that each
state belongs to.

state.x77: matrix with 50 rows and 8 columns giving the following statistics in the re-
spective columns.

• Population: population estimate as of July 1, 1975
• Income: per capita income (1974)
• Illiteracy: illiteracy (1970, percent of population)
• Life Exp: life expectancy in years (1969–71)
• Murder: murder and non-negligent manslaughter rate per 100,000 population

(1976)
• HS Grad: percent high-school graduates (1970)
• Frost: mean number of days with minimum temperature below freezing (1931–

1960) in capital or large city
• Area: land area in square miles

Source

U.S. Department of Commerce, Bureau of the Census (1977) Statistical Abstract of the
United States.

U.S. Department of Commerce, Bureau of the Census (1977) County and City Data Book.

stem Stem-and-Leaf Plots stem

Description

stem produces a stem-and-leaf plot of the values in x. The parameter scale can be used
to expand the scale of the plot. A value of scale=2 will cause the plot to be roughly twice
as long as the default.

Usage

stem(x, scale = 1, width = 80, atom = 1e-08)

458 step

Examples

data(islands)

stem(islands)

stem(log10(islands))

step Choose a model by AIC in a Stepwise Algorithm step

Description

Select a formula-based model by AIC.

Usage

step(object, scope, scale = 0,
direction = c("both", "backward", "forward"),
trace = 1, keep = NULL, steps = 1000, k = 2, ...)

Arguments

object an object representing a model of an appropriate class. This is used as
the initial model in the stepwise search.

scope defines the range of models examined in the stepwise search.

scale used in the definition of the AIC statistic for selecting the models, cur-
rently only for lm, aov and glm models.

direction the mode of stepwise search, can be one of "both", "backward", or "for-
ward", with a default of "both". If the scope argument is missing, the
default for direction is "backward".

trace if positive, information is printed during the running of step. Larger
values may give more detailed information.

keep a filter function whose input is a fitted model object and the associated
AIC statistic, and whose output is arbitrary. Typically keep will select a
subset of the components of the object and return them. The default is
not to keep anything.

steps the maximum number of steps to be considered. The default is 1000
(essentially as many as required). It is typically used to stop the process
early.

k the multiple of the number of degrees of freedom used for the penalty.
Only k = 2 gives the genuine AIC: k = log(n) is sometimes referred to
as BIC or SBC.

... any additional arguments to extractAIC.

Details

step uses add1 and drop1 repeatedly; it will work for any method for which they work, and
that is determined by having a valid method for extractAIC. When the additive constant
can be chosen so that AIC is equal to Mallows’ Cp, this is done and the tables are labelled
appropriately.

stop 459

There is a potential problem in using glm fits with a variable scale, as in that case the de-
viance is not simply related to the maximized log-likelihood. The function extractAIC.glm
makes the appropriate adjustment for a gaussian family, but may need to be amended for
other cases. (The binomial and poisson families have fixed scale by default and do not
correspond to a particular maximum-likelihood problem for variable scale.)

Value

the stepwise-selected model is returned, with up to two additional components. There is
an "anova" component corresponding to the steps taken in the search, as well as a "keep"
component if the keep= argument was supplied in the call. The "Resid. Dev" column of
the analysis of deviance table refers to a constant minus twice the maximized log likelihood:
it will be a deviance only in cases where a saturated model is well-defined (thus excluding
lm, aov and survreg fits, for example).

Warning

The model fitting must apply the models to the same dataset. This may be a problem if
there are missing values and R’s default of na.action = na.omit is used. We suggest you
remove the missing values first.

Note

This function differs considerably from the function in S, which uses a number of approx-
imations and does not compute the correct AIC.

Author(s)

B. D. Ripley

See Also

add1, drop1

Examples

example(lm)

step(lm.D9)

data(swiss)

summary(lm1 <- lm(Fertility ~ ., data = swiss))

slm1 <- step(lm1)

summary(slm1)

slm1$anova

stop Stop Function Execution stop

Description

stop stops execution of the current expression, prints the message given as its argument,
then executes an error action.

geterrmessage gives the last error message.

460 str

Usage

stop(message)
geterrmessage()

Arguments

message a character vector (of length 1) or NULL.

Details

The error action is controlled by the current error handler set by options(error=).
The default behaviour (the NULL error-handler) in interactive use is to return to the top
level prompt, and in non-interactive use to (effectively) call q("no", status=1, run-
Last=FALSE).

Value

geterrmessage gives the last error message, as character string ending in "
n".

See Also

warning, restart to catch errors and retry, and options for setting error handlers.

Examples

if(iter > 10) stop("too many iterations")

str
Compactly Display the Structure of an Arbitrary R

Object str

Description

This is a “diagnostic” function, and an alternative to summary (and to some extent, dput).
Ideally, only one line for each “basic” structure is displayed. It is especially well suited to
compactly display the (abbreviated) contents of (possibly nested) lists. The idea is to give
reasonable output for any R object. It calls args for (non-primitive) function objects.
ls.str and lsf.str are useful “versions” of ls, calling str on each object. They are
not foolproof and should rather not be used for programming, but are provided for their
usefulness.

Usage

str(object, ...)
str.data.frame(object, ...)
str.default(object, max.level = 0, vec.len = 4, digits.d = 3,

give.attr = TRUE, give.length = TRUE,
wid = getOption("width"),
nest.lev = 0,
indent.str = paste(rep(" ", max(0, nest.lev + 1)), collapse = ".."))

ls.str(name, pattern, mode = "any", max.level = 1, give.attr = FALSE)
lsf.str(...)

str 461

Arguments

object any R object about which you want to have some information.

max.level maximal level of nesting which is applied for displaying nested structures,
e.g., a list containing sub lists. Default 0: Display all nesting levels.

vec.len numeric indicating how many “first few” elements are displayed of each
vector. The number is multiplied by different factors (from .5 to 3) de-
pending on the kind of vector. Default 4.

digits.d number of digits for numerical components (as for print).

give.attr logical; if TRUE (default), show attributes as sub structures.

give.length logical; if TRUE (default), indicate length (as [1:...]).

wid the page width to be used. The default is the currently active op-
tions("width").

nest.lev current nesting level in the recursive calls to str.

indent.str the indentation string to use.

Value

Nothing, for efficiency reasons. The obvious side effect is output to the terminal.

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉 since 1990.

See Also

summary, args.

Examples

The following examples show some of ‘str’ capabilities

str(1:12)

str(ls)

str(args)#- more useful than args(args) !

data(freeny); str(freeny)

str(str)

str(.Machine, digits = 20)

str(lsfit(1:9,1:9))

str(lsfit(1:9,1:9), max =1)

op <- options(); str(op)#- save first; otherwise internal options() is used.

need.dev <- !exists(".Device") || is.null(.Device)

if(need.dev) postscript(); str(par()); if(need.dev) graphics.off()

lsf.str()#- how do the functions look like which I am using?

ls.str(mode = "list")#- what are the structured objects I have defined?

462 stripplot

stripplot 1-D Scatter Plots stripplot

Description

stripplot produces one dimensional scatter plots (or dot plots) of the given data. These
plots are are good alternative to boxplots when sample sizes are small.

Extensive examples of the use of this kind of plot can be found in Box, Hunter and Hunter
or Seber and Wild.

Usage

stripplot(x, method="overplot", jitter=0.1, offset=1/3,
vertical=FALSE, group.names,
xlim=NULL, ylim=NULL, main="", ylab="", xlab="",
pch=0, col=par("fg"), cex=par("cex"))

Arguments

x the data from which the plots are to be produced. The data can be
specified as a single vector, or as list of vectors, each corresponding to a
component plot. Alternatively a symbolic specification of the form x ˜
g can be given, indicating the the observations in the vector x are to be
grouped according to the levels of the factor g. NAs are allowed in the
data.

method the method to be used to separate coincident points. The default method
"overplot" causes such points to be overplotted, but it is also possible to
specify "jitter" to jitter the points, or "stack" have coincident points
stacked. The last method only makes sense for very granular data.

jitter when jittering is used, jitter gives the amount of jittering applied.

offset when stacking is used, points are stacked this many line-heights (symbol
widths) apart.

vertical when vertical is TRUE the plots are drawn vertically rather than the default
horizontal.

group.names group labels which will be printed alongside (or underneath) each plot.

... Graphical parameters can also be specified as arguments.

Examples

x <- round(rnorm(50), 1)

stripplot(x)

strsplit 463

strsplit Split the Strings in a Vector strsplit

Description

Split the strings in x into substrings according to the presence of substring split within
them.

Usage

strsplit(x, split)

Arguments

x character vector, to be split.

split character string containing a regular expression to use as “split”. If empty
matches occur, in particular if split has length 0, x is split into single
characters. If split is a vector, it is re-cycled along x.

Value

A list of length length(x) the i-th element of which contains the vector of splits of x[i].

See Also

paste for the reverse, grep and sub for string search and manipulation; further nchar,
substr.

Examples

noquote(strsplit("A text I want to display with spaces", NULL)[[1]])

x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")

split x on the letter e

strsplit(x,"e")

unlist(strsplit("a.b.c", "."))

[1] "" "" "" "" ""

Note that ‘split’ is a regexp!

If you really want to split on ‘.’, use

unlist(strsplit("a.b.c", "\\."))

[1] "a" "b" "c"

464 strwidth

structure Attribute Specification structure

Description

structure returns the given object with its attributes set.

Usage

structure(data, ...)

Arguments

data an object which will have various attributes attached to it.

... attributes, specified in tag=value form, which will be attached to data.

Examples

structure(1:6, dim = 2:3)

strwidth
Plotting Dimensions of Character Strings and Math

Expressions strwidth

Description

These functions compute the width or height, respectively, of the given strings or math-
ematical expressions s[i] on the current plotting device in user coordinates, inches or as
fraction of the figure width par("fin").

Usage

strwidth(s, units = "user", cex = NULL)
strheight(s, units = "user", cex = NULL)

Arguments

s character vector or expressions whose string widths in plotting units are
to be determined.

units character indicating in which units s is measured; must be one of "user",
"inches", "figure" .

cex character expansion to which is applies. Per default, the current
par("cex") is used.

Value

integer vector with the same length as s, giving the width for each s[i].

See Also

text, nchar

subset 465

Examples

str.ex <- c("W","w","I",".","WwI.")

op <- par(pty=’s’); plot(1:100,1:100); par(’usr’)

sw <- strwidth(str.ex); sw

sum(sw[1:4] == sw[5])#- since the last string contains the others

sw / strwidth(str.ex, cex = .5)

between 1.5 and 4.2 (!), font dependent

sw.i <- strwidth(str.ex, "inches"); 25.4 * sw.i # width in [mm]

unique(sw / sw.i)

constant factor: 1 value

mean(sw.i / strwidth(str.ex, "fig")) / par(’fin’)[1] # = 1: are the same

See how letters fall in classes -- depending on graphics device and font!

all.lett <- c(letters, LETTERS)

shL <- strheight(all.lett, units = "inches")

table(shL)# all have same heights ..

mean(shL) / par("cin")[2] # should be 1 (exactly?)

swL <- strwidth(all.lett)

swL <- 3 * swL / min(swL)

all(swL == round(swL))#- TRUE !

swL <- as.integer(swL)

n.classes <- length(tL <- table(swL)); tL

iL <- order(swL)

structure(swL[iL], names = all.lett[iL])

lett.classes <- structure(vector("list", n.classes), names= names(tL))

for(i in 1:n.classes)

lett.classes[[i]] <- all.lett[swL == as.numeric(names(tL)[i])]

lett.classes

sumex <- expression(sum(x[i], i=1,n), e^{i * pi} == -1)

strwidth(sumex)

strheight(sumex)

rm(sumex); par(op)#- reset to previous setting

subset Subsetting Vectors and Data Frames subset

Description

Return subsets of vectors or data frames which meet conditions.

Usage

subset(x, ...)
subset.default(x, subset)
subset.data.frame(x, subset, select)

Arguments

x object to be subsetted

... how to subset, depends on object

466 substitute

subset logical expression

select expression, indicating variables to select from a data frame

Details

For ordinary vectors, the result is simply x[subset & !is.na(subset)].

For dataframes, the subset argument works similarly on the rows. Note that subset will
be evaluated in the dataframe.

The select argument exists only for dataframes. It works by first replacing variable names
in the selection expression with the corresponding column numbers in the dataframe and
then using the resulting integer vector to index the columns. This allows the use of the
standard indexing conventions so that for examples ranges of variables can be specified
easily.

Value

Selected rows and columns of the object x.

Author(s)

Peter Dalgaard

See Also

[, transform

Examples

data(airquality)

subset(airquality, Temp > 80, select = c(Ozone, Temp))

subset(airquality, Day == 1, select = -Temp)

subset(airquality, select = Ozone:Wind)

attach(airquality)

subset(Ozone, Temp > 80)

substitute Substituting and Quoting Expressions substitute

Description

substitute returns the parse tree for the (unevaluated) expression expr, substituting any
variables bound in env.

quote simply returns the parse tree for the expression.

Usage

substitute(expr, env=<<see below>>)
quote(expr)

substitute 467

Arguments

expr Any syntactically valid R expression

env An environment or a list object. Defaults to the current evaluation envir-
onment.

Details

The typical use of substitute is to create informative labels for data sets and plots. The
myplot example below shows a simple use of this facility. It uses the functions deparse
and substitute to create labels for a plot which are character string versions of the actual
arguments to the function myplot.

Substitution takes place by examining each component of the parse tree as follows: If it is
not a bound symbol in env, it is unchanged. If it is a promise object, i.e. a formal argument
to a function or explicitly created using delay(), the expression slot of the promise replaces
the symbol. If it is an ordinary variable, its value is substituted, unless env is .GlobalEnv
in which case the symbol is left unchanged.

Value

The mode of the result is generally "call" but may in principle be any type. In particular,
single-variable expressions have mode "name" and constants have the appropriate base
mode.

Note

Substitute works on a purely lexical basis. There is no guarantee that the resulting expres-
sion makes any sense.

Substituting and quoting often causes confusion when the argument is expression(...).
The result is a call to the expression constructor function and needs to be evaluated with
eval to give the actual expression object.

See Also

missing for argument “missingness”.

Examples

(s.e <- substitute(expression(a + b), list(a = 1))) #> expression(1 + b)

(s.s <- substitute(a + b, list(a = 1))) #> 1 + b

c(mode(s.e), typeof(s.e)) # "call", "language"

c(mode(s.s), typeof(s.s)) # (the same)

but:

(e.s.e <- eval(s.e)) #> expression(1 + b)

c(mode(e.s.e), typeof(e.s.e)) # "expression", "expression"

substitute(x <- x + 1, list(x=1)) # nonsense

myplot <- function(x, y)

plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

Simple examples about lazy evaluation, etc:

f1 <- function(x, y = x) { x <- x + 1; y }

468 substr

s1 <- function(x, y = substitute(x)) { x <- x + 1; y }

s2 <- function(x, y) { if(missing(y)) y <- substitute(x); x <- x + 1; y }

a <- 10

f1(a)# 11

s1(a)# 11

s2(a)# a

typeof(s2(a))# "symbol"

substr Extract Substrings from a Character Vector substr

Description

Extract substrings from a character vector returning a vector whose elements contain the
substring starting with the character at position start up to the character at position stop.

Usage

substr(x, start, stop)
substring(text, first, last = 1000000)

Details

If start is larger than the string length then NA is returned. If stop is longer than start
an error is signalled.

substring is compatible with S, with first and last instead of start and stop. For
vector arguments, it expands the arguments cyclically.

See Also

strsplit, paste, nchar.

Examples

substr("abcdef",2,4)

print(ss <- substring("abcdef",1:6,1:6))

all(ss == strsplit ("abcdef",NULL)[[1]])# strsplit is more efficient..

substr(rep("abcdef",4),1:4,4:5)

x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")

all(substr(x, 2, 5) == substring(x, 2, 5)) #> TRUE

substr(x, 2, 5)

substring(x, 2, 4:6)

sum 469

sum Sum of Vector Elements sum

Description

sum returns the sum of all the values present in its arguments. If na.rm is FALSE an NA
value in any of the arguments will cause a value of NA to be returned, otherwise NA values
are ignored.

Usage

sum(..., na.rm=FALSE)

summary Object Summaries summary

Description

summary is a generic function used to produce result summaries of the results of various
model fitting functions. The function invokes particular methods which depend on the
class of the first argument.

Usage

summary(object, ...)

summary.default (object, ..., digits = max(3, getOption("digits") -3))
summary.data.frame(object, maxsum = 7, ...)
summary.factor (object, maxsum = 100, ...)
summary.matrix (object, ...)

Arguments

object an object for which a summary is desired.

maxsum integer, indicating how many levels should be shown for factors.

... additional arguments affecting the summary produced.

Details

For factors, the frequency of the first maxsum - 1 most frequent levels is shown, where
the less frequent levels are summarized in "(Others)" (resulting in maxsum frequencies).

The functions summary.lm and summary.glm are examples of particular methods which
summarise the results produced by lm and glm.

Value

The form of the value returned by summary depends on the class of its argument. See the
documentation of the particular methods for details of what is produced by that method.

470 sunflowerplot

See Also

anova,summary.glm,summary.lm.

Examples

options(digits=5)

data(attenu)

summary(attenu) #-> summary.data.frame(..)

summary(attenu $ station, maxsum = 20) #-> summary.factor(..)

sunflowerplot Produce a Sunflower Scatter Plot sunflowerplot

Description

Multiple points are plotted as “sunflowers” with multiple leaves such that overplotting is
visualized instead of accidental and invisible.

Usage

sunflowerplot(x, y = NULL, number, log = "", digits = 6,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
add = FALSE, rotate = FALSE,
pch = 16, cex = 0.8, cex.fact = 1.5,
size = 1/8, seg.col = 2, seg.lwd = 1.5, ...)

Arguments

x numeric vector of x-coordinates of length n, say, or another valid plotting
structure, as for plot.default, see also xy.coords.

y numeric vector of y-coordinates of length n.

number integer vector of length n. number[i] = number of replicates for
(x[i],y[i]), may be 0.
Default: compute the exact multiplicity of the points x[],y[].

log character indicating log coordinate scale, see plot.default.

digits when number is computed (i.e., not specified), x and y are rounded to
digits significant digits before multiplicities are computes.

xlab,ylab character label for x-, or y-axis, respectively.

xlim,ylim numeric(2) limiting the extents of the x-, or y-axis.

add logical; should the plot be added on a previous one ? Default is FALSE.

rotate logical; if TRUE, randomly rotate the sunflowers (preventing artefacts).

pch plotting character to be used for points (number[i]==1) and center of
sunflowers.

cex numeric; character size expansion of center points (s. pch).

cex.fact numeric shrinking factor to be used for the center points when there are
flower leaves, i.e. cex / cex.fact is used for these.

size of sunflower leaves in inches, 1[in] := 2.54[cm]. Default: 1/8¨ = 3.2mm.

sunflowerplot 471

seg.col color to be used for the segments which make the sunflowers leaves, see
par(col=); col = "gold" reminds of real sunflowers.

seg.lwd numeric; the line width for the leaves’ segments.

... Further arguments to plot(..) [if add=FALSE].

Details

For number[i]==1, a (slightly enlarged) usual plotting symbol (pch) is drawn. For num-
ber[i] > 1, a small plotting symbol is drawn and number[i] equi-angular “rays” emanate
from it.

If rotate=TRUE and number[i] >= 2, a random direction is chosen (instead of the y-axis)
for the first ray. The goal is to jitter the orientations of the sunflowers in order to prevent
artefactual visual impressions.

Value

A list with three components of same length,

x x coordinates

y y coordinates

number number

Side Effects

A scatter plot is drawn with “sunflowers” as symbols.

Author(s)

Andreas Ruckstuhl, Werner Stahel, Martin Maechler, Tim Hesterberg, 1989–1993. Port to
R by Martin Maechler 〈maechler@stat.math.ethz.ch〉.

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods
for Data Analysis. Wadsworth.

Schilling, M. F. and Watkins, A. E. (1994) A suggestion for sunflower plots. The American
Statistician, 48, 303–305.

See Also

density

Examples

data(iris)

‘number’ is computed automatically:

sunflowerplot(iris[, 3:4])

Imitating Chambers et al., p.109, closely:

sunflowerplot(iris[, 3:4],cex=.2, cex.f=1, size=.035, seg.lwd=.8)

sunflowerplot(x=sort(2*round(rnorm(100))), y= round(rnorm(100),0),

main = "Sunflower Plot of Rounded N(0,1)")

A ‘point process’ {explicit ‘number’ argument}:

472 svd

sunflowerplot(rnorm(100),rnorm(100), number=rpois(n=100,lambda=2),

rotate=TRUE, main="Sunflower plot")

sunspots Monthly Mean Relative Sunspot Numbers sunspots

Description

Monthly sunspot numbers from 1749 to 1983. Collected at Swiss Federal Observatory,
Zurich until 1960, then Tokyo Astronomical Observatory.

Usage

data(sunspots)

Format

A time series of monthly data from 1749 to 1983.

Source

Andrews, D. F. and Herzberg, A. M. (1985) Data: A Collection of Problems from Many
Fields for the Student and Research Worker. New York: Springer-Verlag.

Examples

data(sunspots)

plot(sunspots, main = "sunspots data", xlab = "Year",

ylab = "Monthly sunspot numbers")

svd Singular Value Decomposition of a Matrix svd

Description

Compute the singular-value decomposition of a rectangular matrix.

Usage

svd(x, nu = min(n,p), nv = min(n,p))

Arguments

x a matrix whose SVD decomposition is to be computed.

nu the number of left eigenvectors to be computed. This must be one of 0,
nrow(x) and ncol(x).

nv the number of right eigenvectors to be computed. This must be one of 0,
and ncol(x).

sweep 473

Details

svd provides an interface to the LINPACK routine DSVDC. The singular value decompos-
ition plays an important role in many statistical techniques.

Value

The SVD decomposition of the matrix as computed by LINPACK,

X = UDV ′,

where U and V are orthogonal, V ′ means V transposed, and D is a diagonal matrix with
the singular values Dii. Equivalently, D = U ′XV , which is verified in the examples, below.

The components in the returned value correspond directly to the values returned by DS-
VDC.

d a vector containing the singular values of x.

u a matrix whose columns contain the left eigenvectors of x.

v a matrix whose columns contain the right eigenvectors of x.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

See Also

eigen, qr.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

str(X <- hilbert(9)[,1:6])

str(s <- svd(X))

Eps <- 10 * .Machine$double.eps

D <- diag(s$d)

all(abs(X - s$u %*% D %*% t(s$v)) < Eps)# TRUE: X = U D V’

all(abs(D - t(s$u) %*% X %*% s$v) < Eps)# TRUE: D = U’ X V

X <- cbind(1, 1:7)

str(s <- svd(X)); D <- diag(s$d)

all(abs(X - s$u %*% D %*% t(s$v)) < Eps)# TRUE: X = U D V’

all(abs(D - t(s$u) %*% X %*% s$v) < Eps)# TRUE: D = U’ X V

sweep Sweep out Array Summaries sweep

Description

Return an array obtained from an input array by sweeping out a summary statistic.

Usage

sweep(x, MARGIN, STATS, FUN="-", ...)

474 swiss

Arguments

x an array.

MARGIN a giving the extents of x which correspond to STATS.

STATS the summary statistic which is to be swept out.

FUN the function to be used to carry out the sweep. In the case of binary
operators such as "/" etc., the function name must be quoted.

... optional arguments to FUN.

Value

An array with the same shape as x, but with the summary statistics swept out.

See Also

apply on which sweep is based; scale for centering and scaling.

Examples

data(attitude)

med.att <- apply(attitude, 2, median)

sweep(data.matrix(attitude), 2, med.att)# subtract the column medians

swiss Swiss Fertility and Socioeconomic Indicators (1888)
Data

swiss

Description

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking
provinces of Switzerland at about 1888.

Usage

data(swiss)

Format

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

[,1] Fertility Ig, “common standardized fertility measure”
[,2] Agriculture % involved in agriculture as occupation
[,3] Examination % “draftees” receiving highest mark on army examination
[,4] Education % education beyond primary school.
[,5] Catholic % catholic (as opposed to “protestant”).
[,6] Infant.Mortality live births who live less than 1 year.

All variables but ‘Fertility’ give proportions of the population.

Details

(paraphrasing Mosteller and Tukey):

switch 475

Switzerland, in 1888, was entering a period known as the “demographic transition”; i.e., its
fertility was beginning to fall from the high level typical of underdeveloped countries.

The data collected are for 47 seven French-speaking “provinces” at about 1888.

Here, all variables are scaled to [0, 100], where in the original, all but "Catholic" were
scaled to [0, 1].

Source

Project “16P5”, pages 549–551 in

Mosteller, F. and Tukey, J. W. (1977) Data Analysis and Regression: A Second Course in
Statistics. Addison-Wesley, Reading Mass.

indicating their source as “Data used by permission of Franice van de Walle. Office of Pop-
ulation Research, Princeton University, 1976. Unpublished data assembled under NICHD
contract number No 1-HD-O-2077.”

Examples

data(swiss)

pairs(swiss, panel = panel.smooth, main = "swiss data")

summary(lm(Fertility ~ . , data = swiss))

switch Select One of a List of Alternatives switch

Description

switch evaluates EXPR and accordingly chooses one of the further arguments (in ...).

Usage

switch(EXPR, ...)

Arguments

EXPR an expression evaluating to a number or a character string.

... the list of alternatives, given explicitly.

Details

If the value of EXPR is an integer between 1 and nargs()-1 then the corresponding element
of ... is evaluated and the result returned.

If EXPR returns a character string then that string is used to match the names of the elements
in If there is an exact match then that element is evaluated and returned if there is
one, otherwise the next element is chosen, e.g., switch("cc", a=1, cc=, d=2) evaluates
to 2.
In the case of no match, if there’s a further argument in switch(..) that one is returned,
otherwise NULL.

476 symnum

Examples

centre <- function(x, type) {

switch(type,

mean = mean(x),

median = median(x),

trimmed = mean(x, trim = .1))

}

x <- rcauchy(10)

centre(x, "mean")

centre(x, "median")

centre(x, "trimmed")

ccc <- c("b","QQ","a","A","bb")

for(ch in ccc) cat(ch,":",switch(ch, a=1, b=2:3), "\n")

for(ch in ccc) cat(ch,":",switch(ch, a=,A=1, b=2:3, "Otherwise: last"),"\n")

Numeric EXPR don’t allow an ‘otherwise’:

for(i in c(-1:3,9)) print(switch(i, 1,2,3,4))

symnum Symbolic Number Coding symnum

Description

Symbolically encode a given numeric or logical vector or array.

Usage

symnum(x, cutpoints=c(0.3, 0.6, 0.8, 0.9, 0.95),
symbols=c(" ", ".", ",", "+", "*", "B"),
legend = length(symbols) >= 3,
na="?", eps=1e-5,
corr = missing(cutpoints), show.max = if(corr) "1", show.min = NULL,
lower.triangular = corr & is.matrix(x),
diag.lower.tri = corr & !is.null(show.max))

Arguments

x numeric or logical vector or array.

cutpoints numeric vector whose values cutpoints[j] = cj (after augmentation, see
corr below) are used for intervals.

symbols character vector, one shorter than (the augmented, see corr below) cut-
points. symbols[j]= sj are used as “code” for the (half open) interval
(cj , cj+1].
For logical argument x, the default is c(".","|") (graphical 0 / 1 s).

legend logical indicating if a "legend" attribute is desired.

na character or logical. How NAs are coded. If na == FALSE, NAs are coded
invisibly, including the "legend" attribute below, which otherwise men-
tions NA coding.

eps absolute precision to be used at left and right boundary.

symnum 477

corr logical. If TRUE, x contains correlations. The cutpoints are augmented by
0 and 1 and abs(x) is coded.

show.max If TRUE, or of mode character, the maximal cutpoint is coded especially.

show.min If TRUE, or of mode character, the minmal cutpoint is coded especially.
lower.triangular

logical. If TRUE and x is a matrix, only the lower triangular part of the
matrix is coded as non-blank.

diag.lower.tri

logical. If lower.triangular and this are TRUE, the diagonal part of the
matrix is shown.

Value

An atomic character object of class noquote and the same dimensions as x.

If legend (TRUE by default when there more than 2 classes), it has an attribute "legend"
containing a legend of the returned character codes, in the form

c1s1c2s2 . . . sncn+1

where cj = cutpoints[j] and sj = symbols[j].

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉

See Also

as.character

Examples

ii <- 0:8; names(ii) <- ii

symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"))

symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"), show.max=TRUE)

symnum(1:12 %% 3 == 0)# use for logical

##-- Symbolic correlation matrices:

data(attitude)

symnum(cor(attitude), diag = FALSE)

symnum(cor(rbind(1, rnorm(25), rnorm(25)^2)))

symnum(cor(matrix(rexp(30, 1), 5, 18))) # <<-- PATTERN ! --

symnum(cm1 <- cor(matrix(rnorm(90) , 5, 18))) # < White Noise SMALL n

symnum(cm1, diag=FALSE)

symnum(cm2 <- cor(matrix(rnorm(900), 50, 18))) # < White Noise "BIG" n

symnum(cm2, lower=FALSE)

NA’s:

Cm <- cor(matrix(rnorm(60), 10, 6)); Cm[c(3,6), 2] <- NA

symnum(Cm, show.max=NULL)

Graphical P-values (aka "significance stars"):

pval <- rev(sort(c(outer(1:6, 10^-(1:3)))))

symp <- symnum(pval, corr=FALSE,

478 sys.parent

cutpoints = c(0, .001,.01,.05, .1, 1),

symbols = c("***","**","*","."," "))

noquote(cbind(P.val = format(pval), Signif= symp))

sys.parent Functions to Access the Function Call Stack sys.parent

Description

These functions provide access to environments (“frames” in S terminology) associated with
functions further up the calling stack.

Usage

sys.call(which=<<see below>>)
sys.frame(which=<<see below>>)
sys.nframe()
sys.function(n=<<see below>>)
sys.parent(n=1)

sys.calls()
sys.frames()
sys.parents()
sys.on.exit()
sys.status()
parent.frame(n=1)

Arguments

which the frame number.
n the number of frame generations to go back.

Details

.GlobalEnv is given number 0 in the list of frames. Each subsequent function evaluation
increases the frame stack by 1 and the environment for evaluation of that function is returned
by sys.frame with the appropriate index.

The parent of a function evaluation is the environment in which the function was called.
It is not necessarily one less than the frame number of the current evaluation, nor the
environment from which it is called. sys.parent returns the number of the parent frame
if n is 1 (the default), the grandparent if n is 2, and so forth. sys.frame returns the
environment associated with a given frame number.

sys.call and sys.frame both accept either positive or negative values for the argument
which. Positive values of which are normal frame numbers whereas negative values are
counted back from the frame number of the current evaluation.

Notice that even though the sys.xxx functions are interpreted, their contexts are not coun-
ted nor are they reported. There is no access to them.

sys.status() returns a list with components sys.calls, sys.parents and sys.frames.

sys.on.exit() retrieves the expression stored for use by on.exit in the function currently
being evaluated.

parent.frame(n) is a convenient shorthand for sys.frame(sys.parent(n)).

sys.source 479

See Also

eval for the usage of sys.frame.

Examples

ff <- function(x) gg(x)

gg <- function(y) sys.status()

str(ff(1))

t1 <- function() {

aa <- "here"

t2 <- function() {

in frame 2 here

cat("current frame is", sys.nframe(), "\n")

str(sys.calls()) ## list with two components t1() and t2()

cat("parents are frame nos", sys.parents(), "\n") ## 0 1

print(ls(envir=sys.frame(-1))) ## [1] "aa" "t2"

invisible()

}

t2()

}

t1()

test.sys.on.exit <- function() {

on.exit(print(1))

ex <- sys.on.exit()

str(ex)

cat("exiting...\n")

}

test.sys.on.exit()

gives ‘language print(1)’, prints 1 on exit

sys.source Parse and Evaluate Expressions from a File sys.source

Description

Parses expressions in the given file, and then successively evaluates them in the specified
environment. By default, evaluation is done in the global environment.

Usage

sys.source(file, envir = NULL)

Arguments

file a character string naming the file to be read from

envir an R object specifying the environment in which the expressions are to be
evaluated. May also be a list or an integer.

Details

The keep.source option is set to FALSE when reading from the file, so the source code is
not kept (see options for more details).

480 system

See Also

source

system Invoke a System Command system

Description

system invokes the system command specified by command.

Usage

system(command, intern=FALSE, wait=TRUE, input,
show.output.on.console=FALSE
invisible=FALSE, minimized=FALSE)

Arguments

command the system command to be invoked, as a string.

intern a logical, indicates whether to make the output of the command an R
object.

wait should the R interpreter wait for the command to finish? The default is
to wait, and the interpreter will always wait if intern = TRUE.

input if a character vector is supplied, this is copied one string per line to a
temporary file, and the standard input of command is redirected to the
file.

show.output.on.console

a logical, indicates whether to capture the output of the command and
show it on the R console (not used by Rterm, which captures the output
unless wait is false).

invisible a logical, indicates whether the command window should be visible on
the screen.

minimized a logical, indicates whether the command window should be initially dis-
played as iconic.

Details

The command is run directly as a Windows command by the Windows API call Create-
Process: extensions of .exe, .com, .cmd and .bat are tried in turn if none is supplied.
(To use DOS internal commands use command.com /c cmd.) The search path for command
may be system-dependent: it will include the R bin directory, the working directory and
the Windows system directories before PATH.

Precisely what is seen by the user depends on whether Rgui or Rterm is being used. For
Rgui a new console will always be used, so a commands window will appear for the duration
of console applications unless invisible is true. For Rterm a separate commands window
will appear for console applications only if wait=FALSE.

unix is a deprecated alternative, available for backwards compatibility.

system.file 481

Value

If intern=TRUE, a character vector giving the output of the command, one line per character
string. If the command could not be run or gives an error a R error is generated.

If intern=FALSE, the return value is a error code, given the invisible attribute (so needs to
be printed explicitly). If the command could not be run for any reason, the value is -1 and
an R warning is generated. Otherwise if wait=FALSE the value is the error code returned
by the command, and if wait=TRUE it is the zero (the conventional success value),

If intern=FALSE and show.output.on.console=TRUE the text output from a command
that is a console application will appear in the R console (Rgui) or the window running R
(Rterm).

WARNING

The command cannot be interrupted by the R process.

Do not run console applications that require user input from Rgui setting intern=TRUE
and/or show.output.on.console=TRUE. They will not work, may hang and then will prob-
ably hang Rgui too.

Author(s)

Guido Masarotto and Brian Ripley

See Also

shell for a less raw interface.

Examples

launch an editor, wait for it to quit

system("notepad myfile.txt")

launch a Windows 9x process monitor (from Win9x KernelToys)

system("wintop", wait=FALSE)

launch your favourite (!) shell:

system("command.com")

system.file Find Names of R System Files system.file

Description

Finds the full file names of files in packages etc.

Usage

system.file(..., pkg = .packages(), lib = .lib.loc)

482 system.time

Arguments

... character strings, specifying subdirectory and file(s) within some package.
The default, none or "", returns the root of package(s). Wildcards are
not supported.

pkg a character vector with package names.

lib a character vector with path names of R package libraries, see .lib.loc
for the default.

Value

A character vector of positive length, containing the file names that matched ..., or the
empty string, "", if none matched. If matching the root of a package, there is no trailing
separator.

As a special case, system.file() gives the root of the base package only.

See Also

list.files

Examples

system.file() # The root of the ‘base’ package

system.file(pkg="lqs") # The root of package ‘lqs’

system.file("INDEX")

system.file("help/AnIndex", pkg = c("stepfun", "mva"))

system.time CPU Time Used system.time

Description

Return CPU (and other) times that expr used.

Usage

system.time(expr)
unix.time(expr)

Arguments

expr Valid R expression to be “timed”

Details

system.time calls the builtin proc.time, evaluates expr, and then calls proc.time once
more, returning the difference between the two proc.time calls.

The values returned by the proc.time are (on Unix) those returned by the C library
function times(3v).

unix.time is an .Alias of system.time, for compatibility reasons.

t 483

Value

A numeric vector of length 5 containing the user cpu, system cpu, elapsed, subproc1, sub-
proc2 times. The subproc times are the the user and system cpu time used by child processes
(and so are usually zero). On Windows the subproc times are not available and so are al-
ways NA. The first two components are not available on Windows 9x, and so are reported
as NA; they do return real values on Windows NT4 and 2000.

The resolution of the times will be system-specific; it is common for the elapsed time to be
recorded to the nearest second, and CPU times to of the order of 1/100 second.

See Also

proc.time, time which is for time series.

Examples

system.time(for(i in 1:50) mad(runif(500)))

exT <- function(n = 100) {

Purpose: Test if system.time works ok; n: loop size

system.time(for(i in 1:n) x <- mean(rt(1000, df=4)))

}

#-- Try to interrupt one of the following (using Ctrl-C):

exT() #- ‘1.4’ on -O-optimized Ultra1

system.time(exT()) #~ +/- same

t Matrix Transpose t

Description

Given a matrix or data.frame x, t returns the transpose (matrix or data.frame) of x.

Usage

t(x)

Examples

a <- matrix(1:30, 5,6)

ta <- t(a) ##-- i.e., a[i,j] == ta[j,i] for all i,j :

for(j in seq(ncol(a)))

if(! a[,j] == ta[j,]) stop("wrong transpose")

484 table

table Cross Tabulation table

Description

table uses the cross-classifying factors to build a contingency table of the counts at each
combination of factor levels.

Usage

table(..., exclude = c(NA, NaN), dnn, deparse.level = 1)

Arguments

... objects which can be interpreted as factors (including character strings),
or a list (or data frame) whose components can be so interpreted

exclude values to use in the exclude argument of factor when interpreting non-
factor objects

dnn the names to be given to the dimensions in the result (‘the dimname
names’

deparse.level controls how the default dnn is constructed. See details.

Details

If the argument dnn is not supplied, the internal function list.names is called to compute
the ‘dimname names’. If the arguments in ... are named, those names are used. For the
remaining arguments, deparse.level = 0 gives an empty name, deparse.level = 1 uses
the supplied argument if it is a symbol, and deparse.level = 2 will deparse the argument.

Examples

Simple frequency distribution

table(rpois(100,5))

data(warpbreaks)

attach(warpbreaks)

Check the design:

table(wool, tension)

data(state)

table(state.division, state.region)

data(airquality)

attach(airquality)

simple two-way contingency table

table(cut(Temp, quantile(Temp)), Month)

a <- letters[1:3]

table(a, sample(a)) # dnn is c("a", "")

table(a, sample(a), deparse.level = 0) # dnn is c("", "")

table(a, sample(a), deparse.level = 2) # dnn is c("a", "sample(a)")

tabulate 485

tabulate Tabulation for Vectors tabulate

Description

tabulate takes the integer valued vector bin and counts the number of times each integer
occurs in it. tabulate is used as the basis of the table function.

Usage

tabulate(bin, nbin=max(1,bin))

Arguments

bin a vector of integers, or a factor.

nbins the number of bins to be used.

Details

If bin is a factor, its internal integer representation is tabulated. If the elements of bin are
not integers, they are rounded to the nearest integer. Elements outside the range 1,...,
nbin are (silently) ignored in the tabulation.

See Also

factor, table.

Examples

tabulate(c(2,3,5))

tabulate(c(2,3,3,5), nb = 10)

tabulate(c(-2,0,2,3,3,5), nb = 3)

tabulate(factor(letters[1:10]))

tapply Apply a Function Over a “Ragged” Array tapply

Description

Apply a function to each cell of a ragged array, i.e., for to each (non-empty) group of values
given by a unique combination of the levels of certain factors.

Usage

tapply(X, INDEX, FUN = NULL, simplify = TRUE, ...)

486 tapply

Arguments

X an atomic object, typically a vector.

INDEX list of factors, each of same length as X.

FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted. If FUN is NULL, tapply returns a vector
which can be used to subscript the multi-way array tapply normally
produces.

simplify If FALSE, tapply always returns an array of mode "list". If TRUE (the
default), then if FUN always returns a scalar, tapply returns an array with
the mode of the scalar.

... optional arguments to FUN.

Value

When FUN is present, tapply calls FUN for each cell that has any data in it. If FUN returns a
single atomic value for each cell (e.g., functions mean or var) and when simplify is TRUE,
tapply returns a multi-way array containing the values. The array has the same number
of dimensions as INDEX has components; the number of levels in a dimension is the number
of levels (nlevels()) in the corresponding component of INDEX.

Note that contrary to S, simplify = TRUE always returns an array, possibly 1-dimensional.

If FUN does not return a single atomic value, tapply returns an array of mode list whose
components are the values of the individual calls to FUN, i.e., the result is a list with a dim
attribute.

See Also

the convenience function aggregate (using tapply); apply, lapply with its version sapply.

Examples

groups <- as.factor(rbinom(32, n = 5, p = .4))

tapply(groups, groups, length) #- is almost the same as

table(groups)

data(warpbreaks)

contingency table from data.frame : array with named dimnames

tapply(warpbreaks$breaks, warpbreaks[,-1], sum)

tapply(warpbreaks$breaks, warpbreaks[,3,drop=F], sum)

n <- 17; fac <- factor(rep(1:3, len = n), levels = 1:5)

table(fac)

tapply(1:n, fac, sum)

tapply(1:n, fac, sum, simplify = FALSE)

tapply(1:n, fac, range)

tapply(1:n, fac, quantile)

ind <- list(c(1, 2, 2), c("A", "A", "B"))

table(ind)

tapply(1:3, ind) #-> the split vector

tapply(1:3, ind, sum)

TDist 487

TDist The Student t Distribution TDist

Description

Density, distribution function, quantile function and random generation for the t distribu-
tion with df degrees of freedom (and optional noncentrality parameter ncp).

Usage

dt(x, df, log = FALSE)
pt(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qt(p, df, lower.tail = TRUE, log.p = FALSE)
rt(n, df)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations to generate.
df degrees of freedom (> 0, maybe non-integer).
ncp non-centrality parameter δ; currently ncp <= 37.62.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

The t distribution with df = ν degrees of freedom has density

f(x) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(1 + x2/ν)−(ν+1)/2

for all real x. It has mean 0 (for ν > 1) and variance ν
ν−2 (for ν > 2).

The general non-central t with parameters (ν, δ) = (df, ncp) is defined as a the distribution
of Tν(δ) := U+δ

χν/
√
ν

where U and χν are independent random variables, U ∼ N (0, 1), and χ2
ν

is chi-squared, see pchisq.

The most used applications are power calculations for t-tests:
Let T = X̄−µ0

S/
√
n

where X̄ is the mean and S the sample standard deviation (sd) of
X1, X2, . . . , Xn which are i.i.d. N(µ, σ2). Then T is distributed as non-centrally t with
df= n− 1 degrees of freedom and non-centrality parameter ncp= µ− µ0.

Value

dt gives the density, pt gives the distribution function, qt gives the quantile function, and
rt generates random deviates.

References

Lenth, R. V. (1989). Algorithm AS 243 — Cumulative distribution function of the non-
central t distribution, Appl. Statist. 38, 185–189.

488 tempfile

See Also

df for the F distribution.

Examples

1 - pt(1:5, df = 1)

qt(.975, df = c(1:10,20,50,100,1000))

tt <- seq(0,10, len=21)

ncp <- seq(0,6, len=31)

ptn <- outer(tt,ncp, function(t,d) pt(t, df = 3, ncp=d))

image(tt,ncp,ptn, zlim=c(0,1),main=t.tit <- "Non-central t - Probabilities")

persp(tt,ncp,ptn, zlim=0:1, r=2, phi=20, theta=200, main=t.tit,

xlab = "t", ylab = "noncentrality parameter", zlab = "Pr(T <= t)")

tempfile Create Names for Temporary Files tempfile

Description

Returns a vector of character strings which can be used as names for temporary files.

Usage

tempfile(pattern = "file")

Arguments

pattern a non-empty character vector giving the initial part of the name.

Details

If pattern has length greater than one then the result is of the same length giving a
temporary file name for each component of pattern.

The names are very likely to be unique among calls to tempfile in an R session and across
simultaneous R sessions. The filenames are guaranteed not to be currently in use.

The filenames will be in the directory given by the first found of the environment variables
TMP, TEMP and R_USER (see Rconsole). If the path to the directory contains a space in any
of the components, the path returned will use the shortnames version of the path.

Value

A character vector giving the names of possible (temporary) files.

Note that no files are generated by tempfile.

See Also

unlink for deleting files.

terms 489

terms Model Terms terms

Description

The function terms is a generic function which can be used to extract terms objects from
various kinds of R data objects.

Usage

terms(object, ...)
terms.formula(formula.obj, keep.order=FALSE)
terms.terms(terms.obj)
terms.default(anything)

Value

All the functions above produce an object of class terms which contains the terms repres-
entation of a symbolic model.

See Also

lm, glm, formula.

text Add Text to a Plot text

Description

text draws the strings given in the vector labels at the coordinates given by x and y. y
may be missing since xy.coords(x,y) is used for construction of the coordinates.

Usage

text (x, ...)
text.default (x, y = NULL, labels = seq(along = x), adj = NULL,

pos = NULL, offset = 0.5, vfont = NULL, ...)

Arguments

x, y numeric vectors of coordinates where the text labels should be written.
If the length of x and y differs, the shorter one is recycled.

labels one or more character strings or expressions specifying the text to be
written.

adj one or two values in [0, 1] which specify the x (and optionally y) adjust-
ment of the labels.

pos a position specifier for the text. If specified this overrides any adj value
given. Values of 1, 2, 3 and 4, respectively indicate positions below, to
the left of, above and to the right of the specified coordinates.

490 text

offset when pos is specified, this value gives the offset of the label from the
specified coordinate in fractions of a character width.

vfont if a character vector of length 2 is specified, then Hershey vector fonts are
used. The first element of the vector selects a typeface and the second
element selects a style.

... further graphical parameters (from par), such as cex, etc.

Details

labels must be of type character or expression. In the latter case, quite a bit of
mathematical notation is available such as sub- and superscripts, greek letters, fractions,
etc.

adj allows adj ustment of the text with respect to (x,y). Values of 0, 0.5, and 1 specify
left/bottom, middle and right/top, respectively. The default is for centered text, i.e., adj =
c(0.5, 0.5). Accurate vertical centering needs character metric information on individual
characters, which is only available on some devices.

The pos and offset arguments can be used in conjunction with values returned by
identify to recreate an interactively labelled plot.

Text can be rotated by using graphical parameters srt (see par); this rotates about the
centre set by adj.

Graphical parameters col, cex and font can be vectors and will then be applied cyclically
to the labels (and extra values will be ignored).

See Also

mtext, title, Hershey for details on Hershey vector fonts, plotmath for details and more
examples on mathematical annotation.

Examples

plot(-1:1,-1:1, type = "n", xlab = "Re", ylab = "Im")

K <- 16; text(exp(1i * 2 * pi * (1:K) / K), col = 2)

The following two examples use latin1 characters: these may not

appear correctly (or be omitted entirely).

plot(1:10, 1:10, main = "text(..) examples\n~~~~~~~~~~~~~~",

sub = "R is GNU l’, but not o ..")

mtext("ńISO-accentsz: ś éè øØ å<Å æ<Æ", side=3)

points(c(6,2), c(2,1), pch = 3, cex = 4, col = "red")

text(6, 2, "the text is CENTERED around (x,y) = (6,2) by default",

cex = .8)

text(2, 1, "or Left/Bottom - JUSTIFIED at (2,1) by ‘adj = c(0,0)’",

adj = c(0,0))

text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))

text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)", cex = .75)

text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

Two more latin1 examples

text(5,10.2,"Le français, c’est façile: Règles, Liberté, Egalité, Fraternité..")

text(5,9.8, "Jetz no chli züritüütsch: (noch ein biSSchen Zürcher deutsch)")

time 491

time Sampling Times of Time Series time

Description

time creates the vector of times at which a time series was sampled.

cycle gives the positions in the cycle of each observation.

frequency returns the number of samples per unit time and deltat the time interval
between observations (see ts).

Usage

time(x, offset=0, ...)
cycle(x, ...)
frequency(x, ...)
deltat(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

offset can be used to indicate when sampling took place in the time unit. 0 (the
default) indicates the start of the unit, 0.5 the middle and 1 the end of
the interval.

... extra arguments for future methods.

Details

These are all generic functions, which will use the tsp attribute of x if it exists. time and
cycle have methods for class ts that coerce the result to that class.

See Also

ts, start, tsp, window.

date for clock time, system.time for CPU usage.

Examples

data(presidents)

cycle(presidents)

a simple series plot: c() makes the x and y arguments into vectors

plot(c(time(presidents)), c(presidents), type="l")

492 Titanic

Titanic Survival of passengers on the Titanic Titanic

Description

This data set provides information on the fate of passengers on the fatal maiden voyage
of the ocean liner ‘Titanic’, summarized according to economic status (class), sex, age and
survival.

Usage

data(Titanic)

Format

A 4-dimensional array resulting from cross-tabulating 2201 observations on 4 variables. The
variables and their levels are as follows:

No Name Levels
1 Class 1st, 2nd, 3rd, Crew
2 Sex Male, Female
3 Age Child, Adult
4 Survived No, Yes

Details

The sinking of the Titanic is a famous event, and new books are still being published about
it. Many well-known facts—from the proportions of first-class passengers to the “women
and children first” policy, and the fact that that policy was not entirely successful in saving
the women and children in the third class—are reflected in the survival rates for various
classes of passenger.

These data were originally collected by the British Board of Trade in their investigation of
the sinking. Note that there is not complete agreement among primary sources as to the
exact numbers on board, rescued, or lost.

Due in particular to the very successful film ‘Titanic’, the last years saw a rise in public
interest in the Titanic. Very detailed data about the passengers is now available on the In-
ternet, at sites such as Encyclopedia Titanica (http://www.rmplc.co.uk/eduweb/sites/
phind).

Source

Dawson, Robert J. MacG. (1995), The ‘Unusual Episode’ Data Revisited. Journal of Statist-
ics Education, 3. http://www.amstat.org/publications/jse/v3n3/datasets.dawson.
html

The source provides a data set recording class, sex, age, and survival status for each person
on board of the Titanic, and is based on data originally collected by the British Board of
Trade and reprinted in:

British Board of Trade (1990), Report on the Loss of the ‘Titanic’ (S.S.). British Board of
Trade Inquiry Report (reprint). Gloucester, UK: Allan Sutton Publishing.

http://www.rmplc.co.uk/eduweb/sites/phind
http://www.rmplc.co.uk/eduweb/sites/phind
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html

title 493

Examples

data(Titanic)

mosaicplot(Titanic, main = "Survival on the Titanic")

Higher survival rates in children?

apply(Titanic, c(3, 4), sum)

Higher survival rates in females?

apply(Titanic, c(2, 4), sum)

Use loglm() in package ‘MASS’ for further analysis ...

title Plot Annotation title

Description

This function can be used to add labels to a plot. Its first four principal arguments can also
be used as arguments in most high-level plotting functions. They must be of type character
or expression. In the latter case, quite a bit of mathematical notation is available such as
sub- and superscripts, greek letters, fractions, etc.

Usage

title(main = "", sub = "", xlab = "", ylab = "", ...)

Arguments

main The main title (on top) using font and size (character expansion)
par("font.main") and color par("col.main").

sub Sub-title (at bottom) using font and size par("font.sub") and color
par("col.sub").

xlab X axis label using font and character expansion par("font.axis") and
color par("col.axis").

ylab Y axis label, same font attributes as xlab.

... further graphical parameters (from par).

See Also

mtext, text; plotmath for details on mathematical annotation.

Examples

plot(cars, main = "")

title(main = "Stopping Distance versus Speed")

x <- seq(-4, 4, len = 101)

y <- cbind(sin(x), cos(x))

matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",

plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken

xlab = expression(paste("Phase Angle ", phi)),

col.main = "blue")

494 trace

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),

lab = expression(-pi, -pi/2, 0, pi/2, pi))

abline(h = 0, v = pi/2 * c(-1,1), lty = 2, lwd = .1, col = "gray70")

ToothGrowth
The Effect of Vitamin C on Tooth Growth in Guinea

Pigs ToothGrowth

Description

The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three
dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice
or ascorbic acid).

Usage

data(ToothGrowth)

Format

A data frame with 60 observations on 3 variables.

[,1] len numeric Tooth length
[,2] supp factor Supplement type (VC or OJ).
[,3] dose numeric Dose in milligrams.

Source

C. I. Bliss (1952) The Statistics of Bioassay. Academic Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(ToothGrowth)

coplot(len ~ dose | supp, data = ToothGrowth, panel = panel.smooth,

xlab = "ToothGrowth data: given is supplement type")

trace Trace All Calls to a Function. trace

Description

These are both in very primitive form. If trace is called the function named is marked
and each time it is entered the call is printed on the console. To stop tracing a function use
untrace.

Usage

trace(fun)
untrace(fun)

traceback 495

Arguments

fun any interpreted R function (not quoted).

See Also

debug.

Examples

trace(names)

data.frame(x=1:2, y=3:4)

untrace(names)

traceback Print Call Stack of Last Error traceback

Description

traceback() prints the call stack of the last error, i.e., the sequence of calls that lead to the
error. This is useful when an error occurs with an unidentifiable error message. Currently,
this stack is given as a list in .Traceback.

Usage

traceback()

Examples

foo <- function(x) { print(1); bar(2) }

bar <- function(x) { x + a.variable.which.does.not.exist }

foo(2) # gives a strange error

traceback()

[1] "bar(2)" "foo(2)"

bar

Ah, this is the culprit ...

transform Transform an Object, e.g. a Data Frame transform

Description

transform is a generic function, which—at least currently—only does anything useful with
dataframes. transform.default converts its first argument to a dataframe if possible and
calls transform.data.frame.

Usage

transform(x, ...)
transform.default(x, ...)
transform.data.frame(x, ...)

496 trees

Arguments

x The object to be transformed

... Further arguments of the form tag=value

Details

The ... arguments to transform.data.frame are tagged vector expressions, which are
evaluated in the dataframe x. The tags are matched against names(x), and for those that
match, the value replace the corresponding variable in x, and the others are appended to x.

Value

The modified value of x.

Note

If some of the values are not vectors of the appropriate length, you deserve whatever you
get!

Author(s)

Peter Dalgaard

See Also

subset, list, data.frame

Examples

data(airquality)

transform(airquality, Ozone = -Ozone)

transform(airquality, new = -Ozone, Temp = (Temp-32)/1.8)

attach(airquality)

transform(Ozone, logOzone = log(Ozone)) # marginally interesting ...

detach(airquality)

trees Girth, Height and Volume for Black Cherry Trees trees

Description

This data set provides measurements of the girth, height and volume of timber in 31 felled
black cherry trees. Note that girth is the diameter of the tree at 4 ft 6 in above the ground.

Usage

data(trees)

Source

Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976) The Minitab Student Handbook. Duxbury
Press.

Trig 497

References

Atkinson, A. C. (1985) Plots, Transformations and Regression. Oxford University Press.

Examples

data(trees)

pairs(trees, panel = panel.smooth, main = "trees data")

plot(Volume ~ Girth, data = trees, log = "xy")

coplot(log(Volume) ~ log(Girth) | Height, data = trees,

panel = panel.smooth)

summary(fm1 <- lm(log(Volume) ~ log(Girth), data = trees))

Trig Trigonometric Functions Trig

Description

These functions give the obvious trigonometric functions. They respectively compute the
cosine, sine, tangent, arc-cosine, arc-sine, arc-tangent, and the two-argument arc-tangent.

Usage

cos(x)
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)
atan2(y, x)

Details

The arc-tangent of two arguments atan2(y,x) returns the angle between the x-axis and
the vector from the origin to (x, y), i.e., for positive arguments atan2(y,x) == atan(y/x).

Angles are in radians, not degrees (i.e. a right angle is π/2).

Examples

cos(0) == 1

sin(3*pi/2) == cos(pi)

x <- rnorm(99)

all.equal(sin(-x), - sin(x))

all.equal(cos(-x), cos(x))

x <- abs(x); y <- abs(rnorm(x))

all(abs(atan2(y, x) - atan(y/x)) <= .Machine$double.eps)# TRUE

table(abs(atan2(y, x) - atan(y/x)) / .Machine$double.eps) # depends!

x <- 1:99/100

all(Mod(1 - (cos(x) + 1i*sin(x)) / exp(1i*x)) < 1.1 * .Machine$double.eps)

2* abs(1 - x / acos(cos(x))) / .Machine$double.eps #-- depends ?

all(abs(1 - x / asin(sin(x))) <= .Machine$double.eps) # TRUE

all(abs(1 - x / atan(tan(x))) <= .Machine$double.eps) # TRUE

498 ts

ts Time-Series Objects ts

Description

The function ts is used to create time-series objects.

as.ts and is.ts coerce an object to a time-series and test whether an object is a time
series.

Usage

ts(data = NA, start = 1, end = numeric(0), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), class, names)

as.ts(x)
is.ts(x)

print(ts.obj, calendar, ...)
plot(ts.obj, plot.type=c("multiple", "single"), ...)
lines(ts.obj, ...)

Arguments

data a vector or matrix of the observed time-series values.

start the time of the first observation. Either a single number or a vector of
two integers, which specify a natural time unit and a (1-based) number
of samples into the time unit. See the examples for the use of the second
form.

end the time of the last observation, specified in the same way as start.

frequency the number of observations per unit of time.

deltat the fraction of the sampling period between successive observations; e.g.,
1/12 for monthly data. Only one of frequency or deltat should be
provided.

ts.eps time series comparison tolerance. Frequencies are considered equal if their
absolute difference is less than ts.eps.

class class to be given to the result, or none if NULL or "none". The default is
"ts" for a single series, c("mts", "ts") for multiple series.

names a character vector of names for the series in a multiple series: defaults to
the colnames of data, or Series 1, Series 2,

calendar enable/disable the display of information about month names, quarter
names or year when printing. The default is TRUE for a frequency of 4 or
12, FALSE otherwise.

plot.type for multivariate time series, should the series by plotted separately (with
a common time axis) or on a single plot?

... additional arguments to print or plot.

tsp 499

Details

The function ts is used to create time-series objects. These are vector or matrices with
class of "ts" (and additional attributes) which represent data which has been sampled at
equispaced points in time. In the matrix case, each column of the matrix data is assumed
to contain a single (univariate) time series.

Class "ts" has a number of methods. In particular arithmetic will attempt to align time
axes, and subsetting to extract subsets of series can be used (e.g. EuStockMarkets[,
"DAX"]). However, subsetting the first (or only) dimension will return a matrix or vector,
as will matrix subsetting.

The value of argument frequency is used when the series is sampled an integral number
of times in each unit time interval. For example, one could use a value of 7 for frequency
when the data are sampled daily, and the natural time period is a week, or 12 when the
data are sampled monthly and the natural time period is a year. Values of 4 and 12 are
assumed in (e.g.) print methods to imply a quarterly and monthly series respectively.

as.ts will use the tsp attribute of the object if it has one to set the start and end times
and frequency.

See Also

tsp, frequency, start, end, time, window

Standard package ts for many additional time-series functions.

Examples

ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of 1959

print(ts(1:10, freq = 7, start = c(12, 2)), calendar = TRUE) # print.ts(.)

Using July 1954 as start date:

gnp <- ts(cumsum(1 + round(rnorm(100), 2)),

start = c(1954, 7), frequency = 12)

plot(gnp) # using ‘plot.ts’ for time-series plot

Multivariate

z <- ts(matrix(rnorm(300), 100, 3), start=c(1961, 1), frequency=12)

plot(z)

plot(z, plot.type="single", lty=1:3)

A phase plot:

data(nhtemp)

plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

a clearer way to do this would be

library(ts)

plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

tsp Tsp Attribute of Time-Series-like Objects tsp

Description

tsp returns the tsp attribute (or NULL). It is included for compatibility with S version 2.
tsp<- sets the tsp attribute. hasTsp ensures x has a tsp attribute, by adding one if needed.

500 Tukey

Usage

tsp(x)
tsp(x) <- value
hasTsp(x)

Arguments

x a vector or matrix or univariate or multivariate time-series.

value a numeric vector of length 3 or NULL.

Details

The tsp attribute was previously described here as c(start(x), end(x), frequency(x)),
but this is incorrect. It gives the start time in time units, the end time and the frequency.

Assignments are checked for consistency.

Assigning NULL which removes the tsp attribute and any "ts" class of x.

See Also

ts, time, start.

Tukey The Studentized Range Distribution Tukey

Description

Functions on the distribution of the studentized range, R/s, where R is the range of a
standard normal sample of size n and s2 is independently distributed as chi-squared with
df degrees of freedom, see pchisq.

Usage

ptukey(q, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)
qtukey(p, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

q vector of quantiles.

p vector of probabilities.

nmeans sample size for range (same for each group).

df degrees of freedom for s (see below).

nranges number of groups whose maximum range is considered.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If ng =nranges is greater than one, R is the maximum of ng groups of nmeans observations
each.

typeof 501

Value

ptukey gives the distribution function and qtukey its inverse, the quantile function.

Note

A Legendre 16-point formula is used for the integral of ptukey. The computations are
relatively expensive, especially for qtukey which uses a simple secant method for finding
the inverse of ptukey. qtukey will be accurate to the 4th decimal place.

References

Copenhaver, Margaret Diponzio and Holland, Burt S. (1988) Multiple comparisons of simple
effects in the two-way analysis of variance with fixed effects. Journal of Statistical Compu-
tation and Simulation, 30, 1–15.

See Also

pnorm and qnorm for the corresponding functions for the normal distribution.

Examples

system.time(curve(ptukey(x, nm=6, df=5), from=-1, to=8, n=101))

(ptt <- ptukey(0:10, 2, df= 5))

(qtt <- qtukey(.95, 2, df= 2:11))

The precision may be not much more than about 8 digits:

summary(abs(.95 - ptukey(qtt,2, df = 2:11)))

typeof The Type of an Object typeof

Description

typeof determines the (R internal) type or storage mode of any object x. It returns a
character string.

Usage

typeof(x)

See Also

mode, storage.mode.

Examples

typeof(2)

mode(2)

502 UCBAdmissions

UCBAdmissions Student Admissions at UC Berkeley UCBAdmissions

Description

Aggregate data on applicants to graduate school at Berkeley for the six largest departments
in 1973 classified by admission and sex.

Usage

data(UCBAdmissions)

Format

A 3-dimensional array resulting from cross-tabulating 4526 observations on 3 variables. The
variables and their levels are as follows:

No Name Levels
1 Admit Admitted, Rejected
2 Gender Male, Female
3 Dept A, B, C, D, E, F

Details

This data set is frequently used for illustrating Simpson’s paradox, see Bickel et al. (1975).
At issue is whether the data show evidence of sex bias in admission practices. There were
2691 male applicants, of whom 1198 (44.5%) were admitted, compared with 1835 female
applicants of whom 557 (30.4%) were admitted. This gives a sample odds ratio of 1.83,
indicating that males were almost twice as likely to be admitted. In fact, graphical meth-
ods (as in the example below) or log-linear modelling show that the apparent association
between admission and sex stems from differences in the tendency of males and females to
apply to the individual departments (females used to apply “more” to departments with
higher rejection rates).

This data set can also be used for illustrating methods for graphical display of categorical
data, such as the general-purpose mosaic plot or the “fourfold display” for 2-by-2-by-k
tables. See the home page of Michael Friendly (http://hotspur.psych.yorku.ca/SCS/
friendly.html) for further information.

References

Bickel, P. J., Hammel, E. A., and O’Connell, J. W. (1975) Sex bias in graduate admissions:
Data from Berkeley. Science, 187, 398–403.

Examples

data(UCBAdmissions)

Data aggregated over departments

apply(UCBAdmissions, c(1, 2), sum)

mosaicplot(apply(UCBAdmissions, c(1, 2), sum),

main = "Student admissions at UC Berkeley")

Data for individual departments

opar <- par(mfrow = c(2, 3), oma = c(0, 0, 2, 0))

http://hotspur.psych.yorku.ca/SCS/friendly.html
http://hotspur.psych.yorku.ca/SCS/friendly.html

Uniform 503

for(i in 1:6)

mosaicplot(UCBAdmissions[,,i],

xlab = "Admit", ylab = "Sex",

main = paste("Department", LETTERS[i]))

mtext(expression(bold("Student admissions at UC Berkeley")),

outer = TRUE, cex = 1.5)

par(opar)

Uniform The Uniform Distribution Uniform

Description

These functions provide information about the uniform distribution on the interval from
min to max. dunif gives the density, punif gives the distribution function qunif gives the
quantile function and runif generates random deviates.

Usage

dunif(x, min=0, max=1, log = FALSE)
punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
runif(n, min=0, max=1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations to generate.

min,max lower and upper limits of the distribution.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If min or max are not specified they assume the default values of 0 and 1 respectively.

The uniform distribution has density

f(x) =
1

max−min

for min ≤ x ≤ max.

For the case of u := min == max, the limit case of X ≡ u is assumed.

See Also

.Random.seed about random number generation, rnorm, etc for other distributions.

504 uniroot

Examples

u <- runif(20)

all(punif(u) == u) # T

all(dunif(u) == 1) # T

var(runif(10000))#- ~ = 1/12 = .08333

all(runif(100, 2,2) == 2)#-> TRUE [exhibits bug in R version <= 0.63.1]

unique Extract Unique Elements unique

Description

unique returns a vector like x but with duplicate elements removed. If an element is equal
to one with a smaller index, it is removed.

Usage

unique(x)

Arguments

x an atomic vector

See Also

duplicated which gives the indices of duplicated elements.

Examples

unique(c(3:5, 11:8, 8 + 0:5))

length(unique(sample(100,100,replace=T)))# ~= 100(1 - 1/e) = 63.21

my.unique <- function(x) x[!duplicated(x)]

for(i in 1:4)

{ x <- rpois(100, pi); print(all(unique(x) == my.unique(x))) }

uniroot One Dimensional Root Finding uniroot

Description

The function uniroot searches the interval from lower to upper for a zero of the function
f with respect to its first argument.

Usage

uniroot(f, interval, lower = min(interval), upper = max(interval),
tol = .Machine$double.eps^0.25, maxiter = 1000, ...)

units 505

Arguments

f the function for which the root is sought.
interval a vector containing the end-points of the interval to be searched for the

root.
lower the lower end point of the interval to be searched.
upper the upper end point of the interval to be searched.
tol the desired accuracy (convergence tolerance).
maxiter the maximum number of iterations.
... additional arguments to f.

Details

Either interval or both lower and upper must be specified. The function uses Fortran
subroutine ‘”zeroin”’ (from Netlib) based on algorithms given in the reference below.

If the algorithm does not converge in maxiter steps, a warning is printed and the current
approximation is returned.

Value

A list with four components: root and f.root give the location of the root and the value
of the function evaluated at that point. iter and estim.prec give the number of iterations
used and an approximate estimated precision for root.

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ:
Prentice-Hall.

See Also

polyroot for all complex roots of a polynomial; optimize, nlm.

Examples

f <- function (x,a) x - a

str(xmin <- uniroot(f, c(0, 1), tol = 0.0001, a = 1/3))

str(uniroot(function(x) x*(x^2-1) + .5, low = -2, up = 2, tol = 0.0001),

dig = 10)

str(uniroot(function(x) x*(x^2-1) + .5, low = -2, up =2 , tol = 1e-10),

dig = 10)

units Graphical Units units

Description

xinch and yinch convert the specified number of inches given as their arguments into the
correct units for plotting with graphics functions. Usually, this only makes sense when
normal coordinates are used, i.e., no log scale (see par(log=..)).

xyinch does the same for a pair of numbers xy, simultaneously.

cm translates inches in to cm (centimeters).

506 unlink

Usage

xinch(x=1, warn.log=TRUE)
yinch(y=1, warn.log=TRUE)
xyinch(xy=1, warn.log=TRUE)
cm(x)

Arguments

x,y numeric vector

Examples

all(c(xinch(),yinch()) == xyinch()) # TRUE

xyinch()

xyinch #- to see that is really delta{"usr"} / "pin"

cm(1)# = 2.54

plot labels offset 0.12 inches to the right

of plotted symbols in a plot

data(mtcars)

attach(mtcars)

plot(mpg, disp, pch=19, main= "Motor Trend Cars")

text(mpg + xinch(0.12), disp, rownames(mtcars),adj=0, cex = .7, col=’blue’)

detach(mtcars)

unlink Delete Files and Directories unlink

Description

unlink deletes the file(s) or directories specified by x.

Usage

unlink(x)

Arguments

x a character vector with the names of the file(s) or directories to be deleted.
Wildcards (normally ‘*’ and ‘?’) are allowed.

Value

0 for success, 1 for failure. Not deleting a non-existent file is not a failure.

See Also

tempfile for file creation.

unlist 507

unlist Flatten Lists unlist

Description

Given a list structure x, unlist produces a vector which contains all the atomic components
which occur in x.

Usage

unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

x A list.
recursive logical. Should unlisting be applied to list components of x?
use.names logical. Should names be preserved?

Details

If recursive=FALSE, the function will not recurse beyond the first level items in x.

By default, unlist tries to retain the naming information present in x. If use.names =
FALSE all naming information is dropped.

See Also

c, as.list.

Examples

unlist(options())

unlist(unlist(options(), use.names=F))# works for vectors or lists

l.ex <- list(a = list(1:5, LETTERS[1:5]), b = "Z", c = NA)

unlist(l.ex, rec = F)

unlist(l.ex, rec = T)

unname Remove ‘names’ or ‘dimnames’ unname

Description

Remove the names or dimnames attribute of an R object.

Usage

unname(obj, force=FALSE)

Arguments

obj The R object which is wanted “nameless”
force logical; if true, the dimnames are even removed from data.frames. This

argument is currently experimental and hence might change!

508 update

Value

Object as obj but without names or dimnames.

Examples

Answering a question on R-help (14 Oct 1999):

col3 <- 750+ 100* rt(1500, df = 3)

breaks <- factor(cut(col3,breaks=360+5*(0:155)))

str(table(breaks)) ## The names are quite larger than the data..

barplot(unname(table(breaks)), axes= FALSE)

update Update and Re-fit a Model Call update

Description

update will update and (by default) re-fit a model. It does this by extracting the call stored
in the object, updating the call and (by default) evaluating that call. Sometimes it is useful
to call update with only one argument, for example if the data frame has been corrected.

Usage

update(object, ...)
update.default(object, formula, ..., evaluate = TRUE)

Arguments

object An existing fit from a model function such as lm, glm and many others.

formula Changes to the formula – see update.formula for details.

... Additional arguments to the call, or arguments with changed values. Use
name=NULL to remove the argument name.

evaluate If true evaluate the new call else return the call.

Value

If evaluate = TRUE the fitted object, otherwise the updated call.

Author(s)

B.D. Ripley

See Also

update.formula

update.formula 509

Examples

oldcon <- options(contrasts = c("contr.treatment", "contr.poly"))

Annette Dobson (1990) "An Introduction to Generalized Linear Models".

Page 9: Plant Weight Data.

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))

weight <- c(ctl, trt)

lm.D9 <- lm(weight ~ group)

lm.D9

summary(lm.D90 <- update(lm.D9, . ~ . - 1))

options(contrasts = c("contr.helmert", "contr.poly"))

update(lm.D9)

options(oldcon)

update.formula Model Updating update.formula

Description

update.formula is used to update model formulae. This typically involves adding or drop-
ping terms, but updates can be more general.

Usage

update.formula(old, new)

Arguments

old a model formula to be updated.

new a formula giving a template which specifies how to update.

Details

The function works by first identifying the left-hand side and right-hand side of the old
formula. It then examines the new formula and substitutes the lhs of the old formula for
any occurence of ”.” on the left of new, and substitutes the rhs of the old formula for any
occurence of ”.” on the right of new.

Value

The updated formula is returned.

See Also

terms, model.matrix.

510 update.packages

update.packages Download Packages from CRAN update.packages

Description

These functions can be used to automatically compare the version numbers of installed
packages with the newest available version on CRAN and update outdated packages on the
fly.

Usage

update.packages(lib.loc = .lib.loc, CRAN = options("CRAN"),
contriburl = contrib.url(CRAN),
method = "auto", instlib = NULL,
ask=TRUE, available=NULL)

installed.packages(lib.loc = .lib.loc)
CRAN.packages(CRAN = options("CRAN"), method = "auto",

contriburl = contrib.url(CRAN))
old.packages(lib.loc = .lib.loc, CRAN = getOption("CRAN"),

contriburl = contrib.url(CRAN),
method = "auto", available = NULL)

download.packages(pkgs, destdir, available = NULL,
CRAN = options("CRAN"), method = "auto",
contriburl = contrib.url(CRAN))

install.packages(pkgs, lib, available = NULL,
CRAN = options("CRAN"), method = "auto",
contriburl = contrib.url(CRAN))

Arguments

lib.loc A character vector describing the location of R library trees to search
through (and update packages therein).

CRAN The base URL of the CRAN mirror to use, i.e., the URL of a CRAN root
such as "http://www.r-project.org" (the default) or its Statlib mirror,
"http://lib.stat.cmu.edu/R/CRAN".

contriburl URL of the contrib section of CRAN. Use this argument only if your
CRAN mirror is incomplete, e.g., because you burned only the contrib
section on a CD. Overrides argument CRAN.

method Download method, see download.file.

pkgs A character vector of the short names of packages whose current versions
should be downloaded from CRAN.

destdir Directory where downloaded packages are stored.

available List of packages available at CRAN as returned by CRAN.packages.

lib,instlib A character string giving the library directory where to install the pack-
ages.

ask If TRUE, ask before packages are actually downloaded and installed.

USArrests 511

Details

installed.packages scans the ‘DESCRIPTION’ files of each package found along lib.loc
and returns a list of package names, library paths and version numbers. CRAN.packages
returns a similar list, but corresponding to packages currently available in the contrib section
of CRAN, the comprehensive R archive network. The current list of packages is downloaded
over the internet (or copied from a local CRAN mirror). Both functions use parse.dcf for
parsing the description files. old.packages compares the two lists and reports installed
packages that have newer versions on CRAN.

download.packages takes a list of package names and a destination directory, downloads
the newest versions of the package sources and saves the in destdir. If the list of available
packages is not given as argument, it is also directly obtained from CRAN. If CRAN is
local, i.e., the URL starts with "file:", then the packages are not downloaded but used
directly.

The main function of the bundle is update.packages. First a list of all packages found in
lib.loc is created and compared with the packages available on CRAN. Outdated packages
are reported and for each outdated package the user can specify if it should be automatically
updated. If so, the pre-compiled packages are downloaded from CRAN and installed in the
respective library path (or instlib if specified).

install.packages can be used to install new packages, it takes a vector of package names
and a destination directory, downloads the packages from CRAN and installs them. If the
destination directory is omitted it defaults to the first directory in .lib.loc, with a warning.
Argument pkgs can also be a character vector of file names of zip files if CRAN=NULL. The
zip files are then unpacked directly.

Note

wget.exe is available from ‘windows/windows-NT/base/etc/wget.zip’ on CRAN. lynx.exe
is available from http://www.fdisk.com/doslynx/lynxport.htm.

See Also

library, .packages, parse.dcf, download.file

USArrests Violent Crime Rates by US State USArrests

Description

This data set contains statistics, in arrests per 100,000 residents for assault, murder, and
rape in each of the 50 US states in 1973. Also given is the percent of the population living
in urban areas.

Usage

data(USArrests)

http://www.fdisk.com/doslynx/lynxport.htm

512 USJudgeRatings

Format

A data frame with 50 observations on 5 variables.

[,1] Murder numeric Murder arrests (per 100,000)
[,2] Assault numeric Assault arrests (per 100,000)
[,3] UrbanPop numeric Percent urban population
[,4] Rape numeric Rape arrests (per 100,000)

Source

World Almanac and Book of facts 1975. (Crime rates).

Statistical Abstracts of the United States 1975. (Urban rates).

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(USArrests)

pairs(USArrests, panel = panel.smooth, main = "USArrests data")

USJudgeRatings Lawyers’ Ratings of State Judges in the US Superior
Court

USJudgeRatings

Description

Lawyers’ ratings of state judges in the US Superior Court

Usage

data(USJudgeRatings)

Format

A data frame containing 43 observations on 12 numeric variables.

[,1] CONT Number of contacts of lawyer with judge.
[,2] INTG Judicial integrity.
[,3] DMNR Demeanor.
[,4] DILG Diligence.
[,5] CFMG Case flow managing.
[,6] DECI Prompt decisions.
[,7] PREP Preparation for trial.
[,8] FAMI Familiarity with law.
[,9] ORAL Sound oral rulings.

[,10] WRIT Sound written rulings.
[,11] PHYS Physical ability.
[,12] RTEN Worthy of retention.

USPersonalExpenditure 513

Source

New Haven Register, 14 January, 1977 (from John Hartigan).

Examples

data(USJudgeRatings)

pairs(USJudgeRatings, main = "USJudgeRatings data")

USPersonalExpenditure Personal Expenditure Data USPersonalExpenditure

Description

This data set consists of United States personal expenditures (in billions of dollars) in the
categories; food and tobacco, household operation, medical and health, personal care, and
private education for the years 1940, 1945, 1950, and 1960.

Usage

data(USPersonalExpenditure)

Format

A matrix with 5 rows and 5 columns.

Source

The World Almanac and Book of Facts, 1962, page 756.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(USPersonalExpenditure)

USPersonalExpenditure

require(eda)

medpolish(log10(USPersonalExpenditure))

514 VADeaths

uspop The Population of the United States uspop

Description

This data set gives the population of the United States (in millions) as recorded by the
decennial census for the period 1790–1970.

Usage

data(uspop)

Format

A time series of 19 values.

Source

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(uspop)

plot(uspop, log = "y", main = "uspop data", xlab = "Year",

ylab = "U.S. Population (millions)")

VADeaths Death Rate Data VADeaths

Description

Death rates per 100 in Virginia in 1940.

Usage

data(VADeaths)

Format

A matrix with 5 rows and 5 columns.

Details

The death rates are cross-classified by age group (rows) and population group (columns).
The age groups are: 50–54, 55–59, 60–64, 65–69, 70–74 and the population groups are
Rural/Male, Rural/Female, Urban/Male and Urban/Female.

This provides a rather nice 3-way analysis of variance example.

Source

Moyneau, L., Gilliam, S. K., and Florant, L. C.(1947) Differences in Virginia death rates by
color, sex, age, and rural or urban residence. American Sociological Review, 12, 525–535.

var 515

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(VADeaths)

n <- length(dr <- c(VADeaths))

nam <- names(VADeaths)

d.VAD <- data.frame(

Drate = dr,

age = rep(ordered(rownames(VADeaths)),length=n),

gender= gl(2,5,n, labels= c("M", "F")),

site = gl(2,10, labels= c("rural", "urban")))

coplot(Drate ~ as.numeric(age) | gender * site, data = d.VAD,

panel = panel.smooth, xlab = "VADeaths data - Given: gender")

summary(aov.VAD <- aov(Drate ~ .^2, data = d.VAD))

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(aov.VAD)

par(opar)

var Covariance Matrices var

Description

var computes the variance of x and the covariance of x and y if x and y are vectors. If x
and y are matrices then the covariance between the columns of x and the the columns of y
are computed.

Usage

var(x, y = x, na.rm = FALSE, use)

Arguments

x a numeric matrix or vector.

y a numeric matrix or vector.

na.rm logical.

use an optional character string giving a method for computing covariances
in the presence of missing values. This must be one of "all.obs", "com-
plete.obs" or "pairwise.complete.obs", with abbreviation being per-
mitted.

Details

If na.rm is TRUE then the complete observations (rows) are used to compute the variance.
If na.rm is FALSE and there are missing values, then var will fail.

The argument use can also be used for describing how to handle missing values. Specifying
use = "all" is equivalent to specifying na.rm = FALSE and specifying use = "pair" is
equivalent to na.rm = TRUE. If use = "pair", then all the observations which are complete
for a pair of variables are used to compute the covariance for that pair of variables. This
can result in covariance matrices which are not positive semidefinite.

516 vector

See Also

cov with the same functionality for the multivariate case.

Examples

var(1:10)# 9.166667

var(1:5,1:5)# 2.5

vector Vectors vector

Description

vector produces a vector of the given length and mode.

as.vector, a generic, attempts to coerce its argument into a vector of mode mode (the
default is to coerce to whichever mode is most convenient). The attributes of x are removed.

is.vector returns TRUE if x is a vector (of mode logical, integer, real or character if not
specified) and FALSE otherwise.

Usage

vector(mode = "logical", length = 0)
as.vector(x, mode = "any")
is.vector(x, mode = "any")

Arguments

mode A character string giving an atomic mode, or "any".

length A non-negative integer specifying the desired length.

x An object.

Details

Note that factors are not vectors; is.vector returns FALSE and as.vector converts to
character mode.

Value

For vector, a vector of the given length and mode. Logical vector elements are initialized
to FALSE, numeric vector elements to 0 and character vector elements to "".

See Also

c, is.numeric, is.list, etc.

volcano 517

Examples

df <- data.frame(x=1:3, y=5:7)

Error:

as.vector(data.frame(x=1:3, y=5:7), mode="numeric")

###-- All the following are TRUE:

is.list(df)

! is.vector(df)

! is.vector(df, mode="list")

is.vector(list(), mode="list")

is.vector(NULL, mode="NULL")

volcano Topographic Information for the Maunga Whau Volcano volcano

Description

Maunga Whau (Mt Eden) is one of about 50 volcanos in the Auckland volcanic field. This
data set gives topographic information for Maunga Whau on a 10m by 10m grid.

Usage

data(volcano)

Format

A matrix with 87 rows and 61 columns, rows corresponding to grid lines running east to
west and columns to grid lines running south to north.

Source

Digitized from a topographic map by Ross Ihaka. These data should not be regarded as
accurate.

See Also

filled.contour for a nice plot.

Examples

data(volcano)

filled.contour(volcano, color = terrain.colors, asp = 1)

title(main = "volcano data: filled contour map")

518 warnings

warning Warning Messages warning

Description

Generates a warning message that corresponds to its argument and the expression or func-
tion from which it was called.

Usage

warning(message)

Arguments

message character string (of length 1) or NULL.

Details

The result depends on the value of options("warn").

If warn is negative warnings are ignored; if it is zero they are stored and printed after the
top–level function has completed; if it is one they are printed as they occur and if it is 2
(or larger) warnings are turned into errors.

If warn is zero (the default), a top-level variable last.warning is created. It contains the
warnings which can be printed via a call to warnings.

See Also

stop for fatal errors, warnings, and options(warn=..).

Examples

warnings Print Warning Messages warnings

Description

warnings prints the top-level variable last.warning in a pleasing form.

Usage

warnings(...)

Arguments

... arguments to be passed to cat.

See Also

warning.

warpbreaks 519

Examples

ow <- options("warn")

for(w in -1:1) {

options(warn = w); cat("\n warn =",w,"\n")

for(i in 1:3) { cat(i,"..\n"); m <- matrix(1:7, 3,4) }

}

warnings()

options(ow) # reset

warpbreaks The Number of Breaks in Yarn during Weaving warpbreaks

Description

This data set gives the number of warp breaks per loom, where a loom corresponds to a
fixed length of yarn.

Usage

data(warpbreaks)

Format

A data frame with 54 observations on 3 variables.

[,1] breaks numeric The number of breaks
[,2] wool factor The type of wool (A or B)
[,3] tension factor The level of tension (L, M, H)

Source

Tippet, L. H. C. (1950) Technological Applications of Statistics. Wiley. Page 106.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(warpbreaks)

summary(warpbreaks)

opar <- par(mfrow = c(1,2), oma = c(0, 0, 1.1, 0))

plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "A", main = "Wool A")

plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "B", main = "Wool B")

mtext("warpbreaks data", side = 3, outer = TRUE)

par(opar)

summary(fm1 <- lm(breaks ~ wool*tension, data = warpbreaks))

anova(fm1)

520 Weibull

Weibull The Weibull Distribution Weibull

Description

Density, distribution function, quantile function and random generation for the Weibull
distribution with parameters shape and scale.

Usage

dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations to generate.

shape, scale shape and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If scale is omitted it assumes the default value of 1.

The Weibull distribution with shape parameter a and scale parameter b has density given
by

f(x) = (a/b)(x/b)a−1 exp(−(x/b)a)

for x > 0.

Value

dweibull gives the density, pweibull gives the distribution function, qweibull gives the
quantile function, and rweibull generates random deviates.

See Also

dexp for the Exponential which is a special case of a Weibull distribution.

Examples

x <- 1:10

all.equal(dweibull(x, shape = 1), dexp(x))

all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))

all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))

weighted.mean 521

weighted.mean Weighted Arithmetic Mean weighted.mean

Description

Computed a weighted mean of a numeric vector.

Usage

weighted.mean(x, w, na.rm=FALSE)

Arguments

x a numeric vector containing the values whose mean is to be computed.

w a vector of weights the same length as x giving the weights to use for each
element of x.

na.rm a logical value indicating whether NA values in x should be stripped before
the computation proceeds.

Details

If w is missing then all elements of x are given the same weight.

Missing values in w are not handled.

See Also

mean

Examples

GPA from Siegel 1994

wt<- c(5/15,5/15,4/15,1/15)

x <- c(3.7,3.3,3.5,2.8)

xm <- weighted.mean(x,wt)

weighted.residuals Compute Weighted Residuals weighted.residuals

Description

Computed weighted residuals from a linear model fit.

Usage

weighted.residuals(obj, drop0 = TRUE)

Arguments

obj R object, typically of class lm or glm.

drop0 logical. If TRUE, drop all cases with weights == 0.

522 which

Details

Weighted residuals are the usual residuals Ri, multiplied by
√
wi, where wi are the weights

as specified in lm’s call.

Dropping cases with weights zero is compatible with lm.influence and related functions.

Value

Numeric vector of length n′, where n′ is the number of of non-0 weights (drop0 = TRUE)
or the number of observations, otherwise.

See Also

residuals,lm.influence, etc.

Examples

example("lm")

all.equal(weighted.residuals(lm.D9),

residuals(lm.D9))

x <- 1:10

w <- 0:9

y <- rnorm(x)

weighted.residuals(lmxy <- lm(y ~ x, weights = w))

weighted.residuals(lmxy, drop0 = FALSE)

which Which indices are TRUE ? which

Description

Give the TRUE indices of a logical object, allowing for array indices.

Usage

which(x, arr.ind = FALSE)

Arguments

x a logical vector or array. NAs are allowed and omitted (treated as if
FALSE).

arr.ind logical; should array indices be returned when x is an array?

Value

If arr.ind == FALSE (the default), an integer vector with length equal to sum(x), i.e., to
the number of TRUEs in x; Basically, the result is (1:length(x))[x].

If arr.ind == TRUE and x is an array (has a dim attribute), the result is a matrix who’s
rows each are the indices of one element of x; see Examples below.

Author(s)

Werner Stahel and Peter Holzer 〈holzer@stat.math.ethz.ch〉, for the array case.

Wilcoxon 523

See Also

Logic

Examples

which(LETTERS == "R")

which(ll <- c(T,F,T,NA,F,F,T))#> 1 3 7

names(ll) <- letters[seq(ll)]

which(ll)

which((1:12)%%2 == 0) # which are even?

str(which(1:10 > 3, arr.ind=TRUE))

(m <- matrix(1:12,3,4))

which(m %% 3 == 0)

which(m %% 3 == 0, arr.ind=TRUE)

rownames(m) <- paste("Case",1:3, sep="_")

which(m %% 5 == 0, arr.ind=TRUE)

dim(m) <- c(2,2,3); m

which(m %% 3 == 0, arr.ind=FALSE)

which(m %% 3 == 0, arr.ind=TRUE)

vm <- c(m); dim(vm) <- length(vm) #-- funny thing with length(dim(..)) == 1

which(vm %% 3 == 0, arr.ind=TRUE)

Wilcoxon Distribution of the Wilcoxon Rank Sum Statistic Wilcoxon

Description

Density, distribution function, quantile function and random generation for the distribution
of the Wilcoxon rank sum statistic obtained from samples with size m and n, respectively.

Usage

dwilcox(x, m, n, log = FALSE)
pwilcox(q, m, n, lower.tail = TRUE, log.p = FALSE)
qwilcox(p, m, n, lower.tail = TRUE, log.p = FALSE)
rwilcox(nn, m, n)

Arguments

x, q vector of quantiles.

p vector of probabilities.

nn number of observations to generate.

m, n numbers of observations in the first and second sample, respectively.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

524 Wilcoxon

Details

This distribution is obtained as follows. Let x and y be two random, independent samples of
size m and n. Then the Wilcoxon rank sum statistic is the number of all pairs (x[i], y[j])
for which y[j] is not greater than x[i]. This statistic takes values between 0 and m * n,
and its mean and variance are m * n / 2 and m * n * (m + n + 1) / 12, respectively.

Value

dwilcox gives the density, pwilcox gives the distribution function, qwilcox gives the
quantile function, and rwilcox generates random deviates.

Author(s)

Kurt Hornik 〈hornik@ci.tuwien.ac.at〉

See Also

dsignrank etc, for the one-sample Wilcoxon rank statistic.

Examples

x <- -1:(4*6 + 1)

fx <- dwilcox(x, 4, 6)

all(fx == dwilcox(x, 6, 4))

Fx <- pwilcox(x, 4, 6)

all(abs(Fx - cumsum(fx)) < 10 * .Machine$double.eps)

layout(rbind(1,2),width=1,heights=c(3,2))

plot(x, fx,type=’h’, col="violet",

main= "Probabilities (density) of Wilcoxon-Statist.(n=6,m=4)")

plot(x, Fx,type="s", col="blue",

main= "Distribution of Wilcoxon-Statist.(n=6,m=4)")

abline(h=0:1, col="gray20",lty=2)

layout(1)# set back

N <- 200

hist(U <- rwilcox(N, m=4,n=6), breaks=0:25 - 1/2, border="red", col="pink",

sub = paste("N =",N))

mtext("N * f(x), f() = true ‘‘density’’", side=3, col="blue")

lines(x, N*fx, type=’h’, col=’blue’, lwd=2)

points(x, N*fx, cex=2)

Better is a Quantile-Quantile Plot

qqplot(U, qw <- qwilcox((1:N - 1/2)/N, m=4,n=6),

main = paste("Q-Q-Plot of empirical and theoretical quantiles",

"Wilcoxon Statistic, (m=4, n=6)",sep="\n"))

n <- as.numeric(names(print(tU <- table(U))))

text(n+.2, n+.5, labels=tU, col="red")

winDialog 525

winDialog Dialog Boxes under Windows winDialog

Description

Put up a Windows dialog box to communicate with the user. There are various types,
either for the user to select from a set of buttons or to edit a string.

Usage

winDialog(type = c("ok", "okcancel", "yesno", "yesnocancel"), message)
winDialogString(message, default)

Arguments

type The type of dialog box. It will have the buttons implied by its name.

message The information field of the dialog box.

default The default string.

Value

For winDialog a character string giving the name of the button pressed (in capitals) or
NULL (invisibly) if the user had no choice.

For winDialogString a string giving the contents of the text box when Ok was pressed, or
NULL if codeCancel was pressed.

See Also

winMenus
file.choose to select a file.

Examples

winDialog("yesno", "Is it OK to delete file blah")

window Time Windows window

Description

window is a generic function which extracts the subset of the object x observed between the
times start and end. Methods are available for time series and point-processes.

Usage

window(x, start=NULL, end=NULL, warn=TRUE)

526 windows

Arguments

x a time-series or other object.

start the start time of the period of interest.

end the end time of the period of interest.

warn if FALSE omit warnings about start and end being out of range.

Note

The warn argument is for use by lazy R programmers whose code requires window to do the
checking silently.

See Also

time, ts.

Examples

data(presidents)

sixties <- window(presidents, 1960, c(1969,4))

windows Windows graphics devices windows

Description

A graphics device is opened. For win.graph, windows, x11 and X11 this is a graphics
window on the current Windows display: the multiple names are for compatibility with
other systems. win.metafile prints to a file and win.print to the Windows print system.

Usage

windows(width = 7, height = 7, pointsize = 12)
win.graph(width = 7, height = 7, pointsize = 12)
x11(display = "", width = 7, height = 7, pointsize = 12)
X11(display = "", width = 7, height = 7, pointsize = 12)
win.metafile(filename = "", width = 7, height = 7, pointsize = 12)
win.print(width = 7, height = 7, pointsize = 12)

Arguments

display indicates the purpose of the device.

filename the name of the output file: it will be an enhanced Windows metafile,
usually given extension .emf or .wmf.

width the (nominal) width of the plotting window in inches.

height the (nominal) height of the plotting window in inches.

pointsize the default pointsize of plotted text.

winextras 527

Details

All these devices are implemented as windows devices, the display parameter selects which
is actually used.

The size of a window is computed from information provided about the display: it depends
on the system being configured accurately.

A graphics window is not allowed to be specified at more that 85% of the screen width or
height: the width and height are rescaled proportionally. The window can be resized to a
larger size.

If the filename is omitted for a win.metafile device, the output is copied to the clipboard
when the device is closed. A win.metafile device can only be used for a single page.

Value

A plot device is opened: nothing is returned to the R interpreter.

Author(s)

Guido Masarotto

See Also

Devices, postscript

winextras Auxiliary Functions for the Windows Port winextras

Description

Auxiliary functions for the Windows port

Usage

flush.console()
win.version()
zip.unpack(zipname, dest)

Arguments

zipname character string giving name of zip file.

dest character string giving directory within which to unpack.

Details

flush.console flushes the console output buffer in Rgui and does nothing under other
front-ends.

win.version is an auxiliary function for bug.report which returns a character string de-
scribing the version of Windows in use.

zip.unpack unpacks the zip file zipname in directory dest: it is an internal version of unzip
zipfile -d dest (but will use an external unzip if one is set in options("unzip")).

528 winMenus

winMenus User Menus under Windows winMenus

Description

Enables users to add, delete and program menus under Windows.

Usage

winMenuAdd(menuname)
winMenuAddItem(menuname, itemname, action)
winMenuDel(menuname)
winMenuDelItem(menuname)

Arguments

menuname a character string naming a menu.
itemname a character string naming a menu item on an existing menu.
action a character string describing the action when that menu is selected, or

"enable" or "disable".

Details

User menus are added to the right of existing menus, and items are added at the bottom
of the menu.

By default the action character string is treated as R input, being echoed on the command
line and parsed and executed as usual.

Specifying an existing item in winMenuAddItem enables the action to be changed.

Submenus can be specified by separating the elements in menuname by slashes: as a con-
sequence menu names may not contain slashes.

If the action is specified as "none" no action is taken: this can be useful to reserve items
for future expansion.

Value

NULL, invisibly. If an error occurs, an informative error message will be given.

See Also

winDialog

Examples

winMenuAdd("Testit")

winMenuAddItem("Testit", "one", "aaaa")

winMenuAddItem("Testit", "two", "bbbb")

winMenuAdd("Testit/extras")

winMenuAddItem("Testit", "-", "")

winMenuAddItem("Testit", "two", "disable")

winMenuAddItem("Testit", "three", "cccc")

winMenuAddItem("Testit/extras", "one more", "ddd")

winMenuAddItem("Testit/extras", "and another", "eee")

write 529

women Average Heights and Weights for American Women women

Description

This data set gives the average heights and weights for American women aged 30–39.

Usage

data(women)

Format

A data frame with 15 observations on 2 variables.

[,1] height numeric Height (in)
[,2] weight numeric Weight (lbs)

Details

The data set appears to have been taken from the American Society of Actuaries Build and
Blood Pressure Study for some (unknown to us) earlier year.
The World Almanac notes: “The figures represent weights in ordinary indoor clothing and
shoes, and heights with shoes.

Source

The World Almanac and Book of Facts, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(women)

plot(women, xlab = "Height (in)", ylab = "Weight (lb)",

main = "women data: American women aged 30-39")

write Write Data to a File write

Description

The data (usually a matrix) x are written to file file. If x is a two dimensional matrix
you need to transpose it to get the columns in file the same as those in the internal
representation.

Usage

write(x, file="data",
ncolumns=if(is.character(x)) 1 else 5,
append=FALSE)

530 write.table

Arguments

x the data to be written out.

file the name of the file (quoted) to write to.

ncolumns the number of columns to write the data in.

append if TRUE the data x is appended to file file.

See Also

scan for reading data.

Examples

create a 2 by 5 matrix

x <- matrix(1:10,ncol=5)

the file data contains x, two rows, five cols

1 3 5 6 9 will form the first row

write(t(x))

the file data now contains the data in x,

two rows, five cols but the first row is 1 2 3 4 5

write(x)

unlink("data") # tidy up

write.table Data Output write.table

Description

write.table prints its required argument x (after converting it to a data frame if it is not
one already) to file. The entries in each line (row) are separated by the value of sep.

Usage

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = NA, row.names = TRUE, col.names = TRUE)

Arguments

x the object to be written, typically a data frame. If not, it is attempted to
create one from it.

file the name of the file which the data are to be written to.

sep the field separator string. Values on each line of the file are separated by
this string.

col.names a logical value indicating whether the column names of x are to be written
along with x, or a character vector of column names to be written.

row.names a logical value indicating whether the row names of x are to be written
along with x, or a character vector of row names to be written.

xy.coords 531

quote a logical or a numeric vector. If TRUE, any strings in the data will be
surrounded by double quotes. If a numeric vector, its elements are taken
as the indices of the variable (columns) to quote. In both cases, row and
columns names are always quoted if they are written.

na the string to use for missing values in the data.

eol the character(s) to print at the end of each line (row).

See Also

read.table.

xy.coords Extracting Plotting Structures xy.coords

Description

xy.coords is used by many function to obtain x and y coordinates for plotting. The use of
this common mechanism across all R functions produces a measure of consistency.

plot.default and lowess are examples of functions which use this mechanism.

Usage

xy.coords(x, y, xlab=NULL, ylab=NULL, log=NULL, recycle = FALSE)

Arguments

x,y the x and y coordinates of a set of points. Alternatively, a single argument
x can be be provided. In this case, an attempt is made to interpret the
argument in a way suitable for plotting. If the argument is a formula yvar
˜ xvar, xvar and yvar are used as x and y variables; if the argument is a
list containing components x and y, these are used are assumed to define
plotting coordinates; if the argument contains a time series, the x values
are taken to be time and the y values to be the time series; if the argument
is a matrix with two columns, the first is assumed to contain the x values
and the second the y values; in any other case, the argument is coerced
to a vector and the values plotted against their indices.

xlab,ylab names for the x and y variables to be extracted.

log character, "x", "y" or both, as for plot. Sets negative values to NA and
gives a warning.

recycle logical; if TRUE, recycle (rep) the shorter of x or y if their lengths differ.

Value

A list with the components

x numeric (i.e. "double") vector of abscissa values.

y numeric vector of the same length as x.

xlab character(1) or NULL, the ‘label’ of x.

ylab character(1) or NULL, the ‘label’ of y.

532 zip.file.extract

Examples

xy.coords(fft(c(1:10)), NULL)

data(cars) ; attach(cars)

xy.coords(dist ~ speed, NULL)$xlab # = "speed"

str(xy.coords(1:3, 1:2, recycle=TRUE))

str(xy.coords(-2:10,NULL, log="y"))

##> warning: 3 y values <=0 omitted ..

zip.file.extract Extract File from a Zip Archive zip.file.extract

Description

This will extract the file named file from the zip archive, if possible, and write it in a
temporary location.

Usage

zip.file.extract(file, zipname="R.zip")

Arguments

file A file name.

zipname The file name of a zip archive.

Details

The file will be extracted if it is in the archive and any required unzip utility is available.
It will probably be extracted to the directory used by tempfile.

Value

The name of the original or extracted file.

Warning

This function is intended for internal use only: it may be altered at any time, and may
differ between platforms. Do NOT use in user code.

Note

The implementation differs by platform: it might do nothing.

Author(s)

B. D. Ripley

Chapter 2

The ctest package

ansari.test Ansari-Bradley Test ansari.test

Description

Performs the Ansari-Bradley two-sample test for a difference in scale parameters.

Usage

ansari.test(x, y, alternative = c("two.sided", "less", "greater"),
exact = NULL)

Arguments

x numeric vector of data values.

y numeric vector of data values.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter.

exact a logical indicating whether an exact p-value should be computed.

Details

Suppose that x and y are independent samples from distributions with densities f((t −
m)/s)/s and f(t −m), respectively, where m is an unknown nuisance parameter and s is
the parameter of interest. The Ansari-Bradley test is used for testing the null that s equals
1, the two-sided alternative being that s 6= 1 (the distributions differ only in variance), and
the one-sided alternatives being s > 1 (the distribution underlying x has a larger variance,
"greater") or s < 1 ("less").

By default (if exact is not specified), an exact p-value is computed if both samples contain
less than 50 finite values and there are no ties. Otherwise, a normal approximation is used.

533

534 bartlett.test

Value

A list with class "htest" containing the following components:

statistic the value of the Ansari-Bradley test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method the string "Ansari-Bradley test".

data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 83–92.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
mood.test for another rank-based two-sample test for a difference in scale parameters;
var.test and bartlett.test for parametric tests for the homogeneity in variance.

Examples

Hollander & Wolfe (1973, p. 86f):

Serum iron determination using Hyland control sera

ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)

jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)

ansari.test(ramsay, jung.parekh)

bartlett.test Bartlett Test for Homogeneity of Variances bartlett.test

Description

Performs Bartlett’s test of the null that the variances in each of the groups (samples) are
the same.

Usage

bartlett.test(x, g)

Arguments

x a numeric vector of data values, or a list of numeric data vectors repres-
enting the respective samples, or fitted linear model objects (inheriting
from class "lm").

g a vector or factor object giving the group for the corresponding elements
of x. Ignored if x is a list.

binom.test 535

Details

If x is a list, its elements are taken as the samples or fitted linear models to be compared for
homogeneity of variances. In this case, the elements must either all be numeric data vectors
or fitted linear model objects, g is ignored, and one can simply use bartlett.test(x) to
perform the test. If the samples are not yet contained in a list, use bartlett.test(list(x,
...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the
same length as x giving the group for the corresponding elements of x.

Value

A list of class "htest" containing the following components:

statistic Bartlett’s K-square test statistic.

parameter the degrees of freedom of the approximate chi-square distribution of the
test statistic.

p.value the p-value of the test.

method the string "Bartlett test for homogeneity of variances".

data.name a character string giving the names of the data.

References

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the
Royal Statistical Society Series A 160, 268–282.

See Also

var.test for the special case of comparing variances in two samples from normal distri-
butions; fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of
variances; ansari.test and mood.test for two rank based two-sample tests for difference
in scale.

Examples

data(InsectSprays)

plot(InsectSprays$count ~ InsectSprays$spray)

bartlett.test(InsectSprays$count, InsectSprays$spray)

binom.test Exact Binomial Test binom.test

Description

Performs an exact test of the null that the probability of success in a Bernoulli experiment
of length n is p, based on the number x of successes observed.

Usage

binom.test(x, n, p = 0.5, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

536 binom.test

Arguments

x number of successes.

n number of trials.

p probability of success.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter.

conf.level confidence level for the returned confidence interval.

Value

A list with class "htest" containing the following components:

statistic the number of successes, x.

parameter the number of trials, n.

p.value the p-value of the test.

conf.int a confidence interval for the probability of success.

estimate the estimated probability of success, x / n.

null.value the probability of success under the null, p.

alternative a character string describing the alternative hypothesis.

method the string "Exact binomial test".

data.name a character string giving the names of the data.

References

Conover, W. J. (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 97–104.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 15–22.

See Also

prop.test for a general (approximate) test for equal or given proportions.

Examples

Conover (1971), p. 97f.

Under (the assumption of) simple Mendelian inheritance, a cross

between plants of two particular genotypes produces progeny 1/4 of

which are ‘‘dwarf’’ and 3/4 of which are ‘‘giant’’, respectively.

In an experiment to determine if this assumption is reasonable, a

cross results in progeny having 243 dwarf and 682 giant plants.

If ‘‘giant’’ is taken as success, the null hypothesis is that p =

3/4 and the alternative that p != 3/4.

binom.test(682, 682 + 243, p = 3/4)

=> Data are in agreement with the null hypothesis.

chisq.test 537

chisq.test Pearson’s Chi-square Test for Count Data chisq.test

Description

chisq.test performs chi-square tests on contingency tables.

Usage

chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)),
simulate.p.value = FALSE, B = 2000)

Arguments

x a vector or matrix.

y a vector; ignored if x is a matrix.

correct a logical indicating whether to apply continuity correction when comput-
ing the test statistic.

p a vector of probabilities of the same length of x.
simulate.p.value

a logical indicating whether to compute p-values by Monte Carlo simula-
tion.

B an integer specifying the number of replicates used in the Monte Carlo
simulation.

Details

If x is a matrix with one row or column, or if x is a vector and y is not given, x is treated
as a one-dimensional contingency table. In this case, the hypothesis tested is whether the
population probabilities equal those in p, or are all equal if p is not given.

If x is a matrix with at least two rows and columns, it is taken as a two-dimensional
contingency table, and hence its entries should be nonnegative integers. Otherwise, x and
y must be vectors or factors of the same length; incomplete cases are removed, the objects
are coerced into factor objects, and the contingency table is computed from these. Then,
Pearson’s chi-square test of the null that the joint distribution of the cell counts in a 2-
dimensional contingency table is the product of the row and column marginals is performed.
If simulate.p.value is FALSE, the p-value is computed from the asymptotic chi-square
distribution of the test statistic; continuity correction is only used in the 2-by-2 case if
correct is TRUE. Otherwise, if simulate.p.value is TRUE, the p-value is computed by
Monte Carlo simulation with B replicates. This is done by random sampling from the set of
all contingency tables with given marginals, and works only if the marginals are positive.

Value

A list with class "htest" containing the following components:

statistic the value the chi-square test statistic.

parameter the degrees of freedom of the approximate chi-square distribution of the
test statistic, NA if the p-value is computed by Monte Carlo simulation.

538 cor.test

p.value the p-value for the test.

method a character string indicating the type of test performed, and whether
Monte Carlo simulation or continuity correction was used.

data.name a character string giving the name(s) of the data.

observed the observed counts.

expected the expected counts under the null hypothesis.

Examples

data(InsectSprays) # Not really a good example

chisq.test(InsectSprays$count > 7, InsectSprays$spray)

Prints test summary

chisq.test(InsectSprays$count > 7, InsectSprays$spray)$obs

Counts observed

chisq.test(InsectSprays$count > 7, InsectSprays$spray)$obs

Counts expected under the null

Effect of simulating p-values

x <- matrix(c(12, 5, 7, 7), nc = 2)

chisq.test(x)$p.value # 0.4233

chisq.test(x, simulate.p.value = TRUE, B = 10000)$p.value

around 0.29!

Testing for population probabilities

x <- trunc(5 * runif(100))

chisq.test(table(x)) # NOT ‘chisq.test(x)’!

cor.test Test for Zero Correlation cor.test

Description

Tests whether two samples come from uncorrelated (independent) populations, using Pear-
son’s product moment correlation coefficient, Kendall’s tau, or Spearman’s rho.

Usage

cor.test(x, y,
alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"), exact = NULL)

Arguments

x, y numeric vectors of data values. x and y must have the same length.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter.

method a string indicating which correlation coefficient is used for the test. One
of "pearson", "kendall", or "spearman", can be abbreviated.

exact a logical indicating whether an exact p-value should be computed.

cor.test 539

Details

If method is "pearson", the test statistic is based on Pearson’s product moment correlation
coefficient cor(x, y) and follows a t distribution with length(x)-2 degrees of freedom.

If method is "kendall" or "spearman", Kendall’s tau or Spearman’s rho, respectively, are
used to estimate the correlation. These tests should be used if the data do not necessarily
come from a bivariate normal distribution.

For Kendall’s test, by default (if exact is not specified), an exact p-value is computed if both
samples contain less than 50 finite values and there are no ties. Otherwise, the standardized
estimate is used as the test statistic, and is approximately normally distributed.

For Spearman’s test, p-values are computed using algorithm AS 89.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the test statistic in the case that it follows a t
distribution.

p.value the p-value of the test.

estimate the estimated correlation coefficient, with names attribute "cor", "tau",
or "rho", correspoding to the method employed.

null.value the value of the correlation coefficient under the null hypothesis, hence 0.

alternative a character string describing the alternative hypothesis.

method a string indicating how the correlation was estimated

data.name a character string giving the names of the data.

References

D. J. Best & D. E. Roberts (1975), Algorithm AS 89: The Upper Tail Probabilities of
Spearman’s ρ. Applied Statistics, 24, 377–379.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 185–194 (Kendall and Spearman tests).

Examples

Hollander & Wolfe (1973), p. 187f.

Assessment of tuna quality. We compare the Hunter L measure of

lightness to the averages of consumer panel scores (recoded as

integer values from 1 to 6 and averaged over 80 such values) in

9 lots of canned tuna.

The null is that the Hunter L value is positively associated

with the panel score.

x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)

y <- c(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)

cor.test(x, y, method = "kendall", alternative = "greater")

=> p=0.05972

##

cor.test(x, y, method = "kendall", alternative = "greater",

exact = FALSE) # using large sample approximation

=> p=0.04765

Compare this to

540 fisher.test

cor.test(x, y, method = "spearm", alternative = "g")

cor.test(x, y, alternative = "g")

fisher.test Fisher’s Exact Test for Count Data fisher.test

Description

Performs Fisher’s exact test for testing the null of independence of rows and columns in a
contingency table with fixed marginals.

Usage

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
or = 1, alternative = "two.sided", conf.level = 0.95)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor
object.

y a factor object; ignored if x is a matrix.

workspace an integer specifying the size of the workspace used in the network al-
gorithm.

hybrid a logical indicating whether the exact probabilities (default) or a hybrid
approximation thereof should be computed. In the hybrid case, asymp-
totic chi-square probabilies are only used provided that the “Cochran”
conditions are satisfied.

or the hypothesized odds ratio. Only used in the 2 by 2 case.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. Only used
in the 2 by 2 case.

conf.level confidence level for the returned confidence interval. Only used in the 2
by 2 case.

Details

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries
should be nonnegative integers. Otherwise, both x and y must be vectors of the same
length. Incomplete cases are removed, the vectors are coerced into factor objects, and the
contingency table is computed from these.

In the one-sided 2 by 2 cases, p-values are obtained directly using the hypergeometric
distribution. Otherwise, computations are based on a C version of the FORTRAN sub-
routine FEXACT which implements the network developed by Mehta and Patel (1986)
and improved by Clarkson, Fan & Joe (1993). The FORTRAN code can be obtained from
http://www.netlib.org/toms/643.

In the 2 by 2 case, the null of conditional independence is equivalent to the hypothesis
that the odds ratio equals one. Exact inference can be based on observing that in general,
given all marginal totals fixed, the first element of the contingency table has a non-central
hypergeometric distribution with non-centrality parameter given by the odds ratio (Fisher,
1935).

http://www.netlib.org/toms/643

fisher.test 541

Value

A list with class "htest" containing the following components:

p.value the p-value of the test.

conf.int a confidence interval for the odds ratio. Only present in the 2 by 2 case.

estimate an estimate of the odds ratio. Note that the conditional Maximum Like-
lihood Estimate (MLE) rather than the unconditional MLE (the sample
odds ratio) is used. Only present in the 2 by 2 case.

null.value the odds ratio under the null, or. Only present in the 2 by 2 case.

alternative a character string describing the alternative hypothesis.

method the string "Fisher’s Exact Test for Count Data".

data.name a character string giving the names of the data.

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 59–66.

Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical
Society Series A 98, 39–54.

Fisher, R. A. (1962). Confidence limits for a cross-product ratio. Australian Journal of
Statistics 4, 41.

Cyrus R. Mehta & Nitin R. Patel (1986). Algorithm 643. FEXACT: A Fortran subroutine
for Fisher’s exact test on unordered r ∗ c contingency tables. ACM Transactions on Math-
ematical Software, 12, 154–161.

Douglas B. Clarkson, Yuan-an Fan & Harry Joe (1993). A Remark on Algorithm 643:
FEXACT: An Algorithm for Performing Fisher’s Exact Test in r × c Contingency Tables.
ACM Transactions on Mathematical Software, 19, 484–488.

See Also

chisq.test

Examples

Agresti (1990), p. 61f, Fisher’s Tea Drinker

A British woman claimed to be able to distinguish whether milk or

tea was added to the cup first. To test, she was given 8 cups of

tea, in four of which milk was added first. The null hypothesis

is that there is no association between the true order of pouring

and the women’s guess, the alternative that there is a positive

association (that the odds ratio is greater than 1).

TeaTasting <-

matrix(c(3, 1, 1, 3),

nr = 2,

dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))

fisher.test(TeaTasting, alternative = "greater")

=> p=0.2429, association could not be established

Fisher (1962), Convictions of like-sex twins in criminals

Convictions <-

matrix(c(2, 10, 15, 3),

nr = 2,

542 fligner.test

dimnames =

list(c("Dizygotic", "Monozygotic"),

c("Convicted", "Not convicted")))

Convictions

fisher.test(Convictions, alternative = "less")

fisher.test(Convictions, conf.level = 0.95)$conf.int

fisher.test(Convictions, conf.level = 0.99)$conf.int

fligner.test Fligner-Killeen Test for Homogeneity of Variances fligner.test

Description

Performs a Fligner-Killeen (median) test of the null that the variances in each of the groups
(samples) are the same.

Usage

fligner.test(x, g)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements
of x. Ignored if x is a list.

Details

If x is a list, its elements are taken as the samples to be compared for homogeneity of
variances, and hence have to be numeric data vectors. In this case, g is ignored, and one
can simply use fligner.test(x) to perform the test. If the samples are not yet contained
in a list, use fligner.test(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the
same length as x giving the group for the corresponding elements of x.

The Fligner-Killeen (median) test has been determined in a simulation study as one of
the many tests for homogeneity of variances which is most robust against departures from
normality, see Conover, Johnson & Johnson (1981). It is a k-sample simple linear rank
which uses the ranks of the absolute values of the centered samples and weights a(i) =
qnorm((1 + i/(n+ 1))/2). The version implemented here uses median centering in each of
the samples (F-K:med X2 in the reference).

Value

A list of class "htest" containing the following components:

statistic the Fligner-Killeen:med X2 test statistic.

parameter the degrees of freedom of the approximate chi-square distribution of the
test statistic.

p.value the p-value of the test.

method the string "Fligner-Killeen test for homogeneity of variances".

data.name a character string giving the names of the data.

friedman.test 543

References

W. J. Conover & Mark E. Johnson & Myrie M. Johnson (1981). A comparative study of
tests for homogeneity of variances, with applications to the outer continental shelf bidding
data. Technometrics 23, 351–361.

See Also

ansari.test and mood.test for rank-based two-sample test for a difference in scale para-
meters; var.test and bartlett.test for parametric tests for the homogeneity of variances.

Examples

data(InsectSprays)

plot(InsectSprays$count ~ InsectSprays$spray)

fligner.test(InsectSprays$count, InsectSprays$spray)

Compare this to bartlett.test()

friedman.test Friedman Rank Sum Test friedman.test

Description

Performs a Friedman rank sum test with unreplicated blocked data.

Usage

friedman.test(y, groups, blocks)

Arguments

y either a numeric vector of data values, or a data matrix.

groups a vector giving the group for the corresponding elements of y if this is a
vector; ignored if y is a matrix. If not a factor object, it is coerced to one.

blocks a vector giving the block for the corresponding elements of y if this is a
vector; ignored if y is a matrix. If not a factor object, it is coerced to one.

Details

friedman.test can be used for analyzing unreplicated complete block designs (i.e., there
is exactly one observation in y for each combination of levels of groups and blocks) where
the normality assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is
the same in each of the groups.

If y is a matrix, groups and blocks are obtained from the column and row indices, respect-
ively. NA’s are not allowed in groups or blocks; if y contains NA’s, corresponding blocks
are removed.

544 friedman.test

Value

A list with class "htest" containing the following components:

statistic the value of Friedman’s chi-square statistic.

parameter the degrees of freedom of the approximate chi-square distribution of the
test statistic.

p.value the p-value of the test.

method the string "Friedman rank sum test".

data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 139–146.

Examples

Hollander & Wolfe (1973), p. 140ff.

Comparison of three methods (‘‘round out’’, ‘‘narrow angle’’, and

‘‘wide angle’’) for rounding first base. For each of 18 players

and the three method, the average time of two runs from a point on

the first base line 35ft from home plate to a point 15ft short of

second base is recorded.

RoundingTimes <-

matrix(c(5.40, 5.50, 5.55,

5.85, 5.70, 5.75,

5.20, 5.60, 5.50,

5.55, 5.50, 5.40,

5.90, 5.85, 5.70,

5.45, 5.55, 5.60,

5.40, 5.40, 5.35,

5.45, 5.50, 5.35,

5.25, 5.15, 5.00,

5.85, 5.80, 5.70,

5.25, 5.20, 5.10,

5.65, 5.55, 5.45,

5.60, 5.35, 5.45,

5.05, 5.00, 4.95,

5.50, 5.50, 5.40,

5.45, 5.55, 5.50,

5.55, 5.55, 5.35,

5.45, 5.50, 5.55,

5.50, 5.45, 5.25,

5.65, 5.60, 5.40,

5.70, 5.65, 5.55,

6.30, 6.30, 6.25),

nr = 22,

byrow = TRUE,

dimnames = list(1 : 22,

c("Round Out", "Narrow Angle", "Wide Angle")))

friedman.test(RoundingTimes)

=> strong evidence against the null that the methods are equivalent

with respect to speed

data(warpbreaks)

kruskal.test 545

wb <- aggregate(warpbreaks$breaks,

by = list(w = warpbreaks$wool,

t = warpbreaks$tension),

FUN = mean)

wb

friedman.test(wbx, wbw, wb$t)

kruskal.test Kruskal-Wallis Rank Sum Test kruskal.test

Description

Performs a Kruskal-Wallis rank sum test.

Usage

kruskal.test(x, g)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements
of x. Ignored if x is a list.

Details

kruskal.test performs a Kruskal-Wallis rank sum test of the null that the location para-
meters of the distribution of x are the same in each group (sample). The alternative is that
they differ in at least one.

If x is a list, its elements are taken as the samples to be compared, and hence have to be
numeric data vectors. In this case, g is ignored, and one can simply use kruskal.test(x) to
perform the test. If the samples are not yet contained in a list, use kruskal.test(list(x,
...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the
same length as x giving the group for the corresponding elements of x.

Value

A list with class "htest" containing the following components:

statistic the Kruskal-Wallis rank sum statistic.

parameter the degrees of freedom of the approximate chi-square distribution of the
test statistic.

p.value the p-value of the test.

method the string "Kruskal-Wallis rank sum test".

data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 115–120.

546 ks.test

See Also

The Wilcoxon rank sum test (wilcox.test) as the special case for two samples; lm together
with anova for performing one-way location analysis under normality assumptions; with
Student’s t test (t.test) as the special case for two samples.

Examples

Hollander & Wolfe (1973), 116.

Mucociliary efficiency from the rate of removal of dust in normal

subjects, subjects with obstructive airway disease, and subjects

with asbestosis.

x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects

y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease

z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis

kruskal.test(list(x, y, z))

Equivalently,

x <- c(x, y, z)

g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",

"Subjects with obstructive airway disease",

"Subjects with asbestosis"))

kruskal.test(x, g)

ks.test Kolmogorov-Smirnov Tests ks.test

Description

Performs one or two sample Kolmogorov-Smirnov tests.

Usage

ks.test(x, y, ..., alternative = c("two.sided", "less", "greater"))

Arguments

x a numeric vector of data values.

y either a numeric vector of data values, or a character string naming a
distribution function.

... parameters of the distribution specified by y.

alternative indicates the alternative hypothesis and must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

Details

If y is numeric, a two sample test of the null that x and y were drawn from the same
distribution is performed.

Alternatively, y can be a character string naming a distribution function. In this case, a
one sample test of the null that the distribution function underlying x is y with parameters
specified by . . . is carried out.

Currently, no exact p-values are available. The approximation by the limiting distribution
may be inaccurate in small samples.

mantelhaen.test 547

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

References

Conover, W. J. (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 295–301 (one-sample “Kolmogorov” test), 309–314 (two-sample “Smirnov” test).

See Also

shapiro.test which performs the Shapiro-Wilk test for normality.

Examples

x <- rnorm(50)

y <- runif(30)

Do x and y come from the same distribution?

ks.test(x, y)

Does x come from a shifted gamma distribution with shape 3 and scale 2?

ks.test(x+2, "pgamma", 3, 2) # two-sided

ks.test(x+2, "pgamma", 3, 2, alternative = "gr")

mantelhaen.test Mantel-Haenszel Chi-Square Test for Count Data mantelhaen.test

Description

mantelhaen.test performs a Mantel-Haenszel chi-square test of the null that x and y are
conditionally independent in each stratum.

Usage

mantelhaen.test(x, y = NULL, z = NULL, correct = TRUE)

Arguments

x either an array of dimension 2 by 2 by s, where s is the number of strata,
or a dichotomous factor object.

y a dichotomous factor object; ignored if x is an array.

z a factor object idenitifying to which stratum the corresponding elements
in x and y belong; ignored if x is an array.

correct a logical indicating whether to apply continuity correction when comput-
ing the test statistic.

548 mcnemar.test

Details

If x is an array, it must be of dimension 2 by 2 by s, and the entries should be nonnegative
integers. NA’s are not allowed. Otherwise, x, y and z must have the same length. Triples
containing NA’s are removed. Both x and y must be dichotomous (take exactly 2 values).

Value

A list with class "htest" containing the following components:

statistic the Mantel-Haenszel chi-square statistic.

parameter always 1, the degrees of freedom of the approximate chi-square distribu-
tion of the test statistic.

p.value the p-value of the test.

method a string indicating the method employed, and whether or not continuity
correction was used.

data.name a character string giving the names of the data.

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 230–234.

Examples

data(UCBAdmissions)

mantelhaen.test(UCBAdmissions)

No evidence for association between admission and gender

when adjusted for department

mcnemar.test McNemar’s Chi-square Test for Count Data mcnemar.test

Description

Performs McNemar’s chi-square test for symmetry of rows and columns in a two-dimensional
contingency table.

Usage

mcnemar.test(x, y = NULL, correct = TRUE)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor
object.

y a factor object; ignored if x is a matrix.

correct a logical indicating whether to apply continuity correction when comput-
ing the test statistic.

mood.test 549

Details

The null is that the probabilities of being classified into cells [i,j] and [j,i] are the same.

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries
should be nonnegative integers. Otherwise, both x and y must be vectors of the same
length. Incomplete cases are removed, the vectors are coerced into factor objects, and the
contingency table is computed from these.

Continuity correction is only used in the 2-by-2 case if correct is TRUE.

Value

A list with class "htest" containing the following components:

statistic the value of McNemar’s statistic.

parameter the degrees of freedom of the approximate chi-square distribution of the
test statistic.

p.value the p-value of the test.

method a character string indicating the type of test performed, and whether
continuity correction was used.

data.name a character string giving the name(s) of the data.

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 350–354.

Examples

Agresti (1990), p. 350.

Presidential Approval Ratings.

Approval of the President’s performance in office in two surveys,

one month apart, for a random sample of 1600 voting-age Americans.

Performance <-

matrix(c(794, 86, 150, 570),

nr = 2,

dimnames = list("1st Survey" = c("Approve", "Disapprove"),

"2nd Survey" = c("Approve", "Disapprove")))

Performance

mcnemar.test(Performance)

=> very strong association between the two successive ratings

mood.test Mood Two-Sample Test of Scale mood.test

Description

Performs Mood’s two-sample test for a difference in scale parameters.

Usage

mood.test(x, y, alternative = c("two.sided", "less", "greater"))

550 mood.test

Arguments

x, y numeric vectors of data values.

alternative indicates the alternative hypothesis and must be one of "two.sided"
(default), "greater" or "less" all of which can be abbreviated.

Details

The underlying model is that the two samples are drawn from f(x− l) and f((x− l)/s)/s,
respectively, where l is a common location parameter and s is a scale parameter.

The null hypothesis is s = 1.

There are more useful tests for this problem.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method the string "Mood two-sample test of scale".

data.name a character string giving the names of the data.

References

Conover, W. J. (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 234f.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
ansari.test for another rank-based two-sample test for a difference in scale parameters;
var.test and bartlett.test for parametric tests for the homogeneity in variance.

Examples

Same data as for the Ansari-Bradley test:

Serum iron determination using Hyland control sera

ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)

jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)

mood.test(ramsay, jung.parekh)

Compare this to ansari.test(ramsay, jung.parekh)

pairwise.prop.test 551

pairwise.prop.test Pairwise comparisons of proportions pairwise.prop.test

Description

Calculate pairwise comparisons between pairs of proportions with correction for multiple
testing

Usage

pairwise.prop.test(x, n, p.adjust.method=p.adjust.methods, ...)

Arguments

x Vector of counts of successes or a matrix with 2 columns giving the counts
of successes and failures, respectively.

n Vector of counts of trials; ignored if x is a matrix.
p.adjust.method

Method for adjusting p values (see p.adjust)

... Additional arguments to pass to prop.test

Value

Object of class "pairwise.htest"

See Also

prop.test, p.adjust

Examples

smokers <- c(83, 90, 129, 70)

patients <- c(86, 93, 136, 82)

pairwise.prop.test(smokers, patients)

pairwise.t.test Pairwise t tests pairwise.t.test

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing

Usage

pairwise.t.test(x, g, p.adjust.method=p.adjust.methods, pool.sd=TRUE, ...)

552 pairwise.table

Arguments

x Response vector

g Grouping vector or factor
p.adjust.method

Method for adjusting p values (see p.adjust)

pool.sd Switch to allow/disallow the use of a pooled SD

... Additional arguments to pass to t.test

Value

Object of class "pairwise.htest"

See Also

t.test, p.adjust

Examples

data(airquality)

attach(airquality)

Month <- factor(Month, labels = month.abb[5:9])

pairwise.t.test(Ozone, Month)

pairwise.t.test(Ozone, Month, p.adj = "bonf")

pairwise.t.test(Ozone, Month, pool.sd = FALSE)

detach()

pairwise.table Tabulate p values for pairwise comparisons pairwise.table

Description

Creates table of p values for pairwise comparisons with corrections for multiple testing.

Usage

pairwise.table(compare.levels, level.names, p.adjust.method)

Arguments

compare.levels

Function to compute (raw) p value given indices i and j

level.names Names of the group levels
p.adjust.method

Method for multiple testing adjustment

Value

Table of p values in lower triangular form.

See Also

pairwise.t.test, et al.

pairwise.wilcox.test 553

pairwise.wilcox.test Pairwise Wilcoxon rank sum tests pairwise.wilcox.test

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing

Usage

pairwise.wilcox.test(x, g, p.adjust.method=p.adjust.methods, ...)

Arguments

x Response vector

g Grouping vector or factor
p.adjust.method

Method for adjusting p values (see p.adjust)

... Additional arguments to pass to t.test

Value

Object of class "pairwise.htest"

See Also

wilcox.test, p.adjust

Examples

data(airquality)

attach(airquality)

Month <- factor(Month, labels = month.abb[5:9])

pairwise.wilcox.test(Ozone, Month)

pairwise.wilcox.test(Ozone, Month, p.adj = "bonf")

detach()

power.prop.test Power calculations two sample test for of proportions power.prop.test

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.prop.test(n=NULL, p1=NULL, p2=NULL, sig.level=0.05,
power=NULL,
alternative=c("two.sided", "one.sided"))

554 power.t.test

Arguments

n Number of observations (per group)

p1 probability in one group

p2 probability in other group

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

alternative One- or two-sided test

Details

Exactly one of the parameters n, p1, p2 power, and sig.level must be passed as NULL,
and that parameter is determined from the others. Notice that sig.level has a non-NULL
default so NULL must be explicitly passed if you want it computed.

Value

Object of class power.htest, a list of the arguments (including the computed one) aug-
mented with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it,
notably about inability to bracket the root when invalid arguments are given. If one of
them is computed p1 < p2 will hold, although this is not enforced when both are specified.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

See Also

prop.test, uniroot

Examples

power.prop.test(n=50, p1=.50, p2=.75)

power.prop.test(p1=.50, p2=.75, power=.90)

power.prop.test(n=50, p1=.5, power=.90)

power.t.test Power calculations for one and two sample t tests power.t.test

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.t.test(n=NULL, delta=NULL, sd=1, sig.level=0.05, power=NULL,
type=c("two.sample", "one.sample", "paired"),
alternative=c("two.sided", "one.sided"))

print.pairwise.htest 555

Arguments

n Number of observations (per group)

delta True difference in means

sd Standard deviation

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

type Type of t test

alternative One- or two-sided test

Details

Exactly one of the parameters n, delta, power, sd, and sig.level must be passed as
NULL, and that parameter is determined from the others. Notice that the last two have
non-NULL defaults so NULL must be explicitly passed if you want to compute them.

Value

Object of class power.htest, a list of the arguments (including the computed one) aug-
mented with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it,
notably about inability to bracket the root when invalid arguments are given.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

See Also

t.test, uniroot

Examples

power.t.test(n=20, delta=1)

power.t.test(power=.90, delta=1)

power.t.test(power=.90, delta=1, alt="one.sided")

print.pairwise.htest Print method for pairwise tests print.pairwise.htest

Description

Display results of pairwise comparison procedures

Usage

print.pairwise.htest(x)

556 print.power.htest

Arguments

x Object of class "pairwise.htest"

Value

None

See Also

pairwise.t.test, et al.

print.power.htest Print method for power calculation object print.power.htest

Description

Print power.htest object in nice layout

Usage

print.power.htest(x)

Arguments

x Object of class power.htest

Details

A power.htest object is just a named list of numbers and strings, supplemented with
method and note elements. The method is displayed as a title, the note as a footnote, and
the remaining elements are given in an aligned ‘name = value’ format.

Value

none

Author(s)

Peter Dalgaard

See Also

power.t.test, power.prop.test

prop.test 557

prop.test Test for Equal or Given Proportions prop.test

Description

prop.test can be used for testing the null that the proportions (probabilities of success)
in several groups are the same, or that they equal certain given values.

Usage

prop.test(x, n = NULL, p = NULL, c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

Arguments

x a vector of counts of successes or a matrix with 2 columns giving the
counts of successes and failures, respectively.

n a vector of counts of trials; ignored if x is a matrix.

p a vector of probabilities of success. The length of p must be the same
as the number of groups specified by x, and its elements must be greater
than 0 and less than 1.

alternative the alternative hypothesis; must be one of "two.sided" (default),
"greater" or "less" and can be abbreviated by the initial letter. Only
used for testing the null that a single proportion equals a given value, or
that two proportions are equal; ignored otherwise.

conf.level confidence level of the returned confidence interval. Must be a single
number between 0 and 1. Only used when testing the null that a single
proportion equals a given value, or that two proportions are equal; ignored
otherwise.

correct a logical indicating whether Yates’ continuity correction should be applied.

Details

Only groups with finite numbers of successes and failures are used. Counts of successes
and failures must be nonnegative and hence not greater than the corresponding numbers of
trials which must be positive. All finite counts should be integers.

If p is NULL and there is more than one group, the null tested is that the proportions in
each group are the same. If there are two groups, the alternatives are that the probability
of success in the first group is less than, not equal to, or greater than the probability of
success in the second group, as specified by alternative. A confidence interval for the
difference of proportions with confidence level as specified by conf.level and clipped to
[−1, 1] is returned. Continuity correction is used only if it does not exceed the difference of
the sample proportions in absolute value. Otherwise, if there are more than 2 groups, the
alternative is always "two.sided", the returned confidence interval is NULL, and continuity
correction is never used.

If there is only one group, then the null tested is that the underlying probability of success
is p, or .5 if p is not given. The alternative is that the probability of success if less than, not
equal to, or greater than p or 0.5, respectively, as specified by alternative. A confidence
interval for the underlying proportion with confidence level as specified by conf.level and

558 shapiro.test

clipped to [0, 1] is returned. Continuity correction is used only if it does not exceed the
difference between sample and null proportions in absolute value.

Finally, if p is given and there are more than 2 groups, the null tested is that the underlying
probabilities of success are those given by p. The alternative is always "two.sided", the
returned confidence interval is NULL, and continuity correction is never used.

Value

A list with class "htest" containing the following components:

statistic the value of Pearson’s chi-square test statistic.

parameter the degrees of freedom of the approximate chi-square distribution of the
test statistic.

p.value the p-value of the test.

estimate a vector with the sample proportions x/n.

conf.int a confidence interval for the true proportion if there is one group, or for
the difference in proportions if there are 2 groups and p is not given, or
NULL otherwise. In the cases where it is not NULL, the returned confidence
interval has an asymptotic confidence level as specified by conf.level,
and is appropriate to the specified alternative hypothesis.

null.value the value of p if specified by the null, or NULL otherwise.

alternative a character string describing the alternative.

method a character string indicating the method used, and whether Yates’ con-
tinuity correction was applied.

data.name a character string giving the names of the data.

Examples

heads <- rbinom(1, size=100, pr = .5)

prop.test(heads, 100) # continuity correction TRUE by default

prop.test(heads, 100, correct = FALSE)

Data from Fleiss (1981), p. 139.

H0: The null hypothesis is that the four populations from which

the patients were drawn have the same true proportion of smokers.

A: The alternative is that this proportion is different in at

least one of the populations.

smokers <- c(83, 90, 129, 70)

patients <- c(86, 93, 136, 82)

prop.test(smokers, patients)

shapiro.test Shapiro-Wilk Normality Test shapiro.test

Description

Performs the Shapiro-Wilk test for normality.

t.test 559

Usage

shapiro.test(x)

Arguments

x a numeric vector of data values, the number of which must be between 3
and 5000. Missing values are allowed.

Value

A list with class "htest" containing the following components:

statistic the value of the Shapiro-Wilk statistic.

p.value the p-value for the test.

method the string "Shapiro-Wilk normality test".

data.name a character string giving the name(s) of the data.

References

Patrick Royston (1982) An Extension of Shapiro and Wilk’s W Test for Normality to Large
Samples. Applied Statistics, 31, 115–124.

Patrick Royston (1982) Algorithm AS 181: The W Test for Normality. Applied Statistics,
31, 176–180.

Patrick Royston (1995) A Remark on Algorithm AS 181: TheW Test for Normality. Applied
Statistics, 44, 547–551.

See Also

qqnorm for producing a normal quantile-quantile plot.

Examples

shapiro.test(rnorm(100, mean = 5, sd = 3))

shapiro.test(runif(100, min = 2, max = 4))

t.test Student’s t-Test t.test

Description

t.test performs one and two sample t-tests on vectors of data.

Usage

t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95)

560 t.test

Arguments

x a numeric vector of data values.

y an optional numeric vector data values.

alternative character specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the
initial letter.

mu a number indicating the true value of the mean (or difference in means if
you are performing a two sample test).

paired a logical indicating whether you want a paired t-test.

var.equal a logical variable indicating whether to treat the two variances as being
equal. If TRUE then the pooled variance is used to estimate the variance
otherwise the Welch approximation to the degrees of freedom is used.

conf.level confidence level of the interval.

Details

If paired is TRUE then both x and y must be specified and they must be the same length.
Missing values are removed (in pairs if paired is TRUE). If var.equal is TRUE then the pooled
estimate of the variance is used. By default, if var.equal is FALSE then the variance is
estimated separately for both groups and the Welch modification to the degrees of freedom
is used.

Value

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameters the degrees of freedom for the t-statistic.

p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alternative
hypothesis.

estimate the estimated mean or difference in means depending on whether it was
a one-sample test or a two-sample test.

null.value the specified hypothesized value of the mean or mean difference depending
on whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.

data.name a character string giving the name(s) of the data.

Examples

t.test(1:10,y=c(7:20)) # P = .00001855

t.test(1:10,y=c(7:20, 200)) # P = .1245 -- NOT significant anymore

var.test 561

var.test F Test to Compare Two Variances var.test

Description

Performs an F test to compare the variances of two samples from normal populations.

Usage

var.test(x, y, ratio = 1, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

Arguments

x, y numeric vectors of data values, or fitted linear model objects (inheriting
from class "lm").

ratio the hypothesized ratio of the population variances of x and y.

alternative the alternative hypothesis; must be one of "two.sided" (default),
"greater" or "less". You can specify just the initial letter.

conf.level confidence level for the returned confidence interval.

Details

The null hypothesis is that the ratio of the variances of the populations from which x and
y were drawn, or in the data to which the linear models x and y were fitted, is equal to
ratio.

Value

A list with class "htest" containing the following components:

statistic the value of the F test statistic.

parameter the degrees of the freedom of the F distribtion of the test statistic.

p.value the p-value of the test.

conf.int a confidence interval for the ratio of the population variances.

estimate the ratio of the sample variances of x and y.

null.value the ratio of population variances under the null.

alternative a character string describing the alternative hypothesis.

method the string "F test to compare two variances".

data.name a character string giving the names of the data.

See Also

bartlett.test for testing homogeneity of variances in more than two samples from normal
distributions; ansari.test and mood.test for two rank based (nonparametric) two-sample
tests for difference in scale.

562 wilcox.test

Examples

x <- rnorm(50, mean = 0, sd = 2)

y <- rnorm(30, mean = 1, sd = 1)

var.test(x, y) # Do x and y have the same variance?

var.test(lm(x ~ 1), lm(y ~ 1)) # The same.

wilcox.test Wilcoxon Rank Sum and Signed Rank Tests wilcox.test

Description

Performs one and two sample Wilcoxon tests on vectors of data.

Usage

wilcox.test(x, y = NULL, alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE)

Arguments

x numeric vector of data values.

y an optional numeric vector of data values.

alternative the alternative hypothesis must be one of "two.sided" (default),
"greater" or "less". You can specify just the initial letter.

mu a number specifying an optional location parameter.

paired a logical indicating whether you want a paired test.

exact a logical indicating whether an exact p-value should be computed.

correct a logical indicating whether to apply continuity correction in the normal
approximation for the p-value.

Details

If only x is given, or if both x and y are given and paired is TRUE, a Wilcoxon signed rank
test of the null that the median of x (in the one sample case) or of x-y (in the paired two
sample case) equals mu is performed.

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum test
(equivalent to the Mann-Whitney test) is carried out. In this case, the null hypothesis is
that the location of the distributions of x and y differ by mu.

By default (if exact is not specified), an exact p-value is computed if the samples contain
less than 50 finite values and there are no ties. Otherwise, a normal approximation is used.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic with a name describing it.

parameter the parameter(s) for the exact distribution of the test statistic.

p.value the p-value for the test.

null.value the location parameter mu.

wilcox.test 563

alternative a character string describing the alternative hypothesis.

method the type of test applied.

data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample).

See Also

kruskal.test for testing homogeneity in location parameters in the case of two or more
samples; t.test for a parametric alternative under normality assumptions.

Examples

One-sample test.

Hollander & Wolfe (1973), 29f.

Hamilton depression scale factor measurements in 9 patients with

mixed anxiety and depression, taken at the first (x) and second

(y) visit after initiation of a therapy (administration of a

tranquilizer).

x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)

y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

wilcox.test(x, y, paired = TRUE, alternative = "greater")

wilcox.test(y - x, alternative = "less") # The same.

wilcox.test(y - x, alternative = "less",

exact = FALSE, correct = FALSE) # H&W large sample

approximation

Two-sample test.

Hollander & Wolfe (1973), 69f.

Permeability constants of the human chorioamnion (a placental

membrane) at term (x) and between 12 to 26 weeks gestational

age (y). The alternative of interest is greater permeability

of the human chorioamnion for the term pregnancy.

x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)

y <- c(1.15, 0.88, 0.90, 0.74, 1.21)

wilcox.test(x, y, alternative = "g")# greater

wilcox.test(x, y, alternative = "greater",

exact = FALSE, correct = FALSE) # H&W large sample

approximation

564 wilcox.test

Chapter 3

The eda package

line Robust Line Fitting line

Description

This function fits a line robustly as recommended in Exploratory Data Analysis.

Usage

line(x, y)

coefficients(tukeyline.obj)
residuals(tukeyline.obj)
fitted.values(tukeyline.obj)
print(tukeyline.obj)

Arguments

x,y the arguments can be any way of specifying x-y pairs.

Value

An object of class tukeyline.

Methods are available for the generic functions coefficients, residuals, fitted.values,
and print.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

lm.

565

566 medpolish

Examples

library(eda)

data(cars)

plot(cars)

z <- line(cars)

abline(coef(z))

medpolish Median Polish of a Matrix medpolish

Description

Fits an additive model using Tukey’s median polish procedure.

Usage

medpolish(x, eps = 0.01, maxiter = 10, trace.iter = TRUE)

plot(medpolish.obj)
print(medpolish.obj)

Arguments

x a numeric matrix.

eps real number greater than 0. A tolerance for convergence: see Details.

maxiter the maximum number of iterations

trace.iter logical. Should progress in convergence be reported?

medpolish.obj object of class medpolish.

Details

The model fitted is additive (constant + rows + columns). The algorithm works by altern-
ately removing the row and column medians, and continues until the proportional reduction
in the sum of absolute residuals is less than eps or until there have been maxiter itera-
tions. The sum of absolute residuals is printed at each iteration of the fitting process, if
trace.iter is TRUE.

medpolish returns an object of class medpolish (see below). There are printing and plotting
methods for this class, which are invoked via by the generics print and plot.

Value

An object of class medpolish with the following named components:

overall the fitted constant term.

row the fitted row effects.

col the fitted column effects.

residuals the residuals.

name the name of the dataset.

smooth 567

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

median; aov for a mean instead of median decomposition.

Examples

Deaths from sport parachuting; from ABC of EDA, p.224:

deaths <-

rbind(c(14,15,14),

c(7, 4, 7),

c(8, 2,10),

c(15, 9,10),

c(0, 2, 0))

dimnames(deaths) <- list(c("1-24", "25-74", "75-199", "200++", "NA"),

paste(1973:1975))

deaths

(med.d <- medpolish(deaths))

plot(med.d)

Check decomposition:

all(deaths == med.d$overall + outer(med.d$row,med.d$col, "+") + med.d$resid)

smooth Median Smoothing smooth

Description

This function applies Tukey’s smoothing method 3RSR to x.

Usage

smooth(x)

Arguments

x a vector or time series

Value

A vector or time series containing the smoothed values. Note that there are other smoothing
methods which provide rather better results. This one was designed for hand calculations.

Note

3R stands for Repeated running medians of 3.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

568 smooth

See Also

lowess; loess, supsmu and smooth.spline in package ‘modreg’.

Examples

library(eda)

data(presidents)

presidents[is.na(presidents)] <- 0

plot(presidents)

lines(smooth(presidents))

Chapter 4

The lqs package

cov.rob Resistant Estimation of Multivariate Location and
Scatter

cov.rob

Description

Compute a multivariate location and scale estimate with a high breakdown point – this can
be thought of as estimating the mean and covariance of the good part of the data. cov.mve
and cov.mcd are compatibility wrappers.

Usage

cov.rob(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
method = c("mve", "mcd", "classical"), nsamp = "best", seed)

cov.mve(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
nsamp = "best", seed)

cov.mcd(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
nsamp = "best", seed)

Arguments

x a matrix or data frame.

cor should the returned result include a correlation matrix?

quantile.used the minimum number of the data points regarded as good points.

method the method to be used – minimum volume ellipsoid, minimum covariance
determinant or classical product-moment. Using cov.mve or cov.mcd
forces mve or mcd respectively.

nsamp the number of samples or "best" or "exact" or "sample". If "sample"
the number chosen is min(5*p, 3000), taken from Rousseeuw and Hubert
(1997). If "best" exhaustive enumeration is done up to 5000 samples:
if "exact" exhaustive enumeration will be attempted however many
samples are needed.

seed the seed to be used for random sampling: see RNGkind. The current value
of .Random.seed will be preserved if it is set.

569

570 cov.rob

Details

For method "mve", an approximate search is made of a subset of size quantile.used with
an enclosing ellipsoid of smallest volume; in method "mcd" it is the volume of the Gaussian
confidence ellipsoid, equivalently the determinant of the classical covariance matrix, that
is minimized. The mean of the subset provides a first estimate of the location, and the
rescaled covariance matrix a first estimate of scatter. The Mahalanobis distances of all
the points from the location estimate for this covariance matrix are calculated, and those
points within the 97.5% point under Gaussian assumptions are declared to be good. The
final estimates are the mean and rescaled covariance of the good points.

The rescaling is by the appropriate percentile under Gaussian data; in addition the first
covariance matrix has an ad hoc finite-sample correction given by Marazzi.

For method "mve" the search is made over ellipsoids determined by the covariance matrix
of p of the data points. For method "mcd" an additional improvement step suggested by
Rousseeuw and van Driessen (1997) is used, in which once a subset of size quantile.used
is selected, an ellipsoid based on its covariance is tested (as this will have no larger a
determinant, and may be smaller).

Value

A list with components

center the final estimate of location.

cov the final estimate of scatter.

cor (only is cor = TRUE) the estimate of the correlation matrix.

sing message giving number of singular samples out of total

crit the value of the criterion on log scale. For MCD this is the determinant,
and for MVE it is proportional to the volume.

best the subset used. For MVE the best sample, for MCD the best set of size
quantile.used.

n.obs total number of observations.

Author(s)

B.D. Ripley

References

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley.

A. Marazzi (1993) Algorithms, Routines and S Functions for Robust Statistics. Wadsworth
and Brooks/Cole.

P. J. Rousseeuw and B. C. van Zomeren (1990) Unmasking multivariate outliers and leverage
points, Journal of the American Statistical Association, 85, 633–639.

P. J. Rousseeuw and K. van Driessen (1997) A fast algorithm for the minimum covari-
ance determinant estimator. Technical Report, Department of Mathematics and Computer
Science, Universitaire Instelling Antwerpen.

P. Rousseeuw and M. Hubert (1997) Recent developments in PROGRESS. In L1-Statistical
Procedures and Related Topics ed Y. Dodge, IMS Lecture Notes volume 31, pp. 201–214.

lqs 571

See Also

lqs

Examples

data(stackloss)

.Random.seed <- 1:4

cov.rob(stackloss)

cov.rob(stack.x, method = "mcd", nsamp = "exact")

lqs Resistant Regression lqs

Description

Fit a regression to the good points in the dataset, thereby achieving a regression estimator
with a high breakdown point. lmsreg and ltsreg are compatibility wrappers.

Usage

lqs(x, ...)
lqs.formula(formula, data = NULL, ...,

method = c("lts", "lqs", "lms", "S", "model.frame"),
subset, na.action = na.fail, model = TRUE,
x = FALSE, y = FALSE, contrasts = NULL)

lqs.default(x, y, intercept, method = c("lts", "lqs", "lms", "S"),
quantile, control = lqs.control(...), k0 = 1.548, seed, ...)

lmsreg(...)
ltsreg(...)

Arguments

formula a formula of the form y ˜ x1 + x2 + ...{}{}.

data data frame from which variables specified in formula are preferentially to
be taken.

subset An index vector specifying the cases to be used in fitting. (NOTE: If
given, this argument must be named exactly.)

na.action A function to specify the action to be taken if NAs are found. The default
action is for the procedure to fail. An alternative is na.omit, which leads
to omission of cases with missing values on any required variable. (NOTE:
If given, this argument must be named exactly.)

x a matrix or data frame containing the explanatory variables.

y the response: a vector of length the number of rows of x.

intercept should the model include an intercept?

method the method to be used. model.frame returns the model frame: for the
others see the Details section. Using lmsreg or ltsreg forces "lms" and
"lts" respectively.

quantile the quantile to be used: see Details. This is over-ridden if method =
"lms".

572 lqs

control additional control items: see Details.

seed the seed to be used for random sampling: see .Random.seed. The current
value of .Random.seed will be preserved if it is set..

... arguments to be passed to lqs.default or lqs.control.

Details

Suppose there are n data points and p regressors, including any intercept.

The first three methods minimize some function of the sorted squared residuals. For meth-
ods "lqs" and "lms" is the quantile squared residual, and for "lts" it is the sum of the
quantile smallest squared residuals. "lqs" and "lms" differ in the defaults for quantile,
which are floor((n+p+1)/2) and floor((n+1)/2) respectively. For "lts" the default is
floor(n/2) + floor((p+1)/2).

The "S" estimation method solves for the scale s such that the average of a function chi of
the residuals divided by s is equal to a given constant.

The control argument is a list with components:

psamp: the size of each sample. Defaults to p.

nsamp: the number of samples or "best" or "exact" or "sample". If "sample" the number
chosen is min(5*p, 3000), taken from Rousseeuw and Hubert (1997). If "best" exhaust-
ive enumeration is done up to 5000 samples: if "exact" exhaustive enumeration will be
attempted however many samples are needed.

adjust: should the intercept be optimized for each sample?

Value

An object of class "lqs".

Note

There seems no reason other than historical to use the lms and lqs options. LMS estim-
ation is of low efficiency (converging at rate n−1/3) whereas LTS has the same asymptotic
efficiency as an M estimator with trimming at the quartiles (Marazzi, 1993, p.201). LQS
and LTS have the same maximal breakdown value of (floor((n-p)/2) + 1)/n attained if
floor((n+p)/2) <= quantile <= floor((n+p+1)/2). The only drawback mentioned of
LTS is greater computation, as a sort was thought to be required (Marazzi, 1993, p.201)
but this is not true as a partial sort can be used (and is used in this implementation).

Adjusting the intercept for each trial fit does need the residuals to be sorted, and may be
significant extra computation if n is large and p small.

Opinions differ over the choice of psamp. Rousseeuw and Hubert (1997) only consider p;
Marazzi (1993) recommends p+1 and suggests that more samples are better than adjust-
ment for a given computational limit.

The computations are exact for a model with just an intercept and adjustment, and for LQS
for a model with an intercept plus one regressor and exhaustive search with adjustment.
For all other cases the minimization is only known to be approximate.

Author(s)

B.D. Ripley

predict.lqs 573

References

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley.

A. Marazzi (1993) Algorithms, Routines and S Functions for Robust Statistics. Wadsworth
and Brooks/Cole.

P. Rousseeuw and M. Hubert (1997) Recent developments in PROGRESS. In L1-Statistical
Procedures and Related Topics, ed Y. Dodge, IMS Lecture Notes volume 31, pp. 201–214.

See Also

predict.lqs

Examples

data(stackloss)

.Random.seed <- 1:4

lqs(stack.loss ~ ., data = stackloss)

lqs(stack.loss ~ ., data = stackloss, method = "S", nsamp = "exact")

predict.lqs Predict from an lqs Fit predict.lqs

Description

Predict from an resistant regression fitted by lqs.

Usage

predict.lqs(object, newdata)

Arguments

object object inheriting from class lqs

newdata matrix or data frame of cases to be predicted or, if object has a formula,
a data frame with columns of the same names as the variables used. A
vector will be interpreted as a row vector. If newdata is missing, an
attempt will be made to retrieve the data used to fit the lqs object.

Details

This function is a method for the generic function predict() for class lqs. It can be
invoked by calling predict(x) for an object x of the appropriate class, or directly by
calling predict.lqs(x) regardless of the class of the object.

Missing values in newdata are handled by returning NA if the linear discriminants cannot
be evaluated. If newdata is omitted and the na.action of the fit omitted cases, these will
be omitted on the prediction.

Value

A vector of predictions.

574 predict.lqs

Author(s)

B.D. Ripley

See Also

lqs

Examples

data(stackloss)

.Random.seed <- 1:4

fm <- lqs(stack.loss ~ ., data = stackloss, method = "S", nsamp = "exact")

predict(fm, stackloss)

Chapter 5

The modreg package

ksmooth Kernel Regression Smoother ksmooth

Description

The Nadaraya-Watson kernel regression estimate.

Usage

ksmooth(x, y, kernel = c("box", "normal"), bandwidth = 0.5,
range.x = range(x), n.points = max(100, length(x)), x.points)

Arguments

x input x values

y input y values

kernel The kernel to be used.

bandwidth the bandwidth. The kernels are scaled so that their quartiles (viewed as
probability densities) are at +/-0.25*bandwidth.

range.x the range of points to be covered in the output.

n.points the number of points at which to evaluate the fit.

x.points points at which to evaluate the smoothed fit. If missing, n.points are
chosen uniformly to cover range.x.

Value

A list with components

x values at which the smoothed fit is evaluated. Guaranteed to be in in-
creasing order.

y fitted values corresponding to x.

Note

This function is implemented purely for compatibility with S, although it is nowhere near
as slow as the S function. Better kernel smoothers are available in other packages.

575

576 loess

Author(s)

B. D. Ripley

Examples

data(cars)

attach(cars)

plot(speed, dist)

lines(ksmooth(speed, dist, "normal", bandwidth=2), col=2)

lines(ksmooth(speed, dist, "normal", bandwidth=5), col=3)

lines(ksmooth(speed, dist, "normal", bandwidth=10), col=4)

loess Local Polynomial Regression Fitting loess

Description

Fit a polynomial surface determined by one or more numerical predictors, using local fitting.

Usage

loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
control = loess.control(...), ...)

Arguments

formula a formula specifying the response and one or more numeric predictors
(best specified via an interaction, but can also be specified additively).

data an optional data frame within which to look first for the response, pre-
dictors and weights.

weights optional weights for each case.

subset an optional specification of a subset of the data to be used.

na.action the action to be taken with missing values in the response or predictors.
The default is to stop.

model should the model frame be returned?

span the parameter α which controls the degree of smoothing.

enp.target an alternative way to specify span, as the approximate equivalent number
of parameters to be used.

degree the degree of the polynomials to be used, up to 2.

parametric should any terms be fitted globally rather than locally? Terms can be
specified by name, number or as a logical vector of the same length as the
number of predictors.

drop.square for fits with more than one predictor and degree=2, should the quadratic
term (and cross-terms) be dropped for particular predictors? Terms are
specified in the same way as for parametric.

loess 577

normalize should the predictors be normalized to a common scale if there is more
than one? The normalization used is to set the 10% trimmed standard
deviation to one. Set to false for spatial coordinate predictors and others
know to be a common scale.

family if "gaussian" fitting is by least-squares, and if "symmetric" a re-
descending M estimator is used with Tukey’s biweight function.

method fit the model or just extract the model frame.

control control parameters: see loess.control.

... control parameters can also be supplied directly.

Details

Fitting is done locally. That is, for the fit at point x, the fit is made using points in a neigh-
bourhood of x, weighted by their distance from x (with differences in ‘parametric’ variables
being ignored when computing the distance). The size of the neighbourhood is controlled
by α (set by span or enp.target). For α < 1, the neighbourhood includes proportion α of
the points, and these have tricubic weighting (proportional to (1 − (dist/maxdist)3)3. For
α > 1, all points are used, with the ‘maximum distance’ assumed to be α times the actual
maximum distance.

For the default family, fitting is by (weighted) least squares. For family="symmetric" a
few iterations of an M-estimation procedure with Tukey’s biweight are used. Be aware that
as the initial value is the least-squares fit, this need not be a very resistant fit.

It can be important to tune the control list to achieve acceptable speed. See loess.control
for details.

Value

An object of class "loess".

Note

As this is based on the cloess package available at netlib, it is similar to but not identical
to the loess function of S. In particular, conditioning is not implemented.

The memory usage of this implementation of loess is roughly quadratic in the number of
points, with 1000 points taking about 10Mb.

Author(s)

B.D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu.

References

W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression models. Chapter 8 of
Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.

See Also

loess.control, predict.loess

578 loess.control

Examples

data(cars)

cars.lo <- loess(dist ~ speed, cars)

predict(cars.lo, data.frame(speed=seq(5, 30, 1)), se=TRUE)

to get extrapolation

cars.lo2 <- loess(dist ~ speed, cars,

control=loess.control(surface="direct"))

predict(cars.lo2, data.frame(speed=seq(5, 30, 1)), se=TRUE)

loess.control Set Parameters for Loess loess.control

Description

Set control parameters for loess fits.

Usage

loess.control(surface = c("interpolate", "direct"),
statistics = c("approximate", "exact"),
trace.hat = c("exact", "approximate"),
cell = 0.2, iterations = 4, ...)

Arguments

surface should be fitted surface be computed exactly or via interpolation from a
kd tree?

statistics should the statistics be computed exactly or approximately? Exact com-
putation can be very slow.

trace.hat should the trace of the smoother matrix be computed exactly or approx-
imately. It is recommended to use the approximation for more than about
1000 data points.

cell if interpolation is used this controls the accuracy of the approximation
via the maximum number of points in a cell in the kd tree. Cells with
more than floor(n*span*cell) points are subdivided.

iterations the number of iterations used in robust fitting.

Value

A list with components

surface

statistics

trace.hat

cell

iterations

Author(s)

B.D. Ripley

modreg-internal 579

See Also

loess

modreg-internal Internal modreg functions modreg-internal

Description

Internal modreg functions.

Usage

predLoess(y, x, newx, s, weights, robust, span, degree, normalize,
parametric, drop.square, surface, cell, family, kd, divisor,
se = F)

simpleLoess(y, x, weights, span = 0.75, degree = 2, parametric = FALSE,
drop.square = FALSE, normalize = TRUE, statistics = "approximate",
surface = "interpolate", cell = 0.2, iterations = 1,
trace.hat = "exact")

pointwise(results, coverage)

Details

These are not to be called by the user.

plot.ppr Plot Ridge Functions for Projection Pursuit Regression
Fit

plot.ppr

Description

Plot ridge functions for projection pursuit regression fit.

Usage

plot.ppr(fit, ask, type = "o", ...)

Arguments

fit A fit of class "ppr" as produced by a call to ppr.

ask the graphics parameter ask: see par for details. If set to TRUE will ask
between the plot of each cross-section.

type the type of line to draw

... further graphical parameters

Value

None

Side Effects

A series of plots are drawn on the current graphical device, one for each term in the fit.

580 ppr

See Also

ppr, par

Examples

data(rock)

attach(rock)

area1 <- area/10000; peri1 <- peri/10000

par(mfrow=c(3,2))# maybe: , pty="s")

rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)

plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")

plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")

plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")

ppr Projection Pursuit Regression ppr

Description

Fit a projection pursuit regression model.

Usage

ppr(formula, data = sys.parent(), weights,
subset, na.action, contrasts = NULL,
ww = rep(1,q), nterms, max.terms=nterms, optlevel = 2,
sm.method = c("supsmu", "spline", "gcvspline"),
bass = 0, span = 0, df = 5, gcvpen = 1)

ppr(x, y, weights = rep(1,n),
ww = rep(1,q), nterms, max.terms = nterms, optlevel = 2,
sm.method = c("supsmu", "spline", "gcvspline"),
bass = 0, span = 0, df = 5, gcvpen = 1)

Arguments

formula a regression formula specifying one or more response variables and the
explanatory variables.

x matrix of explanatory variables. Rows represent observations, and
columns represent variables. Missing values are not accepted.

nterms number of terms to include in the final model.

data Data frame from which variables specified in formula are preferentially
to be taken.

weights a vector of weights for each case.

ww a vector of weights for each response, so the fit criterion is the sum over
case i and responses j of w_i ww_j (y_ij - fit_ij) 2̂ divided by the
sum of w_i.

subset An index vector specifying the cases to be used in the training sample.
(NOTE: If given, this argument must be named.)

ppr 581

na.action A function to specify the action to be taken if NAs are found. The default
action is for the procedure to fail. An alternative is na.omit, which leads
to rejection of cases with missing values on any required variable. (NOTE:
If given, this argument must be named.)

contrasts the contrasts to be used when any factor explanatory variables are coded.

max.terms maximum number of terms to choose from when building the model.

optlevel integer from 0 to 3 which determines the thoroughness of an optimization
routine in the SMART program. See the Details section.

sm.method the method used for smoothing the ridge functions. The default is to
use Friedman’s super smoother supsmu. The alternatives are to use the
smoothing spline code underlying smooth.spline, either with a specified
(equivalent) degrees of freedom for each ridge functions, or to allow the
smoothness to be chosen by GCV.

bass super smoother bass tone control used with automatic span selection (see
supsmu); the range of values is 0 to 10, with larger values resulting in
increased smoothing.

span super smoother span control (see supsmu). The default, 0, results in
automatic span selection by local cross validation. span can also take a
value in (0, 1].

df if sm.method is "spline" specifies the smoothness of each ridge term via
the requested equivalent degrees of freedom.

gcvpen if sm.method is "gcvspline" this is the penalty used in the GCV selection
for each degree of freedom used.

Details

The basic method is given by Friedman (1984), and is essentially the same code used by
S-PLUS’s ppreg. This code is extremely sensitive to the compiler used.

The algorithm first adds up to max.terms ridge terms one at a time; it will use less if it
is unable to find a term to add that makes sufficient difference. It then removes the least
”important” term at each step until nterm terms are left.

The levels of optimization (argument optlevel) differ in how thoroughly the models are
refitted during this process. At level 0 the existing ridge terms are not refitted. At level 1 the
projection directions are not refitted, but the ridge functions and the regression coefficients
are. Levels 2 and 3 refit all the terms and are equivalent for one response; level 3 is more
careful to re-balance the contributions from each regressor at each step and so is a little
less likely to converge to a saddle point of the sum of squares criterion.

Value

A list with the following components, many of which are for use by the method functions.

call the matched call

p the number of explanatory variables (after any coding)

q the number of response variables

ml the argument max.terms

gof the overall residual (weighted) sum of squares for the selected model

gofn the overall residual (weighted) sum of squares against the number of
terms, up to max.terms. Will be invalid (and zero) for less than nterms.

582 ppr

df the argument df

edf if sm.method is "spline" or "gcvspline" the equivalent number of de-
grees of freedom for each ridge term used.

xnames the names of the explanatory variables

ynames the names of the response variables

alpha a matrix of the projection directions, with a column for each ridge term

beta a matrix of the coefficients applied for each response to the ridge terms:
the rows are the responses and the columns the ridge terms

yb the weighted means of each response

ys the overall scale factor used: internally the responses are divided by ys
to have unit total weighted sum of squares.

fitted.values the fitted values, as a matrix if q > 1

residuals the residuals, as a matrix if q > 1

smod internal work array, which includes the ridge functions evaluated at the
training set points.

References

Friedman, J. H. and Stuetzle, W. (1981) Projection pursuit regression. Journal of the
American Statistical Association, 76, 817–823.

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics,
Stanford University Technical Report No. 1.

See Also

plot.ppr, supsmu, smooth.spline

Examples

Note: your numerical values may differ

data(rock)

attach(rock)

area1 <- area/10000; peri1 <- peri/10000

rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)

rock.ppr

Call:

ppr.formula(formula = log(perm) ~ area1 + peri1 + shape, data = rock,

nterms = 2, max.terms = 5)

#

Goodness of fit:

2 terms 3 terms 4 terms 5 terms

8.737806 5.289517 4.745799 4.490378

summary(rock.ppr)

..... (same as above)

.....

#

Projection direction vectors:

term 1 term 2

area1 0.34357179 0.37071027

peri1 -0.93781471 -0.61923542

predict.loess 583

shape 0.04961846 0.69218595

#

Coefficients of ridge terms:

term 1 term 2

1.6079271 0.5460971

par(mfrow=c(3,2))# maybe: , pty="s")

plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")

plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")

plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")

predict.loess Predict Loess Curve or Surface predict.loess

Description

Predictions from a loess fit, optionally with standard errors.

Usage

predict.loess(object, newdata = NULL, se = FALSE)

Arguments

object an object fitted by loess.

newdata an optional data frame specifying points at which to do the predictions.
If missing, the original data points are used.

se should standard errors be computed?

Details

The standard errors calculation is slower than prediction.

When the fit was made using surface="interpolate" (the default), predict.loess will
not extrapolate – so points outside an axis-aligned hypercube enclosing the original data
will have missing (NA) predictions and standard errors.

Value

If se = FALSE, a vector giving the prediction for each row of newdata (or the original data).
If se = TRUE, a list containing components

fit the predicted values.

se an estimated standard error for each predicted value.
residual.scale

the estimated scale of the residuals used in computing the standard errors.

df an estimate of the effective degrees of freedom used in estimating the
residual scale, intended for use with t-based confidence intervals.

Author(s)

B.D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu.

584 predict.smooth.spline

See Also

loess

Examples

data(cars)

cars.lo <- loess(dist ~ speed, cars)

predict(cars.lo, data.frame(speed=seq(5, 30, 1)), se=TRUE)

to get extrapolation

cars.lo2 <- loess(dist ~ speed, cars,

control=loess.control(surface="direct"))

predict(cars.lo2, data.frame(speed=seq(5, 30, 1)), se=TRUE)

predict.smooth.spline Predict from Smoothing Spline Fit predict.smooth.spline

Description

Predict a smoothing spline fit at new points, return the derivative if desired. The predicted
fit is linear beyond the original data.

Usage

predict.smooth.spline(object, x, deriv = 0)

Arguments

object a fit from smooth.spline.

x the new values of x.

deriv integer; the order of the derivative required.

Value

A list with components

x The input x.

y The fitted values or derivatives at x.

Author(s)

B.D. Ripley

See Also

smooth.spline

rock 585

Examples

data(cars)

attach(cars)

cars.spl <- smooth.spline(speed, dist, df=6.4)

"Proof" that the derivatives are okay, by comparing with approximation

diff.quot <- function(x,y) {

Difference quotient (central differences where available)

n <- length(x); i1 <- 1:2; i2 <- (n-1):n

c(diff(y[i1]) / diff(x[i1]), (y[-i1] - y[-i2]) / (x[-i1] - x[-i2]),

diff(y[i2]) / diff(x[i2]))

}

xx <- unique(sort(c(seq(0,30, by = .2), kn <- unique(speed))))

i.kn <- match(kn, xx)# indices of knots within xx

op <- par(mfrow = c(2,2))

plot(speed, dist, xlim = range(xx), main = "Smooth.spline & derivatives")

lines(pp <- predict(cars.spl, xx), col = "red")

points(kn, pp$y[i.kn], pch = 3, col="dark red")

mtext("s(x)", col = "red")

for(d in 1:3){

n <- length(pp$x)

plot(pp$x, diff.quot(pp$x,pp$y), type = ’l’, xlab="x", ylab="",

col = "blue", col.main = "red",

main= paste("s",paste(rep("’",d), collapse=""),"(x)", sep=""))

mtext("Difference quotient approx.(last)", col = "blue")

lines(pp <- predict(cars.spl, xx, deriv = d), col = "red")

points(kn, pp$y[i.kn], pch = 3, col="dark red")

abline(h=0, lty = 3, col = "gray")

}

detach(); par(op)

rock Measurements on Petroleum Rock Samples rock

Description

Measurements on 48 rock samples from a petroleum reservoir.

Usage

data(rock)

Format

A data frame with 48 rows and 4 numeric columns.

[,1] area area of pores space, in pixels out of 256 by 256
[,2] peri perimeter in pixels
[,3] shape perimeter/sqrt(area)
[,4] perm permeability in milli-Darcies

586 scatter.smooth

Details

Twelve core samples from petroleum reservoirs were sampled by 4 cross-sections. Each core
sample was measured for permeability, and each cross-section has total area of pores, total
perimeter of pores, and shape.

Source

Data from BP Research, image analysis by Ronit Katz, U. Oxford.

scatter.smooth Scatter Plot with Smooth Curve Fitted by Loess scatter.smooth

Description

Plot and add a smooth curve computed by loess to a scatter plot.

Usage

scatter.smooth(x, y, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"),
xlab = deparse(substitute(x)), ylab = deparse(substitute(y)),
ylim = range(y, prediction$y), evaluation = 50, ...)

loess.smooth(x, y, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"), evaluation=50, ...)

Arguments

x x coordinates for scatter plot.

y y coordinates for scatter plot.

span smoothness parameter for loess.

degree degree of local polynomial used.

family if "gaussian" fitting is by least-squares, and if family="symmetric" a
re-descending M estimator is used.

xlab label for x axis.

ylab label for y axis.

ylim the y limits of the plot.

evaluation number of points at which to evaluate the smooth curve.

... graphical parameters.

Details

loess.smooth is an auxiliary function.

Value

None.

Author(s)

B.D. Ripley

smooth.spline 587

See Also

loess

Examples

data(cars)

attach(cars)

scatter.smooth(speed, dist)

detach()

smooth.spline Fit a Smoothing Spline smooth.spline

Description

Fits a cubic smoothing spline to the supplied data.

Usage

smooth.spline(x, y, w = rep(1, length(x)), df = 5, spar = 0,
cv = FALSE, all.knots = FALSE, df.offset = 0, penalty = 1)

Arguments

x a vector giving the values of the predictor variable, or a list or a two-
column matrix specifying x and y.

y responses. If y is missing, the responses are assumed to be specified by x.

w optional vector of weights

df the desired equivalent number of degrees of freedom (trace of the smoother
matrix).

spar the coefficient λ of the integral of the squared second derivative in the fit
(penalized log lik.) criterion.

cv ordinary (TRUE) or ‘generalized’ (FALSE) cross-validation.

all.knots if TRUE, all points in x are uses as knots. If FALSE, a suitably fine grid of
knots is used.

df.offset allows the degrees of freedom to be increased by df.offset in the GCV
criterion.

penalty the coefficient of the penalty for degrees of freedom in the GCV criterion.

Details

The x vector should contain at least ten distinct values.

If spar is missing or 0, the value of df is used to determine the degree of smoothing. If
both are missing, leave-one-out cross-validation is used to determine λ.

588 supsmu

Value

An object of class "smooth.spline" with components

x the distinct x values in increasing order.

y the fitted values corresponding to x.

w the weights used at the unique values of x.

yin the y values used at the unique y values.

lev leverages, the diagonal values of the smoother matrix.

cv.crit (generalized) cross-validation score.

pen.crit penalized criterion

df equivalent degrees of freedom used.

spar the value of λ chosen.

fit list for use by predict.smooth.spline.

call

Author(s)

B.D. Ripley

See Also

predict.smooth.spline

Examples

data(cars)

attach(cars)

plot(speed, dist, main = "data(cars) & smoothing splines")

cars.spl <- smooth.spline(speed, dist)

(cars.spl)

all(cars.spl $ w == table(speed)) # TRUE (weights = multiplicities)

lines(cars.spl, col = "blue")

lines(smooth.spline(speed, dist, df=10), lty=2, col = "red")

legend(5,120,c(paste("default [C.V.] => df =",round(cars.spl$df,1)),

"s(* , df = 10)"), col = c("blue","red"), lty = 1:2,

bg=’bisque’)

detach()

supsmu Friedman’s SuperSmoother supsmu

Description

Smooth the (x, y) values by Friedman’s ”super smoother”.

Usage

supsmu(x, y, wt = rep(1, length(y)), span = "cv", periodic = FALSE,
bass = 0)

supsmu 589

Arguments

x x values for smoothing
y y values for smoothing
wt case weights
span the fraction of the observations in the span of the running lines smoother,

or "cv" to choose this by leave-one-out cross-validation.
periodic If true, the x values are assumed to be in [0, 1] and of period 1.
bass controls the smoothness of the fitted curve. Values of up to 10 indicating

increasing smoothness.

Details

supsmu is a running lines smoother which chooses between three spans for the lines. The
running lines smoothers are symmetric, with k/2 data points each side of the predicted
point, and values of k as 0.5n, 0.2n and 0.05n. If span is specified, as single smoother with
span span * n is used.
The best of the three smoothers is chosen by cross-validation for each prediction. The best
spans are then smoothed by a running lines smoother and the final prediction chosen by
linear interpolation.
The Fortran code says: “For small samples (n < 40) or if there are substantial serial cor-
relations between observations close in x - value, then a prespecified fixed span smoother
(span > 0) should be used. Reasonable span values are 0.2 to 0.4.”

Value

A list with components

x the input values in increasing order with duplicates removed.
y the corresponding y values on the fitted curve.

Author(s)

B. D. Ripley

References

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics,
Stanford University Technical Report No. 1.
Friedman, J. H. (1984) A variable span scatterplot smoother. Laboratory for Computational
Statistics, Stanford University Technical Report No. 5.

See Also

ppr

Examples

data(cars)

attach(cars)

plot(speed, dist)

lines(supsmu(speed, dist))

lines(supsmu(speed, dist, bass=7), lty=2)

detach()

590 supsmu

Chapter 6

The mva package

as.hclust Convert Objects to Class hclust as.hclust

Description

Converts objects from other hierarchical clustering functions to class "hclust".

Usage

as.hclust(x, ...)
as.hclust.twins(x)

Arguments

x Hierarchical clustering object

Details

Currently there is only support for converting objects of class "twins" as produced by the
functions diana and agnes from the package ‘cluster’.

Value

An object of class "hclust".

See Also

hclust, diana, agnes

Examples

x <- matrix(rnorm(30), ncol=3)

hc <- hclust(dist(x), method="complete")

library(cluster)

ag <- agnes(x, method="complete")

x11()

591

592 biplot

par(mfrow=c(1,2))

plot(hc)

mtext("hclust", side=1)

plot(as.hclust(ag))

mtext("agnes", side=1)

biplot Biplot of Multivariate Data biplot

Description

Plot a biplot on the current graphics device.

Usage

biplot(x, ...)

biplot.default(x, y, var.axes = TRUE, col, cex = rep(par("cex"), 2),
xlabs = NULL, ylabs = NULL, expand = 1,
xlim = NULL, ylim = NULL, arrow.len = 0.1, ...)

Arguments

x The biplot, a fitted object. For biplot.default, the first set of points
(a two-column matrix), usually associated with observations.

y The second set of points (a two-column matrix), usually associated with
variables.

var.axes If TRUE the second set of points have arrows representing them as (un-
scaled) axes.

col A vector of length 2 giving the colours for the first and second set of points
respectively (and the corresponding axes). If a single colour is specified
it will be used for both sets.

cex The character expansion factor used for labelling the points. The labels
can be of different sizes for the two sets by supplying a vector of length
two.

xlabs A vector of character strings to label the first set of points: the default is
to use the row dimname of x, or 1:n is the dimname is NULL.

ylabs A vector of character strings to label the second set of points: the default
is to use the row dimname of y, or 1:n is the dimname is NULL.

expand An expansion factor to apply when plotting the second set of points rel-
ative to the first. This can be used to get the two sets on to a physically
comparable scale.

arrow.len The length of the arrow heads on the axes plotted in var.axes is true.
The arrow head can be suppressed by arrow.len = 0.

biplot.princomp 593

Details

A biplot is plot which aims to represent both the observations and variables of a matrix of
multivariate data on the same plot. There are many variations on biplots (see the references)
and perhaps the most widely used one is implemented by biplot.princomp. The function
biplot.default merely provides the underlying code to plot two sets of variables on the
same figure.

Graphical parameters can also be given to biplot.

Side Effects

a plot is produced on the current graphics device.

Author(s)

B.D. Ripley

References

K. R. Gabriel (1971). The biplot graphical display of matrices with application to principal
component analysis. Biometrika 58, 453–467.

J.C. Gower and D. J. Hand (1996). Biplots. Chapman & Hall.

See Also

biplot.princomp, also for examples.

biplot.princomp Biplot for Principal Components biplot.princomp

Description

Produces a biplot (in the strict sense) from the output of princomp.

Usage

biplot.princomp(x, choices = 1:2, scale = 1, pc.biplot = FALSE, ...)

Arguments

x an object of class "princomp".
choices length 2 vector specifying the components to plot. Only the default is a

biplot in the strict sense.
scale The variables are scaled by lambda ˆ scale and the observations are

scaled by lambda ˆ (1-scale) where lambda are the singular values as
computed by princomp. Normally 0 <= scale <= 1, and a warning will
be issued if the specified scale is outside this range.

pc.biplot If true, use what Gabriel (1971) refers to as a ”principal component
biplot”, with lambda = 1 and observations scaled up by sqrt(n) and vari-
ables scaled down by sqrt(n). Then inner products between variables ap-
proximate covariances and distances between observations approximate
Mahalanobis distance.

... optional arguments to be passed to biplot.default.

594 cancor

Details

This is a method for the generic function biplot. There is considerable confusion over
the precise definitions: those of the original paper, Gabriel (1971), are followed here. Gab-
riel and Odoroff (1990) use the same definitions, but their plots actually correspond to
pc.biplot = TRUE.

Side Effects

a plot is produced on the current graphics device.

References

Gabriel, K. R. (1971). The biplot graphical display of matrices with applications to principal
component analysis. Biometrika, 58, 453–467.

Gabriel, K. R. and Odoroff, C. L. (1990). Biplots in biomedical research. Statistics in
Medicine, 9, 469–485.

See Also

biplot, princomp.

Examples

data(USArrests)

biplot(princomp(USArrests))

cancor Canonical Correlations cancor

Description

Compute the canonical correlations between two data matrices.

Usage

cancor(x, y, xcenter = TRUE, ycenter = TRUE)

Arguments

x numeric matrix (n× p1), containing the x coordinates.

y numeric matrix (n× p2), containing the y coordinates.

xcenter logical or numeric vector of length p1, describing any centering to be done
on the x values before the analysis. If TRUE (default), subtract the column
means. If FALSE, do not adjust the columns. Otherwise, a vector of values
to be subtracted from the columns.

ycenter analogous to xcenter, but for the y values.

Details

The canonical correlation analysis seeks linear combinations of the y variables which are
well explained by linear combinations of the x variables. The relationship is symmetric as
‘well explained’ is measured by correlations.

cmdscale 595

Value

A list containing the following components:

cor correlations.

xcoef estimated coefficients for the x variables.

ycoef estimated coefficients for the y variables.

xcenter the values used to adjust the x variables.

ycenter the values used to adjust the x variables.

References

Hotelling H. (1936). Relations between two sets of variables. Biometrika, 28, 321–327.

Seber, G. A. F. (1984). Multivariate Analysis. New York: Wiley, p. 506f.

See Also

qr, svd.

Examples

data(LifeCycleSavings)

pop <- LifeCycleSavings[, 2:3]

oec <- LifeCycleSavings[, -(2:3)]

str(cancor(pop, oec))

x <- matrix(rnorm(150), 50, 3)

y <- matrix(rnorm(250), 50, 5)

str(cxy <- cancor(x, y))

all(abs(cor(x %*% cxy$xcoef,

y %*% cxy$ycoef)[,1:3] - diag(cxy $ cor)) < 1e-15)

all(abs(cor(x %*% cxy$xcoef) - diag(3)) < 1e-15)

all(abs(cor(y %*% cxy$ycoef) - diag(5)) < 1e-15)

cmdscale Classical (Metric) Multidimensional Scaling cmdscale

Description

Classical muiltidimensional scaling of a data matrix.

Usage

cmdscale(d, k = 2, eig = FALSE)

Arguments

d a distance structure such as that returned by dist or a full symmetric
matrix containing the dissimilarities.

k the dimension of the space which the data are to be represented in.

eig indicates whether eigenvalues should be returned.

596 cutree

Details

Multidimensional scaling takes a set of dissimilarities and returns a set of points such that
the distances between the points are approximately equal to the dissimilarities.

The functions isoMDS and sammon in package ‘MASS’ provide alternative ordination tech-
niques.

Value

A list containing the following components.

points a matrix with k columns whose rows give the coordinates of the points
chosen to represent the dissimilarities.

eig if requested, the eigenvalues computed during the scaling process.

Note

The S version of this function provides for computing an additional “fiddle” factor suggested
by Torgerson. R does not provide this option.

References

Seber, G. A. F. (1984). Multivariate Analysis. New York: Wiley.

Torgerson, W. S. (1958). Theory and Methods of Scaling. New York: Wiley.

See Also

dist. Also isoMDS and sammon in package ‘MASS’.

Examples

data(eurodist)

loc <- cmdscale(eurodist)

x <- loc[,1]

y <- -loc[,2]

plot(x, y, type="n", xlab="", ylab="")

text(x, y, names(eurodist), cex=0.5)

cutree Cut a tree into groups of data cutree

Description

Cuts a tree, e.g., as resulting from hclust, into several groups either by specifying the
desired number of groups or the cut height.

Usage

cutree(tree, k=NULL, h=NULL)

dist 597

Arguments

tree a tree as produced by hclust

k An integer scalar or vector with the desired number of groups

h A numeric scalar or vector with heights where the tree should be cut.

At least one of k or h must be specified, k overrides h if both are given.

Value

cutree returns an vector with group meberships if k or h are scalar, otherwise a matrix
with group meberships is returned where each column corresponds to the elements of k or
h, respectively (which are also used as column names).

See Also

hclust

Examples

require(mva)

data(USArrests)

hc <- hclust(dist(USArrests))

cutree(hc, k=2:5)

cutree(hc, h=250)

dist Distance Matrix Computation dist

Description

This function computes and returns the distance matrix computed by using the specified
distance measure to compute the distances between the rows of a data matrix.

Usage

dist(x, method = "euclidean", diag = FALSE, upper = FALSE)

print.dist(dist.obj, diag = NULL, upper = NULL)
as.matrix.dist(dist.obj)
as.dist(m, diag = NULL, upper = NULL)

Arguments

x A matrix or (data frame). Distances between the rows of x will be com-
puted.

method The distance measure to be used. This must be one of "euclidean",
"maximum", "manhattan", "canberra" or "binary". Any unambiguous
substring can be given.

diag A logical value indicating whether the diagonal of the distance matrix
should be printed by print.dist.

598 hclust

upper A logical value indicating whether the upper triangle of the distance mat-
rix should be printed by print.dist.

m A distance matrix to be converted to a dist object (only lower triangle is
used, the rest is ignored).

Details

Available distance measures are (written for two vectors x and y):

• Euclidean: Usual square distance between the two vectors (2 norm).
• Maximum: Maximum distance between two components of x and y (supremum norm)
• Manhattan: Absolute distance between the two vectors (1 norm).
• Canberra:

∑
i |xi − yi|/|xi + yi|

• Count the number of different bits in x and y where at least one of the two bits is 1,
i.e., components where both bits are zero are ignored.

The functions as.matrix.dist() and as.dist() can be used for conversion between ob-
jects of class "dist" and conventional distance matrices and vice versa.

Value

The lower triangle of the distance matrix stored by columns in a single vector. The vector
has the attributes "Size", "Diag", "Upper", "Labels" and "class" equal to "dist".

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979). Multivariate Analysis, London: Aca-
demic Press.

See Also

hclust.

Examples

x <- matrix(rnorm(100),nrow=5)

dist(x)

dist(x, diag = TRUE)

dist(x, upper = TRUE)

m <- as.matrix(dist(x))

as.dist(m)

hclust Hierarchical Clustering hclust

Description

Performs a hierarchical cluster analysis on a set of dissimilarities.

Usage

hclust(d, method = "complete")

plot.hclust(hclust.obj, labels, hang = 0.1, ...)

hclust 599

Arguments

d a dissimilarity structure as produced by dist.
method the agglomeration method to be used. This should be (an unambigu-

ous abbreviation of) one of "ward", "single", "complete", "average",
"mcquitty", "median" or "centroid".

hclust.obj an object of the type produced by hclust.
hang The fraction of the plot height which labels should hang below the rest of

the plot. A negative value will cause the labels to hang down from 0.
labels A character vector of of labels for the leaves of the tree. By default the

row names or row numbers of the original data are used. If labels=FALSE
no labels at all are plotted.

Details

This function performs a hierarchical cluster analysis using a set of dissimilarities for the
n objects being clustered. Initially, each object is assigned to its own cluster and then the
algorithm proceeds iteratively, at each stage joining the two most similar clusters, continuing
until there is just a single cluster. At each stage distances between clusters are recomputed
by the Lance–Williams dissimilarity update formula according to the particular clustering
method being used.

An number of different clustering methods are provided. Ward’s minimum variance method
aims at finding compact, spherical clusters. The complete linkage method finds similar
clusters. The single linkage method (which is closely related to the minimal spanning tree)
adopts a ‘friends of friends’ clustering strategy. The other methods can be regarded as
aiming for clusters with characteristics somewhere between the single and complete link
methods.

In hierarchical cluster displays, a decision is needed at each merge to specify which subtree
should go on the left and which on the right. Since, for n observations there are n − 1
merges, there are 2(n−1) possible orderings for the leaves in a cluster tree, or dendrogram.
The algorithm used in hclust is to order the subtree so that the tighter cluster is on the left
(the last, i.e. most recent, merge of the left subtree is at a lower value than the last merge
of the right subtree). Single observations are the tightest clusters possible, and merges
involving two observations place them in order by their observation sequence number.

Value

An object of class hclust which describes the tree produced by the clustering process. The
object is a list with components:

merge an n − 1 by 2 matrix. Row i of merge describes the merging of clusters
at step i of the clustering. If an element j in the row is negative, then
observation −j was merged at this stage. If j is positive then the merge
was with the cluster formed at the (earlier) stage j of the algorithm.
Thus negative entries in merge indicate agglomerations of singletons, and
positive entries indicate agglomerations of non-singletons.

height a set of n − 1 non-decreasing real values. The clustering height : that is,
the value of the criterion associated with the clustering method for the
particular agglomeration.

order a vector giving the permutation of the original observations suitable for
plotting, in the sense that a cluster plot using this ordering and matrix
merge will not have crossings of the branches.

600 identify.hclust

labels labels for each of the objects being clustered.

call the call which produced the result.

method the cluster method that has been used.

dist.method the distance that has been used to create d (only returned if the distance
object has a "method" attribute).

Author(s)

The hclust function is based on Fortran code contributed to STATLIB by F. Murtagh.

References

Everitt, B. (1974). Cluster Analysis. London: Heinemann Educ. Books.

Hartigan, J. A. (1975). Clustering Algorithms. New York: Wiley.

Sneath, P. H. A. and R. R. Sokal (1973). Numerical Taxonomy. San Francisco: Freeman.

Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press: New York.

Gordon, A. D. (1981). Classification. London: Chapman and Hall.

Murtagh, F. (1985). “Multidimensional Clustering Algorithms”, in COMPSTAT Lectures
4. Wuerzburg: Physica-Verlag (for algorithmic details of algorithms used).

See Also

kmeans.

Examples

library(mva)

data(USArrests)

hc <- hclust(dist(USArrests), "ave")

plot(hc, hang=-1)

plot(hc)

identify.hclust Identify Clusters in a Dendrogram identify.hclust

Description

identify.hclust reads the position of the graphics pointer when the (first) mouse button
is pressed. It then cuts the tree at the vertical position of the pointer and highlights the
cluster containing the horizontal position of the pointer. Optionally a function is applied
to the index of data points contained in the cluster.

Usage

identify.hclust(HCOBJ, FUN=NULL, N=20, MAXCLUSTER=20, DEV.FUN=NULL, ...)

identify.hclust 601

Arguments

HCOBJ an object of the type produced by hclust.

FUN (optional) function to be applied to the index numbers of the data points
in a cluster (see Details below).

N the maximum number of clusters to be identified.

MAXCLUSTER The maximum number of clusters that can be produced by a cut (limits
the effective vertical range of the pointer).

DEV.FUN (optional) integer scalar. If specified, the corresponding graphics device
is amde active before FUN is applied.

... further arguments to FUN.

Details

By default clusters can be identified using the mouse and an invisible list of indices of
the respective data points is returned.

If FUN is not NULL, then the index vector of data points is passed to this function as first
argument, see the examples below. If active graphics device for FUN can be specified using
DEV.FUN.

The identification process is terminated by pressing any mouse button other than the first,
or by clicking outside the graphics window.

Value

Either a list of data point index vectors or a list of return values of FUN.

Examples

library(mva)

data(USArrests)

hca <- hclust(dist(USArrests))

plot(hca)

x <- identify.hclust(hca)

x

data(iris)

hci <- hclust(dist(iris[,1:4]))

plot(hci)

identify.hclust(hci, function(k) print(table(iris[k,5])))

x11()

dev.set(2)

plot(hci)

identify.hclust(hci, function(k) barplot(table(iris[k,5])), DEV.FUN=3)

602 kmeans

kmeans K-Means Clustering kmeans

Description

Perform k-means clustering on a data matrix.

Usage

kmeans(x, centers, iter.max = 10)

Arguments

x A data frame or matrix of data.

centers Either the number of clusters or a set of initial cluster centers. If the first,
a random set of rows in x are chosen as the initial centers.

iter.max The maximum number of iterations allowed.

Details

The data given by x is clustered by the k-Means algorithm. When this terminates, all
cluster centres are at to the mean of their Voronoi sets (the set of data points which are
nearest to the cluster centre).

The algorithm of Hartigan and Wong (1979) is used.

Value

A list with components:

cluster A vector of integers indicating the cluster to which each point is allocated.

centers A matrix of cluster centres.

withinss The within-cluster sum of squares for each cluster.

size The number of points in each cluster.

References

Hartigan, J.A. and Wong, M.A. (1979). A K-means clustering algorithm. Applied Statistics
28, 100–108.

Examples

a 2-dimensional example

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))

cl <- kmeans(x, 2, 20)

plot(x, col = cl$cluster)

points(cl$centers, col = 1:2, pch = 8)

prcomp 603

prcomp Principal Components Analysis prcomp

Description

Performs a principal components analysis on the given data matrix and returns the results
as an object of class prcomp.

Usage

prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE, tol = NULL)

Arguments

x a matrix (or data frame) which provides the data for the principal com-
ponents analysis.

retx a logical value indicating whether the rotated variables should be returned.

center a logical value indicating whether the variables should be shifted to be
zero centered. Alternately, a vector of length equal the number of columns
of x can be supplied. The value is passed to scale.

scale a logical value indicating whether the variables should be scaled to have
unit variance before the analysis takes place. The default is FALSE for
consistency with S, but in general scaling is advisable. Alternately, a
vector of length equal the number of columns of x can be supplied. The
value is passed to scale.

tol a value indicating the magnitude below which components should be omit-
ted. With the default null setting, no components are omitted. Other set-
tings for tol could be tol = 0 or tol = sqrt(.Machine$double.eps).

Details

The calculation is done by a singular value decomposition of the data matrix, not by using
eigen on the covariance matrix. This is generally the preferred method for numerical
accuracy. The print method for the these objects prints the results in a nice format and
the plot method produces a scree plot.

Value

prcomp returns an list with class "prcomp" containing the following components:

sdev the standard deviation of the principal components (i.e., the eigenvalues of
the cov matrix, though the calculation is actually done with the singular
values of the data matrix).

rotation the matrix of variable loadings (i.e., a matrix whose olumns contain the
eigenvectors). The function princomp returns this in the element load-
ings.

x if retx is true the value of the rotated data (the data multiplied by the
rotation matrix) is returned.

604 princomp

References

Mardia, K. V., J. T. Kent, J and M. Bibby (1979), Multivariate Analysis, London: Academic
Press.

Venables, W. N. and B. D. Ripley (1997), Modern Applied Statistics with S-PLUS, Springer-
Verlag.

See Also

princomp, cor, cov, svd, eigen.

Examples

the variances of the variables in the

USArrests data vary by orders of magnitude

data(USArrests)

prcomp(USArrests)

prcomp(USArrests, scale = TRUE)

plot(prcomp(USArrests))

summary(prcomp(USArrests))

princomp Principal Components Analysis princomp

Description

princomp performs a principal components analysis on the given data matrix and returns
the results as an object of class princomp.

loadings extracts the loadings.

screeplot plots the variances against the number of the principal component. This is also
the plot method.

Usage

princomp(x, cor = FALSE, scores = TRUE, covmat = NULL,
subset = rep(TRUE, nrow(as.matrix(x))))

loadings(x)
plot(x, npcs = min(10, length(x$sdev)),

type = c("barplot", "lines"), ...)
screeplot(x, npcs = min(10, length(x$sdev)),

type = c("barplot", "lines"), ...)

print(x, ...) summary(object) predict(object, ...)

Arguments

x a matrix (or data frame) which provides the data for the principal com-
ponents analysis.

cor a logical value indicating whether the calculation should use the correla-
tion matrix or the covariance matrix.

scores a logical value indicating whether the score on each principal component
should be calculated.

princomp 605

covmat a covariance matrix, or a covariance list as returned by cov.wt, cov.mve
or cov.mcd. If supplied, this is used rather than the covariance matrix of
x.

subset a vector used to select rows (observations) of the data matrix x.

x, object an object of class "princomp", as from princomp().

npcs the number of principal components to be plotted.

type the type of plot.

... graphics parameters.

Details

The calculation is done using eigen on the correlation or covariance matrix, as determined
by cor. This is done for compatibility with the S-PLUS result. A preferred method of
calculation is to use svd on x, as is done in prcomp.

Note that the default calculation uses divisor N for the covariance matrix.

The print method for the these objects prints the results in a nice format and the plot
method produces a scree plot.

Value

princomp returns a list with class "princomp" containing the following components:

sdev the standard deviations of the principal components.

loadings the matrix of variable loadings (i.e., a matrix whose columns contain the
eigenvectors).

center the means that were subtracted.

scale the scalings applied to each variable.

n.obs the number of observations.

scores if scores = TRUE, the scores of the supplied data on the principal com-
ponents.

call the matched call.

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979). Multivariate Analysis, London: Aca-
demic Press.

Venables, W. N. and B. D. Ripley (1997, 9). Modern Applied Statistics with S-PLUS,
Springer-Verlag.

See Also

prcomp, cor, cov, eigen.

Examples

the variances of the variables in the

USArrests data vary by orders of magnitude

data(USArrests)

(pc.cr <- princomp(USArrests))

princomp(USArrests, cor = TRUE)

606 rect.hclust

princomp(scale(USArrests, scale = TRUE, center = TRUE), cor = FALSE)

summary(pc.cr <- princomp(USArrests))

loadings(pc.cr)

plot(pc.cr) # does a screeplot.

biplot(pc.cr)

rect.hclust Draw Rectangles Around Hierarchical Clusters rect.hclust

Description

Draws rectangles around the branches of a dendrogram highlighting the corresponding
clusters. First the dendrogram is cut at a certain level, then a rectangle is drawn around
selected branches.

Usage

rect.hclust(hclust.obj, k=NULL, which=NULL, x=NULL, y=NULL,
border=2, cluster=NULL)

Arguments

hclust.obj an object of the type produced by hclust.
k, h Scalar. Cut the dendrogram such that either exactly k clusters are pro-

duced or by cutting at height h.
which, x A vector selecting the clusters around which a rectangle should be drawn.

which seleccts clusters by number (from left to right in the tree), x se-
lects clusters containing the respective horizontal coordinates. Default is
which=1:k.

border Vector with border colors for the rectangles.
cluster Optional vector with cluster memberships as returned by

cutree(hclust.obj, k=k), can be specified for efficiency if already
computed.

Value

(Invisibly) returns a list where each element contains a vector of data points contained in
the respective cluster.

See Also

hclust, identify.hclust

Examples

library(mva)

data(USArrests)

hca <- hclust(dist(USArrests))

plot(hca)

rect.hclust(hca, k=3, border="red")

x <- rect.hclust(hca, h=50, which=c(2,7), border=3:4)

x

Chapter 7

The nls package

asOneSidedFormula Convert to One-Sided Formula asOneSidedFormula

Description

Names, expressions, numeric values, and strings are converted to one-sided formulas. If
object is a formula, it must be one-sided, in which case it is returned unaltered.

Usage

asOneSidedFormula(object)

Arguments

object a one-sided formula, an expression, a numeric value, or a character string.

Value

a one-sided formula representing object

Author(s)

Jose Pinheiro and Douglas Bates

See Also

formula

Examples

library(nls)

asOneSidedFormula("age")

asOneSidedFormula(~ age)

607

608 ChickWeight

BOD Biochemical Oxygen Demand BOD

Description

The BOD data frame has 6 rows and 2 columns giving the biochemical oxygen demand versus
time in an evaluation of water quality.

Format

This data frame contains the following columns:

Time A numeric vector giving the time of the measurement (days).

demand A numeric vector giving the biochemical oxygen demand (mg/l).

Source

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley, Appendix A1.4.

Originally from Marske (1967), Biochemical Oxygen Demand Data Interpretation Using
Sum of Squares Surface M.Sc. Thesis, University of Wisconsin – Madison.

Examples

library(nls)

data(BOD)

simplest form of fitting a first-order model to these data

fm1 <- nls(demand ~ A*(1-exp(-exp(lrc)*Time)), data = BOD,

start = c(A = 20, lrc = log(.35)))

coef(fm1)

print(fm1)

using the plinear algorithm

fm2 <- nls(demand ~ (1-exp(-exp(lrc)*Time)), data = BOD,

start = c(lrc = log(.35)), algorithm = "plinear", trace = TRUE)

using a self-starting model

fm3 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

summary(fm3)

ChickWeight Weight versus age of chicks on different diets ChickWeight

Description

The ChickWeight data frame has 578 rows and 4 columns from an experiment on the effect
of diet on early growth of chicks.

clearNames 609

Format

This data frame contains the following columns:

weight a numeric vector giving the body weight of the chick (gm).

Time a numeric vector giving the number of days since birth when the measurement was
made.

Chick an ordered factor with levels 18 < . . . < 48 giving a unique identifier for the chick.
The ordering of the levels groups chicks on the same diet together and orders them
according to their final weight (lightest to heaviest) within diet.

Diet a factor with levels 1,. . . ,4 indicating which experimental diet the chick received.

Details

The body weights of the chicks were measured at birth and every second day thereafter
until day 20. They were also measured on day 21. There were four groups on chicks on
different protein diets.

Source

Crowder, M. and Hand, D. (1990), Analysis of Repeated Measures, Chapman and Hall
(example 5.3)

Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis, Chapman and
Hall (table A.2)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

library(nls)

data(ChickWeight)

coplot(weight ~ Time | Chick, data = ChickWeight,

type = "b", show = FALSE)

fit a representative chick

fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal),

data = ChickWeight, subset = Chick == 1)

summary(fm1)

clearNames Remove the Names from an Object clearNames

Description

This function sets the names attribute of object to NULL and returns the object.

Usage

clearNames(object)

Arguments

object an object that may have a names attribute

610 CO2

Value

An object similar to object but without names.

Author(s)

Douglas Bates and Saikat DebRoy

See Also

setNames

Examples

library(nls)

data(women)

lapply(women, mean) # has a names attribute

clearNames(lapply(women, mean)) # removes the names

CO2 Carbon Dioxide uptake in grass plants CO2

Description

The CO2 data frame has 84 rows and 5 columns of data from an experiment on the cold
tolerance of the grass species Echinochloa crus-galli

Format

This data frame contains the following columns:

Plant an ordered factor with levels Qn1 < Qn2 < Qn3 < . . . < Mc1 giving a unique identifier
for each plant.

Type a factor with levels Quebec Mississippi giving the origin of the plant

Treatment a factor with levels nonchilled chilled

conc a numeric vector of ambient carbon dioxide concentrations (mL/L).

uptake a numeric vector of carbon dioxide uptake rates (µmol/m2 sec).

Details

The CO2 uptake of six plants from Quebec and six plants from Mississippi was measured
at several levels of ambient CO2 concentration. Half the plants of each type were chilled
overnight before the experiment was conducted.

Source

Potvin, C., Lechowicz, M. J. and Tardif, S. (1990) “The statistical analysis of ecophysiolo-
gical response curves obtained from experiments involving repeated measures”, Ecology, 71,
1389–1400.

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

DNase 611

Examples

library(nls)

data(CO2)

coplot(uptake ~ conc | Plant, data = CO2, show = FALSE, type = "b")

fit the data for the first plant

fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),

data = CO2, subset = Plant == ’Qn1’)

summary(fm1)

fit each plant separately

fmlist <- list()

for (pp in levels(CO2$Plant)) {

fmlist[[pp]] <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),

data = CO2, subset = Plant == pp)

}

check the coefficients by plant

sapply(fmlist, coef)

DNase Elisa assay of DNase DNase

Description

The DNase data frame has 176 rows and 3 columns of data obtained during development of
an ELISA assay for the recombinant protein DNase in rat serum.

Format

This data frame contains the following columns:

Run an ordered factor with levels 10 < . . . < 3 indicating the assay run.

conc a numeric vector giving the known concentration of the protein.

density a numeric vector giving the measured optical density (dimensionless) in the assay.
Duplicate optical density measurements were obtained.

Source

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data,
Chapman & Hall (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

library(nls)

data(DNase)

coplot(density ~ conc | Run, data = DNase,

show = FALSE, type = "b")

coplot(density ~ log(conc) | Run, data = DNase,

show = FALSE, type = "b")

fit a representative run

fm1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal),

data = DNase, subset = Run == 1)

compare with a four-parameter logistic

fm2 <- nls(density ~ SSfpl(log(conc), A, B, xmid, scal),

612 getInitial

data = DNase, subset = Run == 1)

summary(fm2)

anova(fm1, fm2)

formula.nls Extract Model Formula from nls Object formula.nls

Description

Returns the model used to fit object.

Usage

formula(object)

Arguments

object an object inheriting from class nls, representing a non-linear least squares
fit.

Value

a formula representing the model used to obtain object.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, formula

Examples

library(nls)

data(Orange)

fm1 <- nls(circumference ~ A/(1+exp((B-age)/C)), Orange,

start = list(A=160, B=700, C = 350))

formula(fm1)

getInitial Get Initial Parameter Estimates getInitial

Description

This function evaluates initial parameter estimates for a nonlinear regression model. If
data is a parameterized data frame or pframe object, its parameters attribute is returned.
Otherwise the object is examined to see if it contains a call to a selfStart object whose
initial attribute can be evaluated.

Usage

getInitial(object, data, ...)

Indometh 613

Arguments

object a formula or a selfStart model that defines a nonlinear regression model

data a data frame in which the expressions in the formula or arguments to the
selfStart model can be evaluated

... optional additional arguments

Value

A named numeric vector or list of starting estimates for the parameters. The construction
of many selfStart models is such that these ”starting”estimates are, in fact, the converged
parameter estimates.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart, selfStart.default, selfStart.formula

Examples

library(nls)

data(Puromycin)

PurTrt <- Puromycin[Puromycin$state == "treated",]

getInitial(rate ~ SSmicmen(conc, Vm, K), PurTrt)

Indometh Pharmacokinetics of Indomethicin Indometh

Description

The Indometh data frame has 66 rows and 3 columns of data on the pharmacokinetics of
indomethicin.

Format

This data frame contains the following columns:

Subject an ordered factor with containing the subject codes. The ordering is according
to increasing maximum response.

time a numeric vector of times at which blood samples were drawn (hr).

conc a numeric vector of plasma concentrations of indomethicin (mcg/ml).

Details

Each of the six subjects were given an intravenous injection of indomethicin.

614 Loblolly

Source

Kwan, Breault, Umbenhauer, McMahon and Duggan (1976), “Kinetics of Indomethicin
absorption, elimination, and enterohepatic circulation in man”, Journal of Pharmacokinetics
and Biopharmaceutics, 4, 255–280.

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data,
Chapman & Hall (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

library(nls)

data(Indometh)

fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2),

data = Indometh, subset = Subject == 1)

summary(fm1)

Loblolly Growth of Loblolly pine trees Loblolly

Description

The Loblolly data frame has 84 rows and 3 columns of records of the growth of Loblolly
pine trees.

Format

This data frame contains the following columns:

height a numeric vector of tree heights (ft).

age a numeric vector of tree ages (yr).

Seed an ordered factor indicating the seed source for the tree. The ordering is according
to increasing maximum height.

Source

Kung, F. H. (1986), “Fitting logistic growth curve with predetermined carrying capacity”,
Proceedings of the Statistical Computing Section, American Statistical Association, 340–343.

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

library(nls)

data(Loblolly)

plot(height ~ age, data = Loblolly, subset = Seed == 329,

xlab = "Tree age (yr)", las = 1,

ylab = "Tree height (ft)",

main = "Loblolly data and fitted curve (Seed 329 only)")

fm1 <- nls(height ~ SSasymp(age, Asym, R0, lrc),

data = Loblolly, subset = Seed == 329)

summary(fm1)

age <- seq(0, 30, len = 101)

lines(age, predict(fm1, list(age = age)))

logLik 615

logLik Extract Log-Likelihood logLik

Description

This function is generic; method functions can be written to handle specific classes of
objects. Classes which already have methods for this function include: corStruct, gls, lm,
lme, lmList, lmeStruct, reStruct, and varFunc.

Usage

logLik(object, ...)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-
likelihood value, can be extracted.

... some methods for this generic function require additional arguments.

Value

will depend on the method function used; see the appropriate documentation.

Author(s)

Jose Pinheiro and Douglas Bates

Examples

see the method function documentation

nls Nonlinear Least Squares nls

Description

Determine the nonlinear least squares estimates of the parameters.

Usage

nls(formula, data, start, control=nls.control(),
algorithm="default", trace=F, subset, na.action)

616 nls

Arguments

formula a nonlinear model formula including variables and parameters

data an optional data frame in which to evaluate the variables in formula

start a named list or named numeric vector of starting estimates

control an optional list of control settings. See nlsControl for the names of the
settable control values and their effect.

algorithm character string specifying the algorithm to use. The default algorithm is
a Gauss-Newton algorithm. The other alternative is ”plinear”, the Golub-
Pereyra algorithm for partially linear least-squares models.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

na.action a function which indicates what should happen when the data contain
NAs.

Details

An nls object is a type of fitted model object. It has methods for the generic functions
coef, formula, resid, print, summary, and fitted.

Value

A list of

m an nlsModel object incorporating the model

data the expression that was passed to nls as the data argument. The actual
data values are present in the environment of the m component.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley

See Also

nlsModel

Examples

library(nls)

data(DNase)

DNase1 <- DNase[DNase$Run == 1,]

using a selfStart model

fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)

summary(fm1DNase1)

using conditional linearity

fm2DNase1 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,

start = list(xmid = 0, scal = 1),

alg = "plinear", trace = TRUE)

nls.control 617

summary(fm2DNase1)

without conditional linearity

fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,

start = list(Asym = 3, xmid = 0, scal = 1),

trace = TRUE)

summary(fm3DNase1)

nls.control Control the Iterations in nls nls.control

Description

Allow the user to set some characteristics of the nls nonlinear least squares algorithm.

Usage

nls.control(maxiter=50, tol=1e-05, minFactor=1/1024)

Value

A list with exactly three components:

maxiter

tol

minFactor

Author(s)

Douglas Bates and Saikat DebRoy

References

Bates and Watts (1988), Nonlinear Regression Analysis and Its Applications, Wiley.

See Also

nls

Examples

nls.control(minFactor = 1/2048)

618 nlsModel

nlsModel Create an nlsModel Object nlsModel

Description

This is the constructor for nlsModel objects, which are function closures for several func-
tions in a list. The closure includes a nonlinear model formula, data values for the formula,
as well as parameters and their values.

Usage

nlsModel(form, data, start)

Arguments

form a nonlinear model formula

data a data frame or a list in which to evaluate the variables from the model
formula

start a named list or named numeric vector of starting estimates for the para-
meters in the model

Details

An nlsModel object is primarily used within the nls function. It encapsulates the model,
the data, and the parameters in an environment and provides several methods to access
characteristics of the model. It forms an important component of the object returned by
the nls function.

Value

The value is a list of functions that share a common environment.

resid returns the residual vector evaluated at the current parameter values

fitted returns the fitted responses and their gradient at the current parameter
values

formula returns the model formula

deviance returns the residual sum-of-squares at the current parameter values

gradient returns the gradient of the model function at the current parameter values

conv returns the relative-offset convergence criterion evaluated at the current
parmeter values

incr returns the parameter increment calculated according to the Gauss-
Newton formula

setPars a function with one argument, pars. It sets the parameter values for the
nlsModel object and returns a logical value denoting a singular gradient
array.

getPars returns the current value of the model parameters as a numeric vector

getAllPars returns the current value of the model parameters as a numeric vector

getEnv returns the environment shared by these functions

NLSstAsymptotic 619

trace the function that is called at each iteration if tracing is enabled

Rmat the upper triangular factor of the gradient array at the current parameter
values

predict takes as argument newdata,a data.frame and returns the predicted re-
sponse for newdata.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley

See Also

nls

Examples

library(nls)

data(DNase)

DNase1 <- DNase[DNase$Run == 1,]

mod <-

nlsModel(density ~ SSlogis(log(conc), Asym, xmid, scal),

DNase1, list(Asym = 3, xmid = 0, scal = 1))

mod$getPars() # returns the parameters as a list

mod$deviance() # returns the residual sum-of-squares

mod$resid() # returns the residual vector and the gradient

mod$incr() # returns the suggested increment

mod$setPars(unlist(mod$getPars()) + mod$incr()) # set new parameter values

mod$getPars() # check the parameters have changed

mod$deviance() # see if the parameter increment was successful

mod$trace() # check the tracing

mod$Rmat() # R matrix from the QR decomposition of the gradient

NLSstAsymptotic Fit the Asymptotic Regression Model NLSstAsymptotic

Description

Fits the asymptotic regression model, in the form b0 + b1*exp(-exp(lrc) * x) to the
xy data. This can be used as a building block in determining starting estimates for more
complicated models.

Usage

NLSstAsymptotic(xy, yval)

Arguments

xy a sortedXyData object

620 NLSstClosestX

Value

A numeric value of length 3 with components labelled b0, b1, and lrc

Author(s)

Jose Pinheiro and Douglas Bates

See Also

SSasymp

Examples

library(nls)

data(Loblolly)

Lob.329 <- Loblolly[Loblolly$Seed == "329",]

NLSstAsymptotic(sortedXyData(expression(age), expression(height), Lob.329))

NLSstClosestX Inverse Interpolation NLSstClosestX

Description

Use inverse linear interpolation to approximate the x value at which the function represented
by xy is equal to yval.

Usage

NLSstClosestX(xy, yval)

Arguments

xy a sortedXyData object
yval a numeric value on the y scale

Value

A single numeric value on the x scale.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstLfAsymptote, NLSstRtAsymptote, selfStart

Examples

library(nls)

data(DNase)

DNase.2 <- DNase[DNase$Run == "2",]

DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)

NLSstClosestX(DN.srt, 1.0)

NLSstLfAsymptote 621

NLSstLfAsymptote Horizontal Asymptote on the Left Side NLSstLfAsymptote

Description

Provide an initial guess at the horizontal asymptote on the left side (i.e. small values of x)
of the graph of y versus x from the xy object. Primarily used within initial functions for
self-starting nonlinear regression models.

Usage

NLSstLfAsymptote(xy)

Arguments

xy a sortedXyData object

Value

A single numeric value estimating the horizontal asymptote for small x.

Author(s)

Jose Pinheiro and Douglas Bates

Examples

library(nls)

data(DNase)

DNase.2 <- DNase[DNase$Run == "2",]

DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)

NLSstLfAsymptote(DN.srt)

NLSstRtAsymptote Horizontal Asymptote on the Right Side NLSstRtAsymptote

Description

Provide an initial guess at the horizontal asymptote on the right side (i.e. large values of
x) of the graph of y versus x from the xy object. Primarily used within initial functions
for self-starting nonlinear regression models.

Usage

NLSstRtAsymptote(xy)

Arguments

xy a sortedXyData object

Value

A single numeric value estimating the horizontal asymptote for large x.

622 Orange

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstClosestX, NLSstRtAsymptote, selfStart

Examples

library(nls)

data(DNase)

DNase.2 <- DNase[DNase$Run == "2",]

DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)

NLSstRtAsymptote(DN.srt)

Orange Growth of orange trees Orange

Description

The Orange data frame has 35 rows and 3 columns of records of the growth of orange trees.

Format

This data frame contains the following columns:

Tree an ordered factor indicating the tree on which the measurement is made. The ordering
is according to increasing maximum diameter.

age a numeric vector giving the age of the tree (days since 1968/12/31)

circumference a numeric vector of trunk circumferences (mm). This is probably “circum-
ference at breast height”, a standard measurement in forestry.

Source

Draper, N. R. and Smith, H. (1998), Applied Regression Analysis (3rd ed), Wiley (exercise
24.N).

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

library(nls)

data(Orange)

coplot(circumference ~ age | Tree, data = Orange, show = FALSE)

fm1 <- nls(circumference ~ SSlogis(age, Asym, xmid, scal),

data = Orange, subset = Tree == 3)

plot(circumference ~ age, data = Orange, subset = Tree == 3,

xlab = "Tree age (days since 1968/12/31)",

ylab = "Tree circumference (mm)", las = 1,

main = "Orange tree data and fitted model (Tree 3 only)")

age <- seq(0, 1600, len = 101)

lines(age, predict(fm1, list(age = age)))

plot.profile.nls 623

plot.profile.nls Plot a profile.nls Object plot.profile.nls

Description

Displays a series of plots of the profile t function and interpolated confidence intervals for
the parameters in a nonlinear regression model that has been fit with nls and profiled with
profile.nls.

Usage

plot.profile.nls(x, levels, conf, nseg, absVal, ...)

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley (chapter 6)

See Also

nls, profile, profile.nls

Examples

library(nls)

data(BOD)

obtain the fitted object

fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

get the profile for the fitted model

pr1 <- profile(fm1)

opar <- par(mfrow = c(2,2), oma = c(1.1, 0, 1.1, 0), las = 1)

plot(pr1, conf = c(95, 90, 80, 50)/100)

plot(pr1, conf = c(95, 90, 80, 50)/100, absVal = FALSE)

mtext("Confidence intervals based on the profile sum of squares",

side = 3, outer = TRUE)

mtext("BOD data - confidence levels of 50%, 80%, 90% and 95%",

side = 1, outer = TRUE)

par(opar)

624 predict.nls

predict.nls Predicting from Nonlinear Least Squares Fits predict.nls

Description

predict.nls produces predicted values, obtained by evaluating the regression function in
the frame newdata. If the logical se.fit is TRUE, standard errors of the predictions are
calculated. If the numeric argument scale is set (with optional df), it is used as the residual
standard deviation in the computation of the standard errors, otherwise this is extracted
from the model fit. Setting intervals specifies computation of confidence or prediction
(tolerance) intervals at the specified level.

At present se.fit and interval are ignored.

Usage

predict[.nls](object, newdata , se.fit = FALSE, scale = NULL, df = Inf,
interval = c("none", "confidence", "prediction"),
level = 0.95, ...)

Arguments

object An object that inherits from class nls.

newdata A named list or data frame with values of the input variables for the
model in object. If newdata is missing the fitted values at the original
data points are returned.

se.fit A logical value indicating if the standard errors of the predictions should
be calculated. Defaults to FALSE. At present this argument is ignored.

scale A numeric scalar. If it is set (with optional df), it is used as the residual
standard deviation in the computation of the standard errors, otherwise
this information is extracted from the model fit. At present this argument
is ignored.

df A positive numeric scalar giving the number of degrees of freedom for the
scale estimate. At present this argument is ignored.

interval A character string indicating if prediction intervals or a confidence interval
on the mean responses are to be calculated. At present this argument is
ignored.

level A numeric scalar between 0 and 1 giving the confidence level for the
intervals (if any) to be calculated. At present this argument is ignored.

... Additional optional arguments. At present no optional arguments are
used.

Value

predict.nls produces a vector of predictions or a matrix of predictions and bounds with
column names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the
following components is returned

fit vector or matrix as above

se.fit standard error of predictions

profile.nls 625

residual.scale

residual standard deviations

df degrees of freedom for residual

See Also

The model fitting function nls, predict.

Examples

library(nls)

data(BOD)

fm <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

predict(fm) # fitted values at observed times

Form data plot and smooth line for the predictions

opar <- par(las = 1)

plot(demand ~ Time, data = BOD, col = 4,

main = "BOD data and fitted first-order curve",

xlim = c(0,7), ylim = c(0, 20))

tt <- seq(0, 8, length = 101)

lines(tt, predict(fm, list(Time = tt)))

par(opar)

profile.nls Method for Profiling nls Objects profile.nls

Description

Investigates behavior of the log-likelihood function near the solution represented by fitted.

Usage

profile.nls(fitted, which, maxpts=100, alphamax=0.01, delta.t=cutoff/5)

Arguments

fitted the original fitted model object.

which the original model parameters which should be profiled. By default, all
parameters are profiled.

maxpts maximum number of points to be used for profiling each parameter.

alphamax maximum significance level allowed for the profile t-statistics.

delta.t suggested change on the scale of the profile t-statistics. Default value
chosen to allow profiling at about 10 parameter values.

Details

The profile t-statistics is defined as the square root of change in sum-of-squares divided by
residual standard error with an appropriate sign.

626 profiler

Value

A list with an element for each parameter being profiled. The elements are data-frames
with two variables

par.vals a matrix of parameter values for each fitted model.

tau The profile t-statistics.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley (chapter 6)

See Also

nls, profile, profiler.nls, plot.profile.nls

Examples

library(nls)

data(BOD)

obtain the fitted object

fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

get the profile for the fitted model

pr1 <- profile(fm1)

profiled values for the two parameters

pr1$A

pr1$lrc

profiler Constructor for Profiler Objects for Non-Linear Models profiler

Description

Create a profiler object for the model object fitted.

Usage

profiler(fitted, ...)

Arguments

fitted the original fitted model object.

... Additional parameters. See documentation on individual methods.

profiler.nls 627

Value

An object of class "profiler" which is a list with function elements

getFittedPars()

the parameters in fitted

setDefault(varying, params)

this is used for changing the default settings for profiling. In absence of
both parameters, the default is set to the original fitted parameters with
all parameters varying. The arguments are
varying: a logical, integer or character vector giving parameters to be
varied. params: the default value at which profiling is to take place.

getProfile(varying, params)

this can be used in conjunction with setDefault without any arguments.
Alternatively, the parameters to be varied and the values for fixed para-
meters can be specified using the arguments. The arguments are
varying: a logical vector giving parameters to be varied. This can be
omitted if params is a named list or numeric vector.
params: values for parameters to be held fixed.
It returns a list with elements
parameters: the parameter values for the profiled optimum.
fstat: a profile statistics. See individual methods for details.
varying: a logical vector indicating parameters which were varied.

Author(s)

Douglas M. Bates and Saikat DebRoy

See Also

profiler.nls, profile

Examples

see documentation on individual methods

profiler.nls Constructor for Profiler Objects from nls Objects profiler.nls

Description

Create a profiler object for the model object fitted of class nls.

Usage

profiler.nls(fitted)

Arguments

fitted the original fitted model object of class nls.

628 profiler.nls

Value

An object of class profiler.nls which is a list with function elements

getFittedModel()

the nlsModel object corresponding to fitted

getFittedPars()

See documentation for profiler
setDefault(varying, params)

See documentation for profiler
getProfile(varying, params)

In the returned list, fstat is the ratio of change in sum-of-squares and
the residual standard error.
For other details, see documentation for profiler

WARNING

When using setDefault and getProfile together, the internal state of the fitted model may
get changed. So after completing the profiling for a parameter, the internal states should
be restored by a call to setDefault without any arguments. For example see below or the
source for profile.nls.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley

See Also

nls, nlsModel, profiler, profile.nls

Examples

library(nls)

data(BOD)

obtain the fitted object

fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

get the profile for the fitted model

prof1 <- profiler(fm1)

profile with A fixed at 16.0

prof1$getProfile(c(F,T), 16.0)

vary lrc

prof1$setDefault(varying = c(F, T))

fix A at 14.0 and starting estimate of lrc at -0.2

prof1$setDefault(params = c(14.0, -0.2))

and get the profile

prof1$getProfile()

finally, set defaults back to original estimates

prof1$setDefault()

Puromycin 629

Puromycin Reaction velocity of an enzymatic reaction Puromycin

Description

The Puromycin data frame has 23 rows and 3 columns of the reaction velocity versus
substrate concentration in an enzymatic reaction involving untreated cells or cells treated
with Puromycin.

Format

This data frame contains the following columns:

conc a numeric vector of substrate concentrations (ppm)

rate a numeric vector of instantaneous reaction rates (counts/min/min)

state a factor with levels treated untreated

Details

Data on the “velocity” of an enzymatic reaction were obtained by Treloar (1974). The
number of counts per minute of radioactive product from the reaction was measured as a
function of substrate concentration in parts per million (ppm) and from these counts the
initial rate, or “velocity,” of the reaction was calculated (counts/min/min). The experiment
was conducted once with the enzyme treated with Puromycin, and once with the enzyme
untreated.

Source

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley, Appendix A1.3.

Treloar, M. A. (1974), Effects of Puromycin on Galactosyltransferase in Golgi Membranes,
M.Sc. Thesis, U. of Toronto.

Examples

library(nls)

data(Puromycin)

plot(rate ~ conc, data = Puromycin, las = 1,

xlab = "Substrate concentration (ppm)",

ylab = "Reaction velocity (counts/min/min)",

pch = as.integer(Puromycin$state),

col = as.integer(Puromycin$state),

main = "Puromycin data and fitted Michaelis-Menten curves")

simplest form of fitting the Michaelis-Menten model to these data

fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,

subset = state == "treated",

start = c(Vm = 200, K = 0.05), trace = TRUE)

fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,

subset = state == "untreated",

start = c(Vm = 160, K = 0.05), trace = TRUE)

summary(fm1)

summary(fm2)

using partial linearity

630 selfStart

fm3 <- nls(rate ~ conc/(K + conc), data = Puromycin,

subset = state == "treated", start = c(K = 0.05),

algorithm = "plinear", trace = TRUE)

using a self-starting model

fm4 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,

subset = state == "treated")

summary(fm4)

add fitted lines to the plot

conc <- seq(0, 1.2, len = 101)

lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1)

lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2)

legend(0.8, 120, levels(Puromycin$state),

col = 1:2, lty = 1:2, pch = 1:2)

selfStart Construct Self-starting Nonlinear Models selfStart

Description

This function is generic; methods functions can be written to handle specific classes of
objects. Available methods include selfStart.default and selfStart.formula. See the
documentation on the appropriate method function.

Usage

selfStart(model, initial, parameters, template)

Value

a function object of the selfStart class.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart.default, selfStart.formula

Examples

see documentation for the methods

selfStart.default 631

selfStart.default Construct Self-starting Nonlinear Models selfStart.default

Description

A method for the generic function ‘selfStart’ for formula objects.

Usage

selfStart(model, initial, parameters, template)

Arguments

model a function object defining a nonlinear model.

initial a function object, taking three arguments: mCall, data, and LHS, repres-
enting, respectively, a matched call to the function model, a data frame
in which to interpret the variables in mCall, and the expression from the
left-hand side of the model formula in the call to nls. This function
should return initial values for the parameters in model.

parameters, template

these arguments are included for consistency with the generic function,
but are not used in the default method. See the documentation on
selfStart.formula.

Value

a function object of class selfStart, corresponding to a self-starting nonlinear model func-
tion. An initial attribute (defined by the initial argument) is added to the function to
calculate starting estimates for the parameters in the model automatically.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart.formula

Examples

library(nls)

‘first.order.log.model’ is a function object defining a first order

compartment model

‘first.order.log.initial’ is a function object which calculates initial

values for the parameters in ‘first.order.log.model’

self-starting first order compartment model

SSfol <- selfStart(first.order.log.model, first.order.log.initial)

632 selfStart.formula

selfStart.formula Construct Self-starting Nonlinear Models selfStart.formula

Description

A method for the generic function ‘selfStart’ for formula objects.

Usage

selfStart(model, initial, parameters, template)

Arguments

model a nonlinear formula object of the form ẽxpression.

initial a function object, taking three arguments: mCall, data, and LHS, repres-
enting, respectively, a matched call to the function model, a data frame
in which to interpret the variables in mCall, and the expression from the
left-hand side of the model formula in the call to nls. This function
should return initial values for the parameters in model.

parameters a character vector specifying the terms on the right hand side of model
for which initial estimates should be calculated. Passed as the namevec
argument to the deriv function.

template an optional prototype for the calling sequence of the returned object,
passed as the function.arg argument to the deriv function. By default,
a template is generated with the covariates in model coming first and the
parameters in model coming last in the calling sequence.

Value

a function object of class selfStart, obtained by applying deriv to the right hand side of
the model formula. An initial attribute (defined by the initial argument) is added to
the function to calculate starting estimates for the parameters in the model automatically.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart.default, deriv

Examples

library(nls)

self-starting logistic model

SSlogis <- selfStart(~ Asym/(1 + exp((xmid - x)/scal)),

function(mCall, data, LHS)

{

xy <- sortedXyData(mCall[["x"]], LHS, data)

if(nrow(xy) < 4) {

stop("Too few distinct x values to fit a logistic")

setNames 633

}

z <- xy[["y"]]

if (min(z) <= 0) { z <- z + 0.05 * max(z) } # avoid zeroes

z <- z/(1.05 * max(z)) # scale to within unit height

xy[["z"]] <- log(z/(1 - z)) # logit transformation

aux <- coef(lm(x ~ z, xy))

parameters(xy) <- list(xmid = aux[1], scal = aux[2])

pars <- as.vector(coef(nls(y ~ 1/(1 + exp((xmid - x)/scal)),

data = xy, algorithm = "plinear")))

value <- c(pars[3], pars[1], pars[2])

names(value) <- mCall[c("Asym", "xmid", "scal")]

value

}, c("Asym", "xmid", "scal"))

setNames Set the Names in an Object setNames

Description

This is a convenience function that sets the names on an object and returns the object.
It is most useful at the end of a function definition where one is creating the object to be
returned and would prefer not to store it under a name just so the names can be assigned.

Usage

setNames(object, nm)

Arguments

object an object for which a names attribute will be meaningful

nm a character vector of names to assign to the object

Value

An object of the same sort as object with the new names assigned.

Author(s)

Douglas M. Bates and Saikat DebRoy

See Also

clearNames

Examples

library(nls)

setNames(1:3, c("foo", "bar", "baz"))

this is just a short form of

tmp <- 1:3

names(tmp) <- c("foo", "bar", "baz")

tmp

634 sortedXyData

sortedXyData Create a sortedXyData object sortedXyData

Description

This is a constructor function for the class of sortedXyData objects. These objects are
mostly used in the initial function for a self-starting nonlinear regression model, which
will be of the selfStart class.

Usage

sortedXyData(x, y, data)

Arguments

x a numeric vector or an expression that will evaluate in data to a numeric
vector

y a numeric vector or an expression that will evaluate in data to a numeric
vector

data an optional data frame in which to evaluate expressions for x and y, if
they are given as expressions

Value

A sortedXyData object. This is a data frame with exactly two numeric columns, named x
and y. The rows are sorted so the x column is in increasing order. Duplicate x values are
eliminated by averaging the corresponding y values.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart, NLSstClosestX, NLSstLfAsymptote, NLSstRtAsymptote

Examples

library(nls)

data(DNase)

DNase.2 <- DNase[DNase$Run == "2",]

sortedXyData(expression(log(conc)), expression(density), DNase.2)

SSasymp 635

SSasymp Asymptotic Regression Model SSasymp

Description

This selfStart model evaluates the asymptotic regression function and its gradient. It has
an initial attribute that will evaluate initial estimates of the parameters Asym, R0, and
lrc for a given set of data.

Usage

SSasymp(input, Asym, R0, lrc)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right
side (very large values of input).

R0 a numeric parameter representing the response when input is zero.

lrc a numeric parameter representing the natural logarithm of the rate con-
stant.

Value

a numeric vector of the same length as input. It is the value of the expression Asym+(R0-
Asym)*exp(-exp(lrc)*input). If all of the arguments Asym, R0, and lrc are names of
objects, the gradient matrix with respect to these names is attached as an attribute named
gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

library(nls)

data(Loblolly)

Lob.329 <- Loblolly[Loblolly$Seed == "329",]

SSasymp(Lob.329$age, 100, -8.5, -3.2) # response only

Asym <- 100

resp0 <- -8.5

lrc <- -3.2

SSasymp(Lob.329$age, Asym, resp0, lrc) # response and gradient

getInitial(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)

Initial values are in fact the converged values

fm1 <- nls(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)

summary(fm1)

636 SSasympOff

SSasympOff Asymptotic Regression Model with an Offset SSasympOff

Description

This selfStart model evaluates an alternative parameterization of the asymptotic regres-
sion function and the gradient with respect to those parameters. It has an initial attribute
that creates initial estimates of the parameters Asym, lrc, and c0.

Usage

SSasympOff(input, Asym, lrc, c0)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right
side (very large values of input).

lrc a numeric parameter representing the natural logarithm of the rate con-
stant.

c0 a numeric parameter representing the input for which the response is
zero.

Value

a numeric vector of the same length as input. It is the value of the expression Asym*(1 -
exp(-exp(lrc)*(input - c0))). If all of the arguments Asym, lrc, and c0 are names of
objects, the gradient matrix with respect to these names is attached as an attribute named
gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

library(nls)

data(CO2)

CO2.Qn1 <- CO2[CO2$Plant == "Qn1",]

SSasympOff(CO2.Qn1$conc, 32, -4, 43) # response only

Asym <- 32; lrc <- -4; c0 <- 43

SSasympOff(CO2.Qn1$conc, Asym, lrc, c0) # response and gradient

getInitial(uptake ~ SSasymp(conc, Asym, lrc, c0), data = CO2.Qn1)

Initial values are in fact the converged values

fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0), data = CO2.Qn1)

summary(fm1)

SSasympOrig 637

SSasympOrig Asymptotic Regression Model through the Origin SSasympOrig

Description

This selfStart model evaluates the asymptotic regression function through the origin
and its gradient. It has an initial attribute that will evaluate initial estimates of the
parameters Asym and lrc for a given set of data.

Usage

SSasympOrig(input, Asym, lrc)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote.

lrc a numeric parameter representing the natural logarithm of the rate con-
stant.

Value

a numeric vector of the same length as input. It is the value of the expression Asym*(1 -
exp(-exp(lrc)*input)). If all of the arguments Asym and lrc are names of objects, the
gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

library(nls)

data(Loblolly)

Lob.329 <- Loblolly[Loblolly$Seed == "329",]

SSasympOrig(Lob.329$age, 100, -3.2) # response only

Asym <- 100; lrc <- -3.2

SSasympOrig(Lob.329$age, Asym, lrc) # response and gradient

getInitial(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)

Initial values are in fact the converged values

fm1 <- nls(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)

summary(fm1)

638 SSbiexp

SSbiexp Biexponential model SSbiexp

Description

This selfStart model evaluates the biexponential model function and its gradient. It has
an initial attribute that creates initial estimates of the parameters A1, lrc1, A2, and
lrc2.

Usage

SSbiexp(input, A1, lrc1, A2, lrc2)

Arguments

input a numeric vector of values at which to evaluate the model.

A1 a numeric parameter representing the multiplier of the first exponential.

lrc1 a numeric parameter representing the natural logarithm of the rate con-
stant of the first exponential.

A2 a numeric parameter representing the multiplier of the second exponential.

lrc2 a numeric parameter representing the natural logarithm of the rate con-
stant of the second exponential.

Value

a numeric vector of the same length as input. It is the value of the expression A1*exp(-
exp(lrc1)*input)+A2*exp(-exp(lrc2)*input). If all of the arguments A1, lrc1, A2, and
lrc2 are names of objects, the gradient matrix with respect to these names is attached as
an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

library(nls)

data(Indometh)

Indo.1 <- Indometh[Indometh$Subject == 1,]

SSbiexp(Indo.1$time, 3, 1, 0.6, -1.3) # response only

A1 <- 3; lrc1 <- 1; A2 <- 0.6; lrc2 <- -1.3

SSbiexp(Indo.1$time, A1, lrc1, A2, lrc2) # response and gradient

getInitial(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)

Initial values are in fact the converged values

fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)

summary(fm1)

SSfol 639

SSfol First-order Compartment Model SSfol

Description

This selfStart model evaluates the first-order compartment function and its gradient. It
has an initial attribute that creates initial estimates of the parameters lKe, lKa, and lCl.

Usage

SSfol(Dose, input, lKe, lKa, lCl)

Arguments

Dose a numeric value representing the initial dose.

input a numeric vector at which to evaluate the model.

lKe a numeric parameter representing the natural logarithm of the elimination
rate constant.

lKe a numeric parameter representing the natural logarithm of the absorption
rate constant.

lCl a numeric parameter representing the natural logarithm of the clearance.

Value

a numeric vector of the same length as input, which is the value of the expres-
sion Dose * exp(lKe+lKa-lCl) * (exp(-exp(lKe)*input)-exp(-exp(lKa)*input)) /
(exp(lKa)-exp(lKe)).

If all of the arguments lKe, lKa, and lCl are names of objects, the gradient matrix with
respect to these names is attached as an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

library(nls)

data(Theoph)

Theoph.1 <- Theoph[Theoph$Subject == 1,]

SSfol(Theoph.1$Dose, Theoph.1$Time, -2.5, 0.5, -3) # response only

lKe <- -2.5; lKa <- 0.5; lCl <- -3

SSfol(Theoph.1$Dose, Theoph.1$Time, lKe, lKa, lCl) # response and gradient

getInitial(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)

Initial values are in fact the converged values

fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)

summary(fm1)

640 SSfpl

SSfpl Four-parameter Logistic Model SSfpl

Description

This selfStart model evaluates the four-parameter logistic function and its gradient. It
has an initial attribute that will evaluate initial estimates of the parameters A, B, xmid,
and scal for a given set of data.

Usage

SSfpl(input, A, B, xmid, scal)

Arguments

input a numeric vector of values at which to evaluate the model.

A a numeric parameter representing the horizontal asymptote on the left
side (very small values of input).

B a numeric parameter representing the horizontal asymptote on the right
side (very large values of input).

xmid a numeric parameter representing the input value at the inflection point
of the curve. The value of SSfpl will be midway between A and B at xmid.

scal a numeric scale parameter on the input axis.

Value

a numeric vector of the same length as input. It is the value of the expression A+(B-
A)/(1+exp((xmid-input)/scal)). If all of the arguments A, B, xmid, and scal are names
of objects, the gradient matrix with respect to these names is attached as an attribute
named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

library(nls)

data(ChickWeight)

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]

SSfpl(Chick.1$Time, 13, 368, 14, 6) # response only

A <- 13; B <- 368; xmid <- 14; scal <- 6

SSfpl(Chick.1$Time, A, B, xmid, scal) # response and gradient

getInitial(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)

Initial values are in fact the converged values

fm1 <- nls(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)

summary(fm1)

SSlogis 641

SSlogis Logistic Model SSlogis

Description

This selfStart model evaluates the logistic function and its gradient. It has an initial
attribute that creates initial estimates of the parameters Asym, xmid, and scal.

Usage

SSlogis(input, Asym, xmid, scal)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the asymptote.

xmid a numeric parameter representing the x value at the inflection point of
the curve. The value of SSlogis will be Asym/2 at xmid.

scal a numeric scale parameter on the input axis.

Value

a numeric vector of the same length as input. It is the value of the expression
Asym/(1+exp((xmid-input)/scal)). If all of the arguments Asym, xmid, and scal are
names of objects the gradient matrix with respect to these names is attached as an attrib-
ute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

library(nls)

data(ChickWeight)

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]

SSlogis(Chick.1$Time, 368, 14, 6) # response only

Asym <- 368; xmid <- 14; scal <- 6

SSlogis(Chick.1$Time, Asym, xmid, scal) # response and gradient

getInitial(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)

Initial values are in fact the converged values

fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)

summary(fm1)

642 SSmicmen

SSmicmen Michaelis-Menten Model SSmicmen

Description

This selfStart model evaluates the Michaelis-Menten model and its gradient. It has an
initial attribute that will evaluate initial estimates of the parameters Vm and K

Usage

SSmicmen(input, Vm, K)

Arguments

input a numeric vector of values at which to evaluate the model.

Vm a numeric parameter representing the maximum value of the response.

K a numeric parameter representing the input value at which half the max-
imum response is attained. In the field of enzyme kinetics this is called
the Michaelis parameter.

Value

a numeric vector of the same length as input. It is the value of the expression
Vm*input/(K+input). If both the arguments Vm and K are names of objects, the gradi-
ent matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

library(nls)

data(Puromycin)

PurTrt <- Puromycin[Puromycin$state == "treated",]

SSmicmen(PurTrt$conc, 200, 0.05) # response only

Vm <- 200; K <- 0.05

SSmicmen(PurTrt$conc, Vm, K) # response and gradient

getInitial(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)

Initial values are in fact the converged values

fm1 <- nls(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)

summary(fm1)

Alternative call using the subset argument

fm2 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,

subset = state == "treated")

summary(fm2)

Chapter 8

The splines package

asVector Coerce an Object to a Vector asVector

Description

This is a generic function. Methods for this function coerce objects of given classes to
vectors.

Usage

asVector(object)

Arguments

object An object.

Value

a vector

Author(s)

Douglas Bates and Bill Venables

See Also

xyVector

Examples

library(splines)

data(women)

ispl <- interpSpline(weight ~ height, women)

pred <- predict(ispl)

class(pred)

str(pred)

asVector(pred)

643

644 backSpline

backSpline Monotone Inverse Spline backSpline

Description

Create a monotone inverse of a monotone natural spline.

Usage

backSpline(object)

Arguments

object An object that inherits from class nbSpline or npolySpline. That is, the
object must represent a natural interpolation spline but it can be either
in the B-spline representation or the piecewise polynomial representation.
The spline is checked to see if represents a monotone function.

Value

An object of class polySpline that contains the piecewise polynomial representation of
a function that has the appropriate values and derivatives at the knot positions to be an
inverse of the spline represented by object. Technically this object is not a spline because
the second derivative is not constrained to be continuous at the knot positions. However,
it is often a much better approximation to the inverse than fitting an interpolation spline
to the y/x pairs.

Author(s)

Douglas Bates and Bill Venables

See Also

interpSpline

Examples

library(splines)

data(women)

ispl <- interpSpline(women$height, women$weight)

bspl <- backSpline(ispl)

plot(bspl) # plots over the range of the knots

points(women$weight, women$height)

bs 645

bs Generate a Basis for Polynomial Splines bs

Description

Generate the B-spline basis matrix for a cubic spline.

Usage

bs(x, df, knots, degree=3, intercept=FALSE, Boundary.knots)

Arguments

x the predictor variable.

df degrees of freedom; one can specify df rather than knots; bs() then
chooses df-degree-1 knots at suitable quantiles of x.

knots the internal breakpoints that define the spline. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are
the mean or median for one knot, quantiles for more knots. See also
Boundary.knots.

degree degree of the piecewise polynomial—default is 3 for cubic splines.

intercept if TRUE, an intercept is included in the basis; default is FALSE.
Boundary.knots

boundary points at which to anchor the B-spline basis (default the range
of the data). If both knots and Boundary.knots are supplied, the basis
parameters do not depend on x. Data can extend beyond Boundary.knots

Value

A matrix of dimension length(x) * df, where either df was supplied or if knots were
supplied, df = length(knots) + 3 + intercept. Attributes are returned that corres-
pond to the arguments to bs, and explicitly give the knots, Boundary.knots etc for use by
predict.bs().

bs() is based on the function spline.des() written by Douglas Bates. It generates a basis
matrix for representing the family of piecewise polynomials with the specified interior knots
and degree, evaluated at the values of x. A primary use is in modeling formulas to directly
specify a piecewise polynomial term in a model.

Beware of making predictions with new x values when df is used as an argument. Either
use safe.predict.gam(), or else specify knots and Boundary.knots.

See Also

ns, poly, smooth.spline, predict.bs.

Examples

library(splines)

data(women)

bs(women$height, df = 5)

summary(fm1 <- lm(weight ~ bs(height, df = 5), data = women))

646 interpSpline

interpSpline Create an Interpolation Spline interpSpline

Description

Create an interpolation spline, either from x and y vectors, or from a formula/data.frame
combination.

Usage

interpSpline(obj1, obj2, bSpline, period, na.action)

Arguments

obj1 Either a numeric vector of x values or a formula.
obj2 If obj1 is numeric this should be a numeric vector of the same length. If

obj1 is a formula this can be an optional data frame in which to evaluate
the names in the formula.

bSpline If TRUE the b-spline representation is returned, otherwise the piecewise
polynomial representation is returned. Defaults to FALSE.

period An optional positive numeric value giving a period for a periodic inter-
polation spline.

na.action a optional function which indicates what should happen when the data
contain NAs. The default action (na.omit) is to omit any incomplete ob-
servations. The alternative action na.fail causes interpSpline to print
an error message and terminate if there are any incomplete observations.

Value

An object that inherits from class spline. The object can be in the B-spline representation,
in which case it will be of class nbSpline for natural B-spline, or in the piecewise polynomial
representation, in which case it will be of class npolySpline.

Author(s)

Douglas Bates and Bill Venables

See Also

splineKnots, splineOrder, periodicSpline

Examples

library(splines)

data(women)

ispl <- interpSpline(women$height, women$weight)

ispl2 <- interpSpline(weight ~ height, women)

ispl and ispl2 should be the same

plot(predict(ispl, seq(55, 75, len = 51)), type = "l")

points(women$height, women$weight)

plot(ispl) # plots over the range of the knots

points(women$height, women$weight)

splineKnots(ispl)

ns 647

ns Generate a Basis Matrix for Natural Cubic Splines ns

Description

Generate the B-spline basis matrix for a natural cubic spline.

Usage

ns(x, df, knots, intercept=F, Boundary.knots)

Arguments

x the predictor variable.
df degrees of freedom. One can supply df rather than knots; ns() then

chooses df - 1 - intercept knots at suitably chosen quantiles of x.
knots breakpoints that define the spline. The default is no knots; together with

the natural boundary conditions this results in a basis for linear regression
on x. Typical values are the mean or median for one knot, quantiles for
more knots. See also Boundary.knots.

intercept if TRUE, an intercept is included in the basis; default is FALSE.
Boundary.knots

boundary points at which to impose the natural boundary conditions and
anchor the B-spline basis (default the range of the data). If both knots
and Boundary.knots are supplied, the basis parameters do not depend
on x. Data can extend beyond Boundary.knots

Value

A matrix of dimension length(x) * df where either df was supplied or if knots were sup-
plied, df = length(knots) + 1 + intercept. Attributes are returned that correspond
to the arguments to ns, and explicitly give the knots, Boundary.knots etc for use by
predict.ns().

ns() is based on the function spline.des(). It generates a basis matrix for representing
the family of piecewise-cubic splines with the specified sequence of interior knots, and the
natural boundary conditions. These enforce the constraint that the function is linear beyond
the boundary knots, which can either be supplied, else default to the extremes of the data.
A primary use is in modeling formula to directly specify a natural spline term in a model.

Beware of making predictions with new x values when df is used as an argument. Either
use safe.predict.gam(), or else specify knots and Boundary.knots.

See Also

bs, poly, predict.ns

Examples

library(splines)

data(women)

ns(women$height, df = 5)

summary(fm1 <- lm(weight ~ ns(height, df = 5), data = women))

648 periodicSpline

periodicSpline Create a Periodic Interpolation Spline periodicSpline

Description

Create a periodic interpolation spline, either from x and y vectors, or from a for-
mula/data.frame combination.

Usage

periodicSpline(obj1, obj2, knots, period, ord)

Arguments

obj1 Either a numeric vector of x values or a formula.

obj2 If obj1 is numeric this should be a numeric vector of the same length. If
obj1 is a formula this can be an optional data frame in which to evaluate
the names in the formula.

knots An optional numeric vector of knot positions.

period A positive numeric value giving the period for the periodic spline. Defaults
to 2 * pi.

ord A positive integer giving the order of the spline. Defaults to 4. See
?splineOrder for a definition of the order of a spline.

Value

An object that inherits from class spline. The object can be in the B-spline representation,
in which case it will be a pbSpline object, or in the piecewise polynomial representation
(a ppolySpline object).

Author(s)

Douglas Bates and Bill Venables

See Also

splineKnots, interpSpline

Examples

library(splines)

xx <- seq(-pi, pi, len = 16)[-1]

yy <- sin(xx)

frm <- data.frame(xx, yy)

print(pispl <- periodicSpline(xx, yy, period = 2 * pi))

print(pispl2 <- periodicSpline(yy ~ xx, frm, period = 2 * pi))

pispl and pispl2 should be the same

plot(predict(pispl, seq(-3*pi, 3*pi, len = 101)), type = "l")

plot(pispl) # displays over one period

polySpline 649

polySpline Piecewise Polynomial Spline Representation polySpline

Description

Create the piecewise polynomial representation of a spline object.

Usage

polySpline(object, ...)
as.polySpline(object, ...)

Arguments

object An object that inherits from class spline.

... Optional additional arguments. At present no additional arguments are
used.

Value

An object that inherits from class polySpline. This is the piecewise polynomial repres-
entation of a univariate spline function. It is defined by a set of distinct numeric values
called knots. The spline function is a polynomial function between each successive pair of
knots. At each interior knot the polynomial segments on each side are constrained to have
the same value of the function and some of its derivatives.

Author(s)

Douglas Bates and Bill Venables

See Also

interpSpline, periodicSpline, splineKnots, splineOrder

Examples

library(splines)

data(women)

ispl <- polySpline(interpSpline(weight ~ height, women))

print(ispl) # print the piecewise polynomial representation

plot(ispl) # plots over the range of the knots

points(women$weight, women$height)

650 predict.bSpline

predict.bs Evaluate a Spline Basis predict.bs

Description

Evaluate a predefined spline basis at given values.

Usage

predict.bs(object, newx, ...)
predict.ns(object, newx, ...)

Arguments

object the result of a call to bs() or ns() having attributes describing knots,
degree, etc.

newx the x values at which evaluations are required.

... Optional additional arguments. Presently no additional arguments are
used.

Value

An object just like basis, except evaluated at the new values of x.

These are methods for the generic function predict() for objects inheriting from classes
bs or ns. See predict for the general behavior of this function.

See Also

bs, ns, poly, lo, s

Examples

library(splines)

data(women)

basis <- ns(women$height, df = 5)

newX <- seq(58, 72, len = 51)

evaluate the basis at the new data

predict(basis, newX)

predict.bSpline Evaluate a spline at new values of x predict.bSpline

Description

The predict methods for the classes that inherit from the virtual classes bSpline and
polySpline are used to evaluate the spline or its derivatives. The plot method for a
spline object first evaluates predict with the x argument missing, then plots the resulting
xyVector with type = "l".

predict.bSpline 651

Usage

predict.bSpline(object, x, nseg=50, deriv=0)
predict.nbSpline(object, x, nseg=50, deriv=0)
predict.pbSpline(object, x, nseg=50, deriv=0)
predict.npolySpline(object, x, nseg=50, deriv=0)
predict.ppolySpline(object, x, nseg=50, deriv=0)
plot.spline(x, ...)

Arguments

object An object that inherits from the bSpline or the polySpline class. For
plot.spline this argument is called x.

x A numeric vector of x values at which to evaluate the spline. If this
argument is missing a suitable set of x values is generated as a sequence
of nseq segments spanning the range of the knots. For plot.spline the
x argument is as described under object above.

nseg A positive integer giving the number of segments in a set of equally-spaced
x values spanning the range of the knots in object. This value is only
used if x is missing.

deriv An integer between 0 and splineOrder(object) - 1 specifying the de-
rivative to evaluate.

... additional graphical parameters (see link{par}).

Value

an xyVector with components

x the supplied or inferred numeric vector of x values

y the value of the spline (or its deriv’th derivative) at the x vector

Author(s)

Douglas Bates and Bill Venables

See Also

xyVector, interpSpline, periodicSpline

Examples

library(splines)

data(women)

ispl <- interpSpline(weight ~ height, women)

opar <- par(mfrow = c(2, 2), las = 1)

plot(predict(ispl, nseg = 201), # plots over the range of the knots

main = "Original data with interpolating spline", type = "l",

xlab = "height", ylab = "weight")

points(women$height, women$weight, col = 4)

plot(predict(ispl, nseg = 201, deriv = 1),

main = "First derivative of interpolating spline", type = "l",

xlab = "height", ylab = "weight")

plot(predict(ispl, nseg = 201, deriv = 2),

main = "Second derivative of interpolating spline", type = "l",

652 splineDesign

xlab = "height", ylab = "weight")

plot(predict(ispl, nseg = 401, deriv = 3),

main = "Third derivative of interpolating spline", type = "l",

xlab = "height", ylab = "weight")

par(opar)

splineDesign Design Matrix for B-splines splineDesign

Description

Evaluate the design matrix for the B-splines defined by knots at the values in x.

Usage

splineDesign(knots, x, ord, derivs)
spline.des(knots, x, ord, derivs)

Arguments

knots a numeric vector of knot positions with non-decreasing values.
x a numeric vector of values at which to evaluate the B-spline functions or

derivatives. The values in x must be between knots[ord] and knots[
length(knots) + 1 - ord].

ord a positive integer giving the order of the spline function. This is the
number of coefficients in each piecewise polynomial segment, thus a cubic
spline has order 4. Defaults to 4.

derivs an integer vector of the same length as x and with values between 0 and
ord - 1. The derivative of the given order is evaluated at the x positions.
Defaults to a vector of zeroes of the same length as x.

Value

A matrix with length(x) rows and length(knots) - ord columns. The i’th row of
the matrix contains the coefficients of the B-splines (or the indicated derivative of the B-
splines) defined by the knot vector and evaluated at the i’th value of x. Each B-spline is
defined by a set of ord successive knots so the total number of B-splines is length(knots)-
ord.

Note

The older spline.des function takes the same arguments but returns a list with several
components including knots, ord, derivs, and design. The design component is the same
as the value of the splineDesign function.

Author(s)

Douglas Bates and Bill Venables

Examples

library(splines)

splineDesign(knots = 1:10, x = 4:7)

splineKnots 653

splineKnots Knot Vector from a Spline splineKnots

Description

Return the knot vector corresponding to a spline object.

Usage

splineKnots(object)

Arguments

object an object that inherits from class spline.

Value

A non-decreasing numeric vector of knot positions.

Author(s)

Douglas Bates and Bill Venables

Examples

library(splines)

data(women)

ispl <- interpSpline(weight ~ height, women)

splineKnots(ispl)

splineOrder Determine the Order of a Spline splineOrder

Description

Return the order of a spline object.

Usage

splineOrder(object)

Arguments

object An object that inherits from class spline.

Details

The order of a spline is the number of coefficients in each piece of the piecewise polynomial
representation. Thus a cubic spline has order 4.

Value

An integer vector of length 1.

654 xyVector

Author(s)

Douglas Bates and Bill Venables

See Also

splineKnots, interpSpline, periodicSpline

Examples

library(splines)

data(women)

splineOrder(interpSpline(weight ~ height, women))

xyVector Construct an xyVector Object xyVector

Description

Create an object to represent a set of x-y pairs. The resulting object can be treated as a
matrix or as a data frame or as a vector. When treated as a vector it reduces to the y
component only.

The result of functions such as predict.spline is returned as an xyVector object so the
x-values used to generate the y-positions are retained, say for purposes of generating plots.

Usage

xyVector(x, y)

Arguments

x a numeric vector
y a numeric vector of the same length as x

Value

An object of class xyVector with components

x a numeric vector
y a numeric vector of the same length as x

Author(s)

Douglas Bates and Bill Venables

Examples

library(splines)

data(women)

ispl <- interpSpline(weight ~ height, women)

weights <- predict(ispl, seq(55, 75, len = 51))

class(weights)

plot(weights, type = "l", xlab = "height", ylab = "weight")

points(women$height, women$weight)

weights

Chapter 9

The stepfun package

ecdf Empirical Cumulative Distribution Function ecdf

Description

Compute an empirical cumulative distribution function.

Usage

ecdf(x)
plot(ecdf(x), verticals = FALSE, col.01line = "gray70", ...)

Arguments

x numeric vector with the “observations”.

Details

The e.c.d.f. (empirical cumulative distribution function) Fn is a step function with jump
1/n at each observation (possibly with multiple jumps at one place if there are ties).

For observations x= (x1, x2,. . .xn), Fn is the fraction of observations less or equal to t, i.e.,

Fn(t) = #{xi ≤ t} /n =
1
n

n∑
i=1

1[xi≤t].

The function plot.ecdf which implements the plot method for ecdf objects, is implemen-
ted via a call to plot.stepfun.

Value

A function of class "ecdf", inheriting from the "stepfun" class.

Author(s)

Martin Maechler, 〈maechler@stat.math.ethz.ch〉.

655

656 plot.stepfun

See Also

stepfun, the more general class of step functions, approxfun and splinefun.

Examples

##-- Simple didactical ecdf example:

Fn <- ecdf(rnorm(12))

Fn; summary(Fn)

12*Fn(knots(Fn)) == 1:12 ## == 1:12 if and only if there are no ties !

y <- round(rnorm(12),1); y[3] <- y[1]

Fn12 <- ecdf(y)

Fn12

print(knots(Fn12), dig=2)

12*Fn12(knots(Fn12)) ## ~= 1:12 if there where no ties

summary(Fn12)

summary.stepfun(Fn12)

print(ls.Fn12 <- ls(env= environment(Fn12)))

##[1] "f" "method" "n" "x" "y" "yleft" "yright"

12 * Fn12((-20:20)/10)

###----------------- Plotting --------------------------

op <- par(mfrow=c(3,1), mgp=c(1.5, 0.8,0), mar= .1+c(3,3,2,1))

F10 <- ecdf(rnorm(10))

summary(F10)

plot(F10)

plot(F10, verticals= TRUE, do.p = F)

plot(Fn12)# , lwd=2) dis-regarded

xx <- unique(sort(c(seq(-3,2, length=201), knots(Fn12))))

lines(xx, Fn12(xx), col=’blue’)

abline(v=knots(Fn12),lty=2,col=’gray70’)

plot(xx, Fn12(xx), type=’b’, cex=.1)#- plot.default

plot(Fn12, col.h=’red’, add= TRUE) #- plot method

abline(v=knots(Fn12),lty=2,col=’gray70’)

plot(Fn12, verticals=T, col.p=’blue’, col.h=’red’,col.v=’bisque’)

par(op)

##-- this works too (automatic call to ecdf(.)):

plot.ecdf(rnorm(24))

plot.stepfun Plot Step Functions plot.stepfun

Description

Method of the generic plot for stepfun objects and utility for plotting piecewise constant
functions.

plot.stepfun 657

Usage

plot.stepfun(Fn, xval, xlim, xlab = "x", ylab = "f(x)", main = NULL,
add = FALSE, verticals = TRUE, do.points = TRUE,
pch = par("pch"), col.points=par("col"), cex.points=par("cex"),
col.hor = par("col"), col.vert= par("col"),
lty = par("lty"), lwd = par("lwd"), ...)

Arguments

Fn an R object inheriting from "stepfun".

xval numeric vector of abscissa values at which to evaluate Fn. Defaults to
knots(Fn) restricted to xlim.

xlim numeric(2); range of x values to use.

xlab,ylab labels of x and y axis.

main main title.

add logical; if TRUE only add to an existing plot.

verticals logical; if TRUE, draw vertical lines at steps.

do.points logical; if true, also draw points at the (xlim restricted) knot locations.

pch character; point character if do.points.

col.points character or integer code; color of points if do.points.

cex.points numeric; character expansion factor if do.points.

col.hor color of horizontal lines.

col.vert color of vertical lines.

lty, lwd line type and thickness for all lines.

... further arguments of plot(.), or if(add) segments(.).

Value

A list with two components

t abscissa (x) values, including the two outermost ones.

y y values ‘in between’ the t[].

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉, 1990, 1993; ported to R, 1997.

See Also

ecdf for empirical distribution functions as special step functions, approxfun and spline-
fun.

Examples

y0 <- c(1,2,4,3)

sfun0 <- stepfun(1:3, y0, f = 0)

sfun.2 <- stepfun(1:3, y0, f = .2)

sfun1 <- stepfun(1:3, y0, f = 1)

tt <- seq(0,3, by=0.1)

658 stepfun

op <- par(mfrow=c(2,2))

plot(sfun0); plot(sfun0, xval=tt, add=T, col.h="bisque")

plot(sfun.2);plot(sfun.2,xval=tt, add=T, col.h="orange")

plot(sfun1); plot(sfun1, xval=tt, add=T, col.h="coral")

##-- This is revealing :

plot(sfun0, verticals= FALSE,

main = "stepfun(x, y0, f=f) for f = 0, .2, 1")

for(i in 1:3)

plot(list(sfun0,sfun.2,sfun1)[[i]], add=TRUE, col.h=i, col.v=i)

legend(2.5, 1.9, paste("f =", c(0,0.2,1)), col=1:3, lty=1, y.inter=1); par(op)

##-- this works too (automatic call to ecdf(.)):

plot.stepfun(rt(50, df=3), col.vert = "gray20")

stepfun Step Functions stepfun

Description

Given the vectors (x1, . . . , xn) and (y0, y1, . . . , yn) (one value more!), stepfun(x,y,...)
returns an interpolating “step” function, say fn. I.e., fn(t) = ci (constant) for t ∈ (xi, xi+1)
and fn(xi) = yi for i = 1, . . . , n.

The value of the constant ci above depends on the “continuity” parameter f. For the
default, f = 0, fn is a “cadlag” function, i.e. continuous at right, limit (“the point”) at left.
In general, ci is interpolated in between the neighbouring y values, ci = (1− f)yi + f · yi+1.
Therefore, for non-0 values of f, fn may no longer be a proper step function, since it can
be discontinuous from both sides.

Usage

fn <- stepfun(x, y, f=0)
is.stepfun(fn)
knots(fn)
plot(fn, ...)
print(fn, ...)
summary(fn)

Arguments

x numeric vector giving the “knots” or jump locations of the step function.

y numeric vector one longer than x, giving the heights of the function values
between the x values.

f a number between 0 and 1, indicating how interpolation outside the given
x values should happen. See approxfun.

fn an R object inheriting from "stepfun".

Value

A function of class "stepfun", say fn. There are methods available for summarizing
("summary(.)"), representing ("print(.)") and plotting ("plot(.)", see plot.stepfun)
"stepfun" objects.

stepfun 659

The environment of fn contains all the information needed; "x","y": the original ar-
guments; "n": number of knots (x values); "f": continuity parameter; "yleft",
"yright" the function values outside the knots; "method" (always == "constant"; not
used, from approxfun(.)). The knots are also available by knots(fn).

Author(s)

Martin Maechler, 〈maechler@stat.math.ethz.ch〉 with some basic code from Thomas Lumley.

See Also

ecdf for empirical distribution functions as special step functions and plot.stepfun for
plotting step functions.

approxfun and splinefun.

Examples

y0 <- c(1,2,4,3)

sfun0 <- stepfun(1:3, y0, f = 0)

sfun.2 <- stepfun(1:3, y0, f = .2)

sfun1 <- stepfun(1:3, y0, f = 1)

sfun0

summary(sfun0)

summary(sfun.2)

x0 <- seq(0.5,3.5, by = 0.25)

rbind(x=x0, f.f0 = sfun0(x0), f.f02= sfun.2(x0), f.f1 = sfun1(x0))

660 stepfun

Chapter 10

The ts package

acf Autocovariance and Autocorrelation Function
Estimation

acf

Description

The function acf computes (and by default plots) estimates of the autocovariance or auto-
correlation function. Function pacf is the function used for the partial autocorrelations.

Function ccf computes the cross-correlation or cross-covariance of two univariate series.

The generic function plot has a method for acf objects.

Usage

acf(x, lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE, na.action, demean = TRUE, ...)

pacf(x, lag.max = NULL, plot = TRUE, na.action, ...)
ccf(x, y, lag.max = NULL, type = c("correlation", "covariance"),

plot = TRUE,na.action, ...)

plot.acf(acf.obj, ci=0.95, ci.col="blue", ci.type=c("white", "ma"), ...)

Arguments

x, y a univariate or multivariate (not ccf) time series object or a numeric
vector or matrix.

lag.max maximum lag at which to calculate the acf. Default is 10 log10(N) where
N is the number of observations.

plot logical. If TRUE the acf is plotted.

type character string giving the type of acf to be computed. Allowed values
are "correlation" (the default), "covariance" or "partial".

na.action function to be called to handle missing values.

demean logical. Should the covariances be about the sample means?

acf.obj an object of class acf.

661

662 acf

ci coverage probability for confidence interval. Plotting of the confidence
interval is suppressed if ci is zero or negative.

ci.col colour to plot the confidence interval lines.

ci.type should the confidence limits assume a white noise input or for lag k an
MA(k-1) input?

... graphical parameters.

Details

For type = "correlation" and "covariance", the estimates are based on the sample
covariance.

The partial correlation coefficient is estimated by fitting autoregressive models of success-
ively higher orders up to lag.max.

Value

An object of class acf, which is a list with the following elements:

lag A three dimensional array containing the lags at which the acf is estim-
ated.

acf An array with the same dimensions as lag containing the estimated acf.

type The type of correlation (same as the type argument).

n.used The number of observations in the time series.

series The name of the series x.

snames The series names for a multivariate time series.

The result is returned invisibly if plot is TRUE.

Note

The confidence interval plotted in plot.acf is based on an uncorrelated series and should
be treated with appropriate caution. Using ci.type = "ma" may be less potentially mis-
leading.

Author(s)

Original: Paul Gilbert, Martyn Plummer. Extensive modifications and univariate case of
pacf by B.D. Ripley.

Examples

Examples from Venables & Ripley

data(lh)

acf(lh)

acf(lh, type="covariance")

pacf(lh)

data(UKLungDeaths)

acf(ldeaths)

acf(ldeaths, ci.type="ma")

acf(ts.union(mdeaths, fdeaths))

ccf(mdeaths, fdeaths) # just the cross-correlations.

ar 663

ar Fit Autoregressive Models to Time Series ar

Description

Fit an autoregressive time series model to the data, by default selecting the complexity by
AIC.

Usage

ar(x, aic = TRUE, order.max = NULL,
method=c("yule-walker", "burg", "ols", "mle", "yw"), na.action,
series, ...)

ar.burg(x, aic = TRUE, order.max = NULL, na.action, demean = TRUE, series,
var.method = 1)

ar.yw(x, aic = TRUE, order.max = NULL, na.action, demean = TRUE, series)
ar.mle(x, aic = TRUE, order.max = NULL, na.action, demean = TRUE, series)

predict(ar.obj, newdata, n.ahead = 1, se.fit = TRUE)

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to
choose the order of the autoregressive model. If FALSE, the model of
order order.max is fitted.

order.max Maximum order (or order) of model to fit. Defaults to 10 log10(N) where
N is the number of observations except for method="mle" where it is the
minimum of this quantity and 12.

method Character string giving the method used to fit the model. Must be one of
the strings in the default argument (the first few characters are sufficient).
Defaults to "yule-walker".

na.action function to be called to handle missing values.

demean should a mean be estimated during fitting?

series names for the series. Defaults to deparse(substitute(x)).

var.method the method to estimate the innovations variance (see Details).

... additional arguments for specific methods.

ar.obj a fit from ar.

newdata data to which to apply the prediction.

n.ahead number of steps ahead at which to predict.

se.fit logical: return estimated standard errors of the prediction error?

Details

For definiteness, note that the AR coefficients have the sign in

xt − µ = a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

664 ar

ar is just a wrapper for the functions ar.yw, ar.burg, ar.ols and ar.mle.

Order selection is done by AIC if aic is true. This is problematic, as of the methods here
only ar.mle performs true maximum likelihood estimation. The AIC is computed as if
the variance estimate were the MLE, omitting the determinant term from the likelihood.
Note that this is not the same as the Gaussian likelihood evaluated at the estimated para-
meter values. In ar.yw the variance matrix of the innovations is computed from the fitted
coefficients and the autocovariance of x.

ar.burg allows two methods to estimate the innovations variance and hence AIC. Method
1 is to use the update given by the Levinson-Durbin recursion (Brockwell and Davis, 1991,
(8.2.6) on page 242), and follows S-PLUS. Method 2 is the mean of the sum of squares of
the forward and backward prediction errors (as in Brockwell and Davis, 1996, page 145).
Percival and Walden (1998) discuss both. In the multivariate case the estimated coefficients
will depend (slightly) on the variance estimation method.

Remember that ar includes by default a constant in the model, by removing the overall
mean of x before fitting the AR model, or (ar.mle) estimating a constant to subtract.

Value

For ar and its methods a list of class "ar" with the following elements:

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE, otherwise it is order.max.

ar Estimated autoregression coefficients for the fitted model.

var.pred The prediction variance: an estimate of the portion of the variance of the
time series that is not explained by the autoregressive model.

x.mean The estimated mean of the series used in fitting and for use in prediction.

x.intercept (ar.ols only.) The intercept in the model for x - x.mean.

aic The value of the aic argument.

n.used The number of observations in the time series.

order.max The value of the order.max argument.

partialacf The estimate of the partial autocorrelation function up to lag order.max.

resid residuals from the fitted model, conditioning on the first order observa-
tions. The first order residuals are set to NA. If x is a time series, so is
resid.

method The value of the method argument.

series The name(s) of the time series.

asy.var.coef (univariate case.) The asymptotic-theory variance matrix of the coeffi-
cient estimates.

For predict.ar, a time series of predictions, or if se.fit = TRUE, a list with components
pred, the predictions, and se, the estimated standard errors. Both components are time
series.

Note

Only the univariate case of ar.mle is implemented.

Fitting by method="mle" to long series can be very slow.

ar 665

Author(s)

Martyn Plummer. Univariate case of ar.yw, ar.mle and C code for univariate case of
ar.burg by B. D. Ripley.

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series and Forecasting Methods. Second
edition. Springer, New York. Section 11.4.

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting.
Springer, New York. Sections 5.1 and 7.6.

Percival, D. P. and Walden, A. T. (1998) Spectral Analysis for Physical Applications. Cam-
bridge University Press.

Whittle, P. (1963) On the fitting of multivariate autoregressions and the approximate ca-
nonical factorization of a spectral density matrix. Biometrika 40, 129–134.

See Also

ar.ols, arima0 for ARMA models.

Examples

data(lh)

ar(lh)

ar(lh, method="burg")

ar(lh, method="ols")

ar(lh, F, 4) # fit ar(4)

data(LakeHuron)

ar(LakeHuron)

ar(LakeHuron, method="burg")

ar(LakeHuron, method="ols")

data(sunspot)

sunspot.ar <- ar(sunspot.year)

sunspot.ar

ar(x = sunspot.year, method = "burg")

ar(x = sunspot.year, method = "ols")

next is slow and may have convergence problems,

as it cares about invertibility

ar(x = sunspot.year, method = "mle")

predict(sunspot.ar, n.ahead=25)

data(BJsales)

ar(ts.union(BJsales, BJsales.lead))

Burg is quite different here, as is OLS (see ar.ols)

ar(ts.union(BJsales, BJsales.lead), method="burg")

666 ar.ols

ar.ols Fit Autoregressive Models to Time Series by OLS ar.ols

Description

Fit an autoregressive time series model to the data by ordinary least squares, by default
selecting the complexity by AIC.

Usage

ar.ols(x, aic = TRUE, order.max = NULL, na.action, demean = TRUE,
intercept = demean, series)

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to
choose the order of the autoregressive model. If FALSE, the model of
order order.max is fitted.

order.max Maximum order (or order) of model to fit. Defaults to 10 log10(N) where
N is the number of observations.

na.action function to be called to handle missing values.

demean should the AR model be for x minus its mean?

intercept should a separate intercept term be fitted?

series names for the series. Defaults to deparse(substitute(x)).

Details

ar.ols fits the general AR model to a possibly non-stationary and/or multivariate system
of series x. The resulting unconstrained least squares estimates are consistent, even if some
of the series are non-stationary and/or co-integrated. For definiteness, note that the AR
coefficients have the sign in

xt − µ = a0 + a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

where a[0] is zero unless intercept is true, and m is the sample mean if demean is true,
zero otherwise.

Order selection is done by AIC if aic is true. This is problematic, as ar.ols does not
perform true maximum likelihood estimation. The AIC is computed as if the variance
estimate (computed from the variance matrix of the residuals) were the MLE, omitting
the determinant term from the likelihood. Note that this is not the same as the Gaussian
likelihood evaluated at the estimated parameter values.

Some care is needed if intercept is true and demean is false. Only use this is the series are
roughly centred on zero. Otherwise the computations may be inaccurate or fail entirely.

ar.ols 667

Value

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE, otherwise it is order.max.

ar Estimated autoregression coefficients for the fitted model.

var.pred The prediction variance: an estimate of the portion of the variance of the
time series that is not explained by the autoregressive model.

x.mean The estimated mean (or zero if demean is false) of the series used in fitting
and for use in prediction.

x.intercept The intercept in the model for x - x.mean, or zero if intercept is false.

aic The value of the aic argument.

n.used The number of observations in the time series.

order.max The value of the order.max argument.

partialacf NULL. For compatibility with ar.

resid residuals from the fitted model, conditioning on the first order observa-
tions. The first order residuals are set to NA. If x is a time series, so is
resid.

method "Unconstrained LS".

series The name(s) of the time series.

asy.se.coef The asymptotic-theory standard errors of the coefficient estimates.

Author(s)

Adrian Trapletti, Brian Ripley.

References

Luetkepohl, H. (1991): Introduction to Multiple Time Series Analysis. Springer Verlag,
NY, pp. 368–370.

See Also

ar

Examples

data(lh)

ar(lh, method="burg")

ar.ols(lh)

ar.ols(lh, F, 4) # fit ar(4)

data(BJsales)

ar.ols(ts.union(BJsales, BJsales.lead))

data(EuStockMarkets)

x <- diff(log(EuStockMarkets))

ar.ols(x, order.max=6, demean=FALSE, intercept=TRUE)

668 arima0

arima0 ARIMA Modelling of Time Series – Preliminary
Version

arima0

Description

Fit an ARIMA model to a univariate time series by exact maximum likelihood, and forecast
from the fitted model.

Usage

arima0(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean, na.action = na.fail,
delta = 0.01, transform.pars = 2)

predict(arima0.obj, n.ahead = 1, newxreg, se.fit = TRUE)

arima0.diag(fit, gof.lag = 10)

Arguments

x a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three
components are (p, d, q), the AR order, the degree of differencing and
the MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period
(which defaults to frequency(x)).

xreg Optionally, a vector or matrix of external regressors, which must have the
same number of rows as x.

include.mean Should the ARIMA model include a mean term? The default is TRUE for
undifferenced series, FALSE for differenced ones (where a mean would not
affect the fit nor predictions).

na.action Function to be applied to remove missing values.

delta A value to indicate at which point ‘fast recursions’ should be used. See
the Details section.

transform.pars

If greater than 0, the ARMA parameters are transformed to ensure that
they remain in the region of invertibility. If equal to 2, the optimization
is rerun on the original scale to find the Hessian.

arima0.obj, fit

The result of an arima0 fit.

newxreg New values of xreg to be used for prediction. Must have at least n.ahead
rows.

n.ahead The number of steps ahead for which prediction is required.

se.fit Logical: should standard errors of prediction be returned?

gof.lag Number of lags to be used in goodness-of-fit test.

arima0 669

Details

Different definitions of ARIMA models have different signs for the AR and/or MA coeffi-
cients. The definition here has

Xt = a1Xt−1 + · · ·+ apXt−p + et + b1et−1 + . . .+ bqet−q

and so the MA coefficients differ in sign from those of S-PLUS. Further, if include.mean
is true, this formula applies to X −m rather than X.

The exact likelihood is computed via a state-space representation of the ARMA process,
and the innovations and their variance found by a Kalman filter using the Fortran code
of Gardener et al. (1980). This has the option to switch to ‘fast recursions’ (assume an
effectively infinite past) if the innovations variance is close enough to its asymptotic bound.
The argument delta sets the tolerance: at its default value the approximation is normally
negligible and the speed-up considerable. Exact computations can be ensured by setting
delta to a negative value.

The variance matrix of the estimates is found from the Hessian of the log-likelihood, and
so may only be a rough guide, especially for fits close to the boundary of invertibility.

Optimization is (currently) done by nlm. It will work best if the columns in xreg are roughly
scaled to zero mean and unit variance.

Finite-history prediction is used. This is only statistically efficient if the MA part of the fit
is invertible, so predict.arima0 will give a warning for non-invertible MA models.

Value

For arima0, a list of class "arima0" with components:

coef a vector of AR, MA and regression coefficients,

sigma2 the MLE of the innovations variance.

var.coef the estimated variance matrix of the coefficients coef. If transform.pars
= 1, only the portion corresponding to the untransformed parameters is
returned.

loglik the maximized log-likelihood (of the differenced data).

arma A compact form of the specification, as a vector giving the number of AR,
MA, seasonal AR and seasonal MA coefficients, plus the period and the
number of non-seasonal and seasonal differences.

aic the AIC value corresponding to the log-likelihood.

resid the residuals.

call the matched call.

series the name of the series x.

convergence the value returned by optim.

For predict.arima0, a time series of predictions, or if se.fit = TRUE, a list with com-
ponents pred, the predictions, and se, the estimated standard errors. Both components
are time series.

670 austres

Note

This is a preliminary version, and will be replaced in due course.

The standard errors of prediction exclude the uncertainty in the estimation of the ARMA
model and the regression coefficients.

The results are likely to be different from S-PLUS’s arima.mle, which computes a condi-
tional likelihood and does not include a mean in the model. Further, the convention used
by arima.mle reverses the signs of the MA coefficients.

Author(s)

B.D. Ripley

References

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting.
Springer, New York. Sections 3.3 and 8.3.

Gardener, G, Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS154. An algorithm
for exact maximum likelihood estimation of autoregressive-moving average models by means
of Kalman filtering. Applied Statistics 29, 311–322.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, section 4.4.

Harvey, A. C. and McKenzie, C. R. (1982) Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes. Applied Statistics 31, 180–187.

See Also

ar

Examples

data(lh)

arima0(lh, order=c(1,0,0))

arima0(lh, order=c(3,0,0))

arima0(lh, order=c(1,0,1))

predict(arima0(lh, order=c(3,0,0)), n.ahead=12)

data(USAccDeaths)

fit <- arima0(USAccDeaths, order=c(0,1,1), seasonal=list(order=c(0,1,1)))

fit

predict(fit, n.ahead=6)

data(LakeHuron)

arima0(LakeHuron, order=c(2,0,0), xreg=1:98)

austres Quarterly Time Series of the Number of Australian
Residents

austres

Description

Numbers (in thousands) of Australian residents measured quarterly from March 1971 to
March 1994. The object is of class "ts".

beavers 671

Source

P. J. Brockwell and R. A. Davis (1996) Introduction to Time Series and Forecasting.
Springer

beavers Body Temperature Series of Two Beavers beavers

Description

Reynolds (1994) describes a small part of a study of the long-term temperature dynamics
of beaver Castor canadensis in north-central Wisconsin. Body temperature was measured
by telemetry every 10 minutes for four females, but data from a one period of less than a
day for each of two animals is used there.

Usage

data(beavers)

Arguments

day Day of observation (in days since the beginning of 1990), December 12–13
(beaver1) and November 3–4 (beaver2).

time Time of observation, in the form 0330 for 3:30am

temp Measured body temperature in degrees Celsius

activ Indicator of activity outside the retreat

Format

The beaver1 data frame has 114 rows and 4 columns on body temperature measurements
at 10 minute intervals.

The beaver2 data frame has 100 rows and 4 columns on body temperature measurements
at 10 minute intervals.

Note

The observation at 22:20 is missing in beaver1.

Source

P. S. Reynolds (1994) Time-series analyses of beaver body temperatures. Chapter 11 of
Lange, N., Ryan, L., Billard, L., Brillinger, D., Conquest, L. and Greenhouse, J. eds (1994)
Case Studies in Biometry. New York: John Wiley and Sons.

672 Box.test

BJsales Sales Data with Leading Indicator. BJsales

Description

The sales time series BJsales and leading indicator BJsales.lead each contain 150 obser-
vations. The objects are of class "ts".

Usage

data(BJsales)

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data Library
at http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

References

G. E. P. Box and G. M. Jenkins (1976): Time Series Analysis, Forecasting and Control,
Holden-Day, San Francisco, p. 537.

P. J. Brockwell and R. A. Davis (1991): Time Series: Theory and Methods, Second edition,
Springer Verlag, NY, pp. 414.

Box.test Box–Pierce and Ljung–Box Tests Box.test

Description

Compute the Box–Pierce or Ljung–Box test statistic for examining the null hypothesis of
independence in the time series x is computed.

Usage

Box.test (x, lag = 1, type=c("Box-Pierce", "Ljung-Box"))

Arguments

x a numeric vector or univariate time series.
lag the statistic will be based on lag autocorrelation coefficients.
type test to be performed: partial matching is used.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.
parameter the degrees of freedom of the approximate chi-square distribution of the

test statistic.
p.value the p-value of the test.
method a character string indicating which type of test was performed.
data.name a character string giving the name of the data.

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

cpgram 673

Note

Missing values are not handled.

Author(s)

A. Trapletti

References

Box, G. E. P. and Pierce, D. A. (1970) Distribution of residual correlations in autoregressive-
integrated moving average time series models. Journal of the American Statistical Associ-
ation 65, 1509–1526.

Ljung, G. M. and Box, G. E. P. (1978) On a measure of lack of fit in time series models.
Biometrika 65, 553–564.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, NY, pp. 44,
45.

Examples

x <- rnorm (100)

Box.test (x, lag = 1)

Box.test (x, lag = 1, type="Ljung")

cpgram Plot Cumulative Periodogram cpgram

Description

Plots a cumulative periodogram

Usage

cpgram(ts, taper=0.1, main=
paste("Series: ", deparse(substitute(ts))))

Arguments

ts a univariate time series

taper proportion tapered in forming the periodogram

main main title

Value

None.

Side Effects

Plots the cumulative periodogram in a square plot.

Note

From package ‘MASS’.

674 diffinv

Author(s)

B.D. Ripley

Examples

par(pty = "s", mfrow = c(1,2))

data(lh)

cpgram(lh)

lh.ar <- ar(lh, order.max = 9)

cpgram(lh.ar$resid, main = "AR(3) fit to lh")

data(UKLungDeaths)

cpgram(ldeaths)

diff.ts diff Method for ts Objects diff.ts

Description

diff method for ts objects.

Usage

diff.ts(x, lag=1, differences=1)

See Also

diff

diffinv Discrete Integrals: Inverse of Differencing diffinv

Description

Computes the inverse function of the lagged differences function diff.

Usage

diffinv(x, lag = 1, differences = 1,
xi = rep(0.0, lag*differences*NCOL(x)))

Arguments

x a numeric vector, matrix, or time series.

lag a scalar lag parameter.

differences an integer representing the order of the difference.

xi a numeric vector, matrix, or time series containing the initial values for
the integrals.

embed 675

Details

diffinv is a generic function with methods for class "ts" and default for vectors and
matrices.

Missing values are not handled.

Value

A numeric vector, matrix, or time series representing the discrete integral of x.

Author(s)

A. Trapletti

See Also

diff

Examples

s <- 1:10

d <- diff(s)

diffinv(d, xi = 1)

embed Embedding a Time Series embed

Description

Embeds the time series x into a low-dimensional Euclidean space.

Usage

embed (x, dimension = 1)

Arguments

x a numeric vector, matrix, or time series.

dimension a scalar representing the embedding dimension.

Details

Each row of the resulting matrix consists of sequences x[t], x[t-1], . . . , x[t-
dimension+1], where t is the original index of x. If x is a matrix, i.e., x contains more
than one variable, then x[t] consists of the tth observation on each variable.

Value

A matrix containing the embedded time series x.

Author(s)

A. Trapletti, B.D. Ripley

676 filter

Examples

x <- 1:10

embed (x, 3)

EuStockMarkets Daily Closing Prices of Major European Stock Indices,
1991-1998.

EuStockMarkets

Description

Contains the daily closing prices of major European stock indices: Germany DAX (Ibis),
Switzerland SMI, France CAC, and UK FTSE. The data are sampled in business time, i.e.,
weekends and holidays are omitted.

Usage

data(EuStockMarkets)

Format

A multivariate time series with 1860 observations on 4 variables. The object is of class
"mts".

Source

The data were kindly provided by Erste Bank AG, Vienna, Austria.

filter Linear Filtering on a Time Series filter

Description

Applies linear filtering to a univariate time series or to each series separately of a multivariate
time series.

Usage

filter(x, filter, method="convolution", sides=2,
circular=FALSE, init)

Arguments

x a univariate or multivariate time series.

filter a vector of filter coefficients in reverse time order (as for AR or MA
coefficients).

method Either "convolution" or "recursive" (and can be abbreviated). If
"convolution" a moving average is used: if "recursive" an autore-
gression is used.

sides for convolution filters only. If sides=1 the filter coefficients are for past
values only; if sides=2 they are centred around lag 0. In this case the
length of the filter should be odd, but if it is even, more of the filter is
forward in time than backward.

filter 677

circular for convolution filters only. If TRUE, wrap the filter around the ends of
the series, otherwise assume external values are missing (NA).

init for recursive filters only. Specifies the initial values of the time series just
prior to the start value, in reverse time order. The default is a set of zeros.

Details

Missing values are allowed in x but not in filter (where they would lead to missing values
everywhere in the output).

Note that there is an implied coefficient 1 at lag 0 in the recursive filter, which gives

yi = xi + f1yi−1 + · · ·+ fpyi−p

No check is made to see if recursive filter is invertible: the output may diverge if it is not.

The convolution filter is
yi = f1xi+o + · · ·+ fpxi+o−p−1

where o is the offset: see sides for how it is determined.

Value

A time series object.

Note

convolve(, type="filter") uses the FFT for computations and so may be faster for long
filters on univariate series, but it does not return a time series (and so the time alignment
is unclear), nor does it handle missing values. filter is faster for a filter of length 100 on
a series of length 1000, for example.

Author(s)

B.D. Ripley

See Also

convolve

Examples

x <- 1:100

filter(x, rep(1, 3))

filter(x, rep(1, 3), sides = 1)

filter(x, rep(1, 3), sides = 1, circular = TRUE)

data(presidents)

filter(presidents, rep(1,3))

A simple simulation function for ARMA processes

arma.sim <- function(n, ar = NULL, ma = NULL, sigma = 1.0)

{

x <- ts(rnorm(n+100, 0, sigma), start = -99)

if(length(ma)) x <- filter(x, c(1, ma), sides=1)

if(length(ar)) x <- filter(x, ar, method = "recursive")

as.ts(x[-(1:100)])

}

arma.sim(63, c(0.8897,-0.4858), c(-0.2279, 0.2488), sigma=sqrt(0.1796))

678 kernel

kernapply Apply Smoothing Kernel kernapply

Description

kernapply computes the convolution between an input sequence and a specific kernel.

Usage

kernapply(x, k, circular = FALSE)
kernapply(k1, k2)

Arguments

k, k1, k2 smoothing "tskernel" objects.
x an input vector, matrix, or time series to be smoothed.
circular a logical indicating whether the input sequence to be smoothed is treated

as circular, i.e., periodic.

Value

A smoothed version of the input sequence.

Author(s)

A. Trapletti

See Also

kernel, convolve, filter, spectrum

Examples

see ‘kernel’ for examples

kernel Smoothing Kernel Objects kernel

Description

The "tskernel" class is designed to represent discrete symmetric normalized smoothing
kernels. These kernels can be used to smooth vectors, matrices, or time series objects.

Usage

kernel(coef, m, r, name)

df.kernel(k)
bandwidth.kernel(k)
is.tskernel(k)

print(k, digits = max(3,getOption("digits")-3))
plot(k)

kernel 679

Arguments

coef the upper half of the smoothing kernel coefficients (inclusive of coeffi-
cient zero) or the name of a kernel (currently "daniell", "dirichlet",
"fejer" or "modified.daniell".

m the kernel dimension. The number of kernel coefficients is 2*m+1.

name the name of the kernel.

r the kernel order for a Fejer kernel.

digits the number of digits to format real numbers.

Details

kernel is used to construct a general kernel or named specific kernels. The modified Daniell
kernel halves the end coefficients (as used by S-PLUS).

df.kernel returns the ”equivalent degrees of freedom” of a smoothing kernel as defined
in Brockwell and Davies (1991), p. 362, and bandwidth.kernel returns the equivalent
bandwidth as defined in Bloomfield (1991), p. 201, with a continuity correction.

Value

kernel returns a list with class "tskernel", and components the coefficients coef and the
kernel dimension m. An additional attribute is "name".

Author(s)

A. Trapletti; modifications by B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. Second edition.
Springer, pp. 350–365.

See Also

kernapply

Examples

data(EuStockMarkets) # Demonstrate a simple trading strategy for the

x <- EuStockMarkets[,1] # financial time series German stock index DAX.

k1 <- kernel("daniell", 50) # a long moving average

k2 <- kernel("daniell", 10) # and a short one

plot(k1)

plot(k2)

x1 <- kernapply(x, k1)

x2 <- kernapply(x, k2)

plot(x)

lines(x1, col = "red") # go long if the short crosses the long upwards

lines(x2, col = "green") # and go short otherwise

data(sunspot) # Reproduce example 10.4.3 from Brockwell and Davies (1991)

spectrum(sunspot.year, kernel=kernel("daniell", c(11,7,3)), log="no")

680 lag

lag Lag a Time Series lag

Description

Computed a lagged version of a time series, shifting the time base back by k observations.

Usage

lag(x, ...)
lag.default(x, k=1)

Arguments

x A vector or matrix or univariate or multivariate time series

k The number of lags (in units of observations).

... Arguments for future methods.

Details

Vector or matrix arguments x are coerced to time series.

Value

A time series object.

Note

Note the sign of k: a series lagged by a positive k starts earlier.

Author(s)

B.D. Ripley

See Also

diff, deltat

Examples

data(UKLungDeaths)

lag(ldeaths, 12) # starts one year earlier

LakeHuron 681

LakeHuron Level of Lake Huron 1875–1972 LakeHuron

Description

Annual measurements of the level, in feet, of Lake Huron 1875–1972.

Usage

data(LakeHuron)

Format

A time series of length 98.

Source

Brockwell, P. J. & Davis, R. A. (1991). Time Series and Forecasting Methods. Second
edition. Springer, New York. Series A, page 555.
Brockwell, P. J. & Davis, R. A. (1996). Introduction to Time Series and Forecasting.
Springer, New York. Sections 5.1 and 7.6.

lh Luteinizing Hormone in Blood Samples lh

Description

A regular time series giving the luteinizing hormone in blood samples at 10 mins intervals
from a human female, 48 samples.

Source

P.J. Diggle (1990) Time Series: A Biostatistical Introduction. Oxford, table A.1, series 3

lynx Annual Canadian Lynx trappings 1821–1934 lynx

Description

Annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell & Davis
(1991), this appears to be the series considered by Campbell & Walker (1977).

Source

Brockwell, P. J. and Davis, R. A. (1991) Time Series and Forecasting Methods. Second
edition. Springer. Series G (page 557).

References

Campbell, M. J.and A. M. Walker (1977). A Survey of statistical work on the Mackenzie
River series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis.
Journal of the Royal Statistical Society series A, 140, 411–431.

682 nottem

na.omit.ts NA Handling Routines for Time Series na.omit.ts

Description

For na.omit.ts, initial and final segments with missing values in one or more of the series
are omitted. ‘Internal’ missing values will lead to failure.

For na.contiguous the longest consecutive stretch of non-missing values is used. (In the
event of a tie, the first such stretch.)

Usage

na.contiguous(frame)
na.omit.ts(frame)

Arguments

frame a univariate or multivariate time series.

Value

A time series without missing values. The class of frame will be preserved.

Author(s)

B. D. Ripley

See Also

na.omit, na.fail

Examples

data(BJsales)

sales1 <- ts.union(BJsales, lead3 = lag(BJsales.lead, -3))

na.omit.ts(sales1)

data(presidents)

na.contiguous(presidents)

nottem Average Monthly Temperatures at Nottingham,
1920–1939

nottem

Description

A time series object containing average air temperatures at Nottingham Castle in degrees
Fahrenheit for 20 years.

Source

Anderson, O.D. (1976) Time Series Analysis and Forecasting: The Box-Jenkins approach.
Butterworths. Series R.

PP.test 683

PP.test Phillips–Perron Unit Root Test PP.test

Description

Computes the Phillips-Perron test for the null hypothesis that x has a unit root.

Usage

PP.test(x, lshort = TRUE)

Arguments

x a numeric vector or univariate time series.

lshort a logical indicating whether the short or long version of the truncation
lag parameter is used.

Details

The general regression equation which incorporates a constant and a linear trend is used and
the corrected t-statistic for a first order autoregressive coefficient equals one is computed. To
estimate sigma 2̂ the Newey-West estimator is used. If lshort is TRUE, then the truncation
lag parameter is set to trunc(4*(n/100) 0̂.25), otherwise trunc(12*(n/100) 0̂.25) is
used. The p-values are interpolated from Table 4.2, p. 103 of Banerjee et al. (1993).

Missing values are not handled.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the truncation lag parameter.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

Author(s)

A. Trapletti

References

A. Banerjee, J. J. Dolado, J. W. Galbraith, and D. F. Hendry (1993) Cointegration, Error
Correction, and the Econometric Analysis of Non-Stationary Data, Oxford University Press,
Oxford.

P. Perron (1988) Trends and random walks in macroeconomic time series. Journal of
Economic Dynamics and Control 12, 297–332.

684 spec.ar

Examples

x <- rnorm(1000)

PP.test(x)

y <- cumsum(x) # has unit root

PP.test(y)

spec.ar Estimate Spectral Density of a Time Series from AR Fit spec.ar

Description

Fits an AR model to x (or uses the existing fit) and computes (and by default plots) the
spectral density of the fitted model.

Usage

spec.ar(x, n.freq, order = NULL, plot = TRUE, na.action,
method = "yule-walker", ...)

Arguments

x A univariate (not yet:or multivariate) time series or the result of a fit by
ar.

n.freq The number of points at which to plot.

order The order of the AR model to be fitted. If omitted, the order is chosen
by AIC.

plot Plot the periodogram?

na.action NA action function.

method method for ar fit.

... Graphical arguments passed to plot.spec.

Value

An object of class spec. The result is returned invisibly if plot is true.

Warning

Some authors, for example Thomson (1990), warn strongly that AR spectra can be mis-
leading.

Note

The multivariate case is not yet implemented.

Author(s)

B.D. Ripley

spec.pgram 685

References

Thompson, D.J. (1990) Time series analysis of Holocene climate data. Phil. Trans. Roy.
Soc. A 330, 601–616.

Venables, W.N. and Ripley, B.D. (1997) Modern Applied Statistics with S-PLUS. Second
edition. Springer. (Especially p. 448.)

See Also

ar, spectrum.

Examples

data(lh)

spec.ar(lh)

data(UKLungDeaths)

spec.ar(ldeaths)

spec.ar(ldeaths, method="burg")

spec.pgram
Estimate Spectral Density of a Time Series from

Smoothed Periodogram spec.pgram

Description

spec.pgram calculates the periodogram using a fast Fourier transform, and optionally
smooths the result with a series of modified Daniell smoothers (moving averages giving
half weight to the end values).

Usage

spec.pgram(x, spans = NULL, kernel, taper = 0.1,
demean = FALSE, detrend =TRUE,
pad = 0, fast = TRUE, plot = FALSE, na.action, ...)

Arguments

x A univariate or multivariate time series.

spans Vector of odd integers giving the widths of modified Daniell smoothers to
be used to smooth the periodogram.

kernel Alternatively, a kernel smoother of class "kernel".

taper Proportion of data to taper. A split cosine bell taper is applied to this
proportion of the data at the beginning and end of the series.

demean logical. If TRUE, subtract the mean of the series.

detrend logical. If TRUE, remove a linear trend from the series. This will also
remove the mean.

pad Proportion of data to pad. Zeros are added to the end of the series to
increase its length by the proportion pad.

plot Plot the periodogram?

fast If TRUE, pad the series to a highly composite length.

... Graphical arguments passed to plot.spec.

686 spec.pgram

Details

The raw periodogram is not a consistent estimator of the spectral density, but adjacent
values are asymptotically independent. Hence a consistent estimator can be derived by
smoothing the raw periodogram, assuming that the spectral density is smooth.

The series will be automatically padded with zeros until the series length is a highly com-
posite number in order to help the Fast Fourier Transform. This is controlled by the fast
and not the pad argument.

The periodogram at zero is in theory zero as the mean of the series is removed (but this
may be affected by tapering): it is replaced by an interpolation of adjacent values during
smoothing, and no value is returned for that frequency.

Value

A list object of class spec with the following elements.

kernel The kernel argument, or the kernel constructed from spans.

df The distribution of the spectral density estimate can be approximated by
a chi square distribution with df degrees of freedom.

bandwidth The equivalent bandwidth of the kernel smoother as defined by Bloomfield
(1976, p.201).

taper The value of the taper argument.

pad The value of the pad argument.

detrend The value of the detrend argument.

demean The value of the demean argument.

The result is returned invisibly if plot is true.

Author(s)

Originally Martyn Plummer; kernel smoothing by Adrian Trapletti, synthesis by B.D.
Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. Second edition.
Springer.

Venables, W.N. and Ripley, B.D. (1997) Modern Applied Statistics with S-PLUS. Second
edition. Springer. (Especially pp. 437–442.)

See Also

spectrum, spec.taper, plot.spec, fft

Examples

Examples from Venables & Ripley

data(UKLungDeaths)

spectrum(ldeaths)

spectrum(ldeaths, spans = c(3,5))

spectrum(ldeaths, spans = c(5,7))

spec.taper 687

spectrum(mdeaths, spans = c(3,3))

spectrum(fdeaths, spans = c(3,3))

bivariate example

mfdeaths.spc <- spec.pgram(ts.union(mdeaths, fdeaths), spans = c(3,3))

plots marginal spectra: now plot coherency and phase

plot(mfdeaths.spc, plot.type = "coherency")

plot(mfdeaths.spc, plot.type = "phase")

now impose a lack of alignment

mfdeaths.spc <- spec.pgram(ts.intersect(mdeaths, lag(fdeaths, 4)),

spans = c(3,3), plot = FALSE)

plot(mfdeaths.spc, plot.type = "coherency")

plot(mfdeaths.spc, plot.type = "phase")

data(EuStockMarkets)

stocks.spc <- spectrum(EuStockMarkets, kernel("daniell", c(30,50)),

plot = FALSE)

plot(stocks.spc, plot.type = "marginal") # the default type

plot(stocks.spc, plot.type = "coherency")

plot(stocks.spc, plot.type = "phase")

data(BJsales)

sales.spc <- spectrum(ts.union(BJsales, BJsales.lead),

kernel("modified.daniell", c(5,7)))

plot(sales.spc, plot.type = "coherency")

plot(sales.spc, plot.type = "phase")

spec.taper Taper a Time Series spec.taper

Description

Apply a cosine-bell taper to a time series.

Usage

spec.taper(x, p=0.1)

Arguments

x A univariate or multivariate time series

p The total proportion to be tapered, either a scalar or a vector of the length
of the number of series.

Details

The cosine-bell taper is applied to the first and last p[i]/2 observations of time series x[,
i].

Value

A new time series object.

688 spectrum

Note

From package ‘MASS’.

Author(s)

Kurt Hornik, B.D. Ripley

See Also

spec.pgram, cpgram

spectrum Spectral Density Estimation spectrum

Description

The spectrum function estimates the spectral density of a time series. This is a wrapper
function which calls the methods spec.pgram and spec.ar.

The generic function plot has a method for spec objects: for multivariate time series it
plots the marginal spectra of the series or pairs plots of the coherency and phase of the
cross-spectra.

Usage

spectrum(x, method = c("pgram","ar"), plot = TRUE, ...)
plot.spec(spec.obj, add=FALSE, ci=0.95,

log = c("yes", "dB", "no"), ci.col = "blue", ci.lty = 3,
plot.type = c("marginal", "coherency", "phase"), ...)

Arguments

x A univariate or multivariate time series.
method String specifying the method used to estimate the spectral density. Al-

lowed methods are ”pgram” (the default) and ”ar”.
plot logical. If TRUE then the spectral density is plotted.
... Further arguments to specific spec methods or plot.spec.
spec.obj An object of class spec.
add logical. If TRUE then lines are added to the existing plot.
ci Coverage probability for confidence interval. Plotting of the confidence

bar is omitted unless ci is strictly positive.
log If "dB", plot on log10 (decibel) scale (as S-PLUS), otherwise use conven-

tional log scale or linear scale. Logical values are also accepted. The de-
fault is "yes" unless options(ts.S.compat = TRUE) has been set, when
it is "dB".

ci.col, ci.lty

Colour for plotting confidence bar, colour and line type for confidence
intervals for coherency and phase.

plot.type For multivariate time series, the type of plot required. Only the first
character is needed.

... Further graphical parameters.

spectrum 689

Details

The spectrum here is defined with scaling 1/frequency(x), following S-PLUS. This makes
the spectral density a density over the range (-frequency(x)/2, +frequency(x)/2],
whereas a more common scaling is 2π and range (−0.5, 0.5] (e.g. Bloomfield) or 1 and
range (−π, π].

If available, a confidence interval will be plotted by plot.spec: this is asymmetric, and the
width of the centre mark indicates the equivalent bandwidth.

Value

An object of class spec, which is a list containing at least the following elements:

freq vector of frequencies at which the spectral density is estimated. (Possibly
approximate Fourier frequencies.)

spec Vector (for univariate series) or matrix (for multivariate series) of estim-
ates of the spectral density at frequencies corresponding to freq.

coh NULL for univariate series. For multivariate time series, a matrix contain-
ing the squared coherency between different series. Column i + (j − 1) ∗
(j − 2)/2 of coh contains the squared coherency between columns i and
j of x, where i > j.

phase NULL for univariate series. For multivariate time series a matrix containing
the cross-spectrum phase between different series. The format is the same
as coh.

series The name of the time series.

snames For multivariate input, the names of the component series.

method The method used to calculate the spectrum.

The result is returned invisibly if plot is true.

Note

The default plot for spec objects is quite complex, including an error bar and default title,
subtitle and axis labels. The defaults can all be overridden by supplying the appropriate
graphical parameters.

Author(s)

Martyn Plummer, B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods. Second edition.
Springer.

Venables, W. N. and Ripley, B. D. (1997) Modern Applied Statistics with S-PLUS. Second
edition. Springer. (Especially pp. 437–442.)

See Also

spec.pgram

690 stl

Examples

Examples from Venables & Ripley

spec.pgram

par(mfrow=c(2,2))

data(lh)

spectrum(lh)

spectrum(lh, spans=3)

spectrum(lh, spans=c(3,3))

spectrum(lh, spans=c(3,5))

data(UKLungDeaths)

spectrum(ldeaths)

spectrum(ldeaths, spans=c(3,3))

spectrum(ldeaths, spans=c(3,5))

spectrum(ldeaths, spans=c(5,7))

spectrum(ldeaths, spans=c(5,7), log="dB", ci=0.8)

for multivariate examples see the help for spec.pgram

spec.ar

spectrum(lh, method="ar")

spectrum(ldeaths, method="ar")

stl Seasonal Decomposition of Time Series by Loess stl

Description

Decompose a time series into seasonal, trend and irregular components.

Usage

stl(x, s.window = NULL, s.degree = 0, t.window = NULL, t.degree = 1,
robust = FALSE, na.action = na.fail)

Arguments

x A univariate time series to be decomposed. This should be an object of
class "ts" with a frequency greater than one.

s.window Either the string "periodic" or the span (in lags) of the loess window
for seasonal extraction, which should be odd. This has no default.

s.degree Degree of locally-fitted polynomial in seasonal extraction. Should be zero
or one.

t.window The span (in lags) of the loess window for trend extraction, which should
be odd. There is a reasonable default.

t.degree Degree of locally-fitted polynomial in trend extraction. Should be zero or
one.

robust Should robust fitting be used in the loess procedure?

na.action Action on missing values.

sunspot 691

Details

The seasonal component is found by loess smoothing the seasonal sub-series (the series of
all January values, . . .); if s.window = "periodic" smoothing is effectively replaced by
taking the mean. The seasonal values are removed, and the remainder smoothed to find
the trend. The overall level is removed from the seasonal component and added to the
trend component. This process is iterated a few times. The remainder component is the
residuals from the seasonal plus trend fit.

Value

An object of class "stl" with components

time.series a multiple time series with columns seasonal, trend and remainder,

weights the final robust weights (all one if fitting is not done robustly,

call the matched call.

Note

This is similar to but not identical to the stl function in S-PLUS. The remainder com-
ponent given by S-PLUS is the sum of the trend and remainder series from this function.

Author(s)

B.D. Ripley; Fortran code by Cleveland et al. (1990) from ‘netlib’.

References

R. B. Cleveland, W. S. Cleveland, J.E. McRae, and I. Terpenning (1990). STL: A Seasonal-
Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, 6, 3–73.

See Also

loess in package ‘modreg’ (which is not actually used in stl).

Examples

data(nottem)

plot(stl(nottem, "per"))

data(co2)

plot(stl(log(co2), s.window=21))

linear trend, strict period.

plot(stl(log(co2), s.window="per", t.window=1000))

sunspot
Yearly Sunspot Data, 1700–1988. Monthly Sunspot

Data, 1749–1997. sunspot

Description

Monthly and yearly number of sunspots.

Usage

data(sunspot)

692 toeplitz

Format

The univariate time series sunspot.year and sunspot.month contain 289 and 2988 obser-
vations, respectively. The objects are of class "ts".

Source

Monthly data: Sunspot Index Data Center, World Data Center-C1 For Sunspot Index
Royal Observatory of Belgium, Av. Circulaire, 3, B-1180 BRUSSELS http://www.oma.
be/KSB-ORB/SIDC/sidc\protect\T1\textunderscoretxt.html

Yearly data: H. Tong (1996) Non-Linear Time Series. Clarendon Press, Oxford, p. 471.

See Also

sunspot.month is a longer version of sunspots in base R, that runs until 1988.

toeplitz Form Symmetric Toeplitz Matrix toeplitz

Description

Forms a symmetric Toeplitz matrix given its first row.

Usage

toeplitz (x)

Arguments

x the first row to form the Toeplitz matrix.

Value

The Toeplitz matrix.

Author(s)

A. Trapletti

Examples

x <- 1:5

toeplitz (x)

http://www.oma.be/KSB-ORB/SIDC/sidcprotect T1	extunderscore txt.html
http://www.oma.be/KSB-ORB/SIDC/sidcprotect T1	extunderscore txt.html

treering 693

treering Yearly Treering Data, -6000–1979. treering

Description

Contains normalized tree-ring widths in dimensionless units. Each tree ring corresponds to
one year. Tree: Methuselah Walk, Pilo; Location: California, Gt Basin B C pine 2805M,
3726-11810; Author: Donald A. Graybill, 1980.

Usage

data(treering)

Format

A univariate time series with 7981 observations. The object is of class "ts".

Source

Time Series Data Library: http://www-personal.buseco.monash.edu.au/~hyndman/
TSDL/

ts-internal Internal ts functions ts-internal

Description

Internal ts functions

Usage

Ops.ts(e1, e2)
arma0f(p)
is.mts(x)

Details

These are not to be called by the user.

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

694 ts.plot

ts.plot Plot Multiple Time Series ts.plot

Description

Plot several time series on a common plot. Unlike plot.ts the series can have a different
time bases, but they should have the same frequency.

Usage

ts.plot(..., gpars = list())

Arguments

... one or more univariate or multivariate time series

gpars list of named graphics parameters to be passed to the plotting functions

Value

None.

Note

Although this can be used for a single time series, plot is easier to use and is preferred.

Author(s)

B.D. Ripley

See Also

plot.ts

Examples

data(UKLungDeaths)

ts.plot(ldeaths, mdeaths, fdeaths,

gpars=list(xlab="year", ylab="deaths", lty=c(1:3)))

data(nottem)

nott <- window(nottem, end=c(1936,12))

fit <- arima0(nott,order=c(1,0,0), list(order=c(2,1,0), period=12))

nott.fore <- predict(fit, n.ahead=36)

ts.plot(nott, nott.fore$pred, nott.fore$pred+2*nott.fore$se,

nott.fore$pred-2*nott.fore$se, gpars=list(col=c(1,1,4,4)))

ts.union 695

ts.union Bind Two or More Time Series ts.union

Description

Bind time series which have a common frequency. ts.union pads with NAs to the total
time coverage, ts.intersect restricts to the time covered by all the series.

Usage

ts.intersect(..., dframe = FALSE)
ts.union(..., dframe = FALSE)
cbind.ts(..., dframe = FALSE, union = TRUE)

Arguments

... Two or more univariate or multivariate time series, or objects which can
coerced to time series.

dframe If TRUE return the result as a data frame.

union Act as ts.union or ts.intersect.

Details

As a special case, ... can contain vectors or matrices of the same length as the combined
time series of the time series present, as well as those of a single row.

Value

A time series object if dframe is FALSE, otherwise a data frame.

Author(s)

B. D. Ripley

Examples

data(UKLungDeaths)

ts.union(mdeaths, fdeaths)

cbind(mdeaths, fdeaths) # same as the previous line

ts.intersect(window(mdeaths, 1976), window(fdeaths, 1974, 1978))

data(BJsales)

sales1 <- ts.union(BJsales, lead = BJsales.lead)

ts.intersect(sales1, lead3 = lag(BJsales.lead, -3))

696 USAccDeaths

UKDriverDeaths Deaths of Car Drivers in Great Britain 1969–84 UKDriverDeaths

Description

A regular time series giving the monthly totals of car drivers in Great Britain killed or
seriously injured Jan 1969 to Dec 1984. Compulsory wearing of seat belts was introduced
on 31 Jan 1983.

Source

Harvey, A.C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press, pp. 519–523.

UKLungDeaths Monthly Deaths from Lung Diseases in the UK UKLungDeaths

Description

Time series giving the monthly deaths from bronchitis, emphysema and asthma in the UK,
1974–1979, both sexes (ldeaths), males (mdeaths) and females (fdeaths).

Usage

data(UKLungDeaths)

Source

P. J. Diggle (1990) Time Series: A Biostatistical Introduction. Oxford, table A.3

USAccDeaths Accidental Deaths in the US 1973–1978 USAccDeaths

Description

A time series giving the monthly totals of accidental deaths in the USA. The values for the
first six months of 1979 are 7798 7406 8363 8460 9217 9316.

Source

P. J. Brockwell and R. A. Davis (1991) Time Series: Theory and Methods. Springer, New
York.

Index

! (Logic), 266
!= (Comparison), 71
∗Topic NA

complete.cases, 71
factor, 143
NA, 310
na.action, 311
na.fail, 311

∗Topic algebra
backsolve, 34
chol, 62
chol2inv, 63
crossprod, 87
eigen, 129
matrix, 291
qr, 399
QR.Auxiliaries, 400
solve, 447
svd, 472

∗Topic aplot
abline, 3
arrows, 24
axis, 33
box, 42
bxp, 48
contour, 75
coplot, 81
filled.contour, 154
frame, 167
grid, 183
image, 205
legend, 242
lines, 256
matplot, 290
mtext, 308
persp, 350
plot.window, 363
plot.xy, 364
plotmath, 365
points, 373
polygon, 376
rect, 417
rect.hclust, 606

screen, 435
segments, 439
text, 489
title, 493

∗Topic arith
all.equal, 11
approxfun, 19
Arithmetic, 22
cumsum, 87
diff, 113
diff.ts, 674
Extremes, 142
gl, 177
matmult, 289
ppoints, 381
prod, 394
range, 410
Round, 425
sign, 444
sort, 447
sum, 469
tabulate, 485

∗Topic array
aggregate, 6
aperm, 16
apply, 17
array, 23
backsolve, 34
cbind, 56
chol, 62
chol2inv, 63
col, 68
contrast, 77
cor, 84
crossprod, 87
data.matrix, 94
diag, 112
dim, 114
dimnames, 114
drop, 120
eigen, 129
Extract, 140
kronecker, 238

697

698 INDEX

lower.tri, 271
margin.table, 284
mat.or.vec, 285
matmult, 289
matplot, 290
matrix, 291
nrow, 321
outer, 333
prop.table, 397
qr, 399
row, 426
row/colnames, 427
scale, 432
svd, 472
sweep, 473
t, 483

∗Topic attribute
attr, 30
attributes, 31
call, 52
comment, 70
length, 244
mode, 301
name, 312
names, 312
NULL, 322
numeric, 322
structure, 464
typeof, 501
which, 522

∗Topic category
aggregate, 6
by, 49
codes, 66
cut, 89
factor, 143
ftable, 169
ftable.formula, 170
gl, 177
interaction, 212
levels, 245
levels.factor, 246
loglin, 268
nlevels, 316
split, 451
table, 484
tapply, 485

∗Topic character
abbreviate, 2
char.expand, 57
character, 58
charmatch, 58

format, 162
format.info, 163
formatC, 164
grep, 182
make.names, 282
nchar, 313
paste, 349
pmatch, 371
strsplit, 463
strwidth, 464
substr, 468
symnum, 476

∗Topic classes
character, 58
class, 64
codes, 66
data.class, 92
data.frame, 92
double, 117
integer, 211
is.object, 219
is.recursive, 220
is.single, 221
logical, 266
numeric, 322
real, 416
vector, 516

∗Topic cluster
as.hclust, 591
cutree, 596
dist, 597
hclust, 598
identify.hclust, 600
kmeans, 602
rect.hclust, 606

∗Topic color
colors, 69
gray, 181
hsv, 200
palette, 339
Palettes, 340
rgb, 423

∗Topic complex
complex, 72

∗Topic datasets
airmiles, 7
airquality, 8
anscombe, 13
attenu, 28
attitude, 29
austres, 670
beavers, 671

INDEX 699

BJsales, 672
BOD, 608
cars, 53
ChickWeight, 608
chickwts, 60
CO2, 610
co2, 66
data, 90
discoveries, 115
DNase, 611
esoph, 131
euro, 133
eurodist, 134
EuStockMarkets, 676
faithful, 146
Formaldehyde, 161
freeny, 168
HairEyeColor, 184
Indometh, 613
infert, 207
InsectSprays, 209
iris, 214
islands, 222
LakeHuron, 681
lh, 681
LifeCycleSavings, 255
Loblolly, 614
longley, 271
lynx, 681
mtcars, 308
nhtemp, 316
nottem, 682
Orange, 622
OrchardSprays, 331
phones, 352
PlantGrowth, 355
precip, 381
presidents, 386
pressure, 387
Puromycin, 629
quakes, 402
randu, 409
rivers, 424
rock, 585
sleep, 446
stackloss, 452
state, 456
sunspot, 691
sunspots, 472
swiss, 474
Titanic, 492
ToothGrowth, 494

treering, 693
trees, 496
UCBAdmissions, 502
UKDriverDeaths, 696
UKLungDeaths, 696
USAccDeaths, 696
USArrests, 511
USJudgeRatings, 512
USPersonalExpenditure, 513
uspop, 514
VADeaths, 514
volcano, 517
warpbreaks, 519
women, 529

∗Topic data
apropos, 20
assign, 26
attach, 27
autoload, 31
clearNames, 609
delay, 99
deparse, 103
detach, 106
environment, 130
eval, 134
exists, 137
get, 175
getInitial, 612
library, 246
library.dynam, 249
NLSstAsymptotic, 619
NLSstClosestX, 620
NLSstLfAsymptote, 621
NLSstRtAsymptote, 621
search, 438
setNames, 633
sortedXyData, 634
substitute, 466
sys.parent, 478

∗Topic density
sunflowerplot, 470

∗Topic design
contrast, 77
contrasts, 78

∗Topic device
dev.xxx, 107
dev2, 108
Devices, 111
pictex, 353
png, 372
postscript, 378
screen, 435

700 INDEX

windows, 526
∗Topic distribution

Beta, 38
Binomial, 40
Cauchy, 55
chisq.test, 537
Chisquare, 60
density, 101
Exponential, 138
FDist, 148
fivenum, 156
GammaDist, 172
Geometric, 174
hist, 198
Hypergeometric, 202
IQR, 214
Logistic, 267
Lognormal, 270
NegBinomial, 314
Normal, 319
Poisson, 374
ppoints, 381
qqnorm, 398
Random, 405
sample, 430
SignRank, 444
stem, 457
TDist, 487
Tukey, 500
Uniform, 503
Weibull, 520
Wilcoxon, 523

∗Topic documentation
apropos, 20
args, 21
data, 90
Defunct, 98
demo, 100
Deprecated, 104
example, 136
help, 185
help.search, 186
help.start, 188
NotYet, 321
prompt, 396
str, 460

∗Topic dplot
approxfun, 19
as.char.or.expr, 25
boxplot.stats, 44
colors, 69
convolve, 80

density, 101
expression, 139
fft, 150
hsv, 200
jitter, 236
layout, 241
Palettes, 340
panel.smooth, 341
par, 342
ppoints, 381
pretty, 387
screen, 435
splinefun, 450
strwidth, 464
units, 505
xy.coords, 531

∗Topic environment
apropos, 20
browser, 45
commandArgs, 69
debug, 96
gc, 173
gctorture, 174
getenv, 176
interactive, 212
is.R, 220
layout, 241
ls, 273
machine, 278
Memory, 294
options, 328
par, 342
quit, 403
R.Version, 404
remove, 419
Startup, 455
stop, 459

∗Topic error
bug.report, 46
warning, 518
warnings, 518

∗Topic file
cat, 54
count.fields, 85
dataentry, 94
dput, 119
dump, 121
file, 151
file.choose, 152
file.path, 153
file.show, 153
httpclient, 201

INDEX 701

list.files, 258
load, 263
parse, 348
Platform, 356
read.fwf, 411
read.table, 413
read.table.url, 415
save, 431
scan, 433
sink, 445
source, 448
sys.source, 479
system, 480
system.file, 481
tempfile, 488
unlink, 506
write, 529
write.table, 530
zip.file.extract, 532

∗Topic hplot
barplot, 35
biplot, 592
biplot.princomp, 593
boxplot, 42
chull, 63
contour, 75
coplot, 81
cpgram, 673
curve, 88
dotplot, 116
ecdf, 655
filled.contour, 154
hist, 198
image, 205
matplot, 290
mosaicplot, 306
pairs, 336
pairs.formula, 338
panel.smooth, 341
persp, 350
piechart, 354
plot, 357
plot.default, 358
plot.factor, 360
plot.formula, 360
plot.lm, 361
plot.ppr, 579
plot.stepfun, 656
qqnorm, 398
rug, 428
stars, 453
stripplot, 462

sunflowerplot, 470
∗Topic htest

ansari.test, 533
bartlett.test, 534
binom.test, 535
chisq.test, 537
cor.test, 538
fisher.test, 540
fligner.test, 542
friedman.test, 543
kruskal.test, 545
ks.test, 546
mantelhaen.test, 547
mcnemar.test, 548
mood.test, 549
p.adjust, 334
pairwise.prop.test, 551
pairwise.t.test, 551
pairwise.table, 552
pairwise.wilcox.test, 553
power.prop.test, 553
power.t.test, 554
print.pairwise.htest, 555
print.power.htest, 556
prop.test, 557
shapiro.test, 558
t.test, 559
var.test, 561
wilcox.test, 562

∗Topic interface
dyn.load, 123
Internal, 213
Primitive, 389
system, 480

∗Topic iplot
dev.xxx, 107
ecdf, 655
frame, 167
hist, 198
identify, 203
identify.hclust, 600
layout, 241
locator, 264
par, 342
stepfun, 658

∗Topic iteration
apply, 17
by, 49
Control, 79
lapply, 239
merge, 296
sweep, 473

702 INDEX

tapply, 485
∗Topic list

clearNames, 609
Extract, 140
lapply, 239
list, 256
NULL, 322
setNames, 633
unlist, 507

∗Topic logic
all, 10
all.equal, 11
any, 14
Comparison, 71
complete.cases, 71
Control, 79
duplicated, 122
ifelse, 204
Logic, 266
logical, 266
match, 285
NA, 310
unique, 504
which, 522

∗Topic manip
append, 17
c, 51
cbind, 56
deparse, 103
dimnames, 114
duplicated, 122
list, 256
match, 285
model.extract, 302
NA, 310
NLSstAsymptotic, 619
NLSstClosestX, 620
NLSstLfAsymptote, 621
NLSstRtAsymptote, 621
NULL, 322
order, 332
rep, 419
replace, 420
rev, 423
rle, 424
row/colnames, 427
rowsum, 427
seq, 440
sequence, 441
sort, 447
structure, 464
subset, 465

transform, 495
unique, 504
unlist, 507

∗Topic math
abs, 4
Bessel, 37
convolve, 80
deriv, 105
fft, 150
Hyperbolic, 201
is.finite, 216
kappa, 237
log, 265
Machine, 276
nextn, 315
poly, 375
polyroot, 377
Special, 449
splinefun, 450
Trig, 497

∗Topic methods
class, 64
data.class, 92
data.frame, 92
is.object, 219
Methods, 297
methods, 299
na.action, 311
noquote, 318
predict, 382
summary, 469

∗Topic misc
close.socket, 65
contributors, 78
copyright, 83
license, 250
make.socket, 283
read.socket, 412
read.table.url, 415
savePlot, 431
sets, 441

∗Topic models
add1, 4
alias, 9
anova, 12
aov, 15
asOneSidedFormula, 607
asVector, 643
backSpline, 644
C, 50
case/variable.names, 53
coefficients, 67

INDEX 703

deviance, 110
df.residual, 112
dummy.coef, 120
eff.aovlist, 127
effects, 128
expand.grid, 138
extractAIC, 141
factor.scope, 145
family, 147
fitted.values, 156
formula, 166
formula.nls, 612
glm, 178
glm.summaries, 180
interpSpline, 646
is.empty.model, 215
labels, 239
logLik, 615
loglin, 268
lqs, 571
make.link, 281
make.tables, 284
model.extract, 302
model.frame, 303
model.matrix, 304
model.tables, 305
nls, 615
nls.control, 617
nlsModel, 618
offset, 323
periodicSpline, 648
plot.profile.nls, 623
polySpline, 649
power, 380
predict.bSpline, 650
predict.glm, 383
predict.lqs, 573
predict.nls, 624
preplot, 385
profile, 394
profile.nls, 625
profiler, 626
profiler.nls, 627
proj, 395
relevel, 418
replications, 420
residuals, 421
se.contrast, 437
selfStart, 630
selfStart.default, 631
selfStart.formula, 632
splineDesign, 652

splineKnots, 653
splineOrder, 653
SSasymp, 635
SSasympOff, 636
SSasympOrig, 637
SSbiexp, 638
SSfol, 639
SSfpl, 640
SSlogis, 641
SSmicmen, 642
stat.anova, 456
step, 458
terms, 489
update, 508
update.formula, 509
xyVector, 654

∗Topic multivariate
as.hclust, 591
biplot, 592
biplot.princomp, 593
cancor, 594
cmdscale, 595
cor, 84
cov.rob, 569
cov.wt, 86
cutree, 596
dist, 597
hclust, 598
kmeans, 602
mahalanobis, 280
prcomp, 603
princomp, 604
var, 515

∗Topic nonlinear
CO2, 610
deriv, 105
getInitial, 612
nlm, 317
nls, 615
nls.control, 617
nlsModel, 618
optim, 324
plot.profile.nls, 623
predict.nls, 624
profile.nls, 625
profiler, 626
profiler.nls, 627

∗Topic nonparametric
sunflowerplot, 470

∗Topic optimize
nlm, 317
optim, 324

704 INDEX

optimize, 327
uniroot, 504

∗Topic print
cat, 54
format, 162
format.info, 163
formatC, 164
labels, 239
noquote, 318
options, 328
print, 389
print.coefmat, 390
print.default, 391
print.matrix, 392
str, 460
write.table, 530

∗Topic programming
.Alias, 1
all.names, 12
as.function, 25
autoload, 31
body, 41
browser, 45
call, 52
check.options, 59
commandArgs, 69
Control, 79
debug, 96
delay, 99
delete.response, 99
deparse, 103
do.call, 116
dput, 119
environment, 130
eval, 134
expression, 139
Foreign, 158
formals, 162
format.info, 163
function, 171
ifelse, 204
interactive, 212
invisible, 213
is.finite, 216
is.function, 218
is.language, 219
is.recursive, 220
is.symbol, 221
Last.value, 240
Machine, 276
machine, 278
match.arg, 286

match.call, 287
match.fun, 288
menu, 296
missing, 300
model.extract, 302
name, 312
nargs, 313
on.exit, 323
Paren, 347
parse, 348
R.Version, 404
Recall, 417
restart, 422
source, 448
stop, 459
substitute, 466
switch, 475
sys.parent, 478
trace, 494
traceback, 495
warning, 518
warnings, 518

∗Topic regression
anova, 12
aov, 15
case/variable.names, 53
coefficients, 67
contrast, 77
contrasts, 78
df.residual, 112
effects, 128
fitted.values, 156
glm, 178
glm.summaries, 180
influence.measures, 208
line, 565
lm, 259
lm.influence, 260
lm.summaries, 262
ls.diag, 274
ls.print, 275
lsfit, 275
nls, 615
nls.control, 617
plot.lm, 361
plot.profile.nls, 623
ppr, 580
predict.glm, 383
predict.lm, 384
predict.nls, 624
profile.nls, 625
profiler.nls, 627

INDEX 705

qr, 399
residuals, 421
stat.anova, 456
weighted.residuals, 521

∗Topic robust
cov.rob, 569
fivenum, 156
IQR, 214
line, 565
lqs, 571
mad, 279
median, 293
medpolish, 566
smooth, 567

∗Topic smooth
bs, 645
density, 101
ksmooth, 575
loess, 576
loess.control, 578
lowess, 272
ns, 647
predict.bs, 650
predict.loess, 583
predict.smooth.spline, 584
scatter.smooth, 586
smooth, 567
smooth.spline, 587
supsmu, 588

∗Topic sysdata
colors, 69
commandArgs, 69
Constants, 74
Machine, 276
NULL, 322
palette, 339
R.Version, 404
Random, 405

∗Topic ts
acf, 661
ar, 663
ar.ols, 666
arima0, 668
Box.test, 672
cpgram, 673
diff, 113
diff.ts, 674
diffinv, 674
embed, 675
filter, 676
kernapply, 678
kernel, 678

lag, 680
na.omit.ts, 682
PP.test, 683
spec.ar, 684
spec.pgram, 685
spec.taper, 687
spectrum, 688
start, 454
stl, 690
time, 491
toeplitz, 692
ts, 498
ts-internal, 693
ts.plot, 694
ts.union, 695
tsp, 499
window, 525

∗Topic univar
ave, 32
Extremes, 142
fivenum, 156
IQR, 214
mad, 279
mean, 292
median, 293
order, 332
quantile, 402
range, 410
rank, 411
sd, 436
sort, 447
stem, 457
var, 515
weighted.mean, 521

∗Topic utilities
all.equal, 11
as.char.or.expr, 25
bug.report, 46
builtins, 48
check.options, 59
conflicts, 73
dataentry, 94
date, 95
debugger, 96
Defunct, 98
demo, 100
Deprecated, 104
dev2bitmap, 109
download.file, 118
edit, 125
edit.data.frame, 126
example, 136

706 INDEX

fix, 157
getenv, 176
getwd, 177
grep, 182
index.search, 206
is.R, 220
jitter, 236
make.function.html, 281
memory.profile, 295
menu, 296
modreg-internal, 579
noquote, 318
NotYet, 321
package.contents, 335
package.dependencies, 335
page, 336
parse.dcf, 348
Platform, 356
pos.to.env, 378
proc.time, 393
R.home, 404
readline, 416
relevel, 418
Rwin configuration, 429
se.aov, 437
shell, 442
shell.exec, 443
str, 460
symnum, 476
sys.source, 479
system, 480
system.file, 481
system.time, 482
unname, 507
update.packages, 510
winDialog, 525
winextras, 527
winMenus, 528

E (Arithmetic), 22
E (formula), 166
* (Arithmetic), 22
+ (Arithmetic), 22
- (Arithmetic), 22
-> (assign), 26
->> (assign), 26
.Alias, 1, 67, 238, 404, 482
.AutoloadEnv (autoload), 31
.Autoloaded (library), 246
.C, 118, 124, 213
.C (Foreign), 158
.Call, 124
.Call (Foreign), 158

.Class (Methods), 297

.Defunct (Defunct), 98

.Deprecated (Deprecated), 104

.Device (dev.xxx), 107

.Devices (dev.xxx), 107

.Dyn.libs (library.dynam), 249

.External, 124

.External (Foreign), 158

.First, 212, 404

.First (Startup), 455

.First.lib, 124, 249

.First.lib (library), 246

.Fortran, 118, 124, 213

.Fortran (Foreign), 158

.Generic (Methods), 297

.GlobalEnv, 438, 467, 478

.GlobalEnv (environment), 130

.Group (Methods), 297

.Internal, 48, 298, 389

.Internal (Internal), 213

.Last, 455

.Last (quit), 403

.Last.value (Last.value), 240

.Library (library), 246

.Machine (Machine), 276

.Method (Methods), 297

.NotYetImplemented (NotYet), 321

.NotYetUsed (NotYet), 321

.Options (options), 328

.Pars (par), 342

.Platform (Platform), 356

.PostScript.Options (postscript), 378

.Primitive, 213, 298, 347

.Primitive (Primitive), 389

.Provided (library), 246

.Random.seed, 320, 503

.Random.seed (Random), 405

.Rprofile (Startup), 455

.Traceback (traceback), 495

.lib.loc, 249, 482

.lib.loc (library), 246

.packages, 249, 511

.packages (library), 246

.path.package (library), 246
/ (Arithmetic), 22
: (seq), 440
< (Comparison), 71
<-, 1
<- (assign), 26
<= (Comparison), 71
<<- (assign), 26
==, 11

INDEX 707

== (Comparison), 71
> (Comparison), 71
>= (Comparison), 71
? (help), 185
[, 120, 298, 466
[(Extract), 140
[.tskernel (kernel), 678
[<- (Extract), 140
[[, 298
[[(Extract), 140
[[<- (Extract), 140
$ (Extract), 140
$<- (Extract), 140
%*%, 87
%*% (matmult), 289
%/% (Arithmetic), 22
%% (Arithmetic), 22
%in%, 442
%in% (match), 285
%o%, 87
%o% (outer), 333
%x% (kronecker), 238
& (Logic), 266
&& (Logic), 266
| (Logic), 266

abbreviate, 2
abline, 3, 183, 184, 376
abs, 4, 444
acf, 661
acos, 202
acos (Trig), 497
acosh (Hyperbolic), 201
add.scope (factor.scope), 145
add1, 4, 142, 146, 458, 459
aggregate, 6, 18, 486
agnes, 591
airmiles, 7
airquality, 8
alias, 9, 16
alist, 26, 41, 162
alist (list), 256
all, 10, 11
all.equal, 11
all.names, 12
all.vars (all.names), 12
anova, 12, 179, 181, 260, 263, 274, 470,

546
anova.glm, 179, 456
anova.glm (glm.summaries), 180
anova.glmlist (glm.summaries), 180
anova.lm, 260
anova.lm (lm.summaries), 262

anova.loess (loess), 576
anovalist.lm (lm.summaries), 262
ansari.test, 533, 535, 543, 550, 561
anscombe, 13
any, 14
aov, 5, 6, 15, 77, 78, 121, 127, 128, 141,

146, 260, 306, 329, 395, 396, 458,
567

aperm, 16, 23
append, 17
apply, 7, 17, 240, 288, 474, 486
approx, 451
approx (approxfun), 19
approxfun, 19, 451, 656–659
apropos, 20, 183, 188, 273
ar, 663, 667, 670, 684, 685
ar.burg (ar), 663
ar.mle (ar), 663
ar.ols, 664, 665, 666
ar.yw (ar), 663
Arg (complex), 72
args, 21, 41, 162, 172, 313, 460, 461
arima0, 665, 668
Arithmetic, 4, 22, 216, 265, 289, 449
arma0f (ts-internal), 693
array, 23, 114, 115, 120, 140, 322, 486,

522
arrows, 24, 439
as.array (array), 23
as.call (call), 52
as.char.or.expr, 25
as.character, 163, 349, 477
as.character (character), 58
as.complex (complex), 72
as.data.frame (data.frame), 92
as.data.frame.xyVector (xyVector), 654
as.dist (dist), 597
as.double (double), 117
as.expression (expression), 139
as.factor (factor), 143
as.formula (formula), 166
as.function, 25
as.hclust, 591
as.integer, 425
as.integer (integer), 211
as.list, 507
as.list (list), 256
as.logical (logical), 266
as.matrix, 94
as.matrix (matrix), 291
as.matrix.dist (dist), 597
as.matrix.noquote (noquote), 318

708 INDEX

as.name (name), 312
as.null (NULL), 322
as.numeric, 67
as.numeric (numeric), 322
as.ordered (factor), 143
as.pairlist (list), 256
as.polySpline (polySpline), 649
as.qr (qr), 399
as.real (real), 416
as.single, 160
as.single (double), 117
as.ts (ts), 498
as.vector, 51, 299
as.vector (vector), 516
asin, 202
asin (Trig), 497
asinh (Hyperbolic), 201
asOneSidedFormula, 607
assign, 26, 59
asVector, 643
atan, 202
atan (Trig), 497
atan2 (Trig), 497
atanh (Hyperbolic), 201
attach, 27, 106, 248, 438
attenu, 28
attitude, 29
attr, 30, 31, 70
attr.all.equal (all.equal), 11
attr<- (attr), 30
attributes, 11, 30, 31, 59, 70, 114, 143,

301
attributes<- (attributes), 31
austres, 670
autoload, 31, 248
autoloader (autoload), 31
ave, 32
axis, 33, 163, 345, 365, 367

backsolve, 34, 62, 447
backSpline, 644
bandwidth.kernel (kernel), 678
barplot, 35, 243, 360
bartlett.test, 534, 534, 543, 550, 561
basename (file), 151
beaver1 (beavers), 671
beaver2 (beavers), 671
beavers, 671
Bessel, 37, 449
bessel (Bessel), 37
besselI (Bessel), 37
besselJ (Bessel), 37
besselK (Bessel), 37

besselY (Bessel), 37
Beta, 38
beta, 38, 39
beta (Special), 449
binom.test, 535
Binomial, 40
binomial (family), 147
biplot, 592, 594
biplot.default, 593
biplot.princomp, 593, 593
BJsales, 672
bmp, 111
bmp (png), 372
BOD, 608
body, 41, 105, 162, 172
body<- (body), 41
box, 42, 376, 418
Box.test, 672
boxplot, 42, 44, 45, 48, 49, 360, 462
boxplot.stats, 44, 44, 157
break (Control), 79
browser, 45, 96
bs, 645, 650
bug.report, 46, 329, 527
builtins, 48
bxp, 44, 45, 48
by, 49, 297

C, 50, 77, 78, 145
c, 51, 56, 257, 299, 507, 516
call, 25, 52, 105, 116, 140, 140, 219, 287,

301, 312, 417
cancor, 594
cars, 53
case.names, 427
case.names (case/variable.names), 53
case/variable.names, 53
cat, 54, 518
category (Defunct), 98
Cauchy, 55
cbind, 56, 297
cbind.ts (ts.union), 695
ccf (acf), 661
ceiling (Round), 425
char.expand, 57
character, 58, 144, 282, 319, 373, 391,

392, 404, 490, 493
charmatch, 57, 58, 183, 286, 371, 372
check.options, 59, 379
ChickWeight, 608
chickwts, 60
chisq.test, 537, 541
Chisquare, 60

INDEX 709

chol, 34, 62, 63, 130
chol2inv, 62, 63
choose (Special), 449
chull, 63
class, 9, 64, 92, 219, 260, 273, 298, 300,

318, 319, 382, 389, 469
class<- (class), 64
clearNames, 609, 633
close.screen (screen), 435
close.socket, 65, 283, 413
cm (units), 505
cm.colors (Palettes), 340
cmdscale, 595
co.intervals (coplot), 81
CO2, 610
co2, 66
codes, 66, 94, 145, 267
codes<- (codes), 66
coef, 129
coef (coefficients), 67
coef.nls (nls), 615
coef.tukeyline (line), 565
coefficients, 13, 67, 156, 179, 181, 260,

263, 421
coefficients.glm (glm.summaries), 180
coefficients.lm (lm.summaries), 262
coefficients.tukeyline (line), 565
col, 68, 426, 440
colnames, 115
colnames (row/colnames), 427
colnames<- (row/colnames), 427
colors, 69, 339, 340, 346, 364, 373
colours (colors), 69
commandArgs, 69
comment, 70
comment<- (comment), 70
Comparison, 71
complete.cases, 71, 310
complex, 72, 377
conflicts, 73, 247
Conj (complex), 72
Constants, 74
contour, 75, 155, 189, 191, 206, 223, 351
contr.helmert, 78
contr.helmert (contrast), 77
contr.poly, 78, 376
contr.poly (contrast), 77
contr.sum, 51, 78
contr.sum (contrast), 77
contr.treatment, 78, 418
contr.treatment (contrast), 77
contrast, 77

contrasts, 51, 77, 78, 304, 329
contrasts<- (contrasts), 78
contrib.url (update.packages), 510
contributors, 78, 83
Control, 79
convolve, 80, 150, 315, 677, 678
cooks.distance, 261, 363
cooks.distance (influence.measures),

208
coplot, 81, 341
copyright, 83
copyrights (copyright), 83
cor, 84, 604, 605
cor.test, 538
cos, 202
cos (Trig), 497
cosh (Hyperbolic), 201
count.fields, 85
cov, 86, 280, 516, 604, 605
cov (cor), 84
cov.mcd, 605
cov.mcd (cov.rob), 569
cov.mve, 605
cov.mve (cov.rob), 569
cov.rob, 569
cov.wt, 84, 86, 605
covratio, 261
covratio (influence.measures), 208
cpgram, 673, 688
CRAN.packages, 335
CRAN.packages (update.packages), 510
crossprod, 87
cummax (cumsum), 87
cummin (cumsum), 87
cumprod, 394
cumprod (cumsum), 87
cumsum, 87, 394
curve, 88
cut, 89, 452
cutree, 596
cycle (time), 491

D (deriv), 105
data, 74, 90, 186, 248
data.class, 92
data.entry, 125, 126
data.entry (dataentry), 94
data.frame, 43, 70, 92, 94, 106, 115, 282,

292, 297, 303, 357, 411, 412, 414,
415, 438, 483, 496, 507

data.matrix, 94, 292
dataentry, 94
date, 95, 491

710 INDEX

dbeta, 173
dbeta (Beta), 38
dbinom, 315, 375
dbinom (Binomial), 40
dcauchy (Cauchy), 55
dchisq, 173
dchisq (Chisquare), 60
de (dataentry), 94
debug, 46, 96, 172, 495
debugger, 96
Defunct, 98, 104, 321
delay, 32, 99, 467
delete.response, 99
deltat, 680
deltat (time), 491
demo, 100, 137, 448
density, 101, 199, 357, 471
deparse, 103, 119, 348, 467
Deprecated, 98, 104, 321
deriv, 105, 317, 318, 632
detach, 28, 106, 248, 438
dev.control (dev2), 108
dev.copy (dev2), 108
dev.cur, 109, 111
dev.cur (dev.xxx), 107
dev.list (dev.xxx), 107
dev.next (dev.xxx), 107
dev.off (dev.xxx), 107
dev.prev (dev.xxx), 107
dev.print, 111, 373, 432
dev.print (dev2), 108
dev.set (dev.xxx), 107
dev.xxx, 107
dev2, 108
dev2bitmap, 109, 111
deviance, 110, 112, 141, 142, 181, 263
device (Devices), 111
Devices, 107, 111, 354, 373, 379, 436, 527
dexp, 520
dexp (Exponential), 138
df, 488
df (FDist), 148
df.kernel (kernel), 678
df.residual, 111, 112
df.residual.glm (glm.summaries), 180
df.residual.lm (lm.summaries), 262
dfbetas, 261
dfbetas (influence.measures), 208
dffits, 261
dffits (influence.measures), 208
dgamma, 39, 61, 139
dgamma (GammaDist), 172

dgeom, 315
dgeom (Geometric), 174
dget, 122
dget (dput), 119
dhyper (Hypergeometric), 202
diag, 112, 272, 289
diag<- (diag), 112
diana, 591
diff, 113, 674, 675, 680
diff.ts, 674
diffinv, 674
digamma (Special), 449
dim, 23, 31, 114, 143, 292, 299, 322, 486,

522
dim<-, 299
dim<- (dim), 114
dimnames, 23, 31, 114, 114, 292, 299, 392,

427, 507, 508
dimnames<-, 299
dimnames<- (dimnames), 114
dir (list.files), 258
dir.create (file), 151
dirname (file), 151
discoveries, 115
dist, 596, 597
dlnorm, 320
dlnorm (Lognormal), 270
dlogis (Logistic), 267
DNase, 611
dnbinom, 40, 175, 375
dnbinom (NegBinomial), 314
dnchisq (Defunct), 98
dnorm, 270
dnorm (Normal), 319
do.call, 52, 116, 417
dotplot, 36, 116, 355
double, 117, 143
download.file, 118, 201, 415, 510, 511
download.packages (update.packages),

510
dpois, 40, 315
dpois (Poisson), 374
dput, 119, 122, 431, 460
drop, 120, 289
drop.scope (factor.scope), 145
drop.terms (delete.response), 99
drop1, 120, 142, 146, 458, 459
drop1 (add1), 4
dsignrank, 524
dsignrank (SignRank), 444
dt, 56, 149
dt (TDist), 487

INDEX 711

dummy.coef, 120
dump, 119, 121, 431
dump.frames, 329
dump.frames (debugger), 96
dunif (Uniform), 503
duplicated, 122, 504
dweibull, 139
dweibull (Weibull), 520
dwilcox, 445
dwilcox (Wilcoxon), 523
dyn.load, 123, 158, 161, 249
dyn.unload (dyn.load), 123

ecdf, 655, 657, 659
edit, 95, 125, 126, 157, 329, 336
edit.data.frame, 125, 126, 157
eff.aovlist, 127
effects, 13, 128, 179, 181, 260, 263
eigen, 129, 400, 473, 604, 605
else (Control), 79
emacs (edit), 125
embed, 675
end, 499
end (start), 454
environment, 26–28, 43, 59, 130, 134, 135,

478, 659
environment<- (environment), 130
erase.screen (screen), 435
esoph, 131
euro, 133
eurodist, 134
EuStockMarkets, 676
eval, 131, 134, 140, 240, 348, 448, 467,

479
evalq (eval), 134
example, 136, 207
exists, 27, 137, 176
exp, 139
exp (log), 265
expand.grid, 138
Exponential, 138
expression, 52, 104, 105, 134, 135, 139,

219, 243, 464, 467, 490, 493
Extract, 140
extractAIC, 6, 111, 141, 458
extractAIC.glm, 459
Extremes, 142

F (logical), 266
factor, 43, 67, 89, 90, 98, 143, 178, 179,

212, 245, 246, 267, 304, 316, 360,
415, 418, 469, 485

factor.scope, 145

faithful, 146
FALSE (logical), 266
family, 147, 178, 281, 282, 380
family.glm (glm.summaries), 180
family.lm (lm.summaries), 262
fdeaths (UKLungDeaths), 696
FDist, 148
fft, 80, 81, 101, 150, 315, 686
file, 151, 154
file.choose, 152, 525
file.path, 153
file.show, 152, 153, 336, 415
filled.contour, 76, 154, 517
filter, 676, 678
find, 273
find (apropos), 20
fisher.test, 540
fitted (fitted.values), 156
fitted.nls (nls), 615
fitted.tukeyline (line), 565
fitted.values, 13, 68, 156, 179, 181, 260,

263, 421
fitted.values.glm (glm.summaries), 180
fitted.values.lm (lm.summaries), 262
fitted.values.tukeyline (line), 565
fivenum, 45, 156, 214
fix, 125, 157, 336
fligner.test, 534, 535, 542, 550
floor (Round), 425
flush.console (winextras), 527
for (Control), 79
Foreign, 158
Formaldehyde, 161
formals, 22, 162, 257, 313
formals<- (formals), 162
format, 55, 162, 163–166, 391
format.char (formatC), 164
format.info, 163
format.pval, 390, 391
formatC, 163, 164, 164
formula, 105, 166, 361, 489, 607, 612
formula.lm (lm.summaries), 262
formula.nls, 612
forwardsolve (backsolve), 34
frame, 167
freeny, 168
frequency, 499
frequency (time), 491
friedman.test, 543
ftable, 169, 171
ftable.default, 170, 171
ftable.formula, 169, 170, 170

712 INDEX

ftable2table (ftable), 169
function, 26, 41, 52, 82, 131, 140, 162,

171, 213, 357

Gamma (family), 147
gamma, 37, 38, 173
gamma (Special), 449
gammaCody (Bessel), 37
GammaDist, 172
gaussian (family), 147
gc, 173, 294, 295
gcinfo, 294
gcinfo (gc), 173
gctorture, 173, 174
Geometric, 174
get, 27, 59, 137, 175, 288, 378
getenv, 176
geterrmessage, 97, 422
geterrmessage (stop), 459
getInitial, 612
getOption (options), 328
getwd, 176, 177, 414, 433
gl, 145, 177, 441
glm, 5, 68, 77, 78, 111, 112, 141, 147, 148,

156, 166, 167, 178, 180, 181, 215,
260, 263, 281, 282, 311, 323, 362,
383, 421, 458, 459, 469, 489, 521

glm.control, 179
glm.fit.null (glm), 178
glm.summaries, 180
globalenv (environment), 130
graphics.off, 107, 111
graphics.off (dev.xxx), 107
gray, 69, 181, 200, 339, 340, 346, 423
grep, 182, 273, 463
grey (gray), 181
grid, 183
gsub (grep), 182

HairEyeColor, 184
hasTsp (tsp), 499
hat, 261, 274, 362
hat (influence.measures), 208
hclust, 591, 596, 597, 598, 598, 606
heat.colors, 69, 205, 206
heat.colors (Palettes), 340
help, 22, 91, 136, 154, 185, 188, 207, 397
help.search, 186, 186
help.start, 186, 188, 188, 329
Hershey, 76, 189, 223, 490
hist, 36, 103, 198, 364
hsv, 69, 182, 200, 206, 339, 340, 343, 423
httpclient, 201

Hyperbolic, 201
Hypergeometric, 202

I, 93
I (formula), 166
identify, 203
identify.hclust, 600, 606
if, 204, 347
if (Control), 79
ifelse, 80, 204
Im (complex), 72
image, 76, 111, 155, 205, 351, 364
index.search, 206
Indometh, 613
Inf, 22, 156
Inf (is.finite), 216
infert, 207
influence.measures, 208, 261
inherits (class), 64
InsectSprays, 209
install.packages, 248
install.packages (update.packages),

510
installed.packages (update.packages),

510
integer, 118, 164, 211, 407
interaction, 212
interactive, 212
Internal, 213
interpSpline, 644, 646, 648, 649, 651,

654
intersect (sets), 441
inverse.gaussian (family), 147
invisible, 172, 213, 249, 339, 389, 601
IQR, 157, 214, 279
iris, 214
iris3 (iris), 214
is.array (array), 23
is.atomic (is.recursive), 220
is.call (call), 52
is.character (character), 58
is.complex (complex), 72
is.data.frame (data.frame), 92
is.double (double), 117
is.element (sets), 441
is.empty.model, 215
is.environment (environment), 130
is.expression (expression), 139
is.factor (factor), 143
is.finite, 216
is.function, 218
is.infinite (is.finite), 216
is.integer (integer), 211

INDEX 713

is.language, 52, 219, 220, 312
is.list, 220, 516
is.list (list), 256
is.loaded (dyn.load), 123
is.logical (logical), 266
is.matrix (matrix), 291
is.mts (ts-internal), 693
is.na, 71, 299
is.na (NA), 310
is.name (name), 312
is.nan, 299, 310
is.nan (is.finite), 216
is.null (NULL), 322
is.numeric, 516
is.numeric (numeric), 322
is.object, 219
is.ordered (factor), 143
is.pairlist (list), 256
is.qr (qr), 399
is.R, 220
is.real (real), 416
is.recursive, 220
is.single, 221
is.stepfun (stepfun), 658
is.symbol, 221
is.ts (ts), 498
is.tskernel (kernel), 678
is.vector (vector), 516
islands, 222
isoMDS, 596

Japanese, 191, 222
jitter, 236, 429, 471
jpeg, 111
jpeg (png), 372

kappa, 237
kernapply, 678, 679
kernel, 678, 678
kmeans, 600, 602
knots, 657, 659
knots (stepfun), 658
kronecker, 238, 333
kruskal.test, 545, 563
ks.test, 546
ksmooth, 575

labels, 239
lag, 680
LakeHuron, 681
lapply, 7, 18, 239, 288, 486
Last.value, 240
layout, 107, 241, 344, 346, 436

lbeta (Special), 449
lchoose (Special), 449
lcm (layout), 241
ldeaths (UKLungDeaths), 696
legend, 140, 242
length, 244
length<- (length), 244
LETTERS (Constants), 74
letters (Constants), 74
levels, 67, 145, 245, 246, 267, 316
levels.factor, 246
levels<-, 246
levels<- (levels), 245
levels<-.factor, 245
levels<-.factor (levels.factor), 246
lgamma (Special), 449
lh, 681
library, 28, 32, 106, 186, 246, 249, 349,

438, 511
library.dynam, 124, 248, 249
licence (license), 250
license, 83, 250
LifeCycleSavings, 255
line, 565
lines, 3, 88, 184, 256, 290, 291, 341, 345,

357, 364, 365, 374, 376, 439
lines.formula (plot.formula), 360
lines.ts (ts), 498
link.html.help (make.function.html),

281
list, 43, 106, 140, 256, 310, 404, 486, 496
list.files, 152, 154, 258, 482
lm, 5, 6, 16, 54, 68, 77, 78, 111, 112, 128,

141, 146, 156, 166, 167, 179, 208,
215, 259, 261–263, 275, 276, 311,
329, 362, 382, 385, 396, 421, 458,
469, 489, 521, 522, 546, 565

lm.fit.null (lm), 259
lm.influence, 208, 209, 260, 260, 263,

274, 275, 362, 363, 522
lm.summaries, 262
lm.wfit (lm), 259
lmsreg (lqs), 571
load, 91, 263, 431
loadings (princomp), 604
Loblolly, 614
local (eval), 134
locator, 242, 264
loess, 568, 576, 579, 584, 587, 691
loess.control, 577, 577, 578
loess.smooth (scatter.smooth), 586
log, 4, 265

714 INDEX

log10 (log), 265
log1p (log), 265
log2 (log), 265
Logic, 266, 523
logical, 266, 266, 522
Logistic, 267
logLik, 615
logLik.nls (nls), 615
loglin, 268
Lognormal, 270
longley, 271
lower.tri, 271
lowess, 272, 341, 531, 568
lqs, 571, 571, 574
ls, 273, 378, 419, 460
ls.diag, 274, 275, 276
ls.print, 274, 275, 276
ls.str, 460
ls.str (str), 460
lsf.str, 460
lsf.str (str), 460
lsfit, 274, 275, 275, 400, 401
ltsreg (lqs), 571
lynx, 681

Machine, 276, 278
machine, 278, 278, 405
mad, 214, 279, 436
mahalanobis, 280
make.function.html, 281
make.link, 281, 380
make.names, 93, 94, 282
make.packages.html

(make.function.html), 281
make.search.html

(make.function.html), 281
make.socket, 65, 283, 413, 415
make.tables, 284
mantelhaen.test, 547
margin.table, 284, 397
mat.or.vec, 285
match, 59, 183, 285, 372
match.arg, 286, 286–288, 372
match.call, 286, 287, 372
match.fun, 286, 287, 288, 372
Math, 23, 265, 449
Math (Methods), 297
Math.data.frame, 94
matlines (matplot), 290
matmult, 238, 289, 333
matplot, 215, 290
matpoints (matplot), 290

matrix, 23, 83, 94, 112, 114, 115, 140,
272, 289, 291, 291, 322

max, 410
max (Extremes), 142
mcnemar.test, 548
mdeaths (UKLungDeaths), 696
mean, 11, 33, 292, 487, 521
median, 33, 157, 279, 293, 567
medpolish, 566
Memory, 173, 294, 415
memory.profile, 295
menu, 296
merge, 296
Methods, 297, 410
methods, 11, 93, 180, 186, 219, 262, 273,

298, 299, 299, 319, 389, 469
min, 410
min (Extremes), 142
missing, 300, 467
Mod, 11
Mod (complex), 72
mode, 11, 20, 301, 392, 442, 467, 501
mode<- (mode), 301
model.extract, 302, 304
model.frame, 302, 303, 304, 323
model.matrix, 93, 303, 304, 509
model.matrix.glm.null (model.matrix),

304
model.matrix.lm (model.matrix), 304
model.offset, 323
model.offset (model.extract), 302
model.response (model.extract), 302
model.tables, 16, 121, 284, 305, 396, 420,

437
model.tables.aovlist, 127
model.weights (model.extract), 302
modreg-internal, 579
month.abb (Constants), 74
month.name (Constants), 74
mood.test, 534, 535, 543, 549, 561
mosaicplot, 306
mosaicplot.default, 307
mosaicplot.formula, 307
mostattributes<- (attributes), 31
mtcars, 308
mtext, 308, 342, 345, 365, 367, 490, 493
mvfft (fft), 150

NA, 23, 43, 44, 144, 156, 216, 245, 300,
310, 311, 329, 332, 390, 391, 410,
414, 434, 468, 476, 522, 531, 581

na.action, 310, 311, 311
na.contiguous (na.omit.ts), 682

INDEX 715

na.fail, 71, 178, 259, 303, 310, 311, 311,
682

na.omit, 71, 178, 259, 303, 310, 311, 581,
682

na.omit (na.fail), 311
na.omit.ts, 682
name, 219, 247, 312
names, 23, 31, 112, 114, 143, 240, 282, 312,

403, 507, 508
names.dist (dist), 597
names<- (names), 312
names<-.dist (dist), 597
NaN, 23, 44, 156, 310
NaN (is.finite), 216
nargs, 313
nchar, 313, 349, 463, 464, 468
NCOL, 427
NCOL (nrow), 321
ncol, 114
ncol (nrow), 321
NegBinomial, 314
new.env (environment), 130
next (Control), 79
NextMethod, 65
NextMethod (methods), 299
nextn, 81, 150, 315
nhtemp, 316
nlevels, 67, 145, 245, 246, 316
nlm, 106, 317, 327, 328, 505, 669
nls, 612, 613, 615, 617, 619, 623, 625–628,

635–642
nls.control, 617
nlsModel, 616, 618, 628
NLSstAsymptotic, 619
NLSstClosestX, 620, 622, 634
NLSstLfAsymptote, 620, 621, 634
NLSstRtAsymptote, 620, 621, 622, 634
noquote, 318, 389, 390, 392, 477
Normal, 319
nottem, 682
NotYet, 321
NotYetImplemented (NotYet), 321
NotYetUsed (NotYet), 321
NROW, 427
NROW (nrow), 321
nrow, 114, 321
ns, 647, 650
NULL, 322
numeric, 106, 163, 322, 410

objects, 21, 28, 106, 248, 419, 438
objects (ls), 273
offset, 259, 302, 323

old.packages (update.packages), 510
on.exit, 283, 323, 478
Ops (Methods), 297
Ops.ts (ts-internal), 693
optim, 324, 669
optimise (optimize), 327
optimize, 318, 327, 327, 505
options, 46, 78, 97, 124, 157, 164, 178,

259, 303, 311, 328, 346, 390, 392,
422, 429, 448, 460, 461, 479, 518

Orange, 622
OrchardSprays, 331
order, 332, 411, 448
ordered (factor), 143
outer, 238, 288, 333

p.adjust, 334, 551–553
pacf (acf), 661
package.contents, 335, 349
package.dependencies, 335
package.description

(package.contents), 335
page, 336
pairlist (list), 256
pairs, 83, 93, 336, 338, 341
pairs.default, 338
pairs.formula, 338
pairwise.prop.test, 551
pairwise.t.test, 335, 551, 552, 556
pairwise.table, 552
pairwise.wilcox.test, 553
palette, 69, 155, 339, 340, 364, 373
Palettes, 340
panel.smooth, 83, 341, 362
par, 3, 24, 36, 42, 43, 75, 181, 205, 206,

242, 256, 290, 291, 309, 338, 341,
342, 351, 357, 359–363, 373, 376,
436, 439, 471, 490, 493, 505, 580

Paren, 347
parent.frame (sys.parent), 478
parse, 104, 348, 448
parse.dcf, 335, 348, 511
paste, 163, 313, 349, 463, 468
pbeta (Beta), 38
pbinom (Binomial), 40
pcauchy (Cauchy), 55
pchisq, 487, 500
pchisq (Chisquare), 60
pentagamma (Special), 449
periodicSpline, 646, 648, 649, 651, 654
persp, 350
pexp (Exponential), 138
pf (FDist), 148

716 INDEX

pgamma, 314
pgamma (GammaDist), 172
pgeom (Geometric), 174
phones, 352
phyper (Hypergeometric), 202
pi (Constants), 74
pico (edit), 125
pictex, 111, 353
piechart, 354
PlantGrowth, 355
Platform, 356
plnorm (Lognormal), 270
plogis (Logistic), 267
plot, 36, 93, 184, 205, 243, 256, 290, 291,

309, 345, 357, 359, 360, 364, 365,
373, 374, 471, 531, 566, 605,
655–657

plot.acf (acf), 661
plot.data.frame (data.frame), 92
plot.default, 49, 93, 168, 345, 346, 357,

358, 360, 361, 363–365, 470, 531
plot.density (density), 101
plot.ecdf (ecdf), 655
plot.factor, 360, 361
plot.formula, 357, 360, 360
plot.function (curve), 88
plot.hclust (hclust), 598
plot.lm, 361
plot.medpolish (medpolish), 566
plot.mlm (lm.summaries), 262
plot.mts (ts), 498
plot.new, 344, 363
plot.new (frame), 167
plot.polySpline (polySpline), 649
plot.ppr, 579, 582
plot.prcomp (prcomp), 603
plot.princomp (princomp), 604
plot.profile.nls, 623, 626
plot.spec, 684, 686
plot.spec (spectrum), 688
plot.spline (predict.bSpline), 650
plot.stepfun, 655, 656, 658, 659
plot.stl (stl), 690
plot.ts, 694
plot.ts (ts), 498
plot.tskernel (kernel), 678
plot.window, 36, 155, 168, 359, 363
plot.xy, 256, 364, 364, 373, 374
plot.xyVector (xyVector), 654
plotmath, 25, 243, 309, 365, 490, 493
pmatch, 57, 59, 183, 286, 287, 371
pmax (Extremes), 142

pmin (Extremes), 142
pnbinom (NegBinomial), 314
pnchisq (Defunct), 98
png, 111, 372
pnorm, 501
pnorm (Normal), 319
points, 83, 184, 256, 290, 291, 345, 357,

362, 365, 373
points.default, 364
points.formula (plot.formula), 360
pointwise (modreg-internal), 579
Poisson, 374
poisson (family), 147
poly, 375
polygon, 64, 376, 418, 439
polyroot, 377, 505
polySpline, 649
pos.to.env, 378
postscript, 107–110, 111, 346, 354, 378,

527
power, 147, 148, 380
power.prop.test, 553, 556
power.t.test, 554, 556
PP.test, 683
ppoints, 381, 398
ppois (Poisson), 374
ppr, 580, 580, 589
prcomp, 603, 605
precip, 381
predict, 382, 385, 625, 650
predict.ar (ar), 663
predict.arima0 (arima0), 668
predict.bs, 650
predict.bSpline, 650
predict.glm, 179, 383
predict.lm, 260, 382, 384
predict.loess, 577, 583
predict.lqs, 573, 573
predict.mlm (predict.lm), 384
predict.nbSpline (predict.bSpline),

650
predict.nls, 624
predict.npolySpline

(predict.bSpline), 650
predict.ns (predict.bs), 650
predict.pbSpline (predict.bSpline),

650
predict.polySpline (polySpline), 649
predict.ppolySpline

(predict.bSpline), 650
predict.ppr (ppr), 580
predict.princomp (princomp), 604

INDEX 717

predict.smooth.spline, 584, 588
predict.smooth.spline.fit

(smooth.spline), 587
predLoess (modreg-internal), 579
preplot, 385
presidents, 386
pressure, 387
pretty, 387
Primitive, 389
princomp, 593, 594, 604, 604
print, 9, 15, 55, 70, 93, 163, 319, 389,

390–392, 461, 566, 605
print.anova, 390
print.anova (anova), 12
print.anova.glm (Defunct), 98
print.anova.lm (Defunct), 98
print.aov (aov), 15
print.aovlist (aov), 15
print.ar (ar), 663
print.arima0 (arima0), 668
print.atomic (print.default), 391
print.bSpline (interpSpline), 646
print.by (by), 49
print.coefmat, 329, 390
print.data.frame (data.frame), 92
print.default, 70, 389, 390, 391, 392
print.density (density), 101
print.dist (dist), 597
print.dummy.coef (dummy.coef), 120
print.ecdf (ecdf), 655
print.family (family), 147
print.formula (formula), 166
print.ftable (ftable), 169
print.glm (glm.summaries), 180
print.hclust (hclust), 598
print.infl (influence.measures), 208
print.lm (lm.summaries), 262
print.loess (loess), 576
print.lqs (lqs), 571
print.matrix, 93, 392
print.medpolish (medpolish), 566
print.mtable (alias), 9
print.nls (nls), 615
print.noquote (noquote), 318
print.pairwise.htest, 555
print.plot (Defunct), 98
print.polySpline (polySpline), 649
print.power.htest, 556
print.ppolySpline (interpSpline), 646
print.ppr (ppr), 580
print.prcomp (prcomp), 603
print.princomp (princomp), 604

print.simple.list (print), 389
print.smooth.spline (smooth.spline),

587
print.socket (make.socket), 283
print.stepfun (stepfun), 658
print.stl (stl), 690
print.summary.aov (aov), 15
print.summary.aovlist (aov), 15
print.summary.glm, 390
print.summary.glm (glm.summaries), 180
print.summary.lm, 163, 390, 391
print.summary.lm (lm.summaries), 262
print.summary.loess (loess), 576
print.summary.nls (nls), 615
print.summary.ppr (ppr), 580
print.summary.prcomp (prcomp), 603
print.table (print), 389
print.tables.aov (model.tables), 305
print.tabular (Defunct), 98
print.terms (terms), 489
print.ts (ts), 498
print.tskernel (kernel), 678
print.tukeyline (line), 565
print.xyVector (xyVector), 654
prmatrix (print.matrix), 392
proc.time, 393, 482, 483
prod, 394
profile, 394, 623, 626, 627
profile.nls, 623, 625, 628
profiler, 626, 628
profiler.nls, 626, 627, 627
proj, 16, 395
prompt, 186, 396
prop.table, 397
prop.test, 536, 551, 554, 557
provide (library), 246
ps.options, 60
ps.options (postscript), 378
psignrank (SignRank), 444
pt (TDist), 487
ptukey (Tukey), 500
punif (Uniform), 503
Puromycin, 629
pweibull (Weibull), 520
pwilcox (Wilcoxon), 523

q, 431
q (quit), 403
qbeta (Beta), 38
qbinom (Binomial), 40
qcauchy (Cauchy), 55
qchisq (Chisquare), 60
qexp (Exponential), 138

718 INDEX

qf (FDist), 148
qgamma (GammaDist), 172
qgeom (Geometric), 174
qhyper (Hypergeometric), 202
qlnorm (Lognormal), 270
qlogis (Logistic), 267
qnbinom (NegBinomial), 314
qnchisq (Defunct), 98
qnorm, 501
qnorm (Normal), 319
qpois (Poisson), 374
qqline (qqnorm), 398
qqnorm, 381, 398, 559
qqplot, 381
qqplot (qqnorm), 398
qr, 34, 62, 129, 130, 237, 259, 399, 401,

473, 595
QR.Auxiliaries, 400
qr.Q, 400
qr.Q (QR.Auxiliaries), 400
qr.R, 400
qr.R (QR.Auxiliaries), 400
qr.solve, 447
qr.X, 400
qr.X (QR.Auxiliaries), 400
qsignrank (SignRank), 444
qt (TDist), 487
qtukey (Tukey), 500
quakes, 402
quantile, 157, 214, 293, 402
quasi (family), 147
quit, 403
qunif (Uniform), 503
quote (substitute), 466
qweibull (Weibull), 520
qwilcox (Wilcoxon), 523

R.home, 404
R.Version, 404
R.version, 220
R.version (R.Version), 404
R_LIBS (library), 246
rainbow, 69, 182, 200, 205, 206, 339, 346,

423
rainbow (Palettes), 340
Random, 405
Random.user, 407, 408
randu, 409
range, 83, 143, 157, 214, 410
range.default, 410
rank, 332, 411, 448
rbeta (Beta), 38
rbind (cbind), 56

rbinom (Binomial), 40
rcauchy (Cauchy), 55
rchisq (Chisquare), 60
Rconsole, 488
Rconsole (Rwin configuration), 429
Rdevga (Rwin configuration), 429
Re (complex), 72
read.csv (read.table), 413
read.csv2 (read.table), 413
read.fwf, 411, 415
read.socket, 65, 283, 412, 415
read.table, 85, 91, 94, 295, 412, 413, 415,

434, 531
read.table.url, 201, 415
readline, 416
real, 416
Recall, 52, 417
rect, 42, 376, 417
rect.hclust, 606
reformulate (delete.response), 99
regexpr (grep), 182
relevel, 418
remove, 419
rep, 419, 440, 441, 531
repeat (Control), 79
replace, 420
replications, 420
require (library), 246
resid (residuals), 421
residuals, 13, 68, 128, 156, 179, 181, 260,

263, 421, 522
residuals.glm, 263
residuals.glm (glm.summaries), 180
residuals.lm (lm.summaries), 262
residuals.lqs (lqs), 571
residuals.nls (nls), 615
residuals.tukeyline (line), 565
restart, 422, 460
return, 213, 347
return (function), 171
rev, 423
rexp (Exponential), 138
rf (FDist), 148
rgamma (GammaDist), 172
rgb, 69, 182, 200, 340, 346, 423
rgeom (Geometric), 174
rhyper (Hypergeometric), 202
rivers, 424
rle, 424
rlnorm (Lognormal), 270
rlogis (Logistic), 267
rm (remove), 419

INDEX 719

rnbinom (NegBinomial), 314
rnchisq (Defunct), 98
RNG (Random), 405
RNGkind, 408, 569
RNGkind (Random), 405
rnorm, 408, 503
rnorm (Normal), 319
rock, 585
Round, 425
round (Round), 425
row, 68, 426, 440
row.names (data.frame), 92
row.names<- (data.frame), 92
row/colnames, 427
rownames, 93, 115
rownames (row/colnames), 427
rownames<- (row/colnames), 427
rowsum, 427
rpois (Poisson), 374
Rprofile (Startup), 455
rsignrank (SignRank), 444
rstandard (influence.measures), 208
rstudent (influence.measures), 208
rt (TDist), 487
rug, 236, 428
runif, 320, 408
runif (Uniform), 503
rweibull (Weibull), 520
rwilcox (Wilcoxon), 523
Rwin configuration, 429

sammon, 596
sample, 430
sapply, 486
sapply (lapply), 239
save, 97, 122, 264, 431
save.plot (Defunct), 98
savePlot, 431
scale, 432, 474
scan, 295, 348, 412, 415, 433, 448, 530
scan.url (read.table.url), 415
scatter.smooth, 586
screen, 435
screeplot (princomp), 604
sd, 436, 487
se.aov, 437
se.aovlist (se.aov), 437
se.contrast, 437
se.contrast.aovlist, 127
search, 21, 28, 59, 73, 106, 186, 248, 438
searchpaths (search), 438
segments, 3, 24, 376, 418, 439, 657
selfStart, 613, 620, 622, 630, 634–642

selfStart.default, 613, 630, 631, 632
selfStart.formula, 613, 630, 631, 632
seq, 419, 423, 440, 441
sequence, 419, 440, 441
set.seed (Random), 405
setdiff (sets), 441
setequal (sets), 441
setNames, 610, 633
sets, 441
setwd (getwd), 177
shapiro.test, 547, 558
shell, 442, 444, 481
shell.exec, 443
show.data (data), 90
sign, 444
signif (Round), 425
SignRank, 444
simpleLoess (modreg-internal), 579
sin, 4, 202
sin (Trig), 497
single, 160
single (double), 117
sinh (Hyperbolic), 201
sink, 445
sleep, 446
smooth, 567
smooth.spline, 568, 582, 584, 587
solve, 34, 63, 447
solve.qr, 400
sort, 332, 411, 423, 447
sort.list (order), 332
sortedXyData, 620, 622, 634
source, 91, 100, 121, 212, 348, 415, 448,

480
source.url (read.table.url), 415
spec, 684, 686
spec (spectrum), 688
spec.ar, 684, 688
spec.pgram, 685, 688, 689
spec.taper, 686, 687
Special, 4, 23, 449
spectrum, 678, 685, 686, 688
spline, 20
spline (splinefun), 450
spline.des (splineDesign), 652
splineDesign, 652
splinefun, 20, 88, 450, 656, 657, 659
splineKnots, 646, 648, 649, 653, 654
splineOrder, 646, 649, 653
split, 90, 451
split.screen, 344, 346
split.screen (screen), 435

720 INDEX

sqrt (abs), 4
SSasymp, 620, 635
SSasympOff, 636
SSasympOrig, 637
SSbiexp, 638
SSfol, 639
SSfpl, 640
SSlogis, 641
SSmicmen, 642
stack.loss (stackloss), 452
stack.x (stackloss), 452
stackloss, 452
stars, 453
start, 454, 491, 499, 500
Startup, 455
stat.anova, 181, 456
state, 456
stem, 199, 457
step, 6, 141, 142, 458
stepfun, 655, 656, 658
stl, 690
stop, 329, 459, 518
storage.mode, 501
storage.mode (mode), 301
storage.mode<- (mode), 301
str, 460
strheight (strwidth), 464
stripplot, 44, 93, 462
strsplit, 313, 349, 463, 468
structure, 464
strwidth, 243, 313, 343, 464
sub, 463
sub (grep), 182
Subscript (Extract), 140
subset, 465, 496
substitute, 104, 300, 466
substr, 3, 313, 349, 463, 468
substring (substr), 468
sum, 394, 469
Summary (Methods), 297
summary, 13, 15, 179, 181, 261, 263, 460,

461, 469
summary.aov (aov), 15
summary.aovlist (aov), 15
summary.ecdf (ecdf), 655
summary.glm, 179, 470
summary.glm (glm.summaries), 180
summary.infl (influence.measures), 208
summary.lm, 260, 261, 274, 470
summary.lm (lm.summaries), 262
summary.loess (loess), 576
summary.mlm (lm.summaries), 262

summary.nls (nls), 615
summary.ppr (ppr), 580
summary.prcomp (prcomp), 603
summary.princomp (princomp), 604
summary.stepfun (stepfun), 658
sunflowerplot, 470
sunspot, 691
sunspots, 472, 692
supsmu, 568, 582, 588
svd, 62, 130, 237, 400, 472, 595, 604
sweep, 18, 288, 433, 473
swiss, 474
switch, 80, 475
symbol.C (dyn.load), 123
symbol.For (dyn.load), 123
symbols (NotYet), 321
symnum, 476
sys.call, 313
sys.call (sys.parent), 478
sys.calls (sys.parent), 478
sys.frame, 135
sys.frame (sys.parent), 478
sys.frames (sys.parent), 478
sys.function (sys.parent), 478
sys.nframe (sys.parent), 478
sys.on.exit (sys.parent), 478
sys.parent, 478
sys.parents (sys.parent), 478
sys.source, 479
sys.status (sys.parent), 478
system, 220, 356, 443, 444, 480
system.file, 481
system.test (Defunct), 98
system.time, 393, 482, 491

T (logical), 266
t, 17, 483
t.test, 546, 552, 555, 559, 563
table, 90, 169–171, 269, 484, 485
tabulate, 90, 485
tan, 202
tan (Trig), 497
tanh (Hyperbolic), 201
tapply, 7, 18, 49, 50, 240, 428, 485
TDist, 487
tempfile, 488, 506
terms, 100, 167, 304, 489, 509
terrain.colors, 205, 206, 339
terrain.colors (Palettes), 340
tetragamma (Special), 449
text, 75, 76, 140, 189, 191, 223, 243, 309,

342, 345, 365, 367, 464, 489, 493
time, 455, 483, 491, 499, 500, 526

INDEX 721

Titanic, 492
title, 36, 75, 290, 309, 345, 351, 362, 367,

490, 493
toeplitz, 692
ToothGrowth, 494
topo.colors, 69, 205, 206
topo.colors (Palettes), 340
trace, 494
traceback, 46, 96, 495
transform, 466, 495
treering, 693
trees, 496
Trig, 265, 497
trigamma (Special), 449
TRUE, 266
TRUE (logical), 266
trunc (Round), 425
try, 329
try (restart), 422
ts, 329, 455, 491, 498, 500, 526
ts-internal, 693
ts.intersect (ts.union), 695
ts.plot, 694
ts.union, 695
tsp, 455, 491, 499, 499
tsp<- (tsp), 499
Tukey, 500
typeof, 23, 301, 312, 501

UCBAdmissions, 502
UKDriverDeaths, 696
UKLungDeaths, 696
unclass, 67
unclass (class), 64
undebug (debug), 96
Uniform, 503
union (sets), 441
unique, 122, 504
uniroot, 318, 328, 377, 504, 554, 555
units, 505
unix (system), 480
unix.time (system.time), 482
unlink, 488, 506
unlist, 51, 299, 507
unname, 507
untrace (trace), 494
update, 508
update.formula, 508, 509
update.packages, 330, 336, 510
upper.tri (lower.tri), 271
url.show (read.table.url), 415
USAccDeaths, 696
USArrests, 511

UseMethod, 56, 65, 310
UseMethod (methods), 299
USJudgeRatings, 512
USPersonalExpenditure, 513
uspop, 514

VADeaths, 514
var, 86, 279, 280, 436, 515
var.test, 534, 535, 543, 550, 561
variable.names, 427
variable.names (case/variable.names),

53
vector, 164, 257, 312, 516
Version (Defunct), 98
version (R.Version), 404
vi, 95
vi (edit), 125
volcano, 517

warning, 23, 56, 460, 518, 518
warnings, 330, 518, 518
warpbreaks, 519
Weibull, 520
weighted.mean, 293, 521
weighted.residuals, 263, 521
weights, 521
weights (lm.summaries), 262
weights.nls (nls), 615
which, 522
while (Control), 79
wilcox.test, 546, 553, 562
Wilcoxon, 523
win.graph (windows), 526
win.metafile (windows), 526
win.print (windows), 526
win.version (winextras), 527
winDialog, 525, 528
winDialogString (winDialog), 525
window, 491, 499, 525
windows, 111, 429, 526
winextras, 527
winMenuAdd (winMenus), 528
winMenuAddItem (winMenus), 528
winMenuDel (winMenus), 528
winMenuDelItem (winMenus), 528
winMenus, 525, 528
women, 529
write, 119, 122, 434, 529
write.socket (read.socket), 412
write.table, 415, 530

X11 (windows), 526
x11, 346

722 INDEX

x11 (windows), 526
xedit (edit), 125
xemacs (edit), 125
xinch (units), 505
xor (Logic), 266
xpdrows.data.frame (data.frame), 92
xy.coords, 64, 358, 359, 364, 470, 489,

531
xyinch (units), 505
xyVector, 643, 651, 654

yinch (units), 505

zapsmall, 390
zapsmall (Round), 425
zip.file.extract, 532
zip.unpack (winextras), 527

	Contents
	The base package
	.Alias
	abbreviate
	abline
	abs
	add1
	aggregate
	airmiles
	airquality
	alias
	all
	all.equal
	all.names
	anova
	anscombe
	any
	aov
	aperm
	append
	apply
	approxfun
	apropos
	args
	Arithmetic
	array
	arrows
	as.char.or.expr
	as.function
	assign
	attach
	attenu
	attitude
	attr
	attributes
	autoload
	ave
	axis
	backsolve
	barplot
	Bessel
	Beta
	Binomial
	body
	box
	boxplot
	boxplot.stats
	browser
	bug.report
	builtins
	bxp
	by
	C
	c
	call
	cars
	case/variable.names
	cat
	Cauchy
	cbind
	char.expand
	character
	charmatch
	check.options
	chickwts
	Chisquare
	chol
	chol2inv
	chull
	class
	close.socket
	co2
	codes
	coefficients
	col
	colors
	commandArgs
	comment
	Comparison
	complete.cases
	complex
	conflicts
	Constants
	contour
	contrast
	contrasts
	contributors
	Control
	convolve
	coplot
	copyright
	cor
	count.fields
	cov.wt
	crossprod
	cumsum
	curve
	cut
	data
	data.class
	data.frame
	data.matrix
	dataentry
	date
	debug
	debugger
	Defunct
	delay
	delete.response
	demo
	density
	deparse
	Deprecated
	deriv
	detach
	dev.xxx
	dev2
	dev2bitmap
	deviance
	Devices
	df.residual
	diag
	diff
	dim
	dimnames
	discoveries
	do.call
	dotplot
	double
	download.file
	dput
	drop
	dummy.coef
	dump
	duplicated
	dyn.load
	edit
	edit.data.frame
	eff.aovlist
	effects
	eigen
	environment
	esoph
	euro
	eurodist
	eval
	example
	exists
	expand.grid
	Exponential
	expression
	Extract
	extractAIC
	Extremes
	factor
	factor.scope
	faithful
	family
	FDist
	fft
	file
	file.choose
	file.path
	file.show
	filled.contour
	fitted.values
	fivenum
	fix
	Foreign
	Formaldehyde
	formals
	format
	format.info
	formatC
	formula
	frame
	freeny
	ftable
	ftable.formula
	function
	GammaDist
	gc
	gctorture
	Geometric
	get
	getenv
	getwd
	gl
	glm
	glm.summaries
	gray
	grep
	grid
	HairEyeColor
	help
	help.search
	help.start
	Hershey
	hist
	hsv
	httpclient
	Hyperbolic
	Hypergeometric
	identify
	ifelse
	image
	index.search
	infert
	influence.measures
	InsectSprays
	integer
	interaction
	interactive
	Internal
	invisible
	IQR
	iris
	is.empty.model
	is.finite
	is.function
	is.language
	is.object
	is.R
	is.recursive
	is.single
	is.symbol
	islands
	Japanese
	jitter
	kappa
	kronecker
	labels
	lapply
	Last.value
	layout
	legend
	length
	levels
	levels.factor
	library
	library.dynam
	license
	LifeCycleSavings
	lines
	list
	list.files
	lm
	lm.influence
	lm.summaries
	load
	locator
	log
	Logic
	logical
	Logistic
	loglin
	Lognormal
	longley
	lower.tri
	lowess
	ls
	ls.diag
	ls.print
	lsfit
	Machine
	machine
	mad
	mahalanobis
	make.function.html
	make.link
	make.names
	make.socket
	make.tables
	margin.table
	mat.or.vec
	match
	match.arg
	match.call
	match.fun
	matmult
	matplot
	matrix
	mean
	median
	Memory
	memory.profile
	menu
	merge
	Methods
	methods
	missing
	mode
	model.extract
	model.frame
	model.matrix
	model.tables
	mosaicplot
	mtcars
	mtext
	NA
	na.action
	na.fail
	name
	names
	nargs
	nchar
	NegBinomial
	nextn
	nhtemp
	nlevels
	nlm
	noquote
	Normal
	NotYet
	nrow
	NULL
	numeric
	offset
	on.exit
	optim
	optimize
	options
	OrchardSprays
	order
	outer
	p.adjust
	package.contents
	package.dependencies
	page
	pairs
	pairs.formula
	palette
	Palettes
	panel.smooth
	par
	Paren
	parse
	parse.dcf
	paste
	persp
	phones
	pictex
	piechart
	PlantGrowth
	Platform
	plot
	plot.default
	plot.factor
	plot.formula
	plot.lm
	plot.window
	plot.xy
	plotmath
	pmatch
	png
	points
	Poisson
	poly
	polygon
	polyroot
	pos.to.env
	postscript
	power
	ppoints
	precip
	predict
	predict.glm
	predict.lm
	preplot
	presidents
	pressure
	pretty
	Primitive
	print
	print.coefmat
	print.default
	print.matrix
	proc.time
	prod
	profile
	proj
	prompt
	prop.table
	qqnorm
	qr
	QR.Auxiliaries
	quakes
	quantile
	quit
	R.home
	R.Version
	Random
	Random.user
	randu
	range
	rank
	read.fwf
	read.socket
	read.table
	read.table.url
	readline
	real
	Recall
	rect
	relevel
	remove
	rep
	replace
	replications
	residuals
	restart
	rev
	rgb
	rivers
	rle
	Round
	row
	row/colnames
	rowsum
	rug
	Rwin configuration
	sample
	save
	savePlot
	scale
	scan
	screen
	sd
	se.aov
	se.contrast
	search
	segments
	seq
	sequence
	sets
	shell
	shell.exec
	sign
	SignRank
	sink
	sleep
	solve
	sort
	source
	Special
	splinefun
	split
	stackloss
	stars
	start
	Startup
	stat.anova
	state
	stem
	step
	stop
	str
	stripplot
	strsplit
	structure
	strwidth
	subset
	substitute
	substr
	sum
	summary
	sunflowerplot
	sunspots
	svd
	sweep
	swiss
	switch
	symnum
	sys.parent
	sys.source
	system
	system.file
	system.time
	t
	table
	tabulate
	tapply
	TDist
	tempfile
	terms
	text
	time
	Titanic
	title
	ToothGrowth
	trace
	traceback
	transform
	trees
	Trig
	ts
	tsp
	Tukey
	typeof
	UCBAdmissions
	Uniform
	unique
	uniroot
	units
	unlink
	unlist
	unname
	update
	update.formula
	update.packages
	USArrests
	USJudgeRatings
	USPersonalExpenditure
	uspop
	VADeaths
	var
	vector
	volcano
	warning
	warnings
	warpbreaks
	Weibull
	weighted.mean
	weighted.residuals
	which
	Wilcoxon
	winDialog
	window
	windows
	winextras
	winMenus
	women
	write
	write.table
	xy.coords
	zip.file.extract

	The ctest package
	ansari.test
	bartlett.test
	binom.test
	chisq.test
	cor.test
	fisher.test
	fligner.test
	friedman.test
	kruskal.test
	ks.test
	mantelhaen.test
	mcnemar.test
	mood.test
	pairwise.prop.test
	pairwise.t.test
	pairwise.table
	pairwise.wilcox.test
	power.prop.test
	power.t.test
	print.pairwise.htest
	print.power.htest
	prop.test
	shapiro.test
	t.test
	var.test
	wilcox.test

	The eda package
	line
	medpolish
	smooth

	The lqs package
	cov.rob
	lqs
	predict.lqs

	The modreg package
	ksmooth
	loess
	loess.control
	modreg-internal
	plot.ppr
	ppr
	predict.loess
	predict.smooth.spline
	rock
	scatter.smooth
	smooth.spline
	supsmu

	The mva package
	as.hclust
	biplot
	biplot.princomp
	cancor
	cmdscale
	cutree
	dist
	hclust
	identify.hclust
	kmeans
	prcomp
	princomp
	rect.hclust

	The nls package
	asOneSidedFormula
	BOD
	ChickWeight
	clearNames
	CO2
	DNase
	formula.nls
	getInitial
	Indometh
	Loblolly
	logLik
	nls
	nls.control
	nlsModel
	NLSstAsymptotic
	NLSstClosestX
	NLSstLfAsymptote
	NLSstRtAsymptote
	Orange
	plot.profile.nls
	predict.nls
	profile.nls
	profiler
	profiler.nls
	Puromycin
	selfStart
	selfStart.default
	selfStart.formula
	setNames
	sortedXyData
	SSasymp
	SSasympOff
	SSasympOrig
	SSbiexp
	SSfol
	SSfpl
	SSlogis
	SSmicmen

	The splines package
	asVector
	backSpline
	bs
	interpSpline
	ns
	periodicSpline
	polySpline
	predict.bs
	predict.bSpline
	splineDesign
	splineKnots
	splineOrder
	xyVector

	The stepfun package
	ecdf
	plot.stepfun
	stepfun

	The ts package
	acf
	ar
	ar.ols
	arima0
	austres
	beavers
	BJsales
	Box.test
	cpgram
	diff.ts
	diffinv
	embed
	EuStockMarkets
	filter
	kernapply
	kernel
	lag
	LakeHuron
	lh
	lynx
	na.omit.ts
	nottem
	PP.test
	spec.ar
	spec.pgram
	spec.taper
	spectrum
	stl
	sunspot
	toeplitz
	treering
	ts-internal
	ts.plot
	ts.union
	UKDriverDeaths
	UKLungDeaths
	USAccDeaths

	Index

