37 #ifndef GMM_DENSE_MATRIX_FUNCTIONS_H 
   38 #define GMM_DENSE_MATRIX_FUNCTIONS_H 
   50     typedef typename number_traits<T>::magnitude_type R;
 
   51     bool singular = 
false;
 
   67     const size_type n = mat_nrows(A);
 
   68     for (
int j=0; j < int(n); j++) {
 
   69       typename dense_matrix<T>::iterator colj = A.begin() + j*n;
 
   70       if (gmm::abs(colj[j]) > tol)
 
   71         colj[j] = gmm::sqrt(colj[j]);
 
   75       for (
int i=j-1; i >= 0; i--) {
 
   76         typename dense_matrix<T>::const_iterator coli = A.begin() + i*n;
 
   77         T colji = colj[i] = safe_divide(colj[i], (coli[i] + colj[j]));
 
   78         for (
int k = 0; k < i; k++)
 
   79           colj[k] -= coli[k] * colji;
 
   84       GMM_WARNING1(
"Matrix is singular, may not have a square root");
 
   89   void sqrtm(
const dense_matrix<std::complex<T> >& A,
 
   90              dense_matrix<std::complex<T> >& SQRTMA)
 
   92     GMM_ASSERT1(gmm::mat_nrows(A) == gmm::mat_ncols(A),
 
   93                 "Matrix square root requires a square matrix");
 
   94     gmm::resize(SQRTMA, gmm::mat_nrows(A), gmm::mat_ncols(A));
 
   95     dense_matrix<std::complex<T> > S(A), Q(A), TMP(A);
 
   96     #if defined(GMM_USES_LAPACK) 
   99     GMM_ASSERT1(
false, 
"Please recompile with lapack and blas librairies " 
  100                 "to use sqrtm matrix function.");
 
  102     sqrtm_utri_inplace(S);
 
  103     gmm::mult(Q, S, TMP);
 
  104     gmm::mult(TMP, gmm::transposed(Q), SQRTMA);
 
  107   template <
typename T>
 
  108   void sqrtm(
const dense_matrix<T>& A,
 
  109              dense_matrix<std::complex<T> >& SQRTMA)
 
  111     dense_matrix<std::complex<T> > cA(mat_nrows(A), mat_ncols(A));
 
  116   template <
typename T>
 
  117   void sqrtm(
const dense_matrix<T>& A, dense_matrix<T>& SQRTMA)
 
  119     dense_matrix<std::complex<T> > cA(mat_nrows(A), mat_ncols(A));
 
  121     dense_matrix<std::complex<T> > cSQRTMA(cA);
 
  123     gmm::resize(SQRTMA, gmm::mat_nrows(A), gmm::mat_ncols(A));
 
  124     gmm::copy(gmm::real_part(cSQRTMA), SQRTMA);
 
  136   template <
typename T>
 
  139     typedef typename number_traits<T>::magnitude_type R;
 
  141     size_type n = gmm::mat_nrows(S);
 
  142     GMM_ASSERT1(n == gmm::mat_ncols(S),
 
  143                 "Matrix logarithm is not defined for non-square matrices");
 
  144     for (size_type i=0; i < n-1; ++i)
 
  145       if (gmm::abs(S(i+1,i)) > default_tol(T())) {
 
  146         GMM_ASSERT1(
false, 
"An upper triangular matrix is expected");
 
  149     for (size_type i=0; i < n-1; ++i)
 
  150       if (gmm::real(S(i,i)) <= -default_tol(R()) &&
 
  151           gmm::abs(gmm::imag(S(i,i))) <= default_tol(R())) {
 
  152         GMM_ASSERT1(
false, 
"Principal matrix logarithm is not defined " 
  153                            "for matrices with negative eigenvalues");
 
  158     R theta[] = { R(0),R(0),R(1.61e-2),R(5.38e-2),R(1.13e-1),R(1.86e-1),R(2.6429608311114350e-1) };
 
  161     size_type p(0), m(6), opt_iters(100);
 
  162     for (size_type k=0; k < opt_iters; ++k, scaling *= R(2)) {
 
  163       dense_matrix<T> auxS(S);
 
  164       for (size_type i = 0; i < n; ++i) auxS(i,i) -= R(1);
 
  166       if (tau <= theta[6]) {
 
  168         size_type j1(6), j2(6);
 
  169         for (size_type j=0; j < 6; ++j)
 
  170           if (tau <= theta[j]) { j1 = j; 
break; }
 
  171         for (size_type j=0; j < j1; ++j)
 
  172           if (tau <= 2*theta[j]) { j2 = j; 
break; }
 
  173         if (j1 - j2 <= 1 || p == 2) { m = j1; 
break; }
 
  176       if (k == opt_iters-1)
 
  177         GMM_WARNING1 (
"Maximum number of square roots exceeded; " 
  178                       "the calculated matrix logarithm may still be accurate");
 
  181     for (size_type i = 0; i < n; ++i) S(i,i) -= R(1);
 
  185       std::vector<R> nodes, wts;
 
  188         R nodes_[] = { R(0.5) };
 
  190         nodes.assign(nodes_, nodes_+m+1);
 
  191         wts.assign(wts_, wts_+m+1);
 
  194         R nodes_[] = { R(0.211324865405187),R(0.788675134594813) };
 
  195         R wts_[] = { R(0.5),R(0.5) };
 
  196         nodes.assign(nodes_, nodes_+m+1);
 
  197         wts.assign(wts_, wts_+m+1);
 
  200         R nodes_[] = { R(0.112701665379258),R(0.500000000000000),R(0.887298334620742) };
 
  201         R wts_[] = { R(0.277777777777778),R(0.444444444444444),R(0.277777777777778) };
 
  202         nodes.assign(nodes_, nodes_+m+1);
 
  203         wts.assign(wts_, wts_+m+1);
 
  206         R nodes_[] = { R(0.0694318442029737),R(0.3300094782075718),R(0.6699905217924281),R(0.9305681557970263) };
 
  207         R wts_[] = { R(0.173927422568727),R(0.326072577431273),R(0.326072577431273),R(0.173927422568727) };
 
  208         nodes.assign(nodes_, nodes_+m+1);
 
  209         wts.assign(wts_, wts_+m+1);
 
  212         R nodes_[] = { R(0.0469100770306681),R(0.2307653449471584),R(0.5000000000000000),R(0.7692346550528415),R(0.9530899229693319) };
 
  213         R wts_[] = { R(0.118463442528095),R(0.239314335249683),R(0.284444444444444),R(0.239314335249683),R(0.118463442528094) };
 
  214         nodes.assign(nodes_, nodes_+m+1);
 
  215         wts.assign(wts_, wts_+m+1);
 
  218         R nodes_[] = { R(0.0337652428984240),R(0.1693953067668678),R(0.3806904069584015),R(0.6193095930415985),R(0.8306046932331322),R(0.9662347571015761) };
 
  219         R wts_[] = { R(0.0856622461895853),R(0.1803807865240693),R(0.2339569672863452),R(0.2339569672863459),R(0.1803807865240693),R(0.0856622461895852) };
 
  220         nodes.assign(nodes_, nodes_+m+1);
 
  221         wts.assign(wts_, wts_+m+1);
 
  224         R nodes_[] = { R(0.0254460438286208),R(0.1292344072003028),R(0.2970774243113015),R(0.4999999999999999),R(0.7029225756886985),R(0.8707655927996973),R(0.9745539561713792) };
 
  225         R wts_[] = { R(0.0647424830844348),R(0.1398526957446384),R(0.1909150252525594),R(0.2089795918367343),R(0.1909150252525595),R(0.1398526957446383),R(0.0647424830844349) };
 
  226         nodes.assign(nodes_, nodes_+m+1);
 
  227         wts.assign(wts_, wts_+m+1);
 
  231       dense_matrix<T> auxS1(S), auxS2(S);
 
  232       std::vector<T> auxvec(n);
 
  234       for (size_type j=0; j <= m; ++j) {
 
  235         gmm::copy(gmm::scaled(auxS1, nodes[j]), auxS2);
 
  236         gmm::add(gmm::identity_matrix(), auxS2);
 
  238         for (size_type i=0; i < n; ++i) {
 
  239           gmm::copy(gmm::mat_row(auxS1, i), auxvec);
 
  240           gmm::lower_tri_solve(gmm::transposed(auxS2), auxvec, 
false);
 
  241           gmm::add(gmm::scaled(auxvec, wts[j]), gmm::mat_row(S, i));
 
  245     gmm::scale(S, scaling);
 
  251   template <
typename T>
 
  252   void logm(
const dense_matrix<T>& A, dense_matrix<T>& LOGMA)
 
  254     typedef typename number_traits<T>::magnitude_type R;
 
  255     size_type n = gmm::mat_nrows(A);
 
  256     GMM_ASSERT1(n == gmm::mat_ncols(A),
 
  257                 "Matrix logarithm is not defined for non-square matrices");
 
  258     dense_matrix<T> S(A), Q(A);
 
  259     #if defined(GMM_USES_LAPACK) 
  262     GMM_ASSERT1(
false, 
"Please recompile with lapack and blas libraries " 
  263                 "to use logm matrix function.");
 
  266     bool convert_to_complex(
false);
 
  267     if (!is_complex(T()))
 
  268       for (size_type i=0; i < n-1; ++i)
 
  269         if (gmm::abs(S(i+1,i)) > default_tol(T())) {
 
  270           convert_to_complex = 
true;
 
  275     if (convert_to_complex) {
 
  276       dense_matrix<std::complex<R> > cS(n,n), cQ(n,n), auxmat(n,n);
 
  277       gmm::copy(gmm::real_part(S), gmm::real_part(cS));
 
  278       gmm::copy(gmm::real_part(Q), gmm::real_part(cQ));
 
  279       block2x2_reduction(cS, cQ, default_tol(R())*R(3));
 
  280       for (size_type j=0; j < n-1; ++j)
 
  281         for (size_type i=j+1; i < n; ++i)
 
  285       gmm::mult(auxmat, gmm::transposed(cQ), cS);
 
  291       dense_matrix<T> auxmat(n,n);
 
  294       gmm::mult(auxmat, gmm::transposed(Q), LOGMA);
 
void copy(const L1 &l1, L2 &l2)
*/
 
number_traits< typename linalg_traits< M >::value_type >::magnitude_type mat_norm1(const M &m)
*/
 
void clear(L &l)
clear (fill with zeros) a vector or matrix.
 
void resize(V &v, size_type n)
*/
 
void mult(const L1 &l1, const L2 &l2, L3 &l3)
*/
 
void add(const L1 &l1, L2 &l2)
*/
 
void logm_utri_inplace(dense_matrix< T > &S)
Matrix logarithm for upper triangular matrices (from GNU/Octave)
 
void sqrtm_utri_inplace(dense_matrix< T > &A)
Matrix square root for upper triangular matrices (from GNU Octave).
 
void logm(const dense_matrix< T > &A, dense_matrix< T > &LOGMA)
Matrix logarithm (from GNU/Octave)